Objectives:

Set-Up/Materials:

- 1. SWBAT factor quadratic binomials a) in the form $x^2 d^2$ and b) in the form $ax^2 - bx$ by finding a greatest common factor.
- 2. SWBAT recognize quadratic binomials that cannot be factored.

Activity	Narrative		Time
Do Now	1. What are the intercepts of this graph: $(x-3)(-x+7)$? 2. Factor $x^2 + 3x + 2$ 3.		8:00-8:10
	Homework ?s		8:10-8:15
Transition/Hook			
Factoring Lab I/II	Lab I/II Guiding Questions: How can you use the factoring methods we've learned to factor a difference of squares? Part I: 1-2 (I do): together as a class. 3a (we do): circulate and observe student responses, then troubleshoot any misconceptions as a group 3b-d (you do): (3 min)		8:15-8:35
			8:15-8:20 8:20-8:21 8:21-8:24 8:24-8:30
	Discussion:		8:30-8:35
Transition			
Notes (DOTS)	Difference of Two Squares (DOTS)		8:35-8:40
	1. Identify the squares (take the square		
	2. Write in factored form as		
	(sum)(difference).		_
	Ex.:		
	1. $x^2 - 4$ 2. $x^2 - 289$		
	3. x ² - 2 3. x ² - 10		
Transition			
Classwork (DOTS)			8:40-9:00

Transition			
Factoring Lab III	Guiding Questions: How do you factor a term with variables? How do you find a greatest common factor? Factoring Lab (Part III)		:00-9:15
Transition			
Notes (GCF)	Greatest Common Factor (GCE)	9:	:15-9:25
	 I. Identify all of the factors in common between the terms of the quadratic. Together these are the GREATEST common factor. 2. Divide each term of the expression by the GCF. 3. Write the quadratic as a multiplication problem with the GCF in front. (THINK: this is the inverse of distributing). Ex.: 1. 6x² + 3x Common Eactors/GCE/Eactored Form: 		
	2. 2x ² - 8 Common Factors/GCF/Factored Form:		
	325x ² - 10x		
Transition			
Classwork (GCF)	Practice problems simple, at least one extension problem	9:	:25-9:40
Transition			

Summary/When to use? When can't you use?	When To Use GCF or DOTS	9:40-9:45
	Ask yourself these questions:	
	1. Are both terms squares? Is one square	
	subtracted from the other? USE DOTS!	
	2. Do both terms have factors in common?	
	USE GCF!	

Honors Advanced Algebra Factoring Lab

Name_	 	 	
Date_	 	 	

PART I: Review

1. Start with the quadratic (x+3)(x+5). Yesterday, we did this multiplication problem with Algebra Tiles by letting each binomial be one side of a rectangle. We can do this same problem with a slightly simpler representation.

2. Fill in each box above by writing in the area of that box. What is the total area of the rectangle?

3. Do each multiplication problem by finding the total area of the rectangle.

Area/Solution:______ Area/Solution:______ 4. Factor each problem by determining what must have been multiplied to get the following areas.

b.
$$x^2 + 6x + 9$$

x ²	-3x
-4x	12

x ²	3x
	9

Factored form:_____

Factored Form:_____

Honors Advanced Algebra Factoring Lab

Name	
Date	

PART II: Factoring a difference of two squares.

1. Use the same method as Part I to complete the following problems.

a. (x+3)(x-3)

Area/Solution:_____ Area/Solution:_____

2. Factor each problem by determining what must have been multiplied to get the following areas.

a. x² - 1

b. x² - 16

b. (x-2)(x+2)

3. Predict:

a. Expand: (x-d)(x+d)= _____

b. Factor: x² - d² = _____

4. Explain with backwards foil why your predictions makes sense.

Honors Advanced Algebra	Name
Factoring Lab	Date
PART III: Greatest Common Factors	
1. List the factors of the following numbers.	
a. 16	
b. 24	
c. 100	
d. What is a factor? Write a definition	
2. List the factors of the following terms.	
a. 4x ²	
Numeric factors:	Variable factors:
b. 32x ⁵	
Numeric factors:	Variable factors:
c. 21xy	
Numeric factors:	Variable factors:
d. 9x² yz²	
Numeric factors:	Variable factors:
3. For each expression, list the numeric and	variable factors of both terms. What factors do
they have in common?	
a. 2x ² - 26	b. 6x ² + 18x
Factors of 2x ² :	Factors of 6x ² :
Factors of 26:	Factors of 18x:
Common factors:	Common factors:
c. The GREATEST common factor (gcf) is	the biggest factor both terms share. Choose the
largest numeric factor and combine it w	ith the largest variable factor to find the gcf for
a. and b. above.	
a. gcf=	b. gcf=

Factoring: GCF and DOTS Cornell Notes

OBJ:

Name:	
Class:	
Period:	Date:

Topic: Factoring quadratic binomials using Greatest Common Factor (GCF) and Difference of Two Squares (DOTS)

Difference of Two Squares (DOTS)		
1.		
2.		
Ex.: 1. x ² - 4	2. x ² - 289	
3. x ² - 2	3. x ² - 10	
Greatest Common Factor (GCF	5)	
1.		
2.		
Э		
з.		

	Ex.: 1. 6x ² + 3x	
	Common Factors:	GCF:
	Factored Form:	Check:
	22x ² - 8 Common Factors:	GCF:
	Factored Form:	Check:
	3. 25x ² - 10x	
	When To Use GCF or DOTS Ask yourself these questions: 1. 2.	
Summary		

Honors Advanced Algebra 7.7 Factoring: GCF and DOTS CW

Name	
Date	

Part I (DOTS): Factor each difference of squares.

1. $x^2 - 1$	2. x ² - 36
3. x ² - 81	4. x ² - 49
5. x ² - 5	6. x ² - 20
7. Can you factor x ² + 24 using the difference of squares method? Why or why not?	

Part II (GCF): Find the greatest common factor of the two terms in each expression and then factor.

1. $x^2 + 16x$	2. 5x ² + 45x
<i>G</i> CF	<i>GC</i> F
Factored Form:	Factored Form:

Name	
Date	

43x ² - 15x		
GCF		
Factored Form:		
6. 2x ² - 10x		
GCF		
Factored Form:		
11. Can you use this method to factor $2x^2 + 13$? Why or why not?		

Honors Advanced Algebra 7.7 Factoring: GCF and DOTS HW

Name	
Date	

Factor each expression below and **state what method** you are using to factor it. OR explain why it **cannot** be factored by the methods we have learned.

1. x ² - 12	2. $16x^2 + 48x$	
3. $4x^2 + 9x$	4. x ² - 64	
5. 25x ² + 9	6. 4x ² + 10x	
725x ² + 45x	8. x ² + 7	
9. Adriana takes a parachute and jumps out of an airplane to escape Calvin. Her height above the ground as a function of time (starting from when she jumped) is given by the equation $h=-(t^2 - 225)$		
a. How far up was the airplane when she jumped?		
b. Factor this equation. What are it's x-intercepts? What do they mean in the context of the problem?		