ECE 2610 Lab Worksheet: MATLAB Intro & Complex Arithmetic

1/21/2011

MATLAB as a Complex Number Calculator

- Functions used: real(), imag(), abs(), angle()
- Compare the three angle producing functions: angle (), atan2 (), and atan ()

Practice Problems (very similar to Set #1)

For each of the problem below work out the answer using both MATLAB and your calculator

To each of the problem below work out the this wer using both MATELLE that ye
1. Write $127 - j75$ in polar form; find the angle in both radians and degrees $z = 127 - j*75$;
>> abs(z) =
>> angle(z) =

Using a TI-89

Hand/Calculator workspace:

Hand/Calculator workspace:

3. Evaluate $z = (15 - j37) - 60 \angle 45^{\circ}$ to a rectangular form solution.

MATLAB Steps:

Hand/Calculator workspace:

4. Evaluate $z = (15 - j37)/60 \angle 45^{\circ}$ to a polar form solution.

MATLAB Steps:

Hand/Calculator workspace:

MATLAB for Plotting Data and Functions

- Functions used: plot(), xlabel(), ylabel(), title(), grid, and axis
- 1. Plot $x(t) = 25\sin(\pi t/5 + \pi/4)$ for $0 \le t \le 15$ s. Include a grid and axis labels.

```
>> t = 0:.1:15; % create a time axis vector with sample spacing 0.1s >> ?
```

For the x(t) above, plot x(t-2) for $0 \le t \le 15$ s, overlaid on the plot of x(t) of part (1).

>> hold on % will hold the previous plot so you can overlay a new plot >> ?

User Defined Functions in MATLAB

One of the most power capabilities of Matlab is being able write your own user defined functions. Consider a custom trig function of the form

$$y(t) = 3\cos(5t) + 4\sin(3t)$$
 (1)

The input to this function is time, t, and the output is y. The function *prototype* we require is of the form:

```
function y = my_trig(t)
% y = my_trig(t) is a function that evaluates the simple trig
% based function y = 3*cos(5t) + 4*sin(3*t).
%
% Author: My Name
% Date: January 2011
%
...
function body
...
make sure that you return output to variable y
```

Write the Function

Test the Function

To test the function input a time vector that runs from -2s to 10s using a time step of 0.05s. Output the results in a plot using plot (t, y).