
CNT 4714: PHP – Part 5 – Pattern Matching Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2011

Introduction to PHP – Part 5 – Pattern Matching

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cnt4714/fall2011

CNT 4714: PHP – Part 5 – Pattern Matching Page 2 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Many programming problems require matching or
manipulating patterns in string variables. One reason to
match patterns is to verify data received from an XTHML
input form.

• For example, if you are expecting an XHTML form field to
provide a U.S. telephone number as input, your script needs a
way to verify that the input comprises a string of seven or ten
digits.

• Another reason to match patterns arises when your script
uses an input data file with fields that are delimited by
characters such as colons or tabs.

• Pattern matching in PHP is handled via regular expressions.

CNT 4714: PHP – Part 5 – Pattern Matching Page 3 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Regular expressions (regex) are one of the black arts of
practical modern programming. Those who master regular
expressions will find that they can solve many problems
quite easily while those who don’t will waste many hours
pursuing complicated work-arounds.

• Regular expressions, although complicated, are not really
difficult to understand. Fundamentally, they are a way to
describe patterns of text using a single set of strings.

• Unlike a simple search-and-replace operations, such as
changing all instances of “Marty” to “Mark”, regex

allow for much more flexibility – for example, finding all
occurrences of the letters “Mar” followed by either “ty”
or “k”, and so on.

CNT 4714: PHP – Part 5 – Pattern Matching Page 4 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Regular expressions were initially described in the 1950s by
a mathematician named S.C. Kleene, who formalized models
that were first designed by Warren McCulloch and Walter
Pitts to describe the human nervous system.

• Regex were not actually applied to computer science until
Ken Thompson (one of the original designers of the Unix
OS) used then as a means to search and replace text in his
qed editor.

• Regex eventually made their way into the Unix operating
system (and later into the POSIX standard) and into Perl as
well, where they are considered one of the language’s
strongest features.

CNT 4714: PHP – Part 5 – Pattern Matching Page 5 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• PHP actually supports both the POSIX standard and the Perl
standard of regular expressions.

• The Perl version is known as PCRE (Perl-Compatible
Regular Expressions).

• PCRE are much more powerful than their POSIX
counterparts – and consequently more complex and difficult
to use. You’ll want to master POSIX regex before you
attempt to work with PCRE.

• We’ll look at the simpler POSIX form first and then look in
more details at the PCRE format.

CNT 4714: PHP – Part 5 – Pattern Matching Page 6 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• Regex is, essentially, a whole new language, with its own
rules, own structures, and its own quirks. What you know
about other programming languages has little or no bearing
on regex, for the simple reason that regular expression are
highly specialized and follow their own rules.

Regular Expression Axioms as defined by S. C. Kleene

• A single character is a regular expression denoting itself.

• A sequence of regular expressions is a regular expression.

• Any regular expression followed by a * character (known as the “Kleene Star”) is a

 regular expression composed of zero or more instances of that regular expression.

• Any pair of regular expressions separated by a pipe character (|) is a regular

 expression composed of either the left or the right regular expression.

• Parentheses can be used to group regular expressions.

CNT 4714: PHP – Part 5 – Pattern Matching Page 7 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• While Kleene’s definition of what makes a regular expression
might, at first, seem confusing, the basics are actually pretty
easy to understand.

• First, the simplest regular expression is a single character. For
example, the regex a would match the character “a” in the

word “Mark”.

• Next, single character regex can be grouped by placing them
next to each other. Thus the regex Mark would match the

word “Mark” in “Your instructor is Mark for CIS 4004.”

• So far, regex are not very different from normal search
operations. However, this is where their similarities end.

CNT 4714: PHP – Part 5 – Pattern Matching Page 8 Dr. Mark Llewellyn ©

Pattern Matching In PHP
• The Kleene Star can be used to create regex that can be

repeated any number of times (including none).

• Consider the following string:

 seeking the treasures of the sea

• The regex se* will be interpreted as “the letter s followed by

zero or more instances of the letter e” and will match the
following:

– The letters “see” of the work “seeking”, where the regex e is repeated

twice.

– Both instances of the letter s in “treasures”, where s is followed by
zero instances of e.

– The letters “se” of the work “sea”, where the e is present once.

CNT 4714: PHP – Part 5 – Pattern Matching Page 9 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• It’s important to understand in the regex se* that only the

expression e is considered with dealing with the star.

• Although its possible to use parentheses to group regular
expressions, you should not be tempted to think that using
(se)* is a good idea, because the regex compiler will

interpret it as meaning “zero or more occurrences of se”.

• If you apply this regex to the same string, you will encounter a
total of 32 matches, because every character in the string
would match the expression. (Remember? 0 or more
occurrences!)

CNT 4714: PHP – Part 5 – Pattern Matching Page 10 Dr. Mark Llewellyn ©

Pattern Matching In PHP

• You’ll find parentheses are often used in conjunction with the
pipe operator to specify alternative regex specifications.

• For example, the regex gr(u|a)b with the string: “grab the

grub and pull” would match both “grub” and “grab”.

• Although regular expressions are quite powerful because of the
original rules, inherent limitations make their use impractical.

• For example, there is no regular expression that can be used to
specify the concept of “any character”.

• As a result of the inherent limitations, the practical
implementations of regex have grown to include a number of
other rules, the most common of which are shown beginning on
the next page.

CNT 4714: PHP – Part 5 – Pattern Matching Page 11 Dr. Mark Llewellyn ©

Additional Syntax For Regex

• The special character “^” is used to identify the beginning of the
string.

• The special character “$” is used to identify the end of the
string.

• The special character “.” is used to identify any character.

• Any nonnumeric character following the character “\” is
interpreted literally (instead of being interpreted according to its
regex meaning). Note that this escaping sequence is relative to
the regex compiler and not to PHP. This means that you must
ensure that an actual backslash character reaches the regex
functions by escaping it as needed (i.e., if you’re using double
quotes, you will need to input \\).

CNT 4714: PHP – Part 5 – Pattern Matching Page 12 Dr. Mark Llewellyn ©

Additional Syntax For Regex

• Any regular expression followed by a “+” character is a regular
expression composed of one or more instances of that regular expression.

• Any regular expression followed by a “?” character is a regular
expression composed of either zero or one instance of that regular
expression.

• Any regular expression followed by an expression of the type {min [, |,
max]} is a regular expression composed of a variable number of
instances of that regular expression. The min parameter indicates the
minimum acceptable number of instances, whereas the max parameter, if
present, indicates the maximum acceptable number of instances. If only
the comma is present, no upper limit exists. If only min is defined, it
indicates the only acceptable number of instances.

• Square brackets can be used to identify groups of characters acceptable
for a given character position.

CNT 4714: PHP – Part 5 – Pattern Matching Page 13 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• It’s sometimes useful to be able to recognize whether a portion
of a regular expression should appear at the beginning or the end
of a string.

• For example, suppose you’re trying to determine whether a
string represents a valid HTTP URL. The regex http://

would match both http://www.cs.ucf.edu, which is valid and
nhttp://www.cs.ucf.edu which is not valid, and could easily
represent a typo on the user’s part.

• Using the special character “^”, you can indicate that the
following regular expression should only be matched at the
beginning of the string. Thus, ^http:// will match only the

first of our two strings.

CNT 4714: PHP – Part 5 – Pattern Matching Page 14 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The same concept – although in reverse – applies to the end-of-
string marker “$, which indicates that the regular expression
preceding it must end exactly at the end of the string.

• Thus, com$ will match “amazon.com” but not

“communication”.

• Having a “wildcard” that can be used to match any character is
extremely useful in a wide range of scenarios, particularly
considering that the “.” character is considered a regular
expression in its own right, so that it can be combined with the
Kleene Start and any of the other modifiers.

CNT 4714: PHP – Part 5 – Pattern Matching Page 15 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Consider the regex: .+@.+\..+

• This regex can be used to indicate:

– At least one instance of any character, followed by

– The @ character, followed by

– At least one instance of any character, followed by

– The “.” character, followed by

– At least one instance of any character

• Can you guess what sort of string this regex might validate?

Does this look familiar? markl@cs.ucf.edu
It’s a very rough form of an email address. Notice how the backslash character was used to
force the regex compiler to interpret the next to last “.” as a literal character, rather than as
another instance of the “any character” regular expression.

CNT 4714: PHP – Part 5 – Pattern Matching Page 16 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The regex on the previous page is a fairly crude way of
checking the validity of an email address. After all, only letters
of the alphabet, the underscore character, the minus character,
and digits are allowed in the name, domain, and extension of an
email.

• This is where the range denominators come into play. As
mentioned previously (last paragraph of page 12), anything
within non-escaped square brackets represents a set of
alternatives for a particular character position. For example, the
regex [abc] indicated either an “a”, a “b”, or a “c” character.

However, representing something like “any character” by
including every possible symbol in the square brackets would
give rise to some ridiculously long regular expressions.

CNT 4714: PHP – Part 5 – Pattern Matching Page 17 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Fortunately, range denominators make it possible to specify a
“range” of characters by separating them with a dash.

• For example [a-z] means “any lowercase character.

• You can also specify more than one range and combine them
with individual characters by placing them side-by-side.

• For example, our email validation regex could be satisfied by
the expression [A-Za-z0-9_].

• Using this new tool our full email validation expression
becomes:

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]+

CNT 4714: PHP – Part 5 – Pattern Matching Page 18 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The range specifications that we have seen so far are all
inclusive – that is, they tell the regex compiler which characters
can be in the string. Sometimes, its more convenient to use
exclusive specification, dictating that any character except the
characters you specify are valid.

• This is done by prepending a caret character (^) to the character
specifications inside the square bracket.

• For example, [^A-Z] means any character except any

uppercase letter of the alphabet.

CNT 4714: PHP – Part 5 – Pattern Matching Page 19 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Going back to our email example, its still not as good as it could
be because we know for sure that a domain extension must have
a minimum of two characters and a maximum of four.

• We can further modify our regex by using the minimum-
maximum length specifier introduced on page 12.

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{2,4}

• Naturally, you might want to allow only email addresses that
have a three-letter domain. This can be accomplished by
omitting the comma and the max parameter from the length

specifier, as in:

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{3}

CNT 4714: PHP – Part 5 – Pattern Matching Page 20 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• On the other hand, you might want to leave the maximum
number of characters open in anticipation of the fact that longer
domain extensions might be introduced in the future, so you
could use the regex:

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{3,}

• Which indicates that the last regex in the expression should be
repeated at least a minimum of three times, with no fixed upper
limit.

CNT 4714: PHP – Part 5 – Pattern Matching Page 21 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• POSIX (Portable Operating System Interface for uniX) is a
collection of standards that define some of the functionality that a
Unix operating system should support.

• One of these standards defines two flavors of regular expressions.

– BRE (Basic Regular Expressions) standardizes a flavor similar to the one
used by the traditional Unix grep command. This is probably the oldest

regular expression flavor still in use today.

– ERE (Extended Regular Expressions) standardizes a flavor similar to the
one used by the Unix egrep command. Most modern regex flavors are

extensions of the ERE flavor.

• The POSIX standard is the simplest form of regex available in
PHP (as opposed to the PCRE), and as such is the best way to learn
regular expressions.

CNT 4714: PHP – Part 5 – Pattern Matching Page 22 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• In addition to the standard rules of regex that we’ve already
discussed, the POSIX regex standard defines the concept of
character classes as a way to make it even easier to specify
character ranges.

• Character classes are always enclosed in a set of colon
characters (:) and must be enclosed in square brackets.

• There are 12 character classes defined in the POSIX standard.
These are listed in the table on the following page.

CNT 4714: PHP – Part 5 – Pattern Matching Page 23 Dr. Mark Llewellyn ©

Character class Description

alpha Represents a letter of the alphabet (either lower or upper case). Equivalent to
[A-Za-z]

digit Represents a digit between 0 and 9. Equivalent to [0-9]

alnum Represents an alphanumeric character. Equivalent to [0-9A-Za-z]

blank Represents “blank” characters, normally space and tab

cntrl Represents “control” characters, such as DEL, INS, and so on

graph Represents all printable characters except the space

lower Represents lowercase letters of the alphabet only

upper Represents uppercase letters of the alphabet only

print Represents all printable characters

punct Represent punctuation characters such as “.”, or “,”

space Represents the whitespace

xdigit Represents hexadecimal digits

The POSIX character classes

CNT 4714: PHP – Part 5 – Pattern Matching Page 24 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• Rewriting our previous email regex using the POSIX standard
notation the following:

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{2,4}

 becomes:

 [[:alnum:]_]+@[[:alnum:]_]+\.[[:alnum:]_]{2,4}

• This notation is a bit simpler, and it unfortunately also makes
mistakes a little less obvious.

CNT 4714: PHP – Part 5 – Pattern Matching Page 25 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• Another important concept introduced by the POSIX standard is
the reference.

• Recall that we discussed the use of parentheses to group regular
expressions (see page 6 – one of Kleene’s original regex
axioms).

• When you use parentheses in a POSIX regex, when the
expression is executed the interpreter assigns a numeric
identifier to each grouped expression that is matched.

• This identifier can be used in various operations – such as
finding and replacing.

• Consider the example on the following page:

CNT 4714: PHP – Part 5 – Pattern Matching Page 26 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• Suppose we have the string: markl@cs.ucf.edu and the

regex:

 ([[:alnum:]_]+)@([[:alnum:]_]+)\.([[:alnum:]_]{2,4})

• The regex should match the email address string. However,
because we have grouped the username, domain name, and the
domain extensions, they will each become a reference, as shown
in the table below:

Reference Number Value

0 markl@cs.ucf.edu (string matches the entire regex)

1 markl

2 cs.ucf

3 edu

CNT 4714: PHP – Part 5 – Pattern Matching Page 27 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• PHP provides support for POSIX through functions of the
ereg* class.

• Unfortunately, as of PHP 5.3.0 the ereg* class has been

deprecated and is no longer being supported by PHP. This
means that you don’t want to develop new code using this class.
However, for the time being at least, you can get a brief
introduction to regex using the class if you don’t mind seeing a
warning message in your output. We’ll go ahead and use this
class of functions for the time being before we look at the PCRE
class of functions which have replaced the ereg* class.

CNT 4714: PHP – Part 5 – Pattern Matching Page 28 Dr. Mark Llewellyn ©

POSIX Regular Expressions

• The simplest form or regex matching is performed through the
ereg() function which has the following form:

 ereg(pattern, string[, matches]);

• The ereg() function works by compiling the regular
expression stored in pattern and then comparing it against
string. If the regex is matched against string, the result value
of the function is true – otherwise, it is false. If the
matches parameter is specified, it is filled with an array
containing all the references specified by pattern that were

found in string. Position 0 in this array represents the entire
matched string.

• An example is shown on the next page.

CNT 4714: PHP – Part 5 – Pattern Matching Page 29 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 30 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 31 Dr. Mark Llewellyn ©

A Practice Exercise

• See if you can create a POSIX based regex that will validate a
string representing a date in the format mm/dd/yyyy. In other

words, 04/05/2011 would be matched but 4/5/11 would not.

• Step 1: form a basic regex. A regex such as .+ (one or more
characters) is a bit too vague even as a starting point. So how
about something like this?

 [[:digit:]]{2}/[[:digit:]]{2}/[[:digit:]]{4}

• This will work and validate 04/05/2011. However, it will also
validate 99/99/2011 which is not a valid date, so we still need
some refinement.

CNT 4714: PHP – Part 5 – Pattern Matching Page 32 Dr. Mark Llewellyn ©

A Practice Exercise (continued)

• For the month component of our regex, the first digit must
always be either a 0 or a 1, but the second digit can be any of 0
through 9.

• Similarly, for the day component of the regex, the first digit can
only be 0, 1, 2, or 3.

• Our final regex now becomes:

 [0-1][[:digit:]]/[0-3][[:digit:]]/[[:digit:]]{4}

• This will work and validate 04/05/2011.

CNT 4714: PHP – Part 5 – Pattern Matching Page 33 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Perl-Compatible Regular Expressions (PCRE) are much more
powerful than their POSIX counterparts. This of course makes
them more complex and difficult to use as well, but well worth
the effort for PHP programmers/scripters.

• PCRE adds its own character classes to the extended regular
expressions available in the POSIX standard.

• There are nine of these character classes in PCRE and are shown
in the table on the next page.

CNT 4714: PHP – Part 5 – Pattern Matching Page 34 Dr. Mark Llewellyn ©

Character

class

Description

\w Represents a “word” character and is equivalent to the expression [A-Za-z0-9]

\W Represents the opposite of \w and is equivalent to the expression [^A-Za-z0-9]

\s Represents a whitespace character

\S Represents a non-whitespace character

\d Represents a digit and is equivalent to the expression [0-9]

\D Represents a non-digit (the opposite of \w) and is equivalent to the expression [^0-9]

\n Represents a new line character

\r Represents a return character

\t Represents a tab character

PCRE character classes

Perl-Compatible Regular Expressions (PCRE)

CNT 4714: PHP – Part 5 – Pattern Matching Page 35 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Using PCRE formatted regex allows for significantly more
concise regex than is possible for the POSIX formatted regex.

• Consider, for example, the email address validation expression
we developed in POSIX earlier:

 [[:alnum:]_]+@[[:alnum:]_]+\.[[:alnum:]_]{2,4}

• Using the new character classes of PCRE this expression
becomes:

 /\w+@\w+\.\w{2,4}/

Notice that the regex string now begins and ends with forward slashes. PCRE requires

that the actual regular expression be delimited by two characters. By convention, two

forward slashes are used, although any character other than the backslash that is not

alphanumeric would work just as well.

Note in the example script on the next page I added
another \.\w{2,4} term so that I could easily pickup

the sub-domain used in my email address.

CNT 4714: PHP – Part 5 – Pattern Matching Page 36 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 37 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Regardless of which character you use to delimit your PCRE
regex (I suggest you stick with the convention however), you
will need to escape the delimiter whenever you use it as part of
the regex itself.

• For example, /face\/off/ would be the PCRE equivalent
to the regex face/off.

• PCRE also extends the concept of references by making them
useful not only as a byproduct of the regex operation, but as part
of the operation itself.

• In PCRE, it is possible to use a reference that was defined
previously in a regular expression as part of the expression
itself. Consider the following example:

CNT 4714: PHP – Part 5 – Pattern Matching Page 38 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Suppose you have a situation where you need to verify that in
strings such as:

 Mark is a cyclist. Mark’s specialty is road racing.
 Karen is a cyclist. Karen’s specialty is road racing.

 the name of the person to whom the sentence refers is the same
in both positions.

• Using a normal search-and-replace operation would take a
significant effort, and so would using a POSIX regex, simply
because you do not know the name of the person in advance.

• With PCRE this is a trivial task because you simply use a
reference within the regex as shown on the next page.

CNT 4714: PHP – Part 5 – Pattern Matching Page 39 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• You start by matching the first portion of the string. The name
is the first word:

 /^(\w+) is a cyclist.

 Next, you need to specify the name again, however, since we
enclosed the first instance of the name in parentheses we created
a reference. In the subsequent part of the expression you simply
recall that reference inside the regex itself and use it as needed.

 /^(\w+) is a cyclist. \1’s specialty is road racing.

• The next page shows a PHP script that uses this example.

CNT 4714: PHP – Part 5 – Pattern Matching Page 40 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 41 Dr. Mark Llewellyn ©

Second case doesn’t match since
Karen is in the second name
position and no match with

reference 1.

First case works fine since Mark is
on the second name position and

matches with reference 1.

CNT 4714: PHP – Part 5 – Pattern Matching Page 42 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• To illustrate the power of the PCRE version of regex in PHP,
the next page provides a POSIX version of the previous
example of matching the two subjects.

• The conciseness of the PCRE version of regex should be
apparent after looking at this script.

CNT 4714: PHP – Part 5 – Pattern Matching Page 43 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 44 Dr. Mark Llewellyn ©

The POSIX version
works but is clearly
more complex and

requires more code.

CNT 4714: PHP – Part 5 – Pattern Matching Page 45 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• As the previous example illustrates, PHP provides support for
PCRE-formatted regular expression through the preg* class of

function.

• The main PCRE function in PHP is preg_match() which

has the following basic syntax:

 preg_match(pattern, string [, matches [, flags]]);

• As with the ereg() function for the POSIX standard, the
preg_match() function causes the regex stored in
pattern to be matched against string, and nay references
matched are stored in matches.

CNT 4714: PHP – Part 5 – Pattern Matching Page 46 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• The optional flags parameter can, for the time being, only
contain the value PREG_OFFSET_CAPTURE.

• If this parameter is specified, it will cause preg_match() to

change the format of matches so that it will contain both the text
and the position of each reference inside the string.

• When this parameter is specified, the matches array will contain
another array for each reference. The latter array, in turn,
contains both the string matched and its position within the
original string.

• The example on the following page illustrates both cases.

CNT 4714: PHP – Part 5 – Pattern Matching Page 47 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 48 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

CNT 4714: PHP – Part 5 – Pattern Matching Page 49 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Another very useful function in the preg* family is
preg_match_all(), which has the same syntax as the
preg_match() function, but searches a string for all the

occurrences of the regular expression, rather than for a specific
instance.

• The example on the following page illustrates the
preg_match_all() function.

CNT 4714: PHP – Part 5 – Pattern Matching Page 50 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 51 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

CNT 4714: PHP – Part 5 – Pattern Matching Page 52 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Search and replace operations using PCRE regex are handled by
the preg_replace() function. This function has the

following syntax:

 preg_replace(pattern, replacement, string [, limit]);

• This function applies the regex pattern to string and then
substitutes the placeholders in replacement with the
references defined in it. The limit parameter can be used to

limit the number of replacements to a maximum number.

• The example on the following page illustrates three different
applications of this function. The first two simply replaces a
single word in the string, while the third replaces the entire
string.

CNT 4714: PHP – Part 5 – Pattern Matching Page 53 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 54 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

With the limit parameter set
to 1 only the first

occurrence of “on” is
replaced.

Entire strings are replaced
in this case.

CNT 4714: PHP – Part 5 – Pattern Matching Page 55 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• The last preg* function that we’ll look at is
preg_split(),which has the following syntax:

 preg_split(pattern, string [, limit [, flags]]);

• The preg_split() function works by breaking string in

substrings delimited by sequences of characters delimited by
pattern. The optional limit parameter can be used to

specify a maximum number of splitting operations (by default a
value of -1, 0, or null means no limit). The flags parameter,

on the other hand is used to modify the behavior of the function
as described in the table on the next page.

• An example using the preg_split() function appears on page 57.

CNT 4714: PHP – Part 5 – Pattern Matching Page 56 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

Flag Value Description of Function Behavior

PREG_SPLIT_NO_EMPTY Causes empty substrings to be discarded.

PREG_SPLIT_DELIM_CAPTURE Causes any reference inside pattern to be

captured and returned as part of the function’s
output.

PREG_SPLIT_OFFSET_CAPTURE Causes the position of each substring to be returned
as part of the function’s output (similar to
PREG_OFFSET_CAPTURE in preg_match().

Flag values for the preg_split() function

CNT 4714: PHP – Part 5 – Pattern Matching Page 57 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 58 Dr. Mark Llewellyn ©

In version 1, any
whitespace character or a

comma forces a split.

The third case splits the
string only on a whitespace
character and retains the

starting position of the
substring in the original

string.

In version 2, only a comma
forces a split regardless of

preceding or trailing
whitespace.

CNT 4714: PHP – Part 5 – Pattern Matching Page 59 Dr. Mark Llewellyn ©

The third case splits the
string only on a whitespace
character and retains the

starting position of the
substring in the original

string.

CNT 4714: PHP – Part 5 – Pattern Matching Page 60 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• The last aspect of PCRE regex that we’ll examine is that of
assertions.

• In a regular expression, an assertion is a fact about the pattern
that must be true. For example, we’ve already shown how you
can use the ^ and $ metacharacters to make an assertion about
the position of the pattern in the string. Using the ^ requires that
the pattern appear at the beginning of the string, while the $
requires the pattern to appear at the end of the string.

• Another type of assertion in PCRE is that of a look-ahead
assertion. A look-ahead assertion places a condition on the
characters that follow the assertion. This allows you to specify
an additional pattern for a regex.

CNT 4714: PHP – Part 5 – Pattern Matching Page 61 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Look-ahead assertions are position dependent. This means that
the pattern in the assertion must be matched starting at the
current location in the string.

• To create a look-ahead assertion, you use an opening
parenthesis followed by a question mark, an equal sign, the
pattern for the assertion to test, and a closing parenthesis as
illustrated below:

 (?=assertion)

• The example on the following page illustrates a couple of look-
ahead assertions.

CNT 4714: PHP – Part 5 – Pattern Matching Page 62 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 63 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

In version 1 look-ahead
assertion succeeds in

matching the 3 digits after
HEC.

In version 2 look-ahead
assertion fails to match 3

digits after HEC.

Version 3 illustrates
position dependence of the

look-ahead assertion. It
fails because it is

improperly positioned in the
string.

CNT 4714: PHP – Part 5 – Pattern Matching Page 64 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• A negative look-ahead assertion is similar to a look-ahead
assertion except that it checks to see that its pattern is not
matched.

• The syntax for a negative look-ahead assertion is similar to that
of a look-ahead assertion except that the equal sign is replaced
by an exclamation mark:

 (?!assertion)

• The example on the following page illustrates the use of a
negative look-ahead assertion.

CNT 4714: PHP – Part 5 – Pattern Matching Page 65 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 66 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 5 – Pattern Matching Page 67 Dr. Mark Llewellyn ©

Practice Problems

• Here are a few regular expression practice problems. You might
try to construct regular expressions for these in both POSIX and
PCRE formats. I’ll post the solutions in a day or so.

1. Credit card numbers in the format 9999-9999-9999-9999

2. Zip codes in either 5 digit or 9 digit formats, e.g., 99999 or
99999-9999

3. Phone numbers in the format (area code) prefix – number.

4. Social security numbers.

