
QUICK REFERENCE GUIDE

FOR mikroBasic

2

The mikroBasic quick reference guide provides formal definitions of lexical elements the
mikroBasic programming language consists of. These elements are word-like units rec-
ognized by such programming language. Every program written in mikroBasic consists
of a sequence of ASCII characters such as letters, digits and special signs. Non-printing
signs such as newline characters, tab etc. are also referred to as special signs. A set of
basic elements in mikroBasic is well-organized and finite. Programs are written in the
mikroBasic Code Editor window. During the process of compiling, each file code is
parsed into tokens and whitespaces.

Whitespace
Spaces (blanks), horizontal and vertical tabs and newline characters are together called
whitespaces. Whitespaces are used as separators to indicate where tokens start and
end. For example, the two following sequences

and

are lexically equivalent and parse identically giving the eight tokens each:

Whitespace in Strings
Whitespace may occur within string literals. In this case it is not used as a parser, but is con-
strued as a common character, i.e. represents part of the string alone. For example, the follow-
ing string

parses into four tokens, including the string literal as a single token:

dim tmp as byte
dim j as word

dim tmp as byte
dim j as word

dim
tmp
as
byte
dim
j
as
word

some_string = "mikro foo"

some_string
=
"mikro foo"
newline character

Lexical Elements Overview

Tokens
A token is the smallest element of the Basic programming language which is recognized
by the compiler. The parser analyzes the program code from left to right and creates the
longest possible tokens from the sequence of input characters.
Keywords
Keywords or reserved words are tokens with fixed meaning which cannot be used as identi-
fiers. In addition to the standard mikroBasic keywords, there is a set of predefined identifiers
(of constants and variables) referred to as reserved words. They describe specific microcon-
troller and cannot be redefined. Here is a list of the mikroBasic keywords in alphabetical order:

3

absolute
and
appactivate
array
as
asc
asm
at
atn
attribute
base
bdata
beep
bit
boolean
byref
byte
call
case
cbool
cbyte
ccur
cdate
cdate
cdbl
char
chdir
chdrive
chr
cint
circle
class
clear
clng
close
code
command
compact
compare
const
createobject
csng

cstr
curdir
currency
cvar
cverr
data
date
dateadd
datediff
datepart
dateserial
datevalue
ddb
deftype
dim
dir
div
do
doevents
double
each
eio
empty
end
end with
environ
eof
eqv
erase
err
error
exit
explicit
explicit
fileattr
fileattr
filecopy
filedatetime
filelen
fix
float
for

form
format
forward
freefile
function
fv
get
getattr
getobject
gosub
goto
hex
hour
idata
if
iif
ilevel
imp
implements
include
input
instr
int
integer
io
ipmt
irr
is
isarray
isdate
isempty
iserror
ismissing
isnull
isnumeric
isobject
kill
large
lbound
lcase
left
len

let
line
loc
lock
lof
long
longint
longword
loop
lset
me
mid
minute
mirr
mkdir
mod
module
month
msgbox
name
new
next
not
not
nothing
now
nper
npv
object
oct
on
open
option
option
option
or
org
orgall
pdata
pmt
ppmt
print

private
procedure
program
property
pset
public
put
pv
qbcolor
raise
randomize
rate
redim
register
rem
resume
return
rgb
right
rmdir
rnd
rset
rx
sbit
second
seek
select
sendkeys
set
setattr
sfr
sgn
shell
short
single
sln
small
space
spc
sqr
static
step

stop
str
strcomp
strconv
string
structure
sub
switch
syd
symbol
system
tab
time
timer
timeserial
timevalue
to
typedef
typename
ubound
ucase
unlock
until
val
variant
vartype
version
volatile
weekday
wend
while
width
with
word
write
xdata
xor

Comments
Comments are part of the program used for clarifying program operation or for providing
more information about it. They are exclusively intended for the programmer’s use and
are removed from the program before parsing. There are only single-line comments in
mikroBasic starting with an apostrophe ‘. Here is an example:

Besides, blocks of assembly instructions may introduce single-line comments by placing
‘;’ before the comment:

Identifiers
Identifiers are arbitrary names used for designating the basic language objects (labels, types,
constants, variables, procedures and functions). Identifiers may contain all the letters of alpha-
bet (both upper case and lower case), the underscore character ‘_’ and digits (0 to 9). The first
character of an identifier must be a letter or an underscore. mikroBasic is not case sensitive,
so that Sum, sum, and suM are recognized as equivalent identifiers. Although identifier names
are arbitrary (within the rules stated), some errors may occur if the same name is used for more
than one identifier within the same scope. Here are some valid identifiers:

Here are some invalid identifiers:

Literals
Literals are tokens representing fixed numerical or character values. The compiler deter-
mines data type of a literal on the basis of its format (the way it is represented in the
code) and its numerical value.

4

' Any text between an apostrophe and the end of the

' line constitutes a comment. May span one line only.

asm
some_asm ; This assembly instruction …

end asm

temperature_V1
Pressure
no_hit
dat2string
SUM3
_vtext

7temp ' NO -- cannot begin with a numeral
%higher ' NO -- cannot contain special characters
xor ' NO -- cannot match reserved word
j23.07.04 ' NO -- cannot contain special characters (dot)

5

Integer Literals
Integral literals can be written in decimal, hexadecimal or binary notation.

� In decimal notation, integer literals are represented as a sequence of digits (without
commas, spaces or dots), with optional prefix + or - (operator). Integer literals with-
out prefix are considered positive. Accordingly, the number 6258 is equivalent to the
number +6258.

� Integer literals with the dollar sign ($) or 0x prefix are considered hexadecimal
numbers. For example, $8F or 0x8F.

� Integer literals with the percent sign prefix (%) are considered binary numbers. For
example, %01010101.

Here are some examples of integer literals:

The allowed range for constant values is determined by the longint type for signed con-
stants or by the longword type for unsigned constants.

Floating Point Literals
A floating point literal consists of:

� Decimal integer;
� Decimal point;
� Decimal fraction; and
� e or E and a signed integer exponent (optional).

Here are some examples of floating point literals:

Character Literals
Character literals are ASCII characters, enclosed in single quotation marks. Character lit-
erals may be assigned to variables of integral and string type, array of characters and
array of bytes. A variable of integral type will be assigned the ASCII value of the corre-
sponding character literal.

11 ' decimal literal
$11 ' hex literal equal to decimal 17
0x11 ' hex literal equal to decimal 17
%11 ' binary literal equal to decimal 3

0. ' = 0.0
-1.23 ' = -1.23
23.45e6 ' = 23.45 * 10^6
2e-5 ' = 2.0 * 10^-5
3E+10 ' = 3.0 * 10^10
.09E34 ' = 0.09 * 10^34

6

String Literals
String literal represents a sequence of ASCII characters written in one line and enclosed
in single quotation marks. As mentioned before, string literals may contain whitespaces.
The parser does not “go into” string literals, but treats them as single tokens. The length
of a string literal depends on the number of characters it consists of. There is a null char-
acter (ASCII zero) at the end of each string literal. It is not included in the string’s total
length. A string literal with nothing in between the quotation single marks (null string) is
stored as one single null character. String literals can be assigned to string variables, array
of char or array of byte. Here are several string literals:

Punctuators
mikroBasic uses the following punctuators (also known as separators):

� [] - square brackets;
� () - parentheses;
� , - comma;
� ; - semicolon (with the asm statements only);
� : - colon
� . - dot

Square brackets
Brackets [] are used for indicating single and multidimensional array’s indices:

Parentheses
Parentheses () are used for grouping expressions, isolating conditional expressions and
for indicating function calls and function declarations:

Comma
Commas ‘,’ are used for the purpose of separating parameters in function calls, identi-
fiers in declarations and elements of initializer:

"Hello world!" ' message, 12 chars long

"Temperature is stable" ' message, 21 chars long

" " ' two spaces, 2 chars long

"C" ' letter, 1 char long

"" ' null string, 0 chars long

dim alphabet as byte [30]

' ...

alphabet [2] = "c"';

d = c * (a + b) ' Group expressions

if (d = z) then ... ' Conditional expressions

func() ' Function call, no parameters

sub function func2(dim n as word) ' Function declaration with parameters

Lcd_Out(1, 1, txt)
dim i, j, k as word
const MONTHS as byte [12] = (31,28,31,30,31,30,31,31,30,31,30,31)

7

Semicolon
A semicolon is used for denoting points in assembly blocks at which comments start.

Colon
A colon (:) is used for indicating a label in the program. For example:

Dot
A dot (.) is used for indicating access to a structure member. It can also be used for
accessing individual bits of registers. For example:

Similar to other programming languages, mikroBasic provides a set of strictly defined
rules to be observed when writing programs. In other words, all the programs written in
mikroBasic have a clear and organized structure. Some of the program examples are
given in text below. Every project written in mikroBasic consists of a project file and one
or more modules (files with the .mbas extension). The project file provides information
on the project itself, whereas modules contains program code.

Main Module
Every project in mikroBasic requires a single main module. It is identified by the program
keyword placed at the beginning of the module, thus instructing the compiler from where
to start the process of compiling. After an empty project is successfully created in Project

Wizard, the main module will be automatically displayed in the Code Editor window. It
contains the basic structure of the program written in mikroBasic. Nothing may precede
the program keyword, except comments. The include clause may optionally be placed
after the program name. All global identifiers of constants, variables, labels and routines
are declared before the main keyword.

start: nop

goto start

person.surname = "Smith"

Program Organization

8

Structure of the Main Module
Basically, the main module can be divided in two sections: declarations and program
body. Declarations must be properly organized and placed in the code. Otherwise, the
compiler may not be able to interpret the program correctly. When writing a code, it is
advisable to follow the model presented below.

The main module is to look as follows:

Other modules
Other modules allow you to:

� break large programs into encapsulated parts that can be edited separately;
� create libraries that can be used in different projects; and
� distribute libraries to other developers without disclosing the source code.

program <program_name>
include <include_other_modules>

'**

'* Global declarations:

'**

'symbol declarations
symbol ...

'constant declarations
const ...

'variable declarations
dim ...

'procedure declarations
sub procedure procedure_name (...)

<local_declarations>
...

end sub

'function declarations
sub function function_name (...)

<local_declarations>
...

end sub

'**

'* Program body:

'**

main:
'write your code here

end.

9

Every module is stored in its own file and compiled separately. Compiled modules are linked
together for the purpose of creating an executable code. To build a project correctly, the com-
piler needs all the modules either as program code files or object files (files created by com-
piling modules). All modules start with the module keyword. Apart from the comments, noth-
ing may precede the module keyword. The include clause may follow the module name.

Structure of Other Modules
Every module consists of three sections. These are include, interface and implementation
sections. Only the implementation section is obligatory. Follow the model presented below:

module <module_name>
include <include_other_modules>
'**
'* Interface (globals):
'**

' symbol declarations
symbol ...

' constant declarations
const ...

' variable declarations
dim ...

' procedure prototypes
sub procedure procedure_name(...)

' function prototypes
sub function function_name(...)

'**
'* Implementation:
'**

implements
' constant declarations
const ...

' variable declarations
dim ...

' procedure declarations
sub procedure procedure_name (...)

<local_declarations>
...

end sub

' function declarations
sub function function_name (...)

<local_declarations>
...

end sub

end.

10

Include Clause
mikroBasic includes modules by means of the include clause. It consists of the include
reserved word and one module name enclosed in quotation marks. Module name does
not include extension. Every module may include more than one include clause which
must be placed immediately after the module name. Here is an example:

After reaching the module name, the compiler checks if the project contains files with the
given name and .mcl and .mbas extensions in the order and places specified in the
Search Paths option.

� If both .mbas and .mcl files are found, the compiler will check their dates and include
a file of later date in the project. If the .mbas file is of later date, the compiler will
recompile it and generate new .mcl file by copying the former one;

� If only .mbas file is found, the compiler will recompile it and generate the .mcl file;

� If only .mcl file is found, the compiler will include it as found;

� If no file is found, the compiler will report an error.

Interface Section
A part of the module above the implements keyword is referred to as interface section.
It contains global declarations of constants, variables and symbols for the project. Rou-
tines cannot be defined in this section. Instead, the section contains declarations of rou-
tines, defined in the implementation section, which are to be visible beyond the module.
Routine declarations must completely match definitions thereof.

Implementation Section
The Implementation section contains private routine declarations and definitions and
allows code encapsulation. Everything declared below the implements keyword is for
private use only, i.e. has the scope limited to that module and thus can be used in any
block or routine defined within that module. Any identifier declared within this section of
the module cannot be used beyond that module, only in routines defined after declara-
tion of the given identifier.

program MyProgram

include "utils"

include "strings"

include "MyUnit"

...

11

Scope and Visibility

Scope
The scope of an identifier represents the part of the program in which the identifier can
be used. There are different categories of scope depending on how and where identifiers
are declared:

Visibility
Similar to scope, the visibility of an identifier represents the part of the program in which
the identifier can be used. Scope and visibility usually coincide, though there are some
situations in which an object referred to by an identifier becomes temporarily hidden by
its duplicate (an identifier with the same name, but different scope). In this case, the
object still exists, but cannot be accessed by its original identifier until the scope of the
duplicate identifier ends. The visibility cannot exceed the scope, but the scope can
exceed the visibility.

mikroBasic is strictly typed language, which means that each variable and constant must
have its type defined before the process of compiling starts. Checking type may prevent
objects from being illegally assigned or accessed.
mikroBasic supports standard (predefined) data types such as signed and unsigned inte-
gers of various sizes, arrays, strings, pointers etc. Besides, the user can define new data
types using the typedef directive. For example:

Place of declaration Scope

Identifier is declared in sections for
declaring main module, beyond
function or procedure.

Scope extends from the point where identifier is declared to the end of
the current block, including all routines within the scope.

Identifier is declared within function or
procedure.

Scope extends from the point where identifier is declared to the end of
that routine. These identifiers are referred to as local identifiers.

Identifier is declared in the interface
section of the module.

Scope extends from the point where identifier is declared to the end of
the module, as well as to all other modules or programs using that
module. The only exceptions are symbols the scope of which is limited
to the module in which they are declared.

Identifier is declared in the
implementation section of the module,
but not within function and procedure.

Scope extends from the point where identifier is declared to the end of
the current module. The identifier is available to any function or
procedure defined below its declaration.

Types

Typedef MyType1 as byte
Typedef MyType2 as integer
Typedef MyType3 as ^word
Typedef MyType4 as ^MyType1

dim mynumber as MyType2

12

Simple Types
Simple types represent types that cannot be broken down into more basic elements.
Here is an overview of simple types in mikroBasic:

Arrays
An array represents a finite and arranged set of variables of the same type called elements.
Type of elements is called the base type. The value of an element can be accessed by its index
which is unique for each element so that different elements may contain the same value.

Array Declaration
Arrays are declared in the following way:

Each element of an array is numbered from 0 to array_length -1. The element_type
specifier represents the type of array elements (the base type). Each element of an array
can be accessed by specifying array name followed by the element index enclosed in
square brackets. Here are a few examples:

Constant Arrays
Constant array is initialized by assigning it a comma-delimited sequence of values
enclosed in parentheses. For example:

The number of assigned values must not exceed the specified array length, but can be
less. In this case, the trailing “excess” elements will be assigned zeroes.

Type Size Range

byte 8–bit 0 – 255

char* 8–bit 0 – 255

word 16–bit 0 – 65535

short 8–bit -128 – 127

integer 16–bit -32768 – 32767

longint 32–bit -2147483648 – 2147483647

longword 32–bit 0-4294967295

float 32-bit ±1.17549435082 * 10
-38

.. ±6.80564774407 * 10
-38

* char type can be treated as byte type in every aspect

dim weekdays as byte [7]
dim samples as word [50]

main:
' Array elements may be accessed in the following way:
samples [0] = 1
if samples [37] = 0 then

...

element_type [array_length]

'Declare a constant array which holds number of days in each month:
const MONTHS as byte [12] = (31,28,31,30,31,30,31,31,30,31,30,31)
'Declare a 2-dimensional constant array:
const NUMBER s byte [4][4] = ((0, 1, 2, 3), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))

13

Multi-dimensional Arrays
An array is one-dimensional if it is of scalar type. One-dimensional arrays are sometimes
referred to as vectors. Multidimensional arrays are created by declaring arrays of array
type. Here is an example of a 2-dimensional array:

The m variable represents an array of 50 elements which in turn represent arrays of 20
elements of byte type each. This is how a matrix of 50x20 elements is created. The first
element is m[0][0], whereas the last one is m[49][19]. If an array is a function parameter
then it has to be passed by reference as in the following example:

Strings
A string represents a sequence of characters and is equivalent to an array of char. It is
declared in the following way:

The string_name specifier represents a string name and must be valid identifier. The
string_length specifier represents the number of characters the string consists of. At the
end of each string, there is a final null character (ASCII code 0) which is not included in
string’s total length. A null string ('') represents an array containing a single null character.
Strings can be assigned to variables of string type, array of char and array of byte. For
example:

dim m as byte [50][20] '2-dimensional array of 50x20 elements

sub procedure example(dim byref m as byte [50][20])
...
inc(m[1][1])
end sub

var
dim m as byte [50][20] ' 2-dimensional array of size 50x20

dim n as byte [4][2][7] ' 3-dimensional array of size 4x2x7
main:
...
func(m)
end.

string [string_length]

dim message1 as string [20]

dim message2 as string [19]

main:

msg1 = "This is the first message"

msg2 = "This is the second message"

msg1 = msg2

14

A string can also be accessed element–by–element. For example:

String Splicing
mikroBasic allows you to splice strings by means of the plus operator ‘+’. This kind of concate-
nation may apply to string variables, string literals, character variables and character literals.
Non-printing characters can be represented by means of the Chr operator and a number rep-
resenting the ASCII code thereof (e.g. Chr(13) for CR). For example:

mikroBasic includes the String Library which facilitates string related operations.

dim s as string [5]

...

s = "mik"

's[0] is char literal "m"

's[1] is char literal "i"

's[2] is char literal "k"

's[3] is zero

's[4] is undefined

's[5] is undefined

dim message as string [100]

dim res_txt as string [5]

dim res, channel as word

main:

res = Adc_Read(channel) ' ADC result

WordToStr(res, res_txt) ' Create string out of numeric result

' Prepare message for output

message = "Result is" + ' Text "Result is"

Chr(13) + ' Append CR sequence

Chr(10) + ' Append LF sequence

res_txt + ' ADC result

"." ' Append a dot

15

Pointers
A pointer is a variable which holds memory address of an object. While variable directly
accesses some memory address, the pointer can be thought of as a reference to that
address. To declare a pointer, it is necessary to add a carat prefix (^) before its type. For
example, to declare a pointer to an object of integer type, it is necessary to write:

To access data stored at the memory location pointed to by a pointer, it is necessary to
add a carat suffix ‘^’ to the pointer name. For example, let’s declare the p variable which
points to an object of word type, and then assign value 5 to the object:

A pointer can be assigned to another pointer. It makes both pointers point to the same
memory location. Modifying the object pointed to by one pointer causes another object
pointed to by another pointer to be automatically changed since they share the same
memory location.

@ Operator
The @ operator returns the address of a variable or routine, i.e. directs a pointer to its
operand. The following rules apply to this operator:

� If X is a variable, @X returns the address of X.

If variable X is of array type, the @ operator will return the pointer to its first basic ele-
ment, except when the left side of the statement in which X is used is array pointer. In

this case, the @ operator will return the pointer to the array, not to its first basic element:

� If F is a routine (function or procedure), @F returns the pointer to F.

^integer

dim p as ^word
...
p^ = 5

typedef array_type as byte[10]

dim w as word
ptr_b as ^byte
ptr_arr as array_type
arr as byte[10]

main:
ptr_b = @arr ' @ operator will return ^byte
w_ = @arr ' @ operator will return ^byte
ptr_arr = @arr ' @ operator will return ^array[10] of byte

end.

16

Function Pointers
mikroBasic allows the use of function pointers. This example illustrates how to define and
use function pointers. We will first define procedural type and function pointer, then call the
function by means of the pointer.

' Procedural type definition
type TMyFunctionType = function (dim param1, param2 as byte, dim param3 as word) as word

dim MyPtr as T̂MyFunctionType ' Pointer to previously defined procedural type

dim sample as word

' Function definition

' Function prototype should match type definition

sub function Func1(dim p1, p2 as byte, dim p3 as word) as word '
result = p1 and p2 or p3 ' return value

end sub

sub function Func2(dim abc, def as byte, dim ghi as word) as word

result = abc * def + ghi ' return value

end sub

sub function Func3(dim first, yellow as byte, dim monday as word) as word '
result = monday - yellow - first ' return value

end sub

' main program:
main:
' MyPtr now points to Func1

MyPtr = @Func1

' Call function Func1 via pointer
Sample = MyPtr^(1, 2, 3)

' MyPtr now points to Func2
MyPtr = @Func2

' Call function Func2 via pointer
Sample = MyPtr^(1, 2, 3)

' MyPtr now points to Func3
MyPtr = @Func3

' Call function Func3 via pointer
Sample = MyPtr^(1, 2, 3)

end.

17

Structure
A structure represents a heterogeneous set of elements. Each element is called a mem-
ber. Structure declaration specifies the name and type of each member. For example:

The structname specifier represents a structure name which must be valid identifier, spec-
ifiers member1..membern represent lists of comma-delimited structure member identifiers,
whereas specifiers type1.. typen represent types of appropriate structure members. The
scope of a member identifier is limited to the structure in which it occurs, so that it is not nec-
essary to take care of naming conflicts between member identifiers and other variables. Note
that in mikroBasic the structure can be declared as a new type only.
For example, the following declaration creates a structure called Dot:

Each TDot contains two members: x and y coordinates. Memory is not allocated until an
object of structure type is defined as in the following example:

Such declaration creates two instances of Dot, called m and n. A structure member can
be previously defined structure. For example:

Accessing Structure Members
Structure members may be accessed by means of the dot (.) operator. If we declare vari-
ables circle1 and circle2 of the previously defined type Circle,

their individual members can be accessed in the following way:

structure structname
dim member1 as type1
...
dim membern as typen

end structure

structure Dot
dim x as float
dim y as float

end structure

dim m, n as Dot

' Structure defining a circle:

structure Circle

dim radius as float

dim center as Dot

end structure

dim circle1, circle2 as Circle

circle1.radius = 3.7
circle1.center.x = 0
circle1.center.y = 0

18

Conversion of an object of one type is the process of changing its type into another type.
mikroBasic supports both implicit and explicit conversions of basic types.

Implicit Conversion
The compiler automatically performs implicit conversion in the following situations:

� if a statement requires an expression of particular type, but expression of different
type is used;

� if an operator requires an operand of particular type, but operand of different type is
used;

� if a function requires a formal parameter of particular type, but is assigned an object
of different type; and

� if a function result does not match the declared function return type.

Promotion
When operands are of different types, implicit conversion promotes a less complex to a
more complex type as follows:

bit � byte/char
byte/char� word
short � integer
short � longint
integer � longint
integral � float
word � longword

Higher bytes of an extended unsigned operand are filled with zeroes. Higher bytes of an
extended signed operand are filled with a bit sign. If the number is negative, higher bytes
are filled with ones, otherwise with zeroes. For example:

Clipping
In assignment statements and statements requiring an expression of particular type, the cor-
rect value will be stored in destination only if the result of expression doesn’t exceed the des-
tination range. Otherwise, excess data, i.e. higher bytes will simply be clipped (lost).

Type Conversions

dim a as byte
dim b as word
...
a = $FF
b = a ' a is promoted to word, b to $00FF

dim i as byte
dim j as word
...
j = $FF0F
i = j ' i becomes $0F, higher byte $FF is lost

19

Explicit Conversion
Explicit conversion can be executed upon any expression by specifying desired type
(byte, word, short, integer, longint, longword or float) before the expression to be
converted. The expression must be enclosed in parentheses. A special case represents
conversion between signed and unsigned types. Such explicit conversion does not affect
binary representation of data. For example:

Explicit conversion cannot be performed upon the operand to the left of the assignment
operator:

Here is an example of conversion:

dim a as byte
dim b as short
...
b = -1
a = byte(b) ' a is 255, not 1
' Data doesn’t change it’s binary representation 11111111
' it's just interpreted differently by the compiler

dim a, b, c as byte
dim cc as word
...
a = 241
b = 128

c = a + b ' equals 113
c = word(a + b) ' equals 369
cc = a + b ' equals 369

word(b) = a ' Compiler will report an error

Note: Conversion of floating point data into integral data (in assignment statements or via
explicit typecast) produces correct results only if the float value does not exceed the scope
of destination integral type.

20

A variable is an object the value of which can be changed during the runtime. Every vari-
able is declared under unique name which must be a valid identifier. Variables can be
declared in the file and routine declaration sections. Each variable needs to be declared
before it is used in the program. Global variables (visible in all files) are declared in the
the main module declaration sections. It is necessary to specify data type for each vari-
able. The basic syntax of variable declaration is:

The identifier_list specifier represents a list of comma-delimited variable identifiers,
whereas the type specifier represents their type. mikroBasic allows a shortened version
of the syntax comprising of the dim keyword followed by multiple variable declarations.
For example:

A constant is an object the value of which cannot be changed during the runtime. RAM
memory is not used for their storage. Constants are declared in the file and routine dec-
laration sections as follows:

Every constant is declared under unique name (specifier constant_name) which must
be a valid identifier. Constant names are usually written in uppercase. When declaring a
constant, it is necessary to specify its value matching the given type. Specifying the type
is optional. In the absence of type, the compiler assumes a simple type with the smallest
scope that can accommodate the constant value. mikroBasic allows shortened version
of the syntax comprising of the const keyword followed by multiple constant declara-
tions. For example:

dim identifier_list as type

dim i, j, k as byte

counter, temp as word

samples as longint [100]

Variables

Constants

const constant_name [as type] = value

const MAX as longint = 10000
MIN = 1000 ' compiler will assume word type
SWITCH = "n" ' compiler will assume char type
MSG = "Hello" ' compiler will assume string type
MONTHS as byte [12] = (31,28,31,30,31,30,31,31,30,31,30,31)

21

Labels serve as targets for goto and gosub statements. Mark a desired statement with a
label like this:

Label declaration is optional in mikroBasic. Label name must be valid identifier. A signed
label and goto/gosub statements referring to that label must belong to the same block.
For this reason, no jump to or from the procedure or function can be executed. A label
can be declared only once within the block. Here is an example of an endless loop call-
ing the Beep procedure:

Symbols in mikroBasic enable simple macros without parameters to be created. Any
code line may be substituted by one identifier. When properly used, symbols may con-
tribute to code legibility. Symbols may be declared at the beginning of the module, below
the module name and optional include directive.

Symbols are not stored in RAM memory. Instead, each symbol is replaced by the code
assigned to it at declaring symbol.

Labels

Symbols

label_identifier : statement

loop: Beep

goto loop

symbol alias = code

symbol MAXALLOWED = 216 'Symbol for numerical value

symbol PORT = PORTC 'Symbol for SFR

symbol MYDELAY = Delay_ms(1000) 'Symbol for procedure call

dim cnt as byte 'Some variable

'...

main:

if cnt > MAXALLOWED then

cnt = 0

PORT.1 = 0

MYDELAY

end if

Functions and procedures, together called routines, are subprograms which perform
certain tasks on the basis of a number of input parameters. Function returns a value after
execution, whereas procedure does not. mikroBasic does not support inline routines.

Functions
Functions are declared as follows:

The function_name specifier represents a function name and can be any valid identifi-
er. The parameter_list specifier within parenthesis represents a list of formal parameters
being declared similar to variables. In order to pass a parameter by address to a func-
tion, it is necessary to add the byref keyword at the beginning of parameter declaration.
Local declarations are optional declarations of variables, constants and labels and refer
to the given function only. A function body represents a sequence of statements to be
executed upon calling the function. The return_type specifier represents the type of a
function return value which can be of complex type. Example below illustrates how to
define and use a function returning a complex type.

22

Functions and Procedures

sub function function_name(parameter_list) as return_type

[local declarations]

function body

end sub

structure TCircle ' Structure

dim CenterX, CenterY as word

dim Radius as byte

end structure

dim MyCircle as TCircle ' Global variable

' DefineCircle function returns a Structure

sub function DefineCircle(dim x, y as word, dim r as byte) as TCircle

result.CenterX = x

result.CenterY = y

result.Radius = r

end sub

main:

' Get a Structure via function call

MyCircle = DefineCircle(100, 200, 30)

' Access a Structure field via function call

MyCircle.CenterX = DefineCircle(100, 200, 30).CenterX + 20

' |------------------------| |------|

' | |

' Function returns TCircle Access to one field of TCircle

end.

23

Calling function
A function is called by specifying its name followed by actual parameters placed in the
same order as their matching formal parameters. The compiler is able to make mis-
matching parameters to get appropriate type according to implicit conversion rules. If
there is a function call in an expression, the function return value will be used as an
operand in that expression. Here’s a simple function which calculates xn on the basis of
input parameters x and n (n > 0):

By calling this function, it is possible to calculate, for example, 312:

Procedures
Procedures are declared as follows:

The procedure_name specifier represents a procedure name and can be any valid iden-
tifier. The parameter_list specifier within parentheses represents a list of formal param-
eters which are declared similar to variables.

In order to pass a parameter by address to a procedure, it is necessary to add the byref
keyword at the beginning of the parameter declaration. Local declarations are optional
declarations of variables, constants and labels and refer to the given procedure only. A
procedure body represents a sequence of statements to be executed upon calling the
procedure.

Calling procedure
A procedure is called by specifying its name followed by actual parameters placed in the
same order as their matching formal parameters.

sub function power(dim x, n as byte) as longint

dim i as byte

i = 0

result = 1

if n > 0 then

for i = 1 to n

result = result*x

next i

end if

end sub

tmp = power(3, 12)

sub procedure procedure_name(parameter_list)

[local declarations]

procedure body

end sub

24

Operators are tokens denoting operations to be performed upon operands in an expres-
sion. If the order of execution is not explicitly determined using parentheses, it will be
determined by the operator precedence. There are 4 precedence categories in mikroBa-
sic. Operators in the same category have equal precedence. Each category has asso-

ciativity rules, either left-to-right (�) or right-to-left (�). In the absence of parentheses,
these rules resolve grouping of expressions with operators of equal precedence.

Arithmetic Operators
Arithmetic operators are used for performing computing operations. Operands of char
type are bytes and can be used as unsigned operands in arithmetic operations therefore.
All arithmetic operators associate from left to right.

Operators

Precedence Operands Operators Associativity

4 1 @ not + -

3 2 * / div mod and << >>

2 2 + - or xor

1 2 = <> < > <= >=

Operator Operation Operands Result

+ addition

byte, short,
integer, word,
longint, longword,
real

byte, short,
integer, word,
longint, longword,
real

- subtraction

byte, short,
integer, word,
longint, longword,
real

byte, short,
integer, word,
longint, longword,
real

* multiplication
byte, short,
integer, word,
longword, real

byte, integer,
word, longint,
longword, short,
real

/
Division of floating-point
objects

byte, short,
integer, word,
longword, real

byte, short,
integer, word, real

div
Division and rounding
down to the nearest
integer

byte, short,
integer, word,
longint, longword

byte, short,
integer, word,
longint, longword

mod

Modulus operator returns
the remainder of integer
division (cannot be used
with floating-point objects)

byte, short,
integer, longint,
word, longword

byte, short,
integer, longint,
word, longword

25

Division by Zero
If a zero (0) is used explicitly as the second operand in the division operation (x div 0),
the compiler will report an error and will not generate a code. In case of implicit division
where the second operand is an object the value of which is 0 (x div y, where y=0), the
result will be undefined.

Unary Arithmetic Operators
The ‘-’ operator can be used as a prefix unary operator to change the sign of an object.
The ‘+’ operator can also be used as a unary arithmetic operator, but it doesn’t affect the
object. For example:

Relational Operators
Relational operators are used in logic operations. All relational operators return TRUE or
FALSE and associate from left to right.

Relational Operators in Expressions
The precedence of arithmetic and relational operators enables complex expressions
without parentheses to generate expected results. For example:

Bitwise Operators
Bitwise operators are used for modifying individual bits of an operand. Bitwise operators
associate from left to right. The only exception is the bitwise complement operator not
which associates from right to left.

b = -a

Operator Operation

= equal

<> not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

a + 5 >= c - 1.0 / e ' � (a + 5) >= (c - (1.0 / e))

26

Bitwise Operators Overview

Logical Bitwise Operations
Bitwise operators and, or and xor perform logical operations upon appropriate bit pairs
of their operands. The not operator complements each bit of an operand. For example:

Bitwise Shift Operators
There are two shift operators in mikroBasic. These are the << operator which moves bits
to the left and the >> operator which moves bits to the right. Both operators have two
operands each. The left operand is an object to move, whereas the right operand is a
number of positions to move the object by. Both operands must be of integral type. The
right operand must be a positive value. By shifting an operand left (<<), the leftmost bits
are discarded, whereas ‘new’ bits on the right are assigned zeroes. Accordingly, shifting

unsigned operand to the left by n positions is equivalent to multiplying it with 2
n

if all dis-
carded bits are zeros. The same applies to signed operands if all discarded bits are equal
to the sign bit. By shifting operand right (>>), the rightmost bits are discarded, whereas
‘new’ bits on the left are assigned zeroes (in case of unsigned operand) or the sign bit (in
case of signed operand). Shifting operand to the right by n positions is equivalent to divid-
ing it by 2n.

Operator Operation

and
AND operator compares pairs of bits and generates 1 if both bits are
1, otherwise it generates 0.

or
OR operator compares pairs of bits and generates 1 if either or both
bits are 1, otherwise it generates 0.

xor
XOR operator compares pairs of bits and generates 1 if the bits are
complementary, otherwise it generates 0.

not Bitwise complement (unary) inverts each bit.

<<
Shift left operator moves bits to the left, discards the leftmost bit and
assigns 0 to the rightmost bit.

>>
Shift right operator moves bits to the right and discards the
rightmost bit. If the object is unsigned, the leftmost bit is assigned 0.
Otherwise, it is assigned a bit sign.

$1234 and $5678 ' equals $1230 because ..

' 1234 : 0001 0010 0011 0100

' 5678 : 0101 0110 0111 1000

' ---------------------------

' and : 0001 0010 0011 0000 (that is, $1230)

27

An expression is a sequence of operators, operands and punctuators that returns a
value. Primary expressions include literals, constants, variables and function calls. These
can be used for creating more complex expressions by means of operators. The way
operands and subexpressions are grouped does not necessarily represent the order in
which they are evaluated in mikroBasic.

Statements define operations within a program. In the absence of jump and selection
statements, statements are executed sequentially in the order of appearance in the pro-
gram code.

Assignment Statements
Assignment statements look as follows:

The assignment statement evaluates the expression and assigns its value to a variable
by applying all implicit conversion rules. The variable specifier can be any declared vari-
able, whereas expression represents an expression the value of which matches the
given variable. Do not confuse the assignment operator ‘=’ with relational operator ‘=’
used for testing equality.

Conditional Statements
Conditional or selection statements make selection from alternative courses of program
execution by testing certain values.

If Statement
If statement is a conditional statement. The syntax of the if statement looks as follows:

If expression is true, statement1 executes. Otherwise, statement2 executes. The else
keyword with an alternate statement (statement2) is optional.

Expressions

Statements

variable = expression

if expression then

statement1

[else

statement2]

end if

28

Select Case Statement
The select case statement is a conditional statement of multiple branching. It consists of
a control statement (selector) and a list of possible values of that expression. The syntax
of the select case statement is:

The selector specifier is a control statement evaluated as integral value. Specifiers
value1..value_n represent selector’s possible values and can be literals, constants or
expressions. Specifiers statement1..statement_n represent statements. The else
clause is optional. First, the selector value is evaluated. It is then compared to all avail-
able values. If the value match is found, the appropriate statement will be executed, and
the select case statement terminates. In the event that there are multiple matches, the
first matching statement will be executed. If none of the values matches the selector, then
the default_statement statement in the else clause (if there is one) is executed.
Here’s a simple example of the select case statement:

select case selector

case value_1

statement_1

...

case value_n

statement_n

[case else

default_statement]

end select

select case operator

case "*"

res = n1 * n2

case "/"

res = n1 / n2

case "+"

res = n1 + n2

case "-"

res = n1 - n2

case else

res = 0

cnt = cnt + 1

end select

Possible values of the control statement can also be grouped so that a few values refer
to a single statement. It is just necessary to name all the values and separate them by
commas:

Nested Case Statements
Case statements can also be defined within another case statements. As mentioned
before, the process is referred to as nesting.

Iteration Statements
Iteration statements enable a set of statements to be looped. Statements break and con-
tinue can be used for controlling the flow of loop execution. The break statement terminates
the loop in which it exists, while continue starts new iteration of the loop.

For Statement
The for statement implements an iterative loop when the number of iterations is speci-
fied. The syntax of the for statement is as follows:

The counter specifier is a variable which increments by the step value (step_value) with
each iteration of the loop. The step_value parameter is an optional integral value and
defaults to 1 if omitted. Before the first iteration, the counter is set to initial value (ini-
tial_value) and will increment (or decrement) until it reaches the final value
(final_value). The given statement (statement) will be executed with each iteration. It
can be any statement which doesn’t change the value of the counter variable. The ini-
tial_value and final_value should be expressions compatible with the counter variable,
whereas the statement specifier can be any statement that does not change the count-
er value. The step_value parameter can be a negative value, thus enabling countdown.
Here is an example of calculating scalar product of two vectors, a and b, of length n,
using the for statement:

29

select case reg

case 0

opmode = 0

case 1,2,3,4

opmode = 1

case 5,6,7

opmode = 2

end select

for counter = initial_value to final_value [step step_value]

statement

next counter

s = 0

for i = 0 to n-1

s = s + a [i] * b [i]

next i

30

Endless Loop
The for statement results in an endless loop if the final_value equals or exceeds the
range of the counter variable. Here is an example of an endless loop, as the counter
variable can never reach the value 300:

Another way of creating an endless loop in mikroBasic is by means of the while statement.

While Statement
The while statement implements an iterative loop when the number of iterations is not
specified. It is necessary to check the iteration condition before loop execution. The syn-
tax of the while statement is as follows:

The statement statement is executed repeatedly as long as the value of the expression
expression is true. The expression value is checked before the next iteration is execut-
ed. Thus, if the expression value is false before entering the loop, no iteration executes,
i.e. the statement statement will never be executed. Probably the easiest way of creat-
ing an endless loop is by using the statement:

Do Statement
The do statement implements an iterative loop when the number of iterations is not spec-
ified. The statement is executed repeatedly until the expression evaluates true. The syn-
tax of the do statement is as follows:

The statement statement is iterated until the expression expression becomes true. The
expression is evaluated after each iteration, so the loop will execute the statement at
least once. Here is an example of calculating scalar product of two vectors, using the do
statement:

while expression

statement

wend

while TRUE

...

wend

dim counter as byte
...
for counter = 0 to 300

nop
next counter

do

statement

loop until expression

s = 0
i = 0
...
do

s = s + a [i] * b [i]
i = i + 1

loop until i = n

31

Jump Statements
mikroBasic supports the following jump statements: break, continue, exit, goto and
gosub.

Break Statement
Sometimes it is necessary to stop the loop from within its body. The break statement
within loop is used to pass control to the first statement following the respective loop. For
example:

Continue Statement
The continue statement within the loop is used for starting new iteration of the loop.
Statements following the continue statement will not be executed.

Exit Statement
The exit statement allows you to break out of a routine (function or procedure). It pass-
es the control to the first statement following the routine call. Here is a simple example:

' Wait for CF card to be inserted;

Lcd_Out(1, 1, "No card inserted")

while true

if Cf_Detect() = 1 then

break

end if

Delay_ms(1000)

wend

' CF card is inserted ...

Lcd_Out(1, 1, "Card detected")

' continue jumps here
for i = ...

...
continue
...

next i

' continue jumps here
while condition

...
continue
...

wend

do
...
continue
...

' continue jumps here

loop until condition

sub procedure Proc1()

dim error as byte

...

if error = TRUE then

exit

end if
... ' some code which won't be executed if error is true

end sub

32

Goto Statement
The goto statement is used for executing an unconditional jump to appropriate part of
the program. The syntax of the goto statement is:

This statement executes a jump to the label_name label. It is not possible to jump into
or out of a procedure or function. The goto statement can be used for breaking out of
any level of nested structures. It is not advisable to jump into a loop or other structured
statement, as it may give unexpected results. The use of the goto statement is general-
ly discouraged as practically every algorithm can be realized without it, resulting in legi-
ble structured programs. However, the goto statement is useful for breaking out of
deeply nested control structures:

Gosub Statement
The gosub statement provides unconditional jump to the specified destination in the pro-
gram:

It is used for executing jump to the label_name label. When the return statement is
reached, the program will proceed with execution from the statement following the gosup
statement. It may appear either before or after the label declaration in the program.

for i = 0 to n

for j = 0 to m

...

if disaster

goto Error

end if

...

next j

next i

...

Error: ' error handling code

goto label_name

gosub label_name

...

label_name:

...

return

33

asm Statement
mikroBasic allows embedding assembly instruction in the program code by means of the
asm statement. Assembly instructions may be grouped together using the asm keyword:

mikroBasic comments are allowed in embedded assembly code. Besides, single-line
assembly comments may be written using a semicolon ‘;’ before the comment.

Directives are words of special significance which provide additional possibilities when
compiling and showing results.

Compiler Directives
mikroBasic treats comments starting with a ‘#’ sign similar to compiler directives. Such
directives, among other things, enable the program code to be conditionally compiled, i.e.
it selects particular sections of the code to be compiled. All compiler directives must be
completed within the file in which they have begun.

Directives $DEFINE and $UNDEFINE
The $DEFINE directive is used for defining a conditional compiler constant (flag). The
flag can be any valid identifier. Flags have separate name space so that no confusions
over program identifiers are possible. Only one flag per directive can be defined. For
example:

The $UNDEFINE directive is used for undefining (“clearing”) previously defined flag.

asm
block of assembly instructions

end asm

program test
dim myvar as word
main:
myvar = 0
asm
MOVLW 10
MOVWF _myvar

end asm
end.

Directives

$DEFINE extended_format

34

Directives $IFDEF..$ELSE
Conditional compilation is carried out using the $IFDEF directive. It tests whether a flag
is currently defined or not (using the $DEFINE directive). The $IFDEF directive is termi-
nated by the $ENDIF directive and may have an optional $ELSE clause:

First, $IFDEF checks if the flag is defined or not. If so, only <block of code> will be com-
piled. Otherwise, <alternate block of code> will be compiled. $ENDIF ends the condi-
tional compilation sequence. The result of the preceding scenario is that only one sec-
tion of the code (possibly empty) will be compiled. This section may contain additional
(nested) conditional clauses. Each $IFDEF directive must be terminated with $ENDIF.
Here is an example:

Predefined Flags
mikroBasic has predefined flags which can be used for compiling program code for dif-
ferent hardware platforms.

#IFDEF flag
block of code

#ENDIF
#IFDEF flag_n
block of code n]

[#ELSE
alternate block of code]

#ENDIF

' Uncomment the appropriate flag:

'#DEFINE resolution8

#IFDEF resolution8 THEN

... ' code specific to 8-bit resolution

#ELSE

... ' default code

#ENDIF

35

Linker Directives
mikroBasic uses internal algorithm for the purpose of distributing objects within memory.
If it is necessary to have a variable or a routine at some specific predefined address, link-
er directives absolute, org and orgall must be used.

Directive absolute
The absolute directive specifies the starting variable address in RAM. For multi-byte
variables, the higher bytes will be stored at adjacent, consecutive locations starting from
the given location. This directive is appended to variable declaration:

Directive org
The org directive specifies the starting address of a routine in ROM. It is appended to
the routine declaration. For example:

Constant aggregates (records, arrays) can also be allocated at the specified address in
ROM by means of the org directive.

Directive orgall
The orgall directive is used for specifying the starting address of a routine in ROM from
where placing of all routines and constants starts. For example:

dim x as byte absolute $22

' Variable x will occupy 1 byte at address $22

dim y as word absolute $23

' Variable y will occupy 2 bytes at addresses $23 and $24

sub procedure proc(dim par as byte) org $200

' Procedure proc will start at address $200
...
end sub

const arr as byte[10] = (0,1,2,3,4,5,6,7,8,9) org 0x400
' const array will occupy 10 bytes at address 0x400

main:
orgall(0x200) ' All routines and constants in the program will be

stored above the 0x200 address, including this address as well.

...

end.

If you want to learn more about our products, please visit our website: www.mikroe.com

If you are experiencing some problems with any of our products or just need additional information, please place
your ticket at : www.mikroe.com/en/support

If you have any question, comment or business proposal, do not hesitate to contact us: office@mikroe.com

