
Loop Quantization
versus

Fock Quantization
of p-Form Electromagnetism

on Static Spacetimes

by

Miguel Carrión Álvarez
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Definition 1 (stationary and static spacetimes). A Lorentzian manifold without
timelike loops (also called a spacetime) is stationary if, and only if, it admits a one-
parameter group of isometries with smooth, timelike orbits. A stationary spacetime is
static if, in addition, it is foliated by a family of spacelike hypersurfaces everywhere
orthogonal to the orbits of the isometries.

Definition 2 (globally hyperbolic spacetime). A piecewise-smooth curve in a
spacetime M is causal if its tangent vector is everywhere timelike. A set is achronal
if there are no causal curves between any two of its points. The domain of dependence
of a set consists of all points p ∈M such that every inextensible causal curve through p
intersects the set. A Cauchy surface in a spacetime M is a closed achronal set whose
domain of dependence is all of M . A spacetime is globally hyperbolic if, and only if,
it admits a Cauchy surface.
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Definition 3 (linear phase space). A linear phase space is a reflexive real topo-
logical vector space P whose dual P∗ is a symplectic vector space. That is, P∗ is
a topological vector space equipped with a symplectic structure: a continuous, skew-
symmetric bilinear form ω which is weakly nondegenerate in the sense that the duality
map ∗:P∗ → P given by

ω(f, g) = f(g∗) for all f, g ∈ P∗

is injective.

Definition 4 (automorphism of a linear phase space). An automorphism of
the linear phase space P is a continuous invertible linear map T :P → P whose dual
map T ∗:P∗ → P∗ preserves the symplectic structure on P∗.
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Definition 5 (Heisenberg system). A Heisenberg system on a symplectic vector
space (P∗, ω) is a real-linear map Φ: f 7→ Φ(f) from P∗ to the self-adjoint operators
on some complex Hilbert space K, satisfying the Heisenberg commutation relations

[Φ(f),Φ(g)] = iω(f, g)1K. for all f, g ∈ P∗

as an operator equation holding on the common domain of Φ(f)Φ(g) and Φ(f)Φ(g),
which is assumed to be dense. The operator Φ(f) is called the Heisenberg operator
associated to f ∈ P∗.

Definition 6 (Weyl algebra). The Weyl algebra on a symplectic vector space
space (P∗, ω), is the complex ∗-algebra W(P∗, ω) generated by the set W(P∗) =
{W(f)}f∈P∗, of Weyl operators, modulo the unitarity relations

W(f)∗ = W(−f) for all f ∈ P∗

and the Weyl relations

W(f)W(g) = eω(f,g)/2iW(f + g) for all f, g ∈ P∗.

Definition 7 (Weyl system). A Weyl system on the symplectic vector space (P∗, ω)
is a continuous mapping W :P∗ → U(K), where U(K) is the group of unitary opera-
tors on the complex Hilbert space K with the strong operator topology, and W satisfies
the Weyl relations

W (f)W (g) = eω(f,g)/2iW (f + g) for all f, g ∈ P∗.

Definition 8 (general boson field). If (P∗, ω) is a symplectic vector space, the
general boson field over it is the pair (W , γ) where W : f 7→ W(f) is the map from P∗

to W(P∗, ω), and γ is the representation of automorphisms of P by ∗-automorphisms
of W(P∗, ω) mentioned in Lemma 19.
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Definition 9 (GNS state). A state on a ∗-algebra A is a linear functional

〈 〉:A→ C

which is nonnegative
〈a∗a〉 ≥ 0 for all a ∈ A,

and normalized
〈1〉 = 1.

Definition 10 (characteristic functional). If 〈 〉 is a state on the Weyl alge-
bra W(P∗, ω), its characteristic functional µ:P∗ → C is given by

µ(f): = 〈W(f)〉 for all f ∈ P∗. (0.1)

We say the state 〈 〉 is regular if, for every f ∈ P∗, the function

t 7→ µ(tf) (t ∈ R)

is twice differentiable at t = 0.

Definition 11 (relative coherent states). Given a regular state 〈 〉 on W(P, ω),
the element x ∈ P such that

i∂fµ(0) = f(x) for all f ∈ P∗

is called the background for 〈 〉. The image of W(f) inside K by the GNS construc-
tion, denoted by |x+ f ∗〉, is called a coherent state relative to the state 〈 〉. We
denote the set of relative coherent states by Ψ = {|x+ f ∗〉 : f ∈ P∗}.

Definition 12 (free boson field). The free boson field over a complex Hilbert
space H consists of

1. a complex Hilbert space K

2. a Weyl system W :H → U(K)

3. a continuous representation Γ:U(H†) → U(K) satisfying

Γ(U)W (z)Γ(U)−1 = W (Uz) for all z ∈ H

4. a unit vector ν ∈ K which is invariant under Γ(U) for all U ∈ U(H†) and a
cyclic vector of W (H)

such that Γ is positive in the sense that, if the one-parameter group U(t) ⊂ U(H†)
has a nonnegative self-adjoint generator A, then ∂Γ(A), which denotes the self-adjoint
generator of the group Γ(U(t)):K → K, is a nonnegative self-adjoint operator on K.

4



Definition 13 (Wick power). If f ∈ H, the nth Wick power or normal-ordered
power of the Heisenberg operator Φ(f) is the operator on K given by

:Φ(f)n: =
1

2n/2

n
∑

m=0

(

n

m

)

a†(f)ma(f)n−m.

Definition 14 (quasioperator). Let K0 be a topological vector space with a dense
continuous inclusion into the Hilbert space K. A quasioperator on K with domain K0

is a continuous sesquilinear form Q:K0 × K0 → C, antilinear in the first argument
and linear in the second.

Definition 15 (smooth coherent states). Let P be the oscillating phase space of
p-form electromagnetism, and let K be the associated Fock space. We say that X =
[A] ⊕ E ∈ P is a smooth field configuration, and write X ∈ P0, if [A] and E are
infinitely-differentiable. A coherent state |X〉 with X ∈ P0 is called a smooth coherent
state. We denote by K0 the span of the smooth coherent states.
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Lemma 1. The completion of C∞
0 Ωk

S with respect to the inner product ( , ) is L2Ωk
S.

Lemma 2. A densely defined operator T is closable if, and only if, T ∗ is densely
defined. In that case, T = T ∗∗.

Proposition 3 (Gaffney). If S is a complete oriented Riemannian manifold, then

(δ∗α, β) = (α, d∗β)

whenever α ∈ dom δ∗ and β ∈ dom d∗.

Corollary 4. If S is a complete oriented Riemannian manifold, then

d = δ∗ and δ = d∗.
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Theorem 5. Let S be a smooth manifold equipped with a complete Riemannian met-
ric g. Then the formally adjoint operators

C∞
0 Ωk

S

dk
//

C∞
0 Ωk+1

S
d∗

k

oo

have mutually adjoint closures

L2Ωk
S

dk
//

L2Ωk+1
S

d∗
k

oo .

These closed operators satisfy

ran dk−1 ⊆ ker dk, ran d∗
k ⊆ ker d∗

k−1

and there is a Hilbert-space direct-sum decomposition

L2Ωk = ran dk−1 ⊕ ker ∆k ⊕ ran δk.

where the Laplacian on k-forms,

∆k = δkdk + dk−1δk−1,

is a nonnegative densely defined self-adjoint operator on L2Ωk.
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Proposition 6 (Kodaira decomposition). If

H
S−−−→ H ′ T−−−→ H ′′

are densely defined closed operators and ranS ⊆ kerT , then

H ′ = ranT ∗ ⊕ ker(T ∗T + SS∗) ⊕ ranS.

Lemma 7. If

H
T−−−→ H ′

is a densely defined operator, then

kerT ∗ = (ranT )⊥ and kerT = (ranT ∗)⊥ ∩ domT.

Lemma 8. If

H
S−−−→ H ′ T−−−→ H ′′

are densely defined operators and ranS ⊆ kerT , then

ranT ∗ ⊆ kerS∗.

Corollary 9. If

H
S−−−→ H ′ T−−−→ H ′′

are densely defined closable operators and ranS ⊆ kerT , then

ranS ⊆ kerT .

8



Result 10. Let M be a (3+1)-dimensional static, globally hyperbolic spacetime, with
metric

gM = e2Φ(−dt2 + g).

Then, electromagnetism on M with gauge group R has as its phase space the real
Hilbert space

P =
dom{d:L2Ω1

S → L2Ω2
S}

ran{d:L2Ω0
S → L2Ω1

S}
⊕ ker{d∗:L2Ω1

S → L2Ω0
S},

with continuous symplectic structure

ω(X,X ′) = (E,A′) − (E ′, A)

where X = [A] ⊕ E and X ′ = [A′] ⊕ E ′ lie in P, and

(α, β) =

∫

S

g(α, β)vol

is the canonical inner product induced on Ωk
S by the optical metric g on S. The

Hamiltonian is the continuous quadratic form

H[X] =
1

2
[(E,E) + (dA, dA)].

There phase space splits naturally into two sectors,

P = Po ⊕ Pf ,

and the direct summands

Pf = P ∩ ker ∆ and Po = P ∩ ran d∗
1

are preserved by time evolution. On Po, time evolution takes the form

(

A
E

)

7→ To(t)

(

A
E

)

=

(

cos(t
√

∆) sin(t
√

∆) /
√

∆

−
√

∆ sin(t
√

∆) cos(t
√

∆)

) (

A
E

)

while on Pf it takes the form

(

A
E

)

7→ Tf (t)

(

A
E

)

=

(

1 t
0 1

) (

A
E

)

.
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Theorem 11. Let S be a smooth n-dimensional manifold equipped with a complete
Riemannian metric g, and let Φ be a smooth real-valued function on S. Fix an integer
0 ≤ p ≤ n. Then for any integer k, the operators

C∞
0 Ωk

S

Dk
//

C∞
0 Ωk+1

S
D†

k

oo

defined in equations (??) and (??) have mutually adjoint closures, which we write as

L2Ωk
S

Dk
//

L2Ωk+1
S

D∗
k

oo

These closures satisfy

ranDk−1 ⊆ kerDk, ranD∗
k ⊆ kerD∗

k−1,

and we obtain a direct sum decomposition

L2Ωk = ranDk−1 ⊕ kerLk ⊕ ranD∗
k.

where the twisted Laplacian on k-forms,

Lk = D∗
kDk +Dk−1D

∗
k−1,

is a nonnegative densely defined self-adjoint operator on L2Ωk.
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Lemma 12 (Chernoff). If the metric c−2g makes S into a complete Riemannian
manifold, the symmetric hyperbolic system ∂tα = Tα with initial data in C∞

0 E has a
unique solution on R × S which is in C∞

0 E for all t ∈ R. Moreover, if T is formally
skew-adjoint (T + T † = 0), then −iT and all its powers are essentially self-adjoint
on C∞

0 E.

Lemma 13. Let H1 and H2 be Hilbert spaces and let

H1

A
// H2

B
oo

be densely defined operators that are formal adjoints of one another:

〈Aφ, ψ〉1 = 〈φ,Bψ〉2 for all φ ∈ domA,ψ ∈ domB.

Let H = H1 ⊕H2 and let S be the densely defined operator

(

0 B
A 0

)

on H. If S is essentially self-adjoint, then A and B have mutually adjoint closures.

Lemma 14. Suppose S is a complete Riemannian manifold and Φ a smooth real-
valued function on S. Let

T :L2Ωk
S ⊕ L2Ωk+1

S → L2Ωk
S ⊕ L2Ωk+1

S

be the densely defined operator

(

0 iD†
k

iDk 0

)

.

Then −iT and all its powers are essentially self-adjoint on C∞
0 Ωk ⊕ C∞

0 Ωk+1.

Corollary 15. Under the same hypothesis as Lemma 14, the operators

C∞
0 Ωk

S

Dk
//

C∞
0 Ωk+1

S
D†

k

oo

have mutually adjoint closures, and the operators D†
kDk and DkD

†
k−1 are essentially

self-adjoint on C∞
0 Ωk.
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Result 16. Let M be a (n+1)-dimensional static globally hyperbolic spacetime, with
metric

gM = e2Φ(−dt2 + g).

Then, p-form electromagnetism on M with gauge group R has as its phase space the
real Hilbert space

P =
dom{Dp:L

2Ωp
S → L2Ωp+1

S }
ran{Dp−1:L2Ωp−1

S → L2Ωp
S}

⊕ ker{D∗
p−1:L

2Ωp
S → L2Ωp−1

S },

where
Dp = e

1

2
(n−2p−1)Φdpe

− 1

2
(n−2p−1)Φ

is the twisted exterior derivative. The phase space admits a continuous symplectic
structure

ω(X,X ′) = (E,A′) − (E ′, A)

where X = [A] ⊕ E and X ′ = [A′] ⊕ E ′ lie in P and

(α, β) =

∫

S

g(α, β)vol

is the canonical inner product induced on Ωk
S by the optical metric g on S. The

Hamiltonian is the continuous quadratic form

H[X] =
1

2
[(E,E) + (DpA,DpA)].

The phase space splits naturally into two sectors,

P = Po ⊕ Pf ,

and the direct summands

Pf = P ∩ kerL and Po = P ∩ ranD∗
p

are preserved by time evolution. On Po, time evolution takes the form

(

A
E

)

7→ To(t)

(

A
E

)

=

(

cos(t
√

Lp) sin(t
√

Lp) /
√

Lp

−
√
Lp sin(t

√

Lp) cos(t
√

Lp)

) (

A
E

)

while on Pf it takes the form

(

A
E

)

7→ Tf (t)

(

A
E

)

=

(

1 t
0 1

) (

A
E

)

.
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Lemma 17. If W :P∗ → U(K) is a Weyl system on the symplectic vector space (P∗, ω)
then Φ:P∗ → L(K) is a Heisenberg system on (Φ∗, ω). In addition, for all x, y ∈ P,
the operator Φ(f) + iΦ(g) is closed and Φ(f + g) is the closure of Φ(f) + Φ(g).

Lemma 18. Suppose that γ:W(P∗, ω) → W(P∗, ω) is a ∗-algebra endomorphism
such that

for every f ∈ P∗, γ(W(f)) = W(g) for some g ∈ P∗,

and suppose furthermore that the map T ∗: (P∗, ω) → (P∗, ω) given by T ∗f = g is
continuous. Then, T ∗ is in fact linear and preserves the symplectic structure ω. If, in
addition, γ is an automorphism, then T ∗ is invertible, that is, T is an automorphism
of the linear phase space P.

Lemma 19. If T :P → P is an automorphism of the linear phase space P, then there
exists a unique ∗-algebra automorphism γ(T ):W(P∗, ω) → W(P∗, ω) determined by

γ(T ):W(T ∗f) 7→ W(f) for all f ∈ P∗

and such that γ(ST ) = γ(S)γ(T ).
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Theorem 20. Let (P∗, ω) be a symplectic vector space. Then, given a regular state 〈 〉
on W(P∗, ω) with characteristic function µ, there is an x ∈ P such that

i∂fµ(0) = f(x) for all f ∈ P∗.

Then, the collection of formal symbols Ψ = {|x+ f ∗〉 : f ∈ P∗} generates a complex
vector space with the following properties:

1. the sesquilinear form

〈x+ f ∗ | x+ g∗〉 = eω(g,f)/2iµ(g − f) (0.2)

makes the span of Ψ into a complex pre-Hilbert space whose Hilbert space com-
pletion is denoted K

2. there is a Weyl system W :P∗ → U(K) on (P∗, ω), given by

W (f) |x+ g∗〉 = eω(f,g)/2i |x+ f ∗ + g∗〉 for all f, g ∈ P∗ (0.3)

3. the unit vector |x〉 ∈ K is a cyclic vector of the Weyl system W (P∗, ω)

4. the associated Heisenberg system Φ:P∗ → L(K) satisfies

〈x+ g∗|Φ(f) |x+ g∗〉 = f(x+ g∗) for all f, g ∈ P∗.
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Lemma 21. Suppose that a regular state 〈 〉 is given on the Weyl algebra W(P, ω)
and the GNS construction is performed resulting in the Hilbert space K, as just de-
scribed. Then, Equation (??) defines a map W :P∗ → U(K) which is a Weyl system
on (P∗, ω). In addition, the unit vector ψ0 ∈ K is a cyclic vector of the Weyl sys-
tem W :P∗ → U(K).

Lemma 22. In the hypotheses of Lemma 21, 〈ψg | Φ(f)ψg〉 and ‖Φ(f)ψg‖ are both
finite for all f, g ∈ P∗. Moreover,

〈ψg | Φ(f)ψg〉 = ω(f, g) + 〈ψ0 | Φ(f)ψ0〉

and
‖Φ(f)ψg‖2 − ‖Φ(f)ψ0‖2 = 〈ψg | Φ(f)ψg〉2 − 〈ψ0 | Φ(f)ψ0〉2.

Lemma 23. Assume that 〈 〉 is a regular state on W(P∗, ω), with background x ∈ P.
Given any automorphism T :P → P of the linear phase space P, there is a densely
defined linear map Γ(T ):K → K such that

Γ(T ) |x+ Tf ∗〉 = |x+ f ∗〉 . (0.4)

This map intertwines the unitary operators W (f), that is,

Γ(T )W (T ∗f) = W (f)Γ(T ) for all f ∈ P∗, (0.5)

and satisfies Γ(ST ) = Γ(S)Γ(T ).

Lemma 24. In the hypotheses of Lemma 23, the operator Γ(T ) extends uniquely to
a unitary operator on K if, and only if, T preserves 〈 〉 in the sense that

µ(T ∗h) = µ(h) for all h ∈ P∗.
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Theorem 25. Let (P, ω) be a linear phase space, let 〈 〉 be a regular GNS state on
the Weyl algebra W(P, ω) with characteristic function µ. Let the background x ∈ P
associated to µ be defined by

i∂fµ(0) = f(x) for all f ∈ P∗,

and let Ψ = {|x+ f ∗〉 | f ∈ P∗}. Then,

1. the sesquilinear form

〈x+ f ∗ | x+ g∗〉 = eiω(f,g)/2µ(g − f)

makes the span of Ψ into a complex pre-Hilbert space whose Hilbert-space com-
pletion is denoted K

2. there is a Weyl system W :P∗ → U(K) on (P∗, ω), given by

W (f) |x+ g∗〉 = eω(f,g)/2i |x+ g∗ + f ∗〉 for all f ∈ P, g ∈ P∗

3. the associated Heisenberg system Φ:P∗ → L(K) satisfies

〈x+ g∗|Φ(f) |x+ g∗〉 = f(x+ g∗) for all f, g ∈ P∗

4. there is a group homomorphism Γ mapping automorphisms T :P → P to invert-
ible linear operators on K, given by

Γ(T ) |x+ Tf∗〉 = |x+ f ∗〉 for all f ∈ P∗

and satisfying

Γ(T )W (T ∗f) = W (f)Γ(T ) for all f ∈ P∗

5. the unit vector |x〉 ∈ K is a cyclic vector of the Weyl system W (P∗, ω̃)

6. Γ(T ) is unitary if, and only if, µ is constant on orbits of T .
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Theorem 26. Let H be a complex Hilbert space with inner product 〈 , 〉 and norm ‖ ‖.
Define h, and ω on H ∼= P∗ and ∗:H → P as above. Then, the representation of
the general boson field on W(P∗, ω) given by the regular state with characteristic
functional

µ(f) = e−‖f‖2/4 for all f ∈ H

is the free boson field on H, with

1. K being the completion of the span of Ψ = {|f ∗〉 : f ∈ H} with respect to the
complex inner product

〈f ∗ | g∗〉 = eω(g,f)/2ie−‖g−f‖2/4

2. W being the Weyl system on W(H, ω) given by

W (f) |g∗〉 = eig∗(f)/2 |g∗ + f ∗〉 for all f, g ∈ H

3. Γ being defined by

Γ(U) |f ∗〉 = |(Uf)∗〉 for all f ∈ H

4. ν = |0〉

In addition, the mean and variance of Φ(g) in the state |x〉 are

〈f ∗|Φ(g) |f ∗〉 = ω(g, f) and Varf∗(g) =
1

2
‖g‖2 for all x, f ∈ H.
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Lemma 27. If f, g ∈ H then

a(g) |h∗〉 =
〈g, h〉
i
√

2
|h∗〉 .

Lemma 28. For all n ∈ N and all f ∈ H, the Wick power :Φ(f)n: is densely defined
on K.

Lemma 29. The matrix elements of Wick powers on coherent states satisfy

〈f ∗| :Φ(g)n: |h∗〉
〈f ∗ | h∗〉 =

(〈f ∗|Φ(g) |h∗〉
〈f ∗ | h∗〉

)n

whenever f, g, h ∈ H.

Lemma 30. Let H0 ⊆ H be a topological vector space with a dense continuous
inclusion into H. Then, if fn ∈ H0 for all n and limn→∞ fn = f in the topology of H,
then

lim
n→∞

|f ∗
n〉 = |f ∗〉

in the topology of K.

Lemma 31. For every g ∈ H†
0 there is a unique quasioperator Φ(g) on K with

domain K0 such that

〈f ∗|Φ(g) |h∗〉
〈f ∗ | h∗〉 =

i

2
[〈f, g〉 − 〈g, h〉] for all f, h ∈ H0.

Lemma 32. For every g ∈ H†
0 there is a unique quasioperator :Φ(g)n: on K with

domain K0 such that

〈f ∗| :Φ(g)n: |h∗〉
〈f ∗ | h∗〉 =

(〈f ∗|Φ(g) |h∗〉
〈f ∗ | h∗〉

)n

for all f, h ∈ H0.

Corollary 33. Let F : Cn → C be an entire function. Then, for all g ∈ H†
0, there is

a unique quasioperator :F (Φ(g)): on K with domain K0 satisfying

〈f ∗| :F (Φ(g)): |h∗〉
〈f ∗ | h∗〉 = F

(〈f ∗|Φ(g) |h∗〉
〈f ∗ | h∗〉

)

for all f, h ∈ H0.

Lemma 34.

:W (g): =
W (g)

〈0|W (g) |0〉 for all g ∈ H†
0

as an equation between quasioperators on K with domain K0.
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Theorem 35. Let Eo be a real Hilbert space with inner product ( | ), let L be a
nonnegative self-adjoint operator on Eo with vanishing kernel, and consider the real
Hilbert space

Ao: = {A ∈ Eo: ‖A‖2 + ‖L1/2A‖2 <∞}.
Define time evolution on Po = Ao ⊕ Eo by

∂t(A⊕ E) = E ⊕−LA,

which preserves the canonical symplectic structure on Ao ⊕ Eo, namely

ω(A⊕ E,A′ ⊕ E ′) = (A | E ′) − (A′ | E).

Then, there is a densely-defined complex structure J :Y → Y given by J = −L−1/2K,
or

J(A⊕ E): = −L−1/2E ⊕ L1/2A,

commuting with K and whose domain

Y: = {A⊕ E ∈ Po: ‖A‖2 + ‖L1/2A‖2 + ‖E‖2 + ‖L−1/2E‖2 <∞}

is dense in Po, preserved by time evolution and satisfying

‖Jx‖Y = ‖x‖Y and ω(Jx, Jy) = ω(x, y) for all x, y ∈ Y.

Finally, the completion of Y with respect to the norm

‖x‖2
H

: = ω(x, Jy)

is a complex Hilbert space H with inner product

〈x, y〉: = ω(x, Jy) + iω(x, y)

Time evolution defined on Y then extends to a strongly-continuous one-parameter
group of unitary operators on H, with nonnegative, self-adjoint generator H = L1/2.
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Theorem 36. Let To(t) be a one-parameter group of symplectic transformations on
the linear symplectic space (P, ω). Then there is at most one complex structure J on P
which is invariant, positive, symplectic and such that the self-adjoint generator H
of To(t) in the completion of P as a complex Hilbert space, H, is nonnegative and
with vanishing kernel.
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Theorem 37. Let |X(t)〉 = Γ(U(t)) |X〉 for all X ∈ P. Then,

∂

∂t
〈X ′(t)| Â |X(t)〉 = 〈X ′(t)| Ê |X(t)〉

∂

∂t
〈X ′(t)| Ê(x) |X(t)〉 = −〈X ′(t)|LpÂ |X(t)〉
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Corollary 38.

∂

∂t

〈X ′| ei
H

γ
Â |X〉

〈X ′ | X〉 =
i 〈X ′|

∮

γ
Ê |X〉

〈X ′ | X〉 exp
i 〈X ′|

∮

γ
Â |X〉

〈X ′ | X〉 .
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