Loop Quantization versus Fock Quantization of p-Form Electromagnetism on Static Spacetimes

by

Miguel Carrión Álvarez

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy

in

Mathematics

in the

GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, RIVERSIDE

> Committee in charge: Professor John C. Baez, Chair Professor Michel L. Lapidus Professor Xiao-Song Lin

> > December 2004

Definition 1 (stationary and static spacetimes). A Lorentzian manifold without timelike loops (also called a spacetime) is stationary if, and only if, it admits a one-parameter group of isometries with smooth, timelike orbits. A stationary spacetime is static if, in addition, it is foliated by a family of spacelike hypersurfaces everywhere orthogonal to the orbits of the isometries.

Definition 2 (globally hyperbolic spacetime). A piecewise-smooth curve in a spacetime M is causal if its tangent vector is everywhere timelike. A set is achronal if there are no causal curves between any two of its points. The domain of dependence of a set consists of all points $p \in M$ such that every inextensible causal curve through p intersects the set. A Cauchy surface in a spacetime M is a closed achronal set whose domain of dependence is all of M. A spacetime is globally hyperbolic if, and only if, it admits a Cauchy surface.

Definition 3 (linear phase space). A linear phase space is a reflexive real topological vector space \mathbf{P} whose dual \mathbf{P}^* is a symplectic vector space. That is, \mathbf{P}^* is a topological vector space equipped with a symplectic structure: a continuous, skew-symmetric bilinear form ω which is weakly nondegenerate in the sense that the duality map $*: \mathbf{P}^* \to \mathbf{P}$ given by

$$\omega(f,g) = f(g^*) \qquad for \ all \quad f,g \in \mathbf{P}^*$$

is injective.

Definition 4 (automorphism of a linear phase space). An automorphism of the linear phase space \mathbf{P} is a continuous invertible linear map $T: \mathbf{P} \to \mathbf{P}$ whose dual map $T^*: \mathbf{P}^* \to \mathbf{P}^*$ preserves the symplectic structure on \mathbf{P}^* .

Definition 5 (Heisenberg system). A Heisenberg system on a symplectic vector space (\mathbf{P}^*, ω) is a real-linear map $\Phi: f \mapsto \Phi(f)$ from \mathbf{P}^* to the self-adjoint operators on some complex Hilbert space \mathbf{K} , satisfying the Heisenberg commutation relations

$$[\Phi(f), \Phi(g)] = i\omega(f, g)\mathbf{1}_{\mathbf{K}}. \quad for \ all \quad f, g \in \mathbf{P}^*$$

as an operator equation holding on the common domain of $\Phi(f)\Phi(g)$ and $\Phi(f)\Phi(g)$, which is assumed to be dense. The operator $\Phi(f)$ is called the Heisenberg operator associated to $f \in \mathbf{P}^*$.

Definition 6 (Weyl algebra). The Weyl algebra on a symplectic vector space space (\mathbf{P}^*, ω) , is the complex *-algebra $\mathcal{W}(\mathbf{P}^*, \omega)$ generated by the set $\mathcal{W}(\mathbf{P}^*) = \{\mathcal{W}(f)\}_{f \in \mathbf{P}^*}$, of Weyl operators, modulo the unitarity relations

$$\mathcal{W}(f)^* = \mathcal{W}(-f) \quad \text{for all} \quad f \in \mathbf{P}^*$$

and the Weyl relations

$$\mathcal{W}(f)\mathcal{W}(g) = e^{\omega(f,g)/2i}\mathcal{W}(f+g) \quad for \ all \quad f,g \in \mathbf{P}^*.$$

Definition 7 (Weyl system). A Weyl system on the symplectic vector space (\mathbf{P}^*, ω) is a continuous mapping $W: \mathbf{P}^* \to U(\mathbf{K})$, where $U(\mathbf{K})$ is the group of unitary operators on the complex Hilbert space \mathbf{K} with the strong operator topology, and W satisfies the Weyl relations

$$W(f)W(g) = e^{\omega(f,g)/2i}W(f+g) \quad for \ all \quad f,g \in \mathbf{P}^*.$$

Definition 8 (general boson field). If (\mathbf{P}^*, ω) is a symplectic vector space, the general boson field over it is the pair (\mathcal{W}, γ) where $\mathcal{W}: f \mapsto \mathcal{W}(f)$ is the map from \mathbf{P}^* to $\mathcal{W}(\mathbf{P}^*, \omega)$, and γ is the representation of automorphisms of \mathbf{P} by *-automorphisms of $\mathcal{W}(\mathbf{P}^*, \omega)$ mentioned in Lemma 19.

Definition 9 (GNS state). A state on a *-algebra A is a linear functional

 $\langle \rangle : A \to \mathbb{C}$

which is nonnegative

$$\langle a^*a \rangle \ge 0 \qquad for \ all \quad a \in A,$$

and normalized

 $\langle 1 \rangle = 1.$

Definition 10 (characteristic functional). If $\langle \rangle$ is a state on the Weyl algebra $\mathcal{W}(\mathbf{P}^*, \omega)$, its characteristic functional $\mu: \mathbf{P}^* \to \mathbb{C}$ is given by

 $\mu(f) := \langle \mathcal{W}(f) \rangle \qquad for \ all \quad f \in \mathbf{P}^*.$ (0.1)

We say the state $\langle \rangle$ is regular if, for every $f \in \mathbf{P}^*$, the function

$$t \mapsto \mu(tf) \qquad (t \in \mathbb{R})$$

is twice differentiable at t = 0.

Definition 11 (relative coherent states). Given a regular state $\langle \rangle$ on $\mathcal{W}(\mathbf{P}, \omega)$, the element $x \in \mathbf{P}$ such that

$$i\partial_f \mu(0) = f(x)$$
 for all $f \in \mathbf{P}^*$

is called the background for $\langle \rangle$. The image of $\mathcal{W}(f)$ inside **K** by the GNS construction, denoted by $|x + f^*\rangle$, is called a coherent state relative to the state $\langle \rangle$. We denote the set of relative coherent states by $\Psi = \{|x + f^*\rangle : f \in \mathbf{P}^*\}$.

Definition 12 (free boson field). The free boson field over a complex Hilbert space **H** consists of

- 1. a complex Hilbert space K
- 2. a Weyl system $W: \mathbf{H} \to U(\mathbf{K})$
- 3. a continuous representation $\Gamma: U(\mathbf{H}^{\dagger}) \to U(\mathbf{K})$ satisfying

$$\Gamma(U)W(z)\Gamma(U)^{-1} = W(Uz) \quad for \ all \quad z \in \mathbf{H}$$

4. a unit vector $\nu \in \mathbf{K}$ which is invariant under $\Gamma(U)$ for all $U \in U(\mathbf{H}^{\dagger})$ and a cyclic vector of $W(\mathbf{H})$

such that Γ is positive in the sense that, if the one-parameter group $U(t) \subset U(\mathbf{H}^{\dagger})$ has a nonnegative self-adjoint generator A, then $\partial \Gamma(A)$, which denotes the self-adjoint generator of the group $\Gamma(U(t)): \mathbf{K} \to \mathbf{K}$, is a nonnegative self-adjoint operator on \mathbf{K} . **Definition 13 (Wick power).** If $f \in \mathbf{H}$, the *n*th Wick power or normal-ordered power of the Heisenberg operator $\Phi(f)$ is the operator on \mathbf{K} given by

$$:\Phi(f)^{n}:=\frac{1}{2^{n/2}}\sum_{m=0}^{n}\binom{n}{m}a^{\dagger}(f)^{m}a(f)^{n-m}.$$

Definition 14 (quasioperator). Let \mathbf{K}_0 be a topological vector space with a dense continuous inclusion into the Hilbert space \mathbf{K} . A quasioperator on \mathbf{K} with domain \mathbf{K}_0 is a continuous sesquilinear form $Q: \mathbf{K}_0 \times \mathbf{K}_0 \to \mathbb{C}$, antilinear in the first argument and linear in the second.

Definition 15 (smooth coherent states). Let \mathbf{P} be the oscillating phase space of *p*-form electromagnetism, and let \mathbf{K} be the associated Fock space. We say that $X = [A] \oplus E \in \mathbf{P}$ is a smooth field configuration, and write $X \in \mathbf{P}_0$, if [A] and E are infinitely-differentiable. A coherent state $|X\rangle$ with $X \in \mathbf{P}_0$ is called a smooth coherent state. We denote by \mathbf{K}_0 the span of the smooth coherent states.

Lemma 1. The completion of $C_0^{\infty}\Omega_S^k$ with respect to the inner product (,) is $L^2\Omega_S^k$.

Lemma 2. A densely defined operator T is closable if, and only if, T^* is densely defined. In that case, $\overline{T} = T^{**}$.

Proposition 3 (Gaffney). If S is a complete oriented Riemannian manifold, then

$$(\delta^*\alpha,\beta) = (\alpha, \mathrm{d}^*\beta)$$

whenever $\alpha \in \operatorname{dom} \delta^*$ and $\beta \in \operatorname{dom} d^*$.

Corollary 4. If S is a complete oriented Riemannian manifold, then

$$\overline{\mathbf{d}} = \delta^*$$
 and $\overline{\delta} = \mathbf{d}^*$.

Theorem 5. Let S be a smooth manifold equipped with a complete Riemannian metric g. Then the formally adjoint operators

$$C_0^{\infty}\Omega_S^k \xrightarrow[d_k]{\operatorname{d}_k^*} C_0^{\infty}\Omega_S^{k+1}$$

have mutually adjoint closures

$$L^2\Omega^k_S \xrightarrow[d_k]{\operatorname{d}_k} L^2\Omega^{k+1}_S .$$

These closed operators satisfy

$$\operatorname{ran} d_{k-1} \subseteq \ker d_k, \qquad \operatorname{ran} d_k^* \subseteq \ker d_{k-1}^*$$

and there is a Hilbert-space direct-sum decomposition

$$L^2\Omega^k = \operatorname{ran} d_{k-1} \oplus \ker \Delta_k \oplus \operatorname{ran} \delta_k$$

where the Laplacian on k-forms,

$$\Delta_k = \delta_k d_k + d_{k-1} \delta_{k-1},$$

is a nonnegative densely defined self-adjoint operator on $L^2\Omega^k$.

Proposition 6 (Kodaira decomposition). If

$$H \xrightarrow{S} H' \xrightarrow{T} H''$$

are densely defined closed operators and ran $S \subseteq \ker T$, then

$$H' = \overline{\operatorname{ran} T^*} \oplus \ker(T^*T + SS^*) \oplus \overline{\operatorname{ran} S}.$$

Lemma 7. If

$$H \xrightarrow{T} H'$$

is a densely defined operator, then

$$\ker T^* = (\operatorname{ran} T)^{\perp} \qquad and \quad \ker T = (\operatorname{ran} T^*)^{\perp} \cap \operatorname{dom} T.$$

Lemma 8. If

$$H \xrightarrow{S} H' \xrightarrow{T} H''$$

are densely defined operators and ran $S \subseteq \ker T$, then

 $\operatorname{ran} T^* \subseteq \ker S^*.$

Corollary 9. If

$$H \xrightarrow{S} H' \xrightarrow{T} H''$$

are densely defined closable operators and ran $S \subseteq \ker T$, then

$$\operatorname{ran} \overline{S} \subseteq \ker \overline{T}.$$

Result 10. Let M be a (3+1)-dimensional static, globally hyperbolic spacetime, with metric

$$g_M = e^{2\Phi}(-\mathrm{d}t^2 + g).$$

Then, electromagnetism on M with gauge group \mathbb{R} has as its phase space the real Hilbert space

$$\mathbf{P} = \frac{\operatorname{dom}\{\operatorname{d:} L^2\Omega_S^1 \to L^2\Omega_S^2\}}{\overline{\operatorname{ran}}\{\operatorname{d:} L^2\Omega_S^0 \to L^2\Omega_S^1\}} \oplus \operatorname{ker}\{\operatorname{d^*:} L^2\Omega_S^1 \to L^2\Omega_S^0\},$$

with continuous symplectic structure

$$\omega(X, X') = (E, A') - (E', A)$$

where $X = [A] \oplus E$ and $X' = [A'] \oplus E'$ lie in \mathbf{P} , and

$$(\alpha, \beta) = \int_{S} g(\alpha, \beta) \operatorname{vol}$$

is the canonical inner product induced on Ω_S^k by the optical metric g on S. The Hamiltonian is the continuous quadratic form

$$H[X] = \frac{1}{2}[(E, E) + (dA, dA)].$$

There phase space splits naturally into two sectors,

$$\mathbf{P}=\mathbf{P}_{o}\oplus\mathbf{P}_{f},$$

and the direct summands

$$\mathbf{P}_f = \mathbf{P} \cap \ker \Delta \qquad and \quad \mathbf{P}_o = \mathbf{P} \cap \operatorname{ran} \mathrm{d}_1^*$$

are preserved by time evolution. On \mathbf{P}_o , time evolution takes the form

$$\begin{pmatrix} A \\ E \end{pmatrix} \mapsto T_o(t) \begin{pmatrix} A \\ E \end{pmatrix} = \begin{pmatrix} \cos(t\sqrt{\Delta}) & \sin(t\sqrt{\Delta}) / \sqrt{\Delta} \\ -\sqrt{\Delta} \sin(t\sqrt{\Delta}) & \cos(t\sqrt{\Delta}) \end{pmatrix} \begin{pmatrix} A \\ E \end{pmatrix}$$

while on \mathbf{P}_f it takes the form

$$\begin{pmatrix} A \\ E \end{pmatrix} \mapsto T_f(t) \begin{pmatrix} A \\ E \end{pmatrix} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A \\ E \end{pmatrix}.$$

Theorem 11. Let S be a smooth n-dimensional manifold equipped with a complete Riemannian metric g, and let Φ be a smooth real-valued function on S. Fix an integer $0 \le p \le n$. Then for any integer k, the operators

$$C_0^{\infty} \Omega_S^k \xrightarrow[D_k]{D_k^{\dagger}} C_0^{\infty} \Omega_S^{k+1}$$

defined in equations (??) and (??) have mutually adjoint closures, which we write as

$$L^2 \Omega^k_S \xrightarrow[]{D_k}{\swarrow} L^2 \Omega^{k+1}_S$$

These closures satisfy

$$\operatorname{ran} D_{k-1} \subseteq \ker D_k, \qquad \operatorname{ran} D_k^* \subseteq \ker D_{k-1}^*,$$

and we obtain a direct sum decomposition

$$L^2\Omega^k = \overline{\operatorname{ran} D_{k-1}} \oplus \ker L_k \oplus \overline{\operatorname{ran} D_k^*}.$$

where the twisted Laplacian on k-forms,

$$L_k = D_k^* D_k + D_{k-1} D_{k-1}^*,$$

is a nonnegative densely defined self-adjoint operator on $L^2\Omega^k$.

Lemma 12 (Chernoff). If the metric $c^{-2}g$ makes S into a complete Riemannian manifold, the symmetric hyperbolic system $\partial_t \alpha = T\alpha$ with initial data in $C_0^{\infty}E$ has a unique solution on $\mathbb{R} \times S$ which is in $C_0^{\infty}E$ for all $t \in \mathbb{R}$. Moreover, if T is formally skew-adjoint $(T + T^{\dagger} = 0)$, then -iT and all its powers are essentially self-adjoint on $C_0^{\infty}E$.

Lemma 13. Let H_1 and H_2 be Hilbert spaces and let

$$H_1 \xrightarrow[]{A}{\swarrow} H_2$$

be densely defined operators that are formal adjoints of one another:

$$\langle A\phi, \psi \rangle_1 = \langle \phi, B\psi \rangle_2$$
 for all $\phi \in \operatorname{dom} A, \psi \in \operatorname{dom} B$.

Let $H = H_1 \oplus H_2$ and let S be the densely defined operator

$$\left(\begin{array}{cc} 0 & B \\ A & 0 \end{array}\right)$$

on H. If S is essentially self-adjoint, then A and B have mutually adjoint closures.

Lemma 14. Suppose S is a complete Riemannian manifold and Φ a smooth realvalued function on S. Let

$$T: L^2\Omega^k_S \oplus L^2\Omega^{k+1}_S \to L^2\Omega^k_S \oplus L^2\Omega^{k+1}_S$$

be the densely defined operator

$$\left(\begin{array}{cc} 0 & iD_k^{\dagger} \\ iD_k & 0 \end{array}\right).$$

Then -iT and all its powers are essentially self-adjoint on $C_0^{\infty}\Omega^k \oplus C_0^{\infty}\Omega^{k+1}$.

Corollary 15. Under the same hypothesis as Lemma 14, the operators

$$C_0^{\infty}\Omega_S^k \xrightarrow[D_k]{D_k^{\dagger}} C_0^{\infty}\Omega_S^{k+1}$$

have mutually adjoint closures, and the operators $D_k^{\dagger}D_k$ and $D_kD_{k-1}^{\dagger}$ are essentially self-adjoint on $C_0^{\infty}\Omega^k$.

Result 16. Let M be a (n+1)-dimensional static globally hyperbolic spacetime, with metric

$$g_M = e^{2\Phi}(-\mathrm{d}t^2 + g).$$

Then, p-form electromagnetism on M with gauge group \mathbb{R} has as its phase space the real Hilbert space

$$\mathbf{P} = \frac{\operatorname{dom}\{D_p: L^2\Omega_S^p \to L^2\Omega_S^{p+1}\}}{\overline{\operatorname{ran}}\{D_{p-1}: L^2\Omega_S^{p-1} \to L^2\Omega_S^p\}} \oplus \operatorname{ker}\{D_{p-1}^*: L^2\Omega_S^p \to L^2\Omega_S^{p-1}\},$$

where

$$D_p = e^{\frac{1}{2}(n-2p-1)\Phi} \mathbf{d}_p e^{-\frac{1}{2}(n-2p-1)\Phi}$$

is the twisted exterior derivative. The phase space admits a continuous symplectic structure

$$\omega(X, X') = (E, A') - (E', A)$$

where $X = [A] \oplus E$ and $X' = [A'] \oplus E'$ lie in **P** and

$$(\alpha, \beta) = \int_{S} g(\alpha, \beta) \operatorname{vol}$$

is the canonical inner product induced on Ω_S^k by the optical metric g on S. The Hamiltonian is the continuous quadratic form

$$H[X] = \frac{1}{2}[(E, E) + (D_p A, D_p A)].$$

The phase space splits naturally into two sectors,

$$\mathbf{P}=\mathbf{P}_{o}\oplus\mathbf{P}_{f},$$

and the direct summands

$$\mathbf{P}_f = \mathbf{P} \cap \ker L$$
 and $\mathbf{P}_o = \mathbf{P} \cap \operatorname{ran} D_p^*$

are preserved by time evolution. On \mathbf{P}_o , time evolution takes the form

$$\begin{pmatrix} A \\ E \end{pmatrix} \mapsto T_o(t) \begin{pmatrix} A \\ E \end{pmatrix} = \begin{pmatrix} \cos(t\sqrt{L_p}) & \sin(t\sqrt{L_p}) / \sqrt{L_p} \\ -\sqrt{L_p} \sin(t\sqrt{L_p}) & \cos(t\sqrt{L_p}) \end{pmatrix} \begin{pmatrix} A \\ E \end{pmatrix}$$

while on \mathbf{P}_f it takes the form

$$\begin{pmatrix} A \\ E \end{pmatrix} \mapsto T_f(t) \begin{pmatrix} A \\ E \end{pmatrix} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A \\ E \end{pmatrix}.$$

Lemma 17. If $W: \mathbf{P}^* \to U(\mathbf{K})$ is a Weyl system on the symplectic vector space (\mathbf{P}^*, ω) then $\Phi: \mathbf{P}^* \to L(\mathbf{K})$ is a Heisenberg system on (Φ^*, ω) . In addition, for all $x, y \in \mathbf{P}$, the operator $\Phi(f) + i\Phi(g)$ is closed and $\Phi(f+g)$ is the closure of $\Phi(f) + \Phi(g)$.

Lemma 18. Suppose that $\gamma: \mathcal{W}(\mathbf{P}^*, \omega) \to \mathcal{W}(\mathbf{P}^*, \omega)$ is a *-algebra endomorphism such that

for every $f \in \mathbf{P}^*$, $\gamma(\mathcal{W}(f)) = \mathcal{W}(g)$ for some $g \in \mathbf{P}^*$,

and suppose furthermore that the map $T^*: (\mathbf{P}^*, \omega) \to (\mathbf{P}^*, \omega)$ given by $T^*f = g$ is continuous. Then, T^* is in fact linear and preserves the symplectic structure ω . If, in addition, γ is an automorphism, then T^* is invertible, that is, T is an automorphism of the linear phase space \mathbf{P} .

Lemma 19. If $T: \mathbf{P} \to \mathbf{P}$ is an automorphism of the linear phase space \mathbf{P} , then there exists a unique *-algebra automorphism $\gamma(T): \mathcal{W}(\mathbf{P}^*, \omega) \to \mathcal{W}(\mathbf{P}^*, \omega)$ determined by

$$\gamma(T): \mathcal{W}(T^*f) \mapsto \mathcal{W}(f) \quad for \ all \quad f \in \mathbf{P}^*$$

and such that $\gamma(ST) = \gamma(S)\gamma(T)$.

Theorem 20. Let (\mathbf{P}^*, ω) be a symplectic vector space. Then, given a regular state $\langle \rangle$ on $\mathcal{W}(\mathbf{P}^*, \omega)$ with characteristic function μ , there is an $x \in \mathbf{P}$ such that

$$i\partial_f \mu(0) = f(x)$$
 for all $f \in \mathbf{P}^*$.

Then, the collection of formal symbols $\Psi = \{|x + f^*\rangle : f \in \mathbf{P}^*\}$ generates a complex vector space with the following properties:

1. the sesquilinear form

$$\langle x + f^* \mid x + g^* \rangle = e^{\omega(g, f)/2i} \mu(g - f)$$
 (0.2)

makes the span of Ψ into a complex pre-Hilbert space whose Hilbert space completion is denoted **K**

2. there is a Weyl system $W: \mathbf{P}^* \to U(\mathbf{K})$ on (\mathbf{P}^*, ω) , given by

$$W(f) |x+g^*\rangle = e^{\omega(f,g)/2i} |x+f^*+g^*\rangle \qquad \text{for all} \quad f,g \in \mathbf{P}^* \tag{0.3}$$

- 3. the unit vector $|x\rangle \in \mathbf{K}$ is a cyclic vector of the Weyl system $W(\mathbf{P}^*, \omega)$
- 4. the associated Heisenberg system $\Phi: \mathbf{P}^* \to L(\mathbf{K})$ satisfies

$$\langle x+g^* | \Phi(f) | x+g^* \rangle = f(x+g^*)$$
 for all $f,g \in \mathbf{P}^*$.

Lemma 21. Suppose that a regular state $\langle \rangle$ is given on the Weyl algebra $\mathcal{W}(\mathbf{P}, \omega)$ and the GNS construction is performed resulting in the Hilbert space \mathbf{K} , as just described. Then, Equation (??) defines a map $W: \mathbf{P}^* \to U(\mathbf{K})$ which is a Weyl system on (\mathbf{P}^*, ω) . In addition, the unit vector $\psi_0 \in \mathbf{K}$ is a cyclic vector of the Weyl system $W: \mathbf{P}^* \to U(\mathbf{K})$.

Lemma 22. In the hypotheses of Lemma 21, $\langle \psi_g | \Phi(f)\psi_g \rangle$ and $||\Phi(f)\psi_g||$ are both finite for all $f, g \in \mathbf{P}^*$. Moreover,

$$\langle \psi_g \mid \Phi(f)\psi_g \rangle = \omega(f,g) + \langle \psi_0 \mid \Phi(f)\psi_0 \rangle$$

and

$$\|\Phi(f)\psi_g\|^2 - \|\Phi(f)\psi_0\|^2 = \langle \psi_g \mid \Phi(f)\psi_g \rangle^2 - \langle \psi_0 \mid \Phi(f)\psi_0 \rangle^2.$$

Lemma 23. Assume that $\langle \rangle$ is a regular state on $\mathcal{W}(\mathbf{P}^*, \omega)$, with background $x \in \mathbf{P}$. Given any automorphism $T: \mathbf{P} \to \mathbf{P}$ of the linear phase space \mathbf{P} , there is a densely defined linear map $\Gamma(T): \mathbf{K} \to \mathbf{K}$ such that

$$\Gamma(T) |x + Tf^*\rangle = |x + f^*\rangle. \tag{0.4}$$

This map intertwines the unitary operators W(f), that is,

$$\Gamma(T)W(T^*f) = W(f)\Gamma(T) \quad for \ all \quad f \in \mathbf{P}^*, \tag{0.5}$$

and satisfies $\Gamma(ST) = \Gamma(S)\Gamma(T)$.

Lemma 24. In the hypotheses of Lemma 23, the operator $\Gamma(T)$ extends uniquely to a unitary operator on **K** if, and only if, T preserves $\langle \rangle$ in the sense that

$$\mu(T^*h) = \mu(h) \qquad for \ all \quad h \in \mathbf{P}^*.$$

Theorem 25. Let (\mathbf{P}, ω) be a linear phase space, let $\langle \rangle$ be a regular GNS state on the Weyl algebra $\mathcal{W}(\mathbf{P}, \omega)$ with characteristic function μ . Let the background $x \in \mathbf{P}$ associated to μ be defined by

$$i\partial_f \mu(0) = f(x) \quad \text{for all} \quad f \in \mathbf{P}^*,$$

and let $\Psi = \{ |x + f^* \rangle \mid f \in \mathbf{P}^* \}$. Then,

1. the sesquilinear form

$$\langle x + f^* \mid x + g^* \rangle = e^{i\omega(f,g)/2}\mu(g - f)$$

makes the span of Ψ into a complex pre-Hilbert space whose Hilbert-space completion is denoted ${\bf K}$

2. there is a Weyl system $W: \mathbf{P}^* \to U(\mathbf{K})$ on (\mathbf{P}^*, ω) , given by

$$W(f) | x + g^* \rangle = e^{\omega(f,g)/2i} | x + g^* + f^* \rangle \qquad for \ all \quad f \in \mathbf{P}, g \in \mathbf{P}^*$$

3. the associated Heisenberg system $\Phi: \mathbf{P}^* \to L(\mathbf{K})$ satisfies

$$\langle x + g^* | \Phi(f) | x + g^* \rangle = f(x + g^*)$$
 for all $f, g \in \mathbf{P}^*$

4. there is a group homomorphism Γ mapping automorphisms $T: \mathbf{P} \to \mathbf{P}$ to invertible linear operators on \mathbf{K} , given by

$$\Gamma(T) | x + Tf^* \rangle = | x + f^* \rangle$$
 for all $f \in \mathbf{P}^*$

and satisfying

$$\Gamma(T)W(T^*f) = W(f)\Gamma(T) \quad for \ all \quad f \in \mathbf{P}^*$$

- 5. the unit vector $|x\rangle \in \mathbf{K}$ is a cyclic vector of the Weyl system $W(\mathbf{P}^*, \tilde{\omega})$
- 6. $\Gamma(T)$ is unitary if, and only if, μ is constant on orbits of T.

Theorem 26. Let **H** be a complex Hilbert space with inner product \langle , \rangle and norm || ||. Define h, and ω on $\mathbf{H} \cong \mathbf{P}^*$ and $*: \mathbf{H} \to \mathbf{P}$ as above. Then, the representation of the general boson field on $\mathcal{W}(\mathbf{P}^*, \omega)$ given by the regular state with characteristic functional

$$\mu(f) = e^{-\|f\|^2/4} \qquad \text{for all} \quad f \in \mathbf{H}$$

is the free boson field on \mathbf{H} , with

1. K being the completion of the span of $\Psi = \{|f^*\rangle : f \in \mathbf{H}\}$ with respect to the complex inner product

$$\langle f^* \mid g^* \rangle = e^{\omega(g,f)/2i} e^{-\|g-f\|^2/4}$$

2. W being the Weyl system on $\mathcal{W}(\mathbf{H}, \omega)$ given by

$$W(f) |g^*\rangle = e^{ig^*(f)/2} |g^* + f^*\rangle$$
 for all $f, g \in \mathbf{H}$

3. Γ being defined by

$$\Gamma(U) | f^* \rangle = | (Uf)^* \rangle$$
 for all $f \in \mathbf{H}$

4. $\nu = |0\rangle$

In addition, the mean and variance of $\Phi(g)$ in the state $|x\rangle$ are

$$\langle f^* | \Phi(g) | f^* \rangle = \omega(g, f)$$
 and $\operatorname{Var}_{f^*}(g) = \frac{1}{2} \|g\|^2$ for all $x, f \in \mathbf{H}$.

Lemma 27. If $f, g \in \mathbf{H}$ then

$$a(g) |h^*\rangle = \frac{\langle g, h \rangle}{i\sqrt{2}} |h^*\rangle.$$

Lemma 28. For all $n \in \mathbb{N}$ and all $f \in \mathbf{H}$, the Wick power $:\Phi(f)^n:$ is densely defined on **K**.

Lemma 29. The matrix elements of Wick powers on coherent states satisfy

$$\frac{\langle f^* | : \Phi(g)^n : | h^* \rangle}{\langle f^* | h^* \rangle} = \left(\frac{\langle f^* | \Phi(g) | h^* \rangle}{\langle f^* | h^* \rangle}\right)^n$$

whenever $f, g, h \in \mathbf{H}$.

Lemma 30. Let $\mathbf{H}_0 \subseteq \mathbf{H}$ be a topological vector space with a dense continuous inclusion into \mathbf{H} . Then, if $f_n \in \mathbf{H}_0$ for all n and $\lim_{n\to\infty} f_n = f$ in the topology of \mathbf{H} , then

$$\lim_{n \to \infty} |f_n^*\rangle = |f^*\rangle$$

in the topology of \mathbf{K} .

Lemma 31. For every $g \in \mathbf{H}_0^{\dagger}$ there is a unique quasioperator $\Phi(g)$ on \mathbf{K} with domain \mathbf{K}_0 such that

$$\frac{\langle f^* | \Phi(g) | h^* \rangle}{\langle f^* | h^* \rangle} = \frac{i}{2} [\langle f, g \rangle - \langle g, h \rangle] \quad \text{for all} \quad f, h \in \mathbf{H}_0.$$

Lemma 32. For every $g \in \mathbf{H}_0^{\dagger}$ there is a unique quasioperator $:\Phi(g)^n:$ on \mathbf{K} with domain \mathbf{K}_0 such that

$$\frac{\langle f^* | : \Phi(g)^n : |h^* \rangle}{\langle f^* | h^* \rangle} = \left(\frac{\langle f^* | \Phi(g) | h^* \rangle}{\langle f^* | h^* \rangle} \right)^n \quad \text{for all} \quad f, h \in \mathbf{H}_0.$$

Corollary 33. Let $F: \mathbb{C}^n \to \mathbb{C}$ be an entire function. Then, for all $g \in \mathbf{H}_0^{\dagger}$, there is a unique quasioperator $:F(\Phi(g)):$ on \mathbf{K} with domain \mathbf{K}_0 satisfying

$$\frac{\langle f^* | : F(\Phi(g)) : | h^* \rangle}{\langle f^* | h^* \rangle} = F\left(\frac{\langle f^* | \Phi(g) | h^* \rangle}{\langle f^* | h^* \rangle}\right) \quad \text{for all} \quad f, h \in \mathbf{H}_0.$$

Lemma 34.

$$:W(g):=\frac{W(g)}{\langle 0|\,W(g)\,|0\rangle}\qquad for \ all \quad g\in \mathbf{H}_0^\dagger$$

as an equation between quasioperators on \mathbf{K} with domain \mathbf{K}_0 .

Theorem 35. Let \mathbf{E}_o be a real Hilbert space with inner product (|), let L be a nonnegative self-adjoint operator on \mathbf{E}_o with vanishing kernel, and consider the real Hilbert space

$$\mathbf{A}_o := \{ A \in \mathbf{E}_o : \|A\|^2 + \|L^{1/2}A\|^2 < \infty \}.$$

Define time evolution on $\mathbf{P}_o = \mathbf{A}_o \oplus \mathbf{E}_o$ by

$$\partial_t (A \oplus E) = E \oplus -LA,$$

which preserves the canonical symplectic structure on $\mathbf{A}_o \oplus \mathbf{E}_o$, namely

$$\omega(A \oplus E, A' \oplus E') = (A \mid E') - (A' \mid E).$$

Then, there is a densely-defined complex structure $J: \mathbf{Y} \to \mathbf{Y}$ given by $J = -L^{-1/2}K$, or

$$J(A \oplus E) := -L^{-1/2}E \oplus L^{1/2}A,$$

commuting with K and whose domain

$$\mathbf{Y} := \{ A \oplus E \in \mathbf{P}_o : \|A\|^2 + \|L^{1/2}A\|^2 + \|E\|^2 + \|L^{-1/2}E\|^2 < \infty \}$$

is dense in \mathbf{P}_o , preserved by time evolution and satisfying

$$\|Jx\|_{\mathbf{Y}} = \|x\|_{\mathbf{Y}} \qquad and \quad \omega(Jx, Jy) = \omega(x, y) \qquad for \ all \quad x, y \in \mathbf{Y}$$

Finally, the completion of \mathbf{Y} with respect to the norm

$$\|x\|_{\mathbf{H}}^2 := \omega(x, Jy)$$

is a complex Hilbert space H with inner product

$$\langle x, y \rangle := \omega(x, Jy) + i\omega(x, y)$$

Time evolution defined on Y then extends to a strongly-continuous one-parameter group of unitary operators on H, with nonnegative, self-adjoint generator $H = L^{1/2}$.

Theorem 36. Let $T_o(t)$ be a one-parameter group of symplectic transformations on the linear symplectic space (\mathbf{P}, ω) . Then there is at most one complex structure J on \mathbf{P} which is invariant, positive, symplectic and such that the self-adjoint generator Hof $T_o(t)$ in the completion of \mathbf{P} as a complex Hilbert space, \mathbf{H} , is nonnegative and with vanishing kernel. **Theorem 37.** Let $|X(t)\rangle = \Gamma(U(t)) |X\rangle$ for all $X \in \mathbf{P}$. Then,

$$\frac{\partial}{\partial t} \langle X'(t) | \hat{A} | X(t) \rangle = \langle X'(t) | \hat{E} | X(t) \rangle$$
$$\frac{\partial}{\partial t} \langle X'(t) | \hat{E}(x) | X(t) \rangle = - \langle X'(t) | L_p \hat{A} | X(t) \rangle$$

Corollary 38.

$$\frac{\partial}{\partial t}\frac{\langle X'|\,e^{i\oint_{\gamma}\hat{A}}\,|X\rangle}{\langle X'\mid X\rangle} = \frac{i\,\langle X'|\oint_{\gamma}\hat{E}\,|X\rangle}{\langle X'\mid X\rangle}\exp\frac{i\,\langle X'|\oint_{\gamma}\hat{A}\,|X\rangle}{\langle X'\mid X\rangle}.$$