1. SWBAT factor quadratic binomials a) in the form $x^{2}-d^{2}$ and b)
in the form $a x^{2}-b x$ by finding a greatest common factor.
2. SWBAT recognize quadratic binomials that cannot be factored.

Summary/When to use? When can't you use?	When To Use GCF or DOTS Ask yourself these questions: 1. Are both terms squares? Is one square subtracted from the other? USE DOTS! 2.Do both terms have factors in common? USE GCF!		$9: 40-9: 45$

Honors Advanced Algebra
Factoring Lab

Name \qquad

PART I: Review

1. Start with the quadratic $(x+3)(x+5)$. Yesterday, we did this multiplication problem with Algebra Tiles by letting each binomial be one side of a rectangle. We can do this same problem with a slightly simpler representation.

2. Fill in each box above by writing in the area of that box. What is the total area of the rectangle?
3. Do each multiplication problem by finding the total area of the rectangle.
a. $(x+5)(x-4)$
x
5

Area/Solution:
Area/Solution: \qquad
4. Factor each problem by determining what must have been multiplied to get the following areas.
a. $x^{2}-7 x+12$
b. $x^{2}+6 x+9$

Factored form: \qquad

Factored Form:

Honors Advanced Algebra
Factoring Lab

Name \qquad
Date \qquad

PART II: Factoring a difference of two squares.

1. Use the same method as Part I to complete the following problems.
a. $(x+3)(x-3)$
b. $(x-2)(x+2)$

Area/Solution: \qquad

Area/Solution: \qquad
2. Factor each problem by determining what must have been multiplied to get the following areas.
a. $x^{2}-1$
b. $x^{2}-16$

Factored form:

Factored Form: \qquad
3. Predict:
a. Expand: $(x-d)(x+d)=$ \qquad
b. Factor: $x^{2}-d^{2}=$ \qquad
4. Explain with backwards foil why your predictions makes sense.

Honors Advanced Algebra
Name \qquad
Factoring Lab
Date \qquad

PART III: Greatest Common Factors

1. List the factors of the following numbers.
a. 16
b. 24
c. 100
d. What is a factor? Write a definition. \qquad
2. List the factors of the following terms.
a. $4 x^{2}$

Numeric factors: \qquad Variable factors: \qquad
b. $32 x^{5}$

Numeric factors: \qquad Variable factors: \qquad
c. $21 x y$

Numeric factors: \qquad Variable factors: \qquad
d. $9 x^{2} y z^{2}$

Numeric factors: \qquad Variable factors: \qquad
3. For each expression, list the numeric and variable factors of both terms. What factors do they have in common?
a. $2 x^{2}-26$
b. $6 x^{2}+18 x$

Factors of $2 x^{2}$: \qquad
Factors of 26: \qquad
Common factors: \qquad
Factors of $6 x^{2}$: \qquad
Factors of 18x: \qquad
Common factors: \qquad
c. The GREATEST common factor ($g c f$) is the biggest factor both terms share. Choose the largest numeric factor and combine it with the largest variable factor to find the gcf for a. and b. above.
a. $g c f=$ \qquad b. $g c f=$
\qquad
d. How can you rewrite the expressions in a. and b. in factored form using the gcf?

Factoring: GCF and DOTS Cornell Notes
OBJ:

Name: \qquad
Class: \qquad
Period: \qquad Date: \qquad

Topic: Factoring quadratic binomials using Greatest Common Factor (GCF) and Difference of Two Squares (DOTS)

\qquad
7.7 Factoring: GCF and DOTS CW

Date \qquad

Part I (DOTS): Factor each difference of squares.

1.	$x^{2}-1$	2.	$x^{2}-36$
3.	$x^{2}-81$	4.	$x^{2}-49$
	$x^{2}-5$	6.	

Part II (GCF): Find the greatest common factor of the two terms in each expression and then factor.

$1 . x^{2}+16 x$	$2.5 x^{2}+45 x$
GCF	GCF
Factored Form:	Factored Form:

Honors Advanced Algebra
Name \qquad
7.7 Factoring: GCF and DOTS CW

Date \qquad

3. $6 x^{2}-36 x$	4. $-3 x^{2}-15 x$
GCF	GCF
Factored Form:_ Factored Form:	
5. $-7 x^{2}+3 x$	$6.2 x^{2}-10 x$
GCF	GCF
Factored Form:__ Factored Form:	
11. Can you use this method to factor $2 x^{2}+13 ?$	Why or why not?

\qquad
\qquad

Factor each expression below and state what method you are using to factor it. OR explain why it cannot be factored by the methods we have learned.

1. $x^{2}-12$	$2.16 x^{2}+48 x$
$3.4 x^{2}+9 x$	$4 . x^{2}-64$
5. $25 x^{2}+9$	$6.4 x^{2}+10 x$
7. $-25 x^{2}+45 x$	$8 . x^{2}+7$

9. Adriana takes a parachute and jumps out of an airplane to escape Calvin. Her height above the ground as a function of time (starting from when she jumped) is given by the equation

$$
h=-\left(t^{2}-225\right)
$$

a. How far up was the airplane when she jumped?
b. Factor this equation. What are it's x-intercepts? What do they mean in the context of the problem?

