

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 1 of 20

Chapter 3: Application Layer – Electronic Mail
Olivier Bonaventure (2010)

3.2.2. Electronic mail

Electronic mail, or email, is a very popular application in computer networks such as the

Internet. Email appeared in the early 1970s and allows users to exchange text based

messages. Initially, it was mainly used to exchange short messages, but over the years

its usage has grown. It is now not only used to exchange small, but also long messages

that can be composed of several parts as we will see later.

Before looking at the details of Internet email, let us consider a simple scenario

illustrated in the figure below, where Alice sends an email to Bob. Alice prepares her

email by using an email clients and sends it to her email server. Alice‟s email

server extracts Bob‟s address from the email and delivers the message to Bob‟s server.
Bob retrieves Alice‟s message on his server and reads it by using his favourite email

client or through his webmail interface.

Simplified architecture of the Internet email

The email system that we consider in this book is composed of four components :

 a message format, that defines how valid email messages are encoded

 protocols, that allow hosts and servers to exchange email messages

 client software, that allows users to easily create and read email
messages

 software, that allows servers to efficiently exchange email messages

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 2 of 20

We will first discuss the format of email messages followed by the protocols that are

used on today‟s Internet to exchange and retrieve emails. Other email systems have
been developed in the past [Bush1993] [Genilloud1990] [GC2000], but today most

email solutions have migrated to the Internet email. Information about the software that

is used to compose and deliver emails may be found on wikipedia among others, for

both email clients and email servers. More detailed information about the full Internet

Mail Architecture may be found in RFC 5598.

Email messages, like postal mail, are composed of two parts :

 a header that plays the same role as the letterhead in regular mail. It contains
metadata about the message.

 the body that contains the message itself.

Email messages are entirely composed of lines of ASCII characters. Each line can

contain up to 998 characters and is terminated by the CR and LF control

characters RFC 5322. The lines that compose the header appear before the

message body. An empty line, containing only the CR and LF characters, marks the end

of the header. This is illustrated in the figure below.

The structure of email messages

The email header contains several lines that all begin with a keyword followed by a

colon and additional information. The format of email messages and the different types

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 3 of 20

of header lines are defined in RFC 5322. Two of these header lines are mandatory and

must appear in all email messages :

 The sender address. This header line starts with From:. This contains the
(optional) name of the sender followed by its email address
between <and >. Email addresses are always composed of a username
followed by the @ sign and a domain name.

 The date. This header line starts with Date:. RFC 5322 precisely defines
the format used to encode a date.

Other header lines appear in most email messages. The Subject: header line allows the

sender to indicate the topic discussed in the email. Three types of header lines can be

used to specify the recipients of a message :

 the To: header line contains the email addresses of the primary recipients
of the message [12] . Several addresses can be separated by using
commas.

 the cc: header line is used by the sender to provide a list of email
addresses that must receive a carbon copy of the message. Several
addresses can be listed in this header line, separated by commas. All
recipients of the email message receive the To: and cc: header lines.

 the bcc: header line is used by the sender to provide a list of comma
separated email addresses that must receive a blind carbon copy of the
message. The bcc: header line is not delivered to the recipients of the
email message.

A simple email message containing the From:, To:, Subject: and Date: header lines and

two lines of body is shown below.

From: Bob Smith <Bob@machine.example>

To: Alice Doe <alice@example.net>, Alice Smith <Alice@machine.example>

Subject: Hello

Date: Mon, 8 Mar 2010 19:55:06 -0600

This is the "Hello world" of email messages.

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 4 of 20

This is the second line of the body

Note the empty line after the Date: header line; this empty line contains only

the CR and LF characters, and marks the boundary between the header and the body

of the message.

Several other optional header lines are defined in RFC 5322 and elsewhere [11].

Furthermore, many email clients and servers define their own header lines starting

from X-. Several of the optionnal header lines defined in RFC 5322 are worth being

discussed here :

 the Message-Id: header line is used to associate a “unique” identifier to
each email. Email identifiers are usually structured
like string@domainwhere string is a unique character string or sequence
number chosen by the sender of the email and domain the domain name
of the sender. Since domain names are unique, a host can generate
globally unique message identifiers concatenating a locally unique
identifier with its domain name.

 the In-reply-to: is used when a message was created in reply to a previous
message. In this case, the end of the In-reply-to: line contains the identifier
of the original message.

 the Received: header line is used when an email message is processed
by several servers before reaching its destination. Each intermediate
email server adds a Received: header line. These header lines are useful
to debug problems in delivering email messages.

The figure below shows the header lines of one email message. The message

originated at a host named wira.firstpr.com.au and was received

bysmtp3.sgsi.ucl.ac.be. The Received: lines have been wrapped for readability.

Received: from smtp3.sgsi.ucl.ac.be (Unknown [10.1.5.3])

 by mmp.sipr-dc.ucl.ac.be

 (Sun Java(tm) System Messaging Server 7u3-15.01 64bit (built Feb 12 2010))

 with ESMTP id <0KYY00L85LI5JLE0@mmp.sipr-dc.ucl.ac.be>; Mon,

 08 Mar 2010 11:37:17 +0100 (CET)

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 5 of 20

Received: from mail.ietf.org (mail.ietf.org [64.170.98.32])

 by smtp3.sgsi.ucl.ac.be (Postfix) with ESMTP id B92351C60D7; Mon,

 08 Mar 2010 11:36:51 +0100 (CET)

Received: from [127.0.0.1] (localhost [127.0.0.1]) by core3.amsl.com (Postfix)

 with ESMTP id F066A3A68B9; Mon, 08 Mar 2010 02:36:38 -0800 (PST)

Received: from localhost (localhost [127.0.0.1]) by core3.amsl.com (Postfix)

 with ESMTP id A1E6C3A681B for <rrg@core3.amsl.com>; Mon,

 08 Mar 2010 02:36:37 -0800 (PST)

Received: from mail.ietf.org ([64.170.98.32])

 by localhost (core3.amsl.com [127.0.0.1]) (amavisd-new, port 10024)

 with ESMTP id erw8ih2v8VQa for <rrg@core3.amsl.com>; Mon,

 08 Mar 2010 02:36:36 -0800 (PST)

Received: from gair.firstpr.com.au (gair.firstpr.com.au [150.101.162.123])

 by core3.amsl.com (Postfix) with ESMTP id 03E893A67ED for <rrg@irtf.org>;

Mon,

 08 Mar 2010 02:36:35 -0800 (PST)

Received: from [10.0.0.6] (wira.firstpr.com.au [10.0.0.6])

 by gair.firstpr.com.au (Postfix) with ESMTP id D0A49175B63; Mon,

 08 Mar 2010 21:36:37 +1100 (EST)

Date: Mon, 08 Mar 2010 21:36:38 +1100

From: Robin Whittle <rw@firstpr.com.au>

Subject: Re: [rrg] Recommendation and what happens next

In-reply-to: <C7B9C21A.4FAB%tony.li@tony.li>

To: RRG <rrg@irtf.org>

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 6 of 20

Message-id: <4B94D336.7030504@firstpr.com.au>

Message content removed

Initially, email was used to exchange small messages of ASCII text between computer

scientists. However, with the growth of the Internet, supporting only ASCII text became

a severe limitation for two reasons. First of all, non-English speakers wanted to write

emails in their native language that often required more characters than those of the

ASCII character table. Second, many users wanted to send other content than just

ASCII text by email such as binary files, images or sound.

To solve this problem, the IETF developed the Multipurpose Internet Mail Extensions

(MIME). These extensions were carefully designed to allow Internet email to carry non-

ASCII characters and binary files without breaking the email servers that were deployed

at that time. This requirement for backward compatibility forced the MIME designers to

develop extensions to the existing email message format RFC 822 instead of defining a

completely new format that would have been better suited to support the new types of

emails.

RFC 2045 defines three new types of header lines to support MIME :

 The MIME-Version: header indicates the version of the MIME specification
that was used to encode the email message. The current version of MIME
is 1.0. Other versions of MIME may be defined in the future. Thanks to this
header line, the software that processes email messages will be able to
adapt to the MIME version used to encode the message. Messages that
do not contain this header are supposed to be formatted according to the
original RFC 822 specification.

 The Content-Type: header line indicates the type of data that is carried
inside the message (see below)

 The Content-Transfer-Encoding: header line is used to specify how the
message has been encoded. When MIME was designed, some email
servers were only able to process messages containing characters
encoded using the 7 bits ASCII character set. MIME allows the utilisation
of other character encodings.

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 7 of 20

Inside the email header, the Content-Type: header line indicates how the MIME email

message is structured. RFC 2046 defines the utilisation of this header line. The two

most common structures for MIME messages are :

 Content-Type: multipart/mixed. This header line indicates that the MIME
message contains several independent parts. For example, such a
message may contain a part in plain text and a binary file.

 Content-Type: multipart/alternative. This header line indicates that the
MIME message contains several representations of the same information.
For example, a multipart/alternative message may contain both a plain
text and an HTML version of the same text.

To support these two types of MIME messages, the recipient of a message must be

able to extract the different parts from the message. In RFC 822, an empty line was

used to separate the header lines from the body. Using an empty line to separate the

different parts of an email body would be difficult as the body of email messages often

contains one or more empty lines. Another possible option would be to define a special

line, e.g. *-LAST_LINE-* to mark the boundary between two parts of a MIME message.

Unfortunately, this is not possible as some emails may contain this string in their body

(e.g. emails sent to students to explain the format of MIME messages). To solve this

problem, the Content-Type: header line contains a second parameter that specifies the

string that has been used by the sender of the MIME message to delineate the different

parts. In practice, this string is often chosen randomly by the mail client.

The email message below, copied from RFC 2046 shows a MIME message containing

two parts that are both in plain text and encoded using the ASCII character set. The

string simple boundary is defined in the Content-Type: header as the marker for the

boundary between two successive parts. Another example of MIME messages may be

found in RFC 2046.

Date: Mon, 20 Sep 1999 16:33:16 +0200

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Test

MIME-Version: 1.0

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 8 of 20

Content-Type: multipart/mixed; boundary="simple boundary"

preamble, to be ignored

--simple boundary

Content-Type: text/plain; charset=us-ascii

First part

--simple boundary

Content-Type: text/plain; charset=us-ascii

Second part

--simple boundary

The Content-Type: header can also be used inside a MIME part. In this case, it

indicates the type of data placed in this part. Each data type is specified as a type

followed by a subtype. A detailed description may be found in RFC 2046. Some of the

most popular Content-Type: header lines are :

 text. The message part contains information in textual format. There are
several subtypes : text/plain for regular ASCII text, text/html defined
in RFC 2854 for documents in HTML format or the text/enriched format
defined in RFC 1896. The Content-Type: header line may contain a
second parameter that specifies the character set used to encode the
text. charset=us-ascii is the standard ASCII character table. Other
frequent character sets include charset=UTF8 or charset=iso-8859-1.
The list of standard character sets is maintained by IANA

 image. The message part contains a binary representation of an image.
The subtype indicates the format of the image such as gif, jpg or png.

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 9 of 20

 audio. The message part contains an audio clip. The subtype indicates the
format of the audio clip like wav or mp3

 video. The message part contains a video clip. The subtype indicates the
format of the video clip like avi or mp4

 application. The message part contains binary information that was
produced by the particular application listed as the subtype. Email clients
use the subtype to launch the application that is able to decode the
received binary information.

Note

From ASCII to Unicode

The first computers used different techniques to represent characters in memory and on

disk. During the 1960s, computers began to exchange information via tape or telephone

lines. Unfortunately, each vendor had its own proprietary character set and exchanging

data between computers from different vendors was often difficult. The 7 bits ASCII

character table RFC 20 set was adopted by several vendors and by many Internet

protocols. However, ASCII became a problem with the internationalisation of the

Internet and the desire of more and more users to use character sets that support their

own written language. A first attempt at solving this problem was the definition of

the ISO-8859 character sets by ISO. This family of standards specified various

character sets that allowed the representation of many European written languages by

using 8 bits characters. Unfortunately, an 8-bits character set is not sufficient to support

some widely used languages, such as those used in Asian countries. Fortunately, at the

end of the 1980s, several computer scientists proposed to develop a standard that

supports all written languages used on Earth today. The Unicode

standard [Unicode] has now been adopted by most computer and software vendors.

For example, Java uses Unicode natively to manipulate characters, Python can handle

both ASCII and Unicode characters. Internet applications are slowly moving towards

complete support for the Unicode character sets, but moving from ASCII to Unicode is

an important change that can have a huge impact on current deployed implementations.

See for example, the work to completely internationalise email RFC 4952 and domain

names RFC 5890.

The last MIME header line is Content-Transfer-Encoding:. This header line is used after

the Content-Type: header line, within a message part, and specifies how the message

part has been encoded. The default encoding is to use 7 bits ASCII. The most frequent

encodings are quoted-printable and Base64. Both support encoding a sequence of

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 10 of 20

bytes into a set of ASCII lines that can be safely transmitted by email servers. quoted-

printable is defined in RFC 2045. We briefly describe base64which is defined in RFC

2045 and RFC 4648.

Base64 divides the sequence of bytes to be encoded into groups of three bytes (with

the last group possibly being partially filled). Each group of three bytes is then divided

into four six-bit fields and each six bit field is encoded as a character from the table

below.

Value Encoding Value Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z

1 B 18 S 35 j 52 0

2 C 19 T 36 k 53 1

3 D 20 U 37 l 54 2

4 E 21 V 38 m 55 3

5 F 22 W 39 n 56 4

6 G 23 X 40 o 57 5

7 H 24 Y 41 p 58 6

8 I 25 Z 42 q 59 7

9 J 26 a 43 r 60 8

10 K 27 b 44 s 61 9

11 L 28 c 45 t 62 +

12 M 29 d 46 u 63 /

13 N 30 e 47 v

14 O 31 f 48 w

15 P 32 g 49 x

16 Q 33 h 50 y

The example below, from RFC 4648, illustrates the Base64 encoding.

Input data 0x14fb9c03d97e

8-bit 00010100 11111011 10011100 00000011 11011001 01111110

6-bit 000101 001111 101110 011100 000000 111101 100101 111110

Decimal 5 15 46 28 0 61 37 62

Encoding F P u c A 9 l +

The last point to be discussed about base64 is what happens when the length of the

sequence of bytes to be encoded is not a multiple of three. In this case, the last group of

bytes may contain one or two bytes instead of three. Base64 reserves the = character

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 11 of 20

as a padding character. This character is used twice when the last group contains two

bytes and once when it contains one byte as illustrated by the two examples below.

Input data 0x14

8-bit 00010100

6-bit 000101 000000

Decimal 5 0

Encoding F A = =

Input data 0x14b9

8-bit 00010100 11111011

6-bit 000101 001111 101100

Decimal 5 15 44

Encoding F P s =

Now that we have explained the format of the email messages, we can discuss how

these messages can be exchanged through the Internet. The figure below illustrates the

protocols that are used when Alice sends an email message to Bob. Alice prepares her

email with an email client or on a webmail interface. To send her email to Bob, Alice„s
client will use the Simple Mail Transfer Protocol (SMTP) to deliver her message to her

SMTP server. Alice„s email client is configured with the name of the default SMTP
server for her domain. There is usually at least one SMTP server per domain. To deliver

the message, Alice„s SMTP server must find the SMTP server that contains Bob„s
mailbox. This can be done by using the Mail eXchange (MX) records of the DNS. A set

of MX records can be associated to each domain. Each MX record contains a numerical

preference and the fully qualified domain name of a SMTP server that is able to deliver

email messages destined to all valid email addresses of this domain. The DNS can

return several MX records for a given domain. In this case, the server with the lowest

preference is used first. If this server is not reachable, the second most preferred server

is used etc. Bob„s SMTP server will store the message sent by Alice until Bob retrieves

it using a webmail interface or protocols such as the Post Office Protocol (POP) or the

Internet Message Access Protocol (IMAP).

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 12 of 20

Email delivery protocols

3.2.2.1. The Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) defined in RFC 5321 is a client-server

protocol. The SMTP specification distinguishes between five types of processes

involved in the delivery of email messages. Email messages are composed on a Mail

User Agent (MUA). The MUA is usually either an email client or a webmail. The MUA

sends the email message to a Mail Submission Agent (MSA). The MSA processes the

received email and forwards it to the Mail Transmission Agent (MTA). The MTA is

responsible for the transmission of the email, directly or via intermediate MTAs to the

MTA of the destination domain. This destination MTA will then forward the message to

the Mail Delivery Agent (MDA) where it will be accessed by the recipient‟s MUA. SMTP
is used for the interactions between MUA and MSA [13], MSA-MTA and MTA-MTA.

SMTP is a text-based protocol like many other application-layer protocols on the

Internet. It relies on the byte-stream service. Servers listen on port 21. Clients send

commands that are each composed of one line of ASCII text terminated by CR+LF.

Servers reply by sending ASCII lines that contain a three digit numerical error/success

code and optional comments.

The SMTP protocol, like most text-based protocols, is specified as a BNF. The full BNF

is defined in RFC 5321. The main SMTP commands are defined by the BNF rules

shown in the figure below.

BNF specification of the SMTP commands

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 13 of 20

In this BNF, atext corresponds to printable ASCII characters. This BNF rule is defined

in RFC 5322. The five main commands are EHLO, MAIL FROM:, RCPT

TO:,DATA and QUIT [14]. Postmaster is the alias of the system administrator who is

responsible for a given domain or SMTP server. All domains must have

a Postmasteralias.

The SMTP responses are defined by the BNF shown in the figure below.

BNF specification of the SMTP responses

SMTP servers use structured reply codes containing three digits and an optional

comment. The first digit of the reply code indicates whether the command was

successful or not. A reply code of 2xy indicates that the command has been accepted.

A reply code of 3xy indicates that the command has been accepted, but additional

information from the client is expected. A reply code of 4xy indicates a transient

negative reply. This means that for some reason, which is indicated by either the other

digits or the comment, the command cannot be processed immediately, but there is

some hope that the problem will only be transient. This is basically telling the client to try

the same command again later. In contrast, a reply code of 5xy indicates a permanent

failure or error. In this case, it is useless for the client to retry the same command later.

Other application layer protocols such as FTP RFC 959 or HTTP RFC 2616 use a

similar structure for their reply codes. Additional details about the other reply codes may

be found in RFC 5321.

Examples of SMTP reply codes include the following :

500 Syntax error, command unrecognized

501 Syntax error in parameters or arguments

502 Command not implemented

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 14 of 20

503 Bad sequence of commands

220 <domain> Service ready

221 <domain> Service closing transmission channel

421 <domain> Service not available, closing transmission channel

250 Requested mail action okay, completed

450 Requested mail action not taken: mailbox unavailable

452 Requested action not taken: insufficient system storage

550 Requested action not taken: mailbox unavailable

354 Start mail input; end with <CRLF>.<CRLF>

The first four reply codes correspond to errors in the commands sent by the client. The

fourth reply code would be sent by the server when the client sends commands in an

incorrect order (e.g. the client tries to send an email before providing the destination

address of the message). Reply code 220 is used by the server as the first message

when it agrees to interact with the client. Reply code 221 is sent by the server before

closing the underlying transport connection. Reply code 421 is returned when there is a

problem (e.g. lack of memory/disk resources) that prevents the server from accepting

the transport connection. Reply code 250is the standard positive reply that indicates the

success of the previous command. Reply codes 450 and 452 indicate that the

destination mailbox is temporarily unavailable, for various reasons, while reply

code 550 indicates that the mailbox does not exist or cannot be used for policy reasons.

Reply code 354 indicates that the client can start transmitting its email message.

The transfer of an email message is performed in three phases. During the first phase,

the client opens a transport connection with the server. Once the connection has been

established, the client and the server exchange greetings messages (EHLO command).

Most servers insist on receiving valid greeting messages and some of them drop the

underlying transport connection if they do not receive a valid greeting. Once the

greetings have been exchanged, the email transfer phase can start. During this phase,

the client transfers one or more email messages by indicating the email address of the

sender (MAIL FROM: command), the email address of the recipient (RCPT

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 15 of 20

TO: command) followed by the headers and the body of the email message

(DATA command). Once the client has finished sending all its queued email messages

to the SMTP server, it terminates the SMTP association (QUIT command).

A successful transfer of an email message is shown below

S: 220 smtp.example.com ESMTP MTA information

C: EHLO mta.example.org

S: 250 Hello mta.example.org, glad to meet you

C: MAIL FROM:<alice@example.org>

S: 250 Ok

C: RCPT TO:<bob@example.com>

S: 250 Ok

C: DATA

S: 354 End data with <CR><LF>.<CR><LF>

C: From: "Alice Doe" <alice@example.org>

C: To: Bob Smith <bob@example.com>

C: Date: Mon, 9 Mar 2010 18:22:32 +0100

C: Subject: Hello

C:

C: Hello Bob

C: This is a small message containing 4 lines of text.

C: Best regards,

C: Alice

C: .

S: 250 Ok: queued as 12345

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 16 of 20

C: QUIT

S: 221 Bye

In the example above, the MTA running on mta.example.org opens a TCP connection to

the SMTP server on host smtp.example.com. The lines prefixed with S: (resp.C:) are

the responses sent by the server (resp. the commands sent by the client). The server

sends its greetings as soon as the TCP connection has been established. The client

then sends the EHLO command with its fully qualified domain name. The server replies

with reply-code 250 and sends its greetings. The SMTP association can now be used to

echange an email.

To send an email, the client must first provide the address of the recipient with RCPT

TO:. Then it uses the MAIL FROM: with the address of the sender. Both the recipient

and the sender are accepted by the server. The client can now issue

the DATA command to start the transfer of the email message. After having received

the 354 reply code, the client sends the headers and the body of its email message.

The client indicates the end of the message by sending a line containing only the . (dot)

character [15]. The server confirms that the email message has been queued for

delivery or transmission with a reply code of 250. The client issues theQUIT command

to close the session and the server confirms with reply-code 221, before closing the

TCP connection.

Note

Open SMTP relays and spam

Since its creation in 1971, email has been a very useful tool that is used by many users

to exchange lots of information. In the early days, all SMTP servers were open and

anyone could use them to forward emails towards their final destination. Unfortunately,

over the years, some unscrupulous users have found ways to use email for marketing

purposes or to send malware. The first documented abuse of email for marketing

purposes occured in 1978 when a marketer who worked for a computer vendor sent

a marketing email to many ARPANET users. At that time, the ARPANET could only be

used for research purposes and this was an abuse of the acceptable use policy.

Unfortunately, given the extremely low cost of sending emails, the problem of

unsollicitated emails has not stopped. Unsollicitated emails are now called spam and

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 17 of 20

a study carried out by ENISA in 2009 reveals that 95% of email was spam and this

number seems to continue to grow. This places a burden on the email infrastructure of

Internet Service Providers and large companies that need to process many useless

messages.

Given the amount of spam messages, SMTP servers are no longer open RFC 5068.

Several extensions to SMTP have been developed in recent years to deal with this

problem. For example, the SMTP authentication scheme defined in RFC 4954 can be

used by an SMTP server to authenticate a client. Several techniques have also been

proposed to allow SMTP servers to authenticate the messages sent by their users RFC

4870 RFC 4871 .

3.2.2.2. The Post Office Protocol

+When the first versions of SMTP were designed, the Internet was composed of

minicomputers that were used by an entire university department or research lab. These

minicomputers were used by many users at the same time. Email was mainly used to

send messages from a user on a given host to another user on a remote host. At that

time, SMTP was the only protocol involved in the delivery of the emails as all hosts

attached to the network were running an SMTP server. On such hosts, an email

destined to local users was delivered by placing the email in a special directory or file

owned by the user. However, the introduction of personal computers in the 1980s,

changed this environment. Initially, users of these personal computers used applications

such as telnet to open a remote session on the local minicomputer to read their email.

This was not user-friendly. A better solution appeared with the development of user

friendly email client applications on personal computers. Several protocols were

designed to allow these client applications to retrieve the email messages destined to a

user from his/her server. Two of these protocols became popular and are still used

today. The Post Office Protocol (POP), defined in RFC 1939, is the simplest one. It

allows a client to download all the messages destined to a given user from his/her email

server. We describe POP briefly in this section. The second protocol is the Internet

Message Access Protocol (IMAP), defined in RFC 3501. IMAP is more powerful, but

also more complex than POP. IMAP was designed to allow client applications to

efficiently access in real-time to messages stored in various folders on servers. IMAP

assumes that all the messages of a given user are stored on a server and provides the

functions that are necessary to search, download, delete or filter messages.

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 18 of 20

POP is another example of a simple line-based protocol. POP runs above the

bytestream service. A POP server usually listens to port 110. A POP session is

composed of three parts : an authorisation phase during which the server verifies the

client‟s credential, a transaction phase during which the client downloads messages and

an update phase that concludes the session. The client sends commands and the

server replies are prefixed by +OK to indicate a successful command or by -ERR to

indicate errors.

When a client opens a transport connection with the POP server, the latter sends as

banner an ASCII-line starting with +OK. The POP session is at that time in

theauthorisation phase. In this phase, the client can send its username (resp. password)

with the USER (resp. PASS) command. The server replies with +OK if the username

(resp. password) is valid and -ERR otherwise.

Once the username and password have been validated, the POP session enters in

the transaction phase. In this phase, the client can issue several commands.

TheSTAT command is used to retrieve the status of the server. Upon reception of this

command, the server replies with a line that contains +OK followed by the number of

messages in the mailbox and the total size of the mailbox in bytes.

The RETR command, followed by a space and an integer, is used to retrieve the nth

message of the mailbox. The DELE command is used to mark for deletion the nth

message of the mailbox.

Once the client has retrieved and possibly deleted the emails contained in the mailbox,

it must issue the QUIT command. This command terminates the POP session and

allows the server to delete all the messages that have been marked for deletion by

using the DELE command.

The figure below provides a simple POP session. All lines prefixed with C: (resp. S:) are

sent by the client (resp. server).

S: +OK POP3 server ready

C: USER alice

S: +OK

C PASS 12345pass

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 19 of 20

S: +OK alice's maildrop has 2 messages (620 octets)

C: STAT

S: +OK 2 620

C: LIST

S: +OK 2 messages (620 octets)

S: 1 120

S: 2 500

S: .

C: RETR 1

S: +OK 120 octets

S: <the POP3 server sends message 1>

S: .

C: DELE 1

S: +OK message 1 deleted

C: QUIT

S: +OK POP3 server signing off (1 message left)

In this example, a POP client contacts a POP server on behalf of the user named alice.

Note that in this example, Alice‟s password is sent in clear by the client. This implies
that if someone is able to capture the packets sent by Alice, he will know Alice‟s
password [16]. Then Alice‟s client issues the STAT command to know the number of

messages that are stored in her mailbox. It then retrieves and deletes the first message

of the mailbox.

Footnotes

Source URL: https://scm.info.ucl.ac.be/release/cnp3/Book/0.2/html/application/application.html#electronic-mail
Saylor URL: http://www.saylor.org/courses/cs402 (Computer Science 402)

Attributed to: OIivier Bonaventure Saylor.org
 Page 20 of 20

[11] The list of all standard email header lines may be found

at http://www.iana.org/assignments/message-headers/message-header-

index.html

[12] It could be surprising that the To: is not mandatory inside an email message. While

most email messages will contain this header line an email that does not contain

a To: header line and that relies on the bcc: to specify the recipient is valid as well.

[13] During the last years, many Internet Service Providers, campus and enterprise

networks have deployed SMTP extensions RFC 4954 on their MSAs. These extensions

force the MUAs to be authenticated before the MSA accepts an email message from the

MUA.

[14] The first versions of SMTP used HELO as the first command sent by a client to a

SMTP server. When SMTP was extended to support newer features such as 8 bits

characters, it was necessary to allow a server to recognise whether it was interacting

with a client that supported the extensions or not. EHLO became mandatory with the

publication of RFC 2821.

[15] This implies that a valid email message cannot contain a line with one dot followed

by CR and LF. If a user types such a line in an email, his email client will automatically

add a space character before or after the dot when sending the message over SMTP.

[16] RFC 1939 defines the APOP authentication scheme that is not vulnerable to such

attacks.

