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Definition 1 (stationary and static spacetimes). A Lorentzian manifold without
timelike loops (also called a spacetime) is stationary if, and only if, it admits a one-
parameter group of isometries with smooth, timelike orbits. A stationary spacetime is
static if, in addition, it is foliated by a family of spacelike hypersurfaces everywhere
orthogonal to the orbits of the isometries.

Definition 2 (globally hyperbolic spacetime). A piecewise-smooth curve in a
spacetime M is causal if its tangent vector is everywhere timelike. A set is achronal
if there are no causal curves between any two of its points. The domain of dependence
of a set consists of all points p € M such that every inextensible causal curve through p
intersects the set. A Cauchy surface in a spacetime M is a closed achronal set whose
domain of dependence is all of M. A spacetime is globally hyperbolic if, and only if,
it admits a Cauchy surface.



Definition 3 (linear phase space). A linear phase space is a reflexive real topo-
logical vector space P whose dual P* is a symplectic vector space. That is, P* is
a topological vector space equipped with a symplectic structure: a continuous, skew-
symmetric bilinear form w which is weakly nondegenerate in the sense that the duality
map *x: P* — P qiven by

w(f,g) = flg*)  foral f,geP*
18 1njective.

Definition 4 (automorphism of a linear phase space). An automorphism of
the linear phase space P is a continuous invertible linear map T:P — P whose dual
map T*: P* — P* preserves the symplectic structure on P*.



Definition 5 (Heisenberg system). A Heisenberg system on a symplectic vector
space (P*,w) is a real-linear map ®: f — ®(f) from P* to the self-adjoint operators
on some complex Hilbert space K, satisfying the Heisenberg commutation relations

[@(f), ®(9)] = iw(f,9)1k.  forall f,geP”

as an operator equation holding on the common domain of ®(f)®(g) and ®(f)P(g),
which is assumed to be dense. The operator ®(f) is called the Heisenberg operator
associated to f € P*.

Definition 6 (Weyl algebra). The Weyl algebra on a symplectic vector space
space (P*,w), is the complex x-algebra W(P*,w) generated by the set W(P*) =
{(W(f)} jep~» of Weyl operators, modulo the unitarity relations

W) =W(-f) forall feP*
and the Weyl relations
W(H)W(g) = e V9EW(f +g)  forall fg€P.

Definition 7 (Weyl system). A Weyl system on the symplectic vector space (P*,w)
is a continuous mapping W:P* — U(K), where U(K) is the group of unitary opera-
tors on the complex Hilbert space K with the strong operator topology, and W satisfies
the Weyl relations

W(f)W(g) = eV W(f+qg)  forall f,g€P"

Definition 8 (general boson field). If (P*,w) is a symplectic vector space, the
general boson field over it is the pair (W,~) where W: f — W([) is the map from P*
to W(P*,w), and v is the representation of automorphisms of P by *-automorphisms
of W(P*,w) mentioned in Lemma 19.



Definition 9 (GNS state). A state on a *-algebra A is a linear functional
()A—-C

which is nonnegative
(a*a) >0 forall a€ A,

and normalized
(1) =1.

Definition 10 (characteristic functional). If ( ) is a state on the Weyl alge-
bra W(P*,w), its characteristic functional p: P* — C is given by

p(f):= W) forall feP. (0.1)

We say the state () is regular if, for every f € P*, the function

t—pu(tf) (t€R)
18 twice differentiable at t = 0.

Definition 11 (relative coherent states). Given a regular state ( ) on W(P,w),
the element x € P such that

i0rp(0) = f(x) forall feP”

is called the background for (). The image of W(f) inside K by the GNS construc-
tion, denoted by |x + f*), is called a coherent state relative to the state ( ). We
denote the set of relative coherent states by W = {|x + f*): f € P*}.

Definition 12 (free boson field). The free boson field over a complex Hilbert
space H consists of

1. a complex Hilbert space K

2. a Weyl system W:H — U(K)

3. a continuous representation I': U(H') — U(K) satisfying
DUYW ()D(U) ! = W(Uz) forall zeH

4. a unit vector v € K which is invariant under T'(U) for all U € U(H') and a
cyclic vector of W(H)

such that T is positive in the sense that, if the one-parameter group U(t) C U(HT)
has a nonnegative self-adjoint generator A, then OT'(A), which denotes the self-adjoint
generator of the group T'(U(t)): K — K, is a nonnegative self-adjoint operator on K.



Definition 13 (Wick power). If f € H, the nth Wick power or normal-ordered
power of the Heisenberg operator ®(f) is the operator on K given by

n

B0 = g > (1)l (halry

m
m=0

Definition 14 (quasioperator). Let Ky be a topological vector space with a dense
continuous inclusion into the Hilbert space K. A quasioperator on K with domain K,
s a continuous sesquilinear form Q:Ky x Ko — C, antilinear in the first argument
and linear in the second.

Definition 15 (smooth coherent states). Let P be the oscillating phase space of
p-form electromagnetism, and let K be the associated Fock space. We say that X =
[A] @ E € P is a smooth field configuration, and write X € Py, if [A] and E are
infinitely-differentiable. A coherent state | X) with X € Py is called a smooth coherent,
state. We denote by Ky the span of the smooth coherent states.



Lemma 1. The completion of CFQE with respect to the inner product ( , ) is L*QF.

Lemma 2. A densely defined operator T' is closable if, and only if, T is densely
defined. In that case, T' = T**.

Proposition 3 (Gaffney). If S is a complete oriented Riemannian manifold, then
(0*a, B) = (o, d70)

whenever a € dom * and [ € domd*.

Corollary 4. If S is a complete oriented Riemannian manifold, then

d=¢§ and 0=d".



Theorem 5. Let S be a smooth manifold equipped with a complete Riemannian met-
ric g. Then the formally adjoint operators

dg
CreQy == 50"
k
have mutually adjoint closures

dg
20k ——> 1720k+1
120} —= 1205
k

These closed operators satisfy
randy,_; C kerdy, rand; C kerd;_,
and there is a Hilbert-space direct-sum decomposition
L*QF = randy,_, ® ker A, @ ran oy,
where the Laplacian on k-forms,
Ay = opdy + djp—105—1,

is a nonnegative densely defined self-adjoint operator on L?*QF.



Proposition 6 (Kodaira decomposition). If

S T

H H/ H//

are densely defined closed operators and ran S C ker T, then
H' =ranT* @ ker(T*T 4+ SS*) @ ran S.
Lemma 7. If
H - H

15 a densely defined operator, then
ker T* = (ranT)* and kerT = (ranT*)* NdomT.

Lemma 8. If

S T

H H/ H//

are densely defined operators and ran S C ker T', then

ranT™* C ker S*.

Corollary 9. If

S T

H H/ H//

are densely defined closable operators and ran S C kerT', then

ran S C ker T.



Result 10. Let M be a (34 1)-dimensional static, globally hyperbolic spacetime, with
metric

gu = €**(=dt* + g).
Then, electromagnetism on M with gauge group R has as its phase space the real
Hilbert space
_ dom{d: L*QL — L2Q%}
ran{d: L?Q% — L2QL}

@ ker{d*: L*Qg — L*Q%},
with continuous symplectic structure
wX,X")=(EA) - (F', A

where X = [A] ® E and X' = [A']| ® E' lie in P, and

(a,8) = /5 g(a, B)vol

is the canonical inner product induced on QY by the optical metric g on S. The
Hamultonian is the continuous quadratic form

H[X] = %[(E, E) + (dA,dA)].

There phase space splits naturally into two sectors,
P=P,®Py,
and the direct summands
P;=PnNkerA and P, =P Nrandj
are preserved by time evolution. On P,, time evolution takes the form
(A)HTo(t)(A):( cos(t'\/Z) sin(t\/Z)/\/Z) (A)
E E —VA sin(tvVA) cos(tvV/A) E

while on Py it takes the form

()= mofe)= (o 1) (%)



Theorem 11. Let S be a smooth n-dimensional manifold equipped with a complete
Riemannian metric g, and let ® be a smooth real-valued function on S. Fiz an integer
0 < p < n. Then for any integer k, the operators

Dy,
ok ——= Yoo ()k+1

"
Dy,

defined in equations (?7) and (?7) have mutually adjoint closures, which we write as

Dy,
20k —— 720k+1
L0 —= 120}
k

These closures satisfy
ran Dy_1 C ker Dy, ran D; C ker D;_,,
and we obtain a direct sum decomposition
[20% = Tan Dy1 @ ker Ly & ran Df.
where the twisted Laplacian on k-forms,
Ly =D;Dy+ Dy_1D;_,,

is a nonnegative densely defined self-adjoint operator on L?*QF.
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Lemma 12 (Chernoff). If the metric ¢ 2g makes S into a complete Riemannian
manifold, the symmetric hyperbolic system O, = T'ov with initial data in C§°E has a
unique solution on R x S which is in C°E for allt € R. Moreover, if T is formally
skew-adjoint (T +TT = 0), then —iT and all its powers are essentially self-adjoint
on C°E.

Lemma 13. Let H, and Hy be Hilbert spaces and let

A
Hl%HQ
B

be densely defined operators that are formal adjoints of one another:
(Ad, )1 = (¢, Bi)y for all ¢ € dom A, € dom B.

Let H= H, ® H, and let S be the densely defined operator

(57)

on H. If S is essentially self-adjoint, then A and B have mutually adjoint closures.

Lemma 14. Suppose S is a complete Riemannian manifold and ® a smooth real-
valued function on S. Let

T: L*Qk @ L2QE — 20k @ 12O

0 iD}
iDy 0 )

Then —iT and all its powers are essentially self-adjoint on CEOF & CEOQF

be the densely defined operator

Corollary 15. Under the same hypothesis as Lemma 14, the operators

Dy,
CooQk — CooQk+1
0 S =< of 0 S
k

have mutually adjoint closures, and the operators D;LDk and D;CD,Z_1 are essentially
self-adjoint on C§eQF.
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Result 16. Let M be a (n+ 1)-dimensional static globally hyperbolic spacetime, with
metric

gar = €*(=di? + g).

Then, p-form electromagnetism on M with gauge group R has as its phase space the
real Hilbert space

dom{D,: L2Q%, — L2Q~H
P _ om{ P S__l) S } @ ker{D;,l:LQQg N LQQ{;I}7
ran{D,_: L?Q% " — L?Q%}

where

D

= 6%(n—2p—1)<1>dp6—%(n—2p—1)<1>

1s the twisted exterior derivative. The phase space admits a continuous symplectic

structure
w(X,X) = (E,A) — (E, A)

where X = [A|® E and X' = [A']| @ E' lie in P and

(a,) = /S g(a, Bvol

is the canonical inner product induced on QF by the optical metric g on S. The
Hamiltonian is the continuous quadratic form

HIX) = (B, B) + (D, A, D, ).

The phase space splits naturally into two sectors,
P=P,0Py,
and the direct summands
P;=PnNkerlL and P, =P Nran D}

are preserved by time evolution. On P,, time evolution takes the form

(£)~m0(2) - (Laem ™)) (2)

while on Py it takes the form
A A 1t A
() =m0 (2)=(0 1) (%)
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Lemma 17. IfW:P* — U(K) is a Weyl system on the symplectic vector space (P*,w)
then ®:P* — L(K) is a Heisenberg system on (®*,w). In addition, for all x,y € P,
the operator ®(f) + i®(g) is closed and ®(f + g) is the closure of ®(f) + P(g).

Lemma 18. Suppose that v: W(P*,w) — W(P*,w) is a *-algebra endomorphism
such that

for every f € P*, YW(f)) =W (g) for some g € P*,

and suppose furthermore that the map T*: (P*,w) — (P*,w) given by T*f = g is
continuous. Then, T* is in fact linear and preserves the symplectic structure w. If, in
addition, v is an automorphism, then T™ is invertible, that is, T is an automorphism
of the linear phase space P.

Lemma 19. IfT:P — P is an automorphism of the linear phase space P, then there
exists a unique x-algebra automorphism v(T): W(P*,w) — W(P*, w) determined by

YT):W(T*f) — W(f) for all feP*

and such that v(ST) = v(S)y(T).
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Theorem 20. Let (P*,w) be a symplectic vector space. Then, given a regular state ()
on W(P*,w) with characteristic function p, there is an x € P such that

i0rp(0) = f(x) for all f e P

Then, the collection of formal symbols ¥ = {|x + f*): f € P*} generates a complex
vector space with the following properties:

1. the sesquilinear form

(I o+ g7) = D (g - f) 02

makes the span of ¥ into a complex pre-Hilbert space whose Hilbert space com-
pletion is denoted K

2. there is a Weyl system W:P* — U(K) on (P*,w), given by

W(f) |z + g*) = 972 |z 4 f* 4 g%) for all f,g€P* (0.3)
3. the unit vector |x) € K is a cyclic vector of the Weyl system W (P*,w)
4. the associated Heisenberg system ®: P* — L(K) satisfies

(x+g"|(f)|x+g") = flx+g")  forall f,geP
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Lemma 21. Suppose that a regular state () is given on the Weyl algebra W(P, w)
and the GNS construction is performed resulting in the Hilbert space K, as just de-
scribed. Then, Equation (??7) defines a map W:P* — U(K) which is a Weyl system
on (P*,w). In addition, the unit vector vy € K is a cyclic vector of the Weyl sys-
tem W:P* — U(K).

Lemma 22. In the hypotheses of Lemma 21, (1, | ®(f),) and ||D(f)y]| are both
finite for all f,g € P*. Moreover,

(Vg | D(f)tg) = w(f59) + (o [ ©(f)tho)

and

IR gll* = NP(F)rboll” = (g | D(f)te)* — (o | D(f)3h0)*.

Lemma 23. Assume that () is a regular state on W(P*,w), with background x € P.
Given any automorphism T:P — P of the linear phase space P, there is a densely
defined linear map U'(T): K — K such that

D(T) |z + Tf*) = |z + ). (0.4)
This map intertwines the unitary operators W (f), that is,

D(TYW (T*f) = W(f)[(T)  forall f e P (0.5)
and satisfies T(ST) = T'(S)T(T).

Lemma 24. In the hypotheses of Lemma 23, the operator I'(T) extends uniquely to
a unitary operator on K if, and only if, T preserves () in the sense that

w(T*h) = p(h) for all h e P

15



Theorem 25. Let (P,w) be a linear phase space, let () be a reqgular GNS state on
the Weyl algebra W(P,w) with characteristic function . Let the background x € P
associated to y be defined by

i0r1(0) = f(x) forall f e P,
and let ¥ = {|z + f*) | f € P*}. Then,
1. the sesquilinear form
(@t [ 2 +g") =P (g - f)

makes the span of ¥ into a complex pre-Hilbert space whose Hilbert-space com-
pletion is denoted K

2. there is a Weyl system W:P* — U(K) on (P*,w), given by
W(f) |z +g*) = DI/ |z 4 g* 4 %) forall feP,geP*
3. the associated Heisenberg system ®:P* — L(K) satisfies

(x+g"|O(f) | +9g7) = fle+g")  foral f,geP”

4. there is a group homomorphism I' mapping automorphisms T:P — P to invert-
1ble linear operators on K, given by

D) |z +Tf) =z + ) forall feP”
and satisfying
D(TW(T*f) =W (f)I(T) for all feP*
5. the unit vector |x) € K is a cyclic vector of the Weyl system W (P*, @)

6. T'(T) is unitary if, and only if, p is constant on orbits of T.

16



Theorem 26. Let H be a complex Hilbert space with inner product ( , ) and norm || ||.
Define h, and w on H = P* and x: H — P as above. Then, the representation of
the general boson field on W(P*,w) given by the regqular state with characteristic

functional
wu(f) = e I712/4 forall feH

is the free boson field on H, with

1. K being the completion of the span of W = {|f*): f € H} with respect to the
complex inner product

(F | g7y = e#eD)/2i=la=fI2/4
2. W being the Weyl system on W(H,w) given by
W)l =e"D2lg"+ ) forall fgeH
3. T being defined by
D)) =Wy forall feH
4. v=10)

In addition, the mean and variance of ®(g) in the state |z) are

1

([12(9)[f7) =wlg, f)  and Vary-(9) =5llgll*  forall =, feH.
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Lemma 27. If f,g € H then

(g, h)
2
Lemma 28. For alln € N and all f € H, the Wick power :®(f)": is densely defined
on K.

a(g) |h*) = |h7) -

Lemma 29. The matriz elements of Wick powers on coherent states satisfy

(7] @(g)": A7) ((f*l ®(g) Ih*>>"
(f* 1 h) (f* 1 h)

whenever f,g,h € H.

Lemma 30. Let Hy € H be a topological vector space with a dense continuous
inclusion into H. Then, if f,, € Hqy for all n and lim,, ., f, = f in the topology of H,
then

Tim | f7) = [17)
in the topology of K.

Lemma 31. For every g € Hg there is a unique quasioperator ®(g) on K with
domain K such that

(f*1®(g) |h7) f
| h*)

i = S =~ o)) forall fh €y

Lemma 32. For every g € Hg there is a unique quasioperator :®(g)™: on K with
domain K such that

(fr]:@(g)": [P7) ((f*l ®(g) |
(f* [ h) VARNO

Corollary 33. Let F:C" — C be an entire function. Then, for all g € Hg, there is
a unique quasioperator :F(®(g)): on K with domain Ky satisfying

(f[:F(2(9)):1h7) _ F((f*lq)(g Ih*>)

>h*>>n for all f,h € Hy.

for all f,h € Hy.

(f* 1 h*) (f* ] h*)
Lemma 34. (o)
. L= —g or a f
W= w9t

as an equation between quasioperators on K with domain Kg.
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Theorem 35. Let E, be a real Hilbert space with inner product ( | ), let L be a
nonnegative self-adjoint operator on E, with vanishing kernel, and consider the real
Hilbert space

A, ={AcE,;||A|* + |L'?A|? < oo}.

Define time evolution on P, = A, ® E, by
OW(A®E)=FE® —LA,
which preserves the canonical symplectic structure on A, & E,, namely
wAe E,AeFE)=(A|E)— (A" | E).

Then, there is a densely-defined complex structure J: Y — Y given by J = —L7 %K,
or
JA®E):=—-L"?Eq@ L'V?A,

commuting with K and whose domain
Y:={A® E € Py[|AI + | LV2AI + | B + | L7V E|? < oo}
1s dense in P,, preserved by time evolution and satisfying
|Jzlly = ||z|lv and w(Jz,Jy) = w(z,y) forall z,yeY.
Finally, the completion of Y with respect to the norm
][5 = wz, Ty)
18 a complex Hilbert space H with inner product
(z,y): = w(z, Jy) +iw(z,y)

Time evolution defined on Y then extends to a strongly-continuous one-parameter
group of unitary operators on H, with nonnegative, self-adjoint generator H = L'/2.
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Theorem 36. Let T,(t) be a one-parameter group of symplectic transformations on
the linear symplectic space (P,w). Then there is at most one complex structure J on P
which is invariant, positive, symplectic and such that the self-adjoint generator H
of T,(t) in the completion of P as a complex Hilbert space, H, is nonnegative and
with vanishing kernel.
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Theorem 37. Let | X (t)) =T(U(t))|X) for all X € P. Then,

T XMIAIX@D) = (X0|EIX0)
S0 B 1XW) = — (X0 LAIX(0)
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Corollary 38.

o (x|t XIS EIX) (X f ALX)

o (XX) (X [x) P X)
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