Differential Forms

Colley devotes Chapter 8 to differential forms. This note is intended to give you the highlights, and is complementary to chapter 8 rather a summary of chapter 8 . Reading chapter 8 can provide you with more details. I will also look at forms slightly differently than in chapter 8 , in particular evaluating them without determinents. In fact a very good way to define determinents is to use forms.
The big picture: If $X \subset \mathbb{R}^{n}$ is an open set, then for every integer $k \geq 0$ there is a vector space $\Omega^{k}(X)$ of k-forms on X. There is an exterior derivative $d_{k}: \Omega^{k}(X) \rightarrow \Omega^{k+1}(X)$, usually the subscript k is omitted and this is just written as d. The map d_{k} is a linear transformation. So if ω is a k-form then $d \omega$ is a $k+1$-form and $d(\omega+\nu)=d \omega+d \nu$. There is an operation wedge which takes a k-form ω and an ℓ-form ν and produces a $k+\ell$-form $\omega \wedge \nu$. If ω is a k-form and M is a parameterized k dimensional manifold in X (whatever that is) then an integral $\int_{M} \omega$ can be defined, it is a scalar.

In what follows, when we talk about a function f on X we will assume without explicitly saying so that $f: X \rightarrow \mathbb{R}$ is real valued and is infinitely differentiable, i.e., partial derivatives of f all orders exist. You can get away with less, but it would only obscure the main ideas.

You can not only multiply a form by a scalar (from the vector space axioms) but you can multiply a form by a function on X. So if ω is a k-form and $f: X \rightarrow \mathbb{R}$ is a function, then $f \omega$ is another k-form.

The derivative d and the wedge satisfy some algebraic rules. Some of these rules are, $d^{2}=0$ and there is a product rule $d(f \omega)=f d \omega+d f \wedge \omega$. Also \wedge is bilinear which means $\left(\omega_{1}+\omega_{2}\right) \wedge \nu=\omega_{1} \wedge \nu+\omega_{2} \wedge \nu$ and $\omega \wedge\left(\nu_{1}+\nu_{2}\right)=\omega \wedge \nu_{1}+\omega \wedge \nu_{2}$. If ω and ν are k and ℓ-forms then $\omega \wedge \nu=(-1)^{k \ell} \nu \wedge \omega$, in particular if both k and ℓ are odd, then $\omega \wedge \nu=-\nu \wedge \omega$. We will use this extensively below for $k=\ell=1$.

The nitty gritty: Okay, so what is a form anyway.
0) A 0 -form is just a function $f: X \rightarrow \mathbb{R}$.

1) A 1-form is an expression of the form $f_{1} d g_{1}+f_{2} d g_{2}+\cdots+f_{m} d g_{m}$ where the f_{i} and g_{i} are functions on X. For example, $x y^{2} d x+d(x y)$ is a 1 -form on \mathbb{R}^{2}.
2) A 2 -form is an expression of the form $f_{1} d g_{1} \wedge d h_{1}+f_{2} d g_{2} \wedge d h_{2}+\cdots+f_{m} d g_{m} \wedge d h_{m}$ where the f_{i}, g_{i}, and h_{i} are functions on X. For example $x^{2} y d(x+y) \wedge d(x z)+3 d x \wedge d z$ is a 2 -form on \mathbb{R}^{3}.
k) In general a k-form is a finite sum of expressions of the form $f d g_{1} \wedge d g_{2} \wedge \cdots \wedge d g_{k}$ where f and the g_{i} are functions on X.
There are some rules for manipulating forms.
a) $d f=\partial f / \partial x_{1} d x_{1}+\partial f / \partial x_{2} d x_{2}+\cdots+\partial f / \partial x_{n} d x_{n}$. So for example $d(x z)=z d x+x d z$ and $d(x+y)=$ $d x+d y$
b) \wedge distributes over addition and commutes with multiplication, so for example

$$
\begin{aligned}
x^{2} y d(x+y) \wedge d(x z) & =x^{2} y(d x+d y) \wedge(z d x+x d z)=x^{2} y d x \wedge(z d x+x d z)+x^{2} y d y \wedge(z d x+x d z) \\
= & x^{2} y z d x \wedge d x+x^{2} y x d x \wedge d z+x^{2} y z d y \wedge d x+x^{2} y x d y \wedge d z
\end{aligned}
$$

c) Switching two 1 -forms you are wedging will change the sign, $d f \wedge d g=-d g \wedge d f$. So for example $x^{2} y z d x \wedge d x+x^{3} y d x \wedge d z+x^{2} y z d y \wedge d x+x^{3} y d y \wedge d z=x^{2} y z d x \wedge d x+x^{3} y d x \wedge d z-x^{2} y z d x \wedge d y+x^{3} y d y \wedge d z$
d) Wedging a 1-form with itself is always $0, d f \wedge d f=0$. (This is actually equivalent to c, can you see why?) So for example $x^{2} y z d x \wedge d x=0$. The equal items need not be adjacent so for example $d x \wedge d y \wedge d x=0$. Applying all these rules to our example we get

$$
\begin{aligned}
x^{2} y d(x+y) \wedge d(x z) & +3 d x \wedge d z=x^{2} y x d x \wedge d z-x^{2} y z d x \wedge d y+x^{2} y x d y \wedge d z+3 d x \wedge d z \\
& =x^{3} y d y \wedge d z+\left(x^{3} y+3\right) d x \wedge d z-x^{2} y z d x \wedge d y
\end{aligned}
$$

Using these rules we can reduce any k-form to a sum of terms of the form

$$
f d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}
$$

where $i_{1}<i_{2}<\cdots<i_{k}$ just as we did with our example. So for example any 1 -form on \mathbb{R}^{3} has the form $M d x+N d y+P d z$, any 2 -form on \mathbb{R}^{3} has the form $M d y \wedge d z+N d x \wedge d z+P d x \wedge d y$ and any 3 -form in \mathbb{R}^{3} has the form $f d x \wedge d y \wedge d z$. Thus 1-forms and 2-forms on \mathbb{R}^{3} can be identified with vector fields (M, N, P) and 0 -forms and 3 -forms on \mathbb{R}^{3} can be identified with scalar valued functions. In general in dimension n, the 0 -forms and n-forms can be identified with scalar functions and the 1 -forms and $n-1$ forms can be identified with vector fields. Note that all k-forms with $k>n$ are 0 since we cannot find k distinct integers from 1 to n. Things work out better if we identify the vector field (M, N, P) on \mathbb{R}^{3} with the 2-form $M d y \wedge d z-N d x \wedge d z+P d x \wedge d y$.

If $f: Y \rightarrow X$, then composition (i.e., substitution) gives a linear transformation $f^{*}: \Omega^{k}(X) \rightarrow \Omega^{k}(Y)$. For example, suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by $f(s, t)=\left(s t, s+t, t^{2}\right)$. Then

$$
\begin{gathered}
f^{*}(x d y \wedge d z+y z d x \wedge d y)=s t d(s+t) \wedge d\left(t^{2}\right)+(s+t) t^{2} d(s t) \wedge d(s+t) \\
=s t d s \wedge d\left(t^{2}\right)+s t d t \wedge d\left(t^{2}\right)+(s+t) t^{2} d(s t) \wedge d s+(s+t) t^{2} d(s t) \wedge d t \\
=2 t s t d s \wedge d t+2 t s t d t \wedge d t+(s+t) t^{2}(s d t+t d s) \wedge d s+(s+t) t^{2}(s d t+t d s) \wedge d t \\
=2 t^{2} s d s \wedge d t+(s+t) s t^{2} d t \wedge d s+(s+t) t^{3} d s \wedge d t \\
=\left(2 t^{2} s-(s+t) s t^{2}+(s+t) t^{3}\right) d s \wedge d t
\end{gathered}
$$

This gives us a way to evaluate $\int_{Z} \omega$ where $Z \subset X$ is a k dimensional manifold and ω is a k-form on X. Suppose we can parameterize Z by a map $f: D \rightarrow \mathbb{R}^{n}$ where $D \subset \mathbb{R}^{k}$. Then $f^{*} \omega$ is a k-form on D which can be thought of as a scalar function which we can then integrate on D. For example, let Z be the cylinder parameterized by $r(s, t)=\cos t \mathbf{i}+\sin t \mathbf{j}+s \mathbf{k}$ for $0 \leq t \leq 2 \pi$ and $0 \leq s \leq 4$. Let ω be any 2 -form on \mathbb{R}^{3}, $\omega=z d y \wedge d z+x d x \wedge d z-d x \wedge d y$. Then

$$
\begin{gathered}
r^{*} \omega=s d \sin t \wedge d s+\cos t d \cos t \wedge d s-d \cos t \wedge d \sin t=s \cos t d t \wedge d s-\cos t \sin t d t \wedge d s+\sin t \cos t d t \wedge d t \\
=(\cos t \sin t-s \cos t) d s \wedge d t
\end{gathered}
$$

So $\int_{Z} \omega=\int_{0}^{2 \pi} \int_{0}^{4} \cos t \sin t-s \cos t d s d t=0$.
Change of variable: Suppose we have a change of variables $x=x(u, v), y=y(u, v)$. Then

$$
\begin{aligned}
d x \wedge d y= & \left(x_{u} d u+x_{v} d v\right) \wedge\left(y_{u} d u+y_{v} d v\right)=x_{u} y_{u} d u \wedge d u+x_{u} y_{v} d u \wedge d v+x_{v} y_{u} d v \wedge d u+x_{v} y_{v} d v \wedge d v \\
& =x_{u} y_{v} d u \wedge d v+x_{v} y_{u} d v \wedge d u=\left(x_{u} y_{v}-x_{v} y_{u}\right) d u \wedge d v=\partial(x, y) / \partial(u, v) d u \wedge d v
\end{aligned}
$$

Thus we get the change of variables formula for integration (except that we allow signed area, so there is no absolute value of the Jacobian). This all works in n dimensions too.
Work integrals: Let C be a curve (i.e., a 1 manifold) in \mathbb{R}^{3} parameterized by $r(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ for $a \leq t \leq b$. Let $F=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ be any vector field on \mathbb{R}^{3}. Then F can be identified with the 1-form $\omega=M d x+N d y+P d z$. Then $r^{*} \omega=M d x / d t d t+N d y / d t d t+P d z / d t d t$ so $\int_{C} \omega=\int_{a}^{b} M d x / d t+N d y / d t+$ $P d z / d t d t=\int_{C} F \cdot \mathbf{T} d s$.

Flux integrals: Let Z be the graph $z=g(x, y)$ for $(x, y) \in D$. Let $F=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ be any vector field on \mathbb{R}^{3}. Then F can be identified with the 2-form $\omega=M d y \wedge d z-N d x \wedge d z+P d x \wedge d y$. Let $r(x, y)=(x, y, g(x, y))$ parameterize Z. Then $d z=g_{x} d x+g_{y} d y$ so

$$
\begin{gathered}
r^{*} \omega=M d y \wedge\left(g_{x} d x+g_{y} d y\right)-N d x \wedge\left(g_{x} d x+g_{y} d y\right)+P d x \wedge d y \\
=M g_{x} d y \wedge d x-N g_{y} d x \wedge d y+P d x \wedge d y \\
=(M, N, P) \cdot\left(-g_{x},-g_{y}, 1\right) d x \wedge d y
\end{gathered}
$$

Thus $\int_{Z} \omega=\iint_{Z} F \cdot n d S$. As an excercise you can prove this formula for a general parameterized surface.

Relation of d with grad, curl and div: Recall that the exterior derivative can be calculated by $d\left(f d g_{1} \wedge d g_{2} \wedge \cdots \wedge d g_{k}\right)=d f \wedge d g_{1} \wedge d g_{2} \wedge \cdots \wedge d g_{k}$.

If f is a function on \mathbb{R}^{3}, then $d f=f_{x} d x+f_{y} d y+f_{z} d z$ is the 1 -form identified with the vector field $\left(f_{x}, f_{y}, f_{z}\right)=\operatorname{grad}(f)$.

If $F=(M, N, P)$ is a vector field on \mathbb{R}^{3} we may identify it with the 1 -form $\omega=M d x+N d y+P d z$. Then

$$
\begin{gathered}
d \omega=\left(M_{x} d x+M_{y} d y+M_{z} d z\right) \wedge d x+\left(N_{x} d x+N_{y} d y+N_{z} d z\right) \wedge d y+\left(P_{x} d x+P_{y} d y+P_{z} d z\right) \wedge d z \\
=M_{y} d y \wedge d x+M_{z} d z \wedge d x+N_{x} d x \wedge d y+N_{z} d z \wedge d y+P_{x} d x \wedge d z+P_{y} d y \wedge d z \\
=\left(P_{y}-N_{z}\right) d y \wedge d z-\left(M_{z}-P_{x}\right) d x \wedge d z+\left(N_{x}-M_{y}\right) d x \wedge d y
\end{gathered}
$$

Thus $d \omega$ is identified with the vector field $\left(P_{y}-N_{z}, M_{z}-P_{x}, N_{x}-M_{y}\right)=\operatorname{curl} F$.
If $F=(M, N, P)$ is a vector field on \mathbb{R}^{3} we may identify it with the 2 -form $\nu=M d y \wedge d z-N d x \wedge$ $d z+P d x \wedge d y$. Then

$$
\begin{gathered}
d \nu=\left(M_{x} d x+M_{y} d y+M_{z} d z\right) \wedge d y \wedge d z-\left(N_{x} d x+N_{y} d y+N_{z} d z\right) \wedge d x \wedge d z+\left(P_{x} d x+P_{y} d y+P_{z} d z\right) \wedge d x \wedge d y \\
=M_{x} d x \wedge d y \wedge d z-N_{y} d y \wedge d x \wedge d z+P_{z} d z \wedge d x \wedge d y=\operatorname{div} F d x \wedge d y \wedge d z
\end{gathered}
$$

Generalized Stokes' theorem: Suppose $r: D \rightarrow X$ where D is a region in \mathbb{R}^{k}. Let $U=r(D)$ be the image of r. Then we say r parametrizes U. We say ∂U is the image of the boundary of D. For example let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ and define $r: D \rightarrow \mathbb{R}^{3}$ by $r(x, y)=\left(x, y, x^{2}+y^{2}\right)$. Then r parameterizes U where U is the portion of the paraboloid $z=x^{2}+y^{2}$ which lies below the plane $z=1$. We have ∂U is the circle $x^{2}+y^{2}=1, z=1$.

Suppose ω is a $k-1$-form. The generalized Stokes' theorem says that

$$
\int_{\partial U} \omega=\int_{U} d \omega
$$

This gives us Stokes' theorem, Gauss' theorem, Greens theorem, and many others.
For example, if ω is a 1-form in \mathbb{R}^{3} corresponding to the vector field F then we saw above that $\int_{\partial U} \omega=$ $\int_{\partial U} F \cdot T d s$. Also $d \omega$ corresponds to the vector field curl F so $\int_{U} d \omega=\iint_{U} \operatorname{curl} F \cdot n d S$ so we get the classic Stokes' theorem.

For another example, if ν is a 2 -form in \mathbb{R}^{3} corresponding to the vector field F, then we saw above that $d \nu$ corresponds to $\operatorname{div} F$. So if U is a solid region in \mathbb{R}^{3} we have $\iiint_{U} \operatorname{div} F d V=\int_{U} d \nu=\int_{\partial U} \nu=\iint_{\partial U} F \cdot n d S$.

