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CHARACTERIZING DEFECTS

CHANGE AND DEFECT DISTRIBUTIONS

Software development environments vary with respect to a variety of environmental characteristics, e.g.,

application, organization, life cycle models, methods, techniques, experience, etc. Defect and change

distributions can provide us with a signature of the project and the organization relative to those

characteristics. That is, we can find patterns that can provide descriptive models that result from certain

sets of characteristics and use those patterns to predict  expected outcomes for projects within that

class or modify project characteristics within our control to change those outcomes. For example,

knowing the defect/change patterns of a class of projects can provide input into the adoption of various

methods and tools for software development, evaluation and refinement.

Using these change and defect patterns can provide us with very  useful information. We can understand

the effectiveness of the various phases/documents in the life cycle, e.g., which phase was the source of

the most errors, e.g., requirements, design, etc. or more specific issues, such as how expensive the

requirements document was to update.

We can analyze the effect of the methods and tools used. Did a method which was supposed to

minimize a certain class of error have that effect? Did it minimize the expensive errors of that class?

It can provide an understanding of the kinds of errors and faults we are making. What is the distribution

between faults of omission and commission? What percent of the faults require a fix to more than one

module? What percent of faults require the knowledge of more than one module to design the fix? What

kinds of errors/changes are the most expensive? Are they errors/changes in the requirement, dealing

with a certain functional capability? Are they errors we can do something about?

It can provide insight into the kinds of techniques that work best in uncovering faults and failures or

classes of faults and failures. Are they faults that could be caught by an automated code analyzer, e.g.,

initialization of data? Are they failures that could be found by structural testing, e.g., boundary conditions

on loops?

In this chapter we will examine a set of studies that have looked at various errors, faults and failures in

different environments.

Endres IBM DOS/VS Study

One of the earliest studies on defects was performed by Endres [Endres 1975]. He studied a new

release of the DOS/VS operating system (release 28). The update to the system consisted of the

addition or modification of approximately 250K machine instructions and comments, composing about

500 modules. The average size of a module was 360  lines without comments,  480 with comments.
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The study involves the analysis of 432 defects that were discovered during the internal test of the

system. It should be noted that this study was conducted well before the IEEE standard definitions of

error, fault and failure. The defects enumerated in this study were derived from problem reports

generated during testing of the system, caused by failures of some kind from the systemÆs operational

behavior.  In the terminology used in this book, they might be thought of as failures from system test.

Unit and integration test are not included.

Goals of the study included an analysis of whether or not the interface between modules is a major

source of failures and the benefits derivable from using a high level programming language versus

assembly code. The distributions calculated include the number of modules affected by a defect, the

number of defects per module, and a classification of the error domain of the defects.

Figure 5.1 offers a view of the number of modules affected by a failure. This data shows that most

failures (85%) affected a change to only one module, i.e. only 15% of the failures required changes in

more than one module. Using the definition that an interface fault is one which requires the modification

of more than one module, this implies that the vast majority of faults are not interface faults. This is the

same definition of interface fault that was used in the Weiss/Basili study reported in the previous chapter.

In a latter study we will introduce another definition of interface fault.

      

Number of Failures Number of Modules Affected

371 (85%) 1

50 2

 6 3

 3 4

  1 5

     1 8

Figure 5.1 Number of Modules Affected by a Failure

Figure 5.2 provides a view of the number of failures per module. Thus some modules are more fault

ridden than others. In analyzing the most fault ridden modules, Endres found that they were usually

larger than the norm, so that the fault rate was not out of line, or they were driver modules and thus

more  complex than the other modules from the point of  view of call structure.

Number of Modules Number of Failures/Module

112  1

36 2

15 3

11 4

8 5

2 6

4 7

5 8

3 9
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2 10

1 14

1 15

1 19

1 28

Figure 5.2 Number of Failures per Module

In analyzing the domain of the error that created the fault, Endres divided the error cause in to three

main categories, problem specific errors, implementation specific errors, and textual errors. Figures 5.3,

5.4  and 5.5 provide the categorized data. The purpose of this categorization was to

Cause Percent of Errors

A1 Machine Configuration and Architecture 10

A2 Dynamic Behavior and Communication

Between Processes 17

A3 Functions Offered 12

A4 Output Listings and Formats 3

A5 Diagnostics 3

A6 Performance 1

___

Total Percent of Type A Errors 46%

Figure 5.3  Problem Specific Errors (Type A)

Cause Percent of Errors

B1 Initialization (of Fields and Areas) 8

B2 Addressability (in the sense of the

assembler) 7

B3 Reference to Names 7

B4 Counting and Calculating 8

B5 Masks and Comparisons 2

B6 Estimation of Range Limits (for

addresses and parameters) 1

B7 Placing of Instructions within a

module, bad fixes 5

___

Total Percent of Type B Errors 38%

Figure 5.4  Implementation Specific Errors (Type B)

Cause Percent of Errors

C1 Spelling Errors in Messages and
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Commentaries 4

C2 Missing Commentaries or Flowcharts

(Standards) 5

C3 Incompatible Status of Macros or

Modules (Integration errors) 5

C4 Not Classifiable 2

___

16%

Figure 5.5  Textual Errors (Type C)

distinguish between failures that could have been prevented by the use of a  high level programming

language and those that  should not have been affected by the use of such a language.

The conclusions that can be drawn form this data are that a high level programming language  might have

prevented 38% of the failures committed during development.

Weiss ARF Study

In this study [Weiss 1979], Weiss analyzes the effect on errors from using a methodology that involved

the use of information hiding in defining modules. His analysis goals are an attempt recognize the effect

the design principles had on the classes and cost of errors. He also evaluates the effect of the use of a

preprocessor for  finding errors, as opposed to program execution or reading, and the  particular source

of the reading activity for those  faults found during reading.

The project under study was a facility for simulating different computer architectures under development

at the Naval Research Laboratories. The project size was 21K lines of FORTRAN source code with

comments, consisting of  8 very large modules and 253 FORTRAN subroutines. The resources

expended consisted of 9 people, several only part time, over 10 calendar months comprising 48 staff

months. There were 143 defects reported from the end of design to one year after the end of

development.

Designers and programmers reported defects and categorized them after correction. There was  a

validation of the defect classification by an error analyst and a calculation of the  distributions and

parameters of interest at various stages of project development.

A misunderstanding is defined as an error resulting from an incorrect assumption. For example, if the

coder assumed that the user input routines removed delimiters from character strings containing user

commands, resulting in a valid user command being rejected, then this would be an error caused by a

misunderstanding of the design. Figure 4.6 gives the number and percent of misunderstandings due to

various causes.The implication is that few errors were due to a misunderstanding of the interface design.

More specifically, only  8 (6%) of the errors required understanding of more than one module, while

135 (94%) of the errors required understanding only  one module. When comparing this with the

Endres study, it must be remembered that the
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Category # of Errors % of Total Errors

Requirements 8 6

Design

   Excluding Interfaces 27 19

   Interface 9 6

Coding Specifications 18 13

Language 12 8

Coding Standards 3 2

Careless Omission 14 10

Clerical 52 36

Figure 4.6  Misunderstandings as a Source of Errors

definition of module is different, here there were only  8 information hiding modules, i.e. they were more

like subsystems. However, since this was one of the major goals of the design method,  to reduce the

number of errors across modules, one would have to consider the method effective in achieving its goal.

It should also be noted that 46% of the  errors (46 errors) were not  due to misunderstandings at all but

due to careless omissions or clerical mistakes.

In order to estimate the cost of the various errors, Weiss broke down the effort into three categories:

easy: less than a few hours, medium: a few hours to a few days. and hard: more than a few days.

Category # of Errors % of Total Errors

Easy 120 84

Medium 22 15

Hard 1 1

Figure 4.7 Difficulty of Finding the cause of and correcting errors

Figure 4.8 classifies the category of misunderstanding with regard to the cost.  From this figure we can

see that the interface design errors were reasonable inexpensive. It might  also be noted that even

though there were a small number of errors due to a misunderstanding of the requirements, these errors

tend to be expensive.

     Category of    Easy  Medium   Hard

Misunderstanding

Requirements  4 3% 3 2% 1 1%

Design

   Excluding Interface19 13% 8 6% 0

   Interface  8 6% 1 1% 0

Coding Specifications 14 10% 4 3% 0
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Language  9 6% 3 2% 0

Coding Standards  3 2% 0 0% 0

Careless Omission 13 9% 1 1% 0

Clerical 50 35% 2 1% 0

Figure 4.8 Difficulty of Error Isolation/Correction

Figure 4.9 gives the number of errors detected by each of the three different approaches to finding

errors, program execution, reading of the coding specifications, and detected automatically via the

preprocessor or compiler.

Category # of Errors % of Total Errors

Program Execution 58 40

Reading Code or

   Specifications 41 29

Preprocessor, Compiler 44 31

Figure 4.9 Methods of Error Detection

It should be noted that of the 58 errors detected by program execution 21 were hard or medium with

regard to effort. With regard to reading all but one was easy. This could imply that early error detection,

by reading makes error detection cheaper. It should also be noted that the figure of 29% of the errors

found reading is a lower bound since there may have been unreported errors found from reading that

occurred before the data collection  began.

Weiss/Basili SEL Study

In the previous chapter we discussed the results of part of this study, the error domain patterns from a

class of   common projects. Here we will deal with the goal of categorizing changes [Weiss/Basili

1985]. The goal here was to characterize the changes made  to projects over the course of

development. More specifically, the GQM goal is

Analyze the projects in order to characterize the changes by class of change from the point of view of

the manager.

There are several models of changes in the form of classifications. First we are interested in whether the

change was a modification or  an error. Error was  subclassified into clerical and non-clerical because of

the concern over the validity of the non-clerical  errors reported. Another  category is the source of

modification, i.e., was the modification externally generated, e.g., from a requirements change or a

change in the environment, or was it internally generated from a change in the design, the addition or

deletion of debug  code, or a change that was anticipated by the developers such as the addition  of

function at a  later time  because of an incremental development approach. There is also a need to

understand the cause of the design change, i.e. is it to offer a clearer, simpler design, is it to provide the
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user with better services in the form of a better interface, etc., is it for the purpose of  optimizing the

design. As with error data, the effort to change can also be categorized relative to categories of

anticipated effort.

These models can be summarized as  follows:

type of change: modification, non-clerical defect, clerical defect

source of modification: requirements, design, debug code, environment, planned enhancement, other

type of design modification:  clarity, user services, optimization, other

effort to change: less than or equal to 1 hour, 1  hour to  1 day, 1 day to 3 days, greater than 3 days

Figure 4.10 shows the percent of changes by type of change. What can be seen from this table is that

the number of modifications is at the same level as the number of non-clerical errors.

Type of Change SEL1 SEL2 SEL3

Mods 36% 48% 54%

Non-clerical Errors 47% 44% 37%

Clerical Errors 17% 8% 9%

Figure 4.10  Percent of All Changes by Type of Change

Figure  4.11 shows the percent of changes  by source of modification. From this  table it should be

noted that during the period that the data was collected, after the code was baselined, most of the

changes are internally generated. In fact most of them have to do with changes to the design.

Source of Modification SEL1 SEL2 SEL3

Requirements      3     29     26

Design     65     49     35

Debug     10       4     10

Environment       2       4        1

Planned Enhancement     20      12             27

Other        0        2       1

Figure 4.11  Percent of Changes by Source of Modification

Figure 4.12 shows the breakdown of the design modifications. Although these were generated by the

developers, several of these changes may have been due to incomplete or missing requirements. For
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example, design modifications of the type user services may be due to requirements that the developer

know the user wanted but were not listed in the requirements document. It is possible that several of the

optimization modifications could have lead to faults or failures of performance but there  is no way of

knowing at this point in time. Several modifications of clarity may have also lead to faults but were

prevented before they could occur.

Source of Design Modification SEL1 SEL2 SEL3

Clarity     8     11     17

User Service    21     10     12

Optimization    28     18      6

Other      3       1

Unknown      5       9

Figure 4.12  Percent of Changes by Source of Design Modification

This argues that the enumeration of defects as well as their categorization is highly dependent on the

local environment. For example, the classes chosen in this study, as well as in the last  two studies, were

based  not   only on the local goals but on the local processes, environmental characteristics and when

the data collection process begins and ends. What might be a defect in one environment is a

modification in another and vice versa. Therefore it is very difficult to compare data from  different

environments.

Another problem that compounds the problems with comparison is the validity of the data. During this

study, we analyzed the validity [Basili/Weiss 1985]. We analyzed how often a change report form

needed to be corrected by the error analyst as a result of the data validation process. Figure 4.13

shows the number of forms that were corrected on each project as a percent of the original forms and

the number of new forms generated based upon the error analyst recognizing that there were several

different errors combined on one form. Since the three projects were begun in the order given, there is

some sign that the developers became more accurate over time.

SEL1 SEL2 SEL3

Percent of Forms Corrected     55%     51%    34%

Percent of Forms Generated     17%     36%     4%

Figure 5.13  Forms Corrected as Percent of Original Forms

Note that this data does not even take into account the number of missing forms, i.e. changes made for

which forms were not filled out.

As an example of the kinds of mistakes made in filling out the  forms, Figure 4.14  gives a sample of the

kinds of changes made by the error analyst.  Note that developers often  miss-categorized non-clerical

errors as clerical errors or  modification but rarely the reverse, i.e., developers were more forgiving than

the error analyst.
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Initial Classification After Validation Number of  Categorization 

Changes

Clerical error Non-clerical error 46 (35% of non- clerical)

Modification Non-clerical error 31 (23% of non-clerical)

Non-clerical Clerical error  0

Change Clerical error  0

Figure 5.14  Sample of Categorization Changes Resulting from Validation
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Basili/Perricone SEL Study

This next study [Basili/Perricone 1984] examines the defects in a satellite planning study of software,

reviews the results in the light of those from other studies, and analyzes the relationship between defects

and complexity.

GQM goal:

Analyze the life cycle process for a particular project in order to

characterize  it with respect to errors and faults

evaluate the results with respect to those from other studies

characterize  the relationship between errors and complexity

 from the point of view of the experience factory.

The environment is the NASA/GSFC, SEL. The application is different from the normal ground support

software for satellites, it is a simulator for satellite planning studies which uses many of the same

algorithms but applies them in a different context.

The system is 90K source lines of Fortran code consisting of 517 code segments, 370 Fortran

subroutines, 36 assembly segments and 111 common modules, block data, and utility routines. The part

of the system discussed here only deals with the 370 FORTRAN subroutines. 28% of the modules

were new, developed specifically for this system and 72% were modified, adopted from a previous

system.

The life cycle covered by the data is design through three years of maintenance and the requirements for

the system kept growing and changing over the life cycle. The project used the same

programmer/manager throughout the life cycle.

Defect data was collected starting with the base-lining of the  code through the three  years of

maintenance.There are two definitions of defects used: faults and errors. Based upon the change report

forms, the 215 faults were analyzed as 174 different errors. 49% of the faults were in modified modules

and 51% of the faults were in new modules. Of the total changes to the system 38% of changes were

modifications and 61% of changes were defect corrections.

The experimental design is a single project/case study but some comparisons can be done with prior

projects from the environment (multi-project analysis), even thought the application and time frames are

different.

GQM Questions:

Process conformance:

What is the life cycle model?
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The life cycle model is basically a waterfall model followed by an incremental development

model in that the system requirements changed with use. Since many of the algorithms are standard, a

fair number of previously defined  code was reused which made the front end of the life cycle look very

much like the standard SEL development. What was different was the amount of change made over

time based upon the learning of the users with the needs of the simulation.

How well is it being applied?

The methods are quite standard and the basic process model is well understood by the

developers.

Domain conformance:

How well do the developers understand the application?

Most of the developers were trained as mathematicians and had a reasonable familiarity with the

application domain. Viewing the system as a simulator for planning studies rather than as a standard

ground support system did provide a new perspective on the application domain.

How well do the developers understand the requirements?

The requirements document was not well developed and the system definition evolved over

time. However, the basic algorithms were well understood even though the overall  perspective of the

system was new.

Quality perspective:

In what follows we will answer the following questions:

What is the distribution of errors by error origin?

What is the distribution of the number of modules affected by an error?

What is the distribution of errors/faults per module?

What is the distribution of errors/faults in new and modified modules?

What is the distribution of faults by abstract fault classes?

What is the distribution of faults by omission/commission?

What is the distribution of faults by software aspect?

What is the relationship between module size/complexity and fault rate?

Models used for the various defect distributions include:

Error Categories:

Change effect:

     Number of modules changed to fix an error

Error Origin:

     Requirements incorrect or misinterpreted

     Functional specification incorrect or misinterpreted

     Design error involving several components
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     Design error in a single component

     Misunderstanding of external environment

     Misunderstanding of the programming language or compiler

Fault Categories:

Effort to Isolate/Fix:

     1 hour or less

     1 hour to 1 day

     1 day to  3 days

     more than 3 days

Software aspect:

     Initialization - failure to initialize data on entry/exit

     Control structure - incorrect path taken

     Interface - associated with structures outside modules environment

     Data - Incorrect use of a data structure

     Computation - erroneous evaluation of a variableÆs value

Omission/commission:

     Omission - neglecting to include some entity in a module

     Commission - incorrect executable statement

Fault Density:

     Number of faults per KLOC

Figure 5.15 provides an overview of the number of distribution of module (FORTRAN subroutine)

sizes. The table is set up to display the number of source lines of  code and executable statements falling

into various size increment of 50. This is done both for all modules and for modules with faults.  You

should notice that most of the modules are relatively small.

All Modules   Modules with Faults

Number of Lines Source Executable Source Executable

    0-50      53        258         3         49

  51-100    107          70       16         25

101-150      80          26        20         13

151-200      56          13        19           7

201-250      34             1        12           1

251-300      14 1          9           0

301-350        7 1          4           1

351-400        9 0          7           0

    >  400      10 0          6           0

Total    370         370        96         96

Figure 5.15 Distribution of Module (FORTRAN subroutine sizes)
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Figure 5.16 shows the number of modules affected by an error. To some extent this duplicates the

analysis  done by Endres with similar results. He showed that  85% of the changes to modules due  to

errors affected only one module. This study shows that 89% of the changes due to errors affect only

one module supporting EndresÆs hypothesis that few errors affect more than on module. Errors (174)

not faults are used in this analysis. It should be noted that there are differences in the data used in this

and the Endres study. First, the definitions of errors is slightly different. Second the time frame for which

the error data is collected is different (system test versus  system test through maintenance). However,

these probably have little effect on the common interpretation of the results.

         # ERRORS                     # MODULES AFFECTED

_________________________________________________

                  155 (89%)                                                1

                       9                                                            2

                       3                                                            3

                       6                                                            4

                       1                                                            5

__________________________________________________

Figure 5.16 The number of modules affected by an error

Figure 5.17 shows the number of faults per module. As with the Endres study some modules are more

error prone than others. (Note that the same cautions about the inconsistency of the data from the two

studies still holds here, with similar beliefs about the commonality of the results.) The figure also breaks

the modules down into new and modified modules. There are 49 new modules with faults and 47

modified modules with faults. Since there are almost three  times as many modified modules than new

modules, we see that the new modules were more error prone than the modified modules. The number

of faults used to calculate  the data form this table is the 215 faults.The asterisks point out the most fault

prone modules.

# Modules    New    Modified   #Faults/Module

          ___________________________________________

                    36                 17              19                          1

                    26                 13              13                          2

                    16                 10                6                          3

                    13                   7                 6                          4

                      4                    1                3                          5

                      1                    1                                            7

          ___________________________________________

Figure 5.17 The number of faults per module
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Figure 5.18 shows the percent of errors by error origin for this project broken down by new and

modified modules. This distribution shows that the majority of errors (36%) were associated with the

functional specification, and within this category, the majority were associated with modified modules

(24%). This might be  due to the fact that the reused modules were taken from a system with a different

application and even though the basic algorithms were the same, the functional  specifications for those

algorithms were wither not well-enough or appropriately defined to be used under slightly different

circumstances. If we consider EndresÆ type A errors (problem specific) to be predominantly errors

involving the requirements  and functional specification, this data might  also be used to support

EndresÆ result.

Error Origin New   Modified Total

Requirements   12.5%          4%   16%

Functional Specification   12%          24%   36%

Design/Code of Multiple Components     6%            1%     7%

Design/Code of a Single Component    12.5%         10%   22%

Language      0% 0%     0%

Environment      0% 0%     0%

Clerical error      6% 6%    12%

Error Due to a miss-correction of an error      4% 2%      6%

Other      0% 0%      0%

Figure  5.18 Percent errors by Error Origin

Figure 5.18 shows the percent of nonclerical errors by error origin for this project (labeled SEL4) and

compares it with the project SEL 2 given from the Weiss/Basili study. The appropriate subset of the

data have been modified to make it consistent with the other SEL data error origin categories in Figure

5.18 in order to perform the comparison. One can see the from examining the figure  that the error

origin distribution is dramatically different. The major reason for the difference is that for the  ground

support systems, the application, and the requirements are well understood and the developers had a

reasonable amount of experience with the application. Thus there are fewer errors in the requirements

and functional specification. In this project, the requirements and the application  are less well

understood making this a new class of project and leading to a large percent of errors in the front end of

the life cycle. Also the programmers on the standard project are less experienced than the programmer

here, leaving more errors in the design and coding of a single component.

Error Origin SEL4 SEL2

Requirements   19%     5%

Functional Specification   44%     3%

Design/Code of Multiple Components     7.5%    10%
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Design/Code of a Single Component   22.5%    72%

Language      0%      8%

Environment      0%      1%

Other      0%       1%

Figure 5.19 Comparison of Error Origin with other projects in the SEL

Figure 5.20 gives the effort distribution for the cost of isolation and fix of the faults for both new and

modified modules. It appears that it is more expensive to isolate and fix faults in modified modules than

new modules, i.e. 27% of the modified modules took more than 1 day to  fix, while 18% of the new

modules took more than a day to fix. Thus although the existence of available modules can shrink the

cost of coding, the amount of effort needed to correct faults may use  up some of that savings. How

much clearly depends upon the quality of the old code.

Cost of Isolate/Fix New       Modified     Total

1 hour or less 21% 15% 36%

1 hour to 1 day 11%  8% 19%

1 day to 3 days   3% 15% 18%

more than 3 days 15% 12% 27%

Total 50% 50%

Figure 5.20 Cost to Isolate and Fix New and Modified Modules

It should be noted that the definition of interface faults given here is different from the definition for

interface faults in the Endres and earlier SEL study. Here an interface fault (which we will call a design

interface fault) is a problem associated with structures outside a moduleÆs environment. In the prior

studies, an interface fault was defined as a fault in which more than one module needed to be changed

(which we will call an implementation interface fault). It is clear that a design interface fault does may

not involve a change to more than one module. For example, if the calling parameters of a function do

not match the formal parameters of a called procedure, it is a design interface fault since on is required

to know about both units, but it may not be an implementation interface fault since one may only have to

change the parameters in one unit.

Figure 5.21 gives the percent of faults by software aspect and omission/commission for both new and

modified modules and in total. From a brief look at the distributions, it is clear that the largest percent of

faults involves interface (39%), control flow is more of a problem in new modules (28% vs. 8%), data

and initialization are more of a problem in modified modules (38% vs. 18%).
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This data might imply that the basic algorithms for the modified modules were correct but needed some

adjustment with respect to data values and initialization for the application of the old algorithm to the

new application.

The fact that there are a small number of omission faults in modified modules might imply that the

modified modules were more complete since any omission faults for the general algorithm were already

detected in the prior application.

                             Commission                    Omission

                      New     Modified            New       Modified

Initialization            2              9                                5                  9

Control                   12              2                              16                 6

Interface                23            31                             27                  6

Data                       10            17                               1                  3

Computation        16             21                              3                  3

                                  28%        36%                         23%           12%

                                           64%                                           35%

                                           New   Modified Total

Initialization                        7             18  25 (11%)

Control                               28              8  36 (16%)

Interface                             50            37  87 (39%)

Data                                    11            20  31 (14%)

Computation                     19            24  43 (19%)

                     -----------------------------------------------------

                                            115        107                     222

Figure 5.21  Classification of faults by software aspect and omission/commission

Figure 5.22 gives the fault rate for modules in different size classes. It includes all module. It is  clear

from the data that the fault rate decreases as size increases. This appears to be a strange phenomenon,

counter to the theory that smaller is better. However, if one thinks about it for a little while, the results

are not so strange. If one takes æsmaller is betterÆ to its logical conclusion, it would imply one line

modules are best. But clearly, this is not true.

There are many possible explanations for this phenomenon. The majority of modules examined were

small biasing the result, or larger modules were coded with more care because the programmer was

more worried about their correctness, or the faults in smaller modules were more apparent and were

more susceptible to be caught by testing. Since the fault data did not  include much unit test data this

latter explanation seems less plausible than the others.
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                 Module Size                 Faults /1000 Lines

______________________________________________

                               50                                                  16.0

                              100                                                 12.6

                              150                                                 12.4

                              200                                                   7.6

                        >   200                                                   6.4

______________________________________________

Figure 5.22 Faults /1000 executable lines

Another explanation, supported in part by the data, is that since interface faults are spread across all

modules and  interface faults  dominate, smaller modules have a higher fault rate because of interface

complexity. However, this would imply that as modules became very large in  size, the internal

complexity of the  module might outweigh the interface complexity and the trend would reverse.

The real question is what size modules are best? We have a guide that says modules of one page size

are easy to read because we  donÆt have to flip the page. But that has nothing to do with the number of

faults generated while developing a system.What are the size factors that might affect fault rate. Clearly,

there are several, e.g., the natural size of an algorithm, the ability of the programmer, the language in

which the algorithm is being expressed, etc. You will note that very few modules were over  400 line of

code. It might be that a professional programmer naturally limits the size of the module when the internal

complexity dominates the interface complexity. Thus, there should be a caution on setting size limits on

modules.

You will note that one of the potential explanations was not that the complexity of the larger modules

was lower than that of the smaller modules. This is because, based upon the data from Figures 5.24 and

5.25,  the average cyclomatic complexity grew faster than size.

     Module  size                  Average Cyclomatic Complexity

             50                                                                6.0

           100                                                              17.9

           150                                                              28.1

           200                                                              52.7

        >200                                                              60 .0

Figure 5.24  Average cyclomatic complexity for all Modules

Modules Size     Average Cyclomatic     Faults /1000

                                Complexity           Executable Lines

          50                                   6.2                                      65.0

         100                               19.6                                      33.3
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         150                               27.5                                      24.6

         200                               56.7                                      13.4

       >200                              77.5                                         9.7

Figure 5.25  Size, Average cyclomatic complexity, and fault rate

for faulty modules

To summarize the results from this study it is clear that defect analysis provides useful information to the

developer and the organization. From this study we saw  that a new application with changing

requirements change the standard defect profiles for the environment. Insights were provided into the

different faults committed in new and modified modules.

Modules size is really an open question with respect to errors. Here we saw that the larger the module

(within limits) the less fault prone the module. As a consultant to several companies, when such data has

been available, I have asked the companies to perform the same analysis on their data. I have always

found the results to be the same, i.e. fault rate goes down with size, but very few of the modules are

unusually large. It is clear that we are still not ready to put artificial limits on module size without more

analysis and understanding of the effect. However, it should be noted that this is only one consequence

of module size. There may be other reasons for limiting the size of modules, e.g., ease of modification,

readability ,etc. We clearly do not know what the effect of module size has on any of these parameters.

This study points out that we need to better understand the product, process, environment and the

interaction of the three in order to establish guidance for developers and managers. More studies must

be made, more data must be collected.

Basili/Weiss A7 Requirements Document Study

This next study [Basili/Weiss 1981] examines the effect of a methodology on the defects associated with

the development of a requirements document.

GQM Goal:

Analyze the requirements document in order to evaluate the affect of the methodology used to

develop it with respect to the correctness and ease of modification from the point of view of the

requirements writers  and the experience factory.

Environment: The document was developed at the Naval Research Laboratory. The project is an  on-

board flight program for the A-7 aircraft, a real-time, interactive system for the TC-2 computer (16K

16 bit words).

The data was collected after document was baselined. The experimental design is a single project/case

study. This does not represent a complete analysis of the data but only the results of the  first 15  months
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after the first change was made to the document, after it was baselined. Thus this data should be viewed

as indicative rather than complete.

Process Questions:

Process conformance:

What is the requirements development methodology?

The methodology used formal specifications in the form of a state machine model.

How well is it being applied?

 The developers were experimenting with the methodology.

Domain conformance:

How well do the developers understand the application?

The developers  had minimal expertise in the application domain.

How well did the developers understand the user needs?

The system was a redevelopment of an existing system and so had available the operational

version of the previous system and had available the maintainers of the current version for questions.

Product Questions

Product dimensions:

What is the size of the requirements document?

It consisted of 462 pages.

Cost:

What is the staff effort expended in producing the document?

It took 17 staff months.

What is the staff effort expended in making the changes?

It was 11 staff weeks.

What is the total staff effort expended in development during the time the data was collected?

It was 122 staff weeks.

What is the calendar time for development during the time the data was collected?

It was 15 months.



5.20

Changes/defects:

How many changes are there to the document?

There were 88 changes in all.

How many of the changes are faults?

There were 79 faults, 18 of which were clerical.

What is the distribution of nonclerical faults in the requirements document by document fault type (i.e.,

ambiguity, omission, inconsistency, incorrect fact, wrong section)?

See Figure 5.26.

Document Fault Type % of Nonclerical Faults

Ambiguity  5%

Omission 31%

Inconsistency 13%

Incorrect Fact 49%

Wrong Section  2%

Figure 5.26 Nonclerical Document Faults by Type

This figure shows that most of the faults are incorrect facts. 80% of the faults (omission and incorrect

fact) could be detected by comparing the document with other sources.  Relatively few faults (18%) are

detectable by self-consistency checks (inconsistency) or by trying to find alternate meanings (ambiguity).

Context:

How is the document being used?

The document was used as a design reference by the designers and to a small degree by the

maintainers of the original system.

How was the need for change discovered?

The need for change was discovered based upon a variety of uses of the document, including

various reviews. See Figure 5.27 for the breakdown. The biggest use even at this part of time seems to

be as a design reference. This implies that a consistent, complete, correct and  unambiguous document

is important and work maintaining.

Use of Document % of Change

Review by Authors 23%

Review by Non-authors 10%

As Maintenance Reference  2%

As Design Reference 45%

As Coding Reference  1%
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Other 19%

Figure 5.27 Discovery of Need for Change

Quality perspective:  Ease of change

One of the goals set by the original requirements writers was that the  document be easy to change. The

model proposed for ease of change implies that the changes are inexpensive to make and contained in

one section of the document.

What is the distribution of the types of changes?

Types of Changes % of Changes

Original Error Detection 85%

Complete or Correct a 

      Previous Change  6%

Reorganize  2%

Other  7%

Figure 5.28 Types of Changes

What is the distribution of changes by staff time to make the changes?

Effort     Range % of Changes

Trivial <= 1 hour 68%

Easy 1 hour to 1 day 26%

Moderate 1 day to 1 week  5%

Hard 1 week to 1 month  0%

Formidable > 1 month  1%

Figure 5.29 Effort to Change

It can be seen that most of the effort to make changes and correct faults was in the trivial category.

However, one formidable fault had been detected. This fault took six staff-weeks of effort to correct,

far more than any other change. The total effort to make all changes was 442 staff-hours or about 11

staff-weeks. Note that without the formidable fault, the effort would be about 202 staff-hours or about

5 staff-weeks. The average effort to make a change was 5 staff-hours and the average to correct a fault

of any type was slightly higher, 5.4 staff-hours. Without the formidable fault, these figures are sharply

reduced, becoming 2.3 and 2.4 staff-hours respectively. The modes of the effort distribution for changes

and faults are both .5 staff-hours.
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What percent of the changes were confined to one section of the document?

See Figure 5.30

Sections of the Document % of Changes

One  Section 85%

More than one Section 15%

Figure 5.30 Confinement of Changes

Most of the changes (85%) were confined to one section of the document. It should be noted that the

formidable fault was confined to a single section. Analysis of the effort for single section changes

compared to  multi-section changes shows that on the average the latter required about 27% more

effort than the former , 6.1 vs. 4.8 staff hours. Without the formidable fault, about 310% more effort

was required for multi-section changes over single section changes (6.1 vs. 1.7 staff- hours.

Without a basis for comparison, it is difficult to conclude with a high degree of confidence that he

requirements  document was easy to change. However, based upon figures 5.29 and  5.30, one might

conclude that there were indications that the  document was well structured and the effort to change,

except for the formidable fault, was minimal and thus the document was easy to change.

Quality Perspective:  The document is worth maintaining

The model to determine that the document is worth maintaining includes the cost of maintenance and the

need for maintaining the document. Questions include:

What is the cost of maintaining the document?

Is the document used effectively?

As was discussed above, the cost of change was small, in fact most of the effort associated with

changes needed to be expended whether the document was changed or not, since much of the effort

went into understanding the changes that needed to be made. There were indications that the document

was heavily used as a design reference. In fact, use of the document in this way uncovered 49% of the

faults in the document. Thus one could conclude that the document was worth maintaining, a fact that

many organizations do not set as a goal.

Based upon this study, the authors concluded that the data collection methodology, which was one  of

the first applications of the Goal/Question/Metric paradigm was successful on organizing the data and

providing partial data back to the developer that was useful feedback to them. However, they noted

that data analysis always seems to generate new questions of interest.

In their analysis of the A-7 requirements document, they concluded that: the document is relatively more

consistent and precise than complete and correct,  the document is well-structured, i.e., most changes
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are confined to single sections, the document is easily maintained, i.e. there  appears to be a small effort

to make changes, and the document is worth maintaining, i.e. it was heavily used as a design reference.

EVALUATION OF FUNCTIONAL ACCEPTANCE TEST PLAN

Goal:

Purpose:  Evaluate the acceptance test plan in order to improve it for future releases

Perspective: Examine the ability of the acceptance test suite to cover the operational use

of the system from the point of view of the test developer

Environment:  NASA SEL

   Subset of a large satellite system

Experimental design: Single project/case study

Basili/Ramsey

Process Questions
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Process conformance:

What is the test methodology?

(standard methodology used in the SEL)

How well is it being applied?

(testers have used the methodology before)

Domain conformance:

How well do the testers understand the application?

(reasonably well)

Product Questions

Product dimensions:

What is the size of the system?

(68 Fortran subroutines, 10,000 lines of code

 4,300 executable statements)

What is the size of the test suite?

(10 multi-part acceptance tests,

 not a rigorous sampling of input domain but not trivial)

What are the number of operational uses?  (60 uses)

Changes/defects:

How many faults were found during acceptance test?

How many faults were found during operational use?  (8)

Context:

How was the system being used during operation?

(normal use)

Product Questions

Quality perspective:  Compare the structural coverage of the acceptance tests and

operational use of the system.

What is the procedure coverage for the acceptance test suite by test and in total?

What is the statement coverage for the acceptance test suite by test and in total?
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What is the % of unique code exercised by each test?

What is the procedure coverage for the operational use of the system?

What is the statement coverage for the operational use of the system?

What is the overlap of the acceptance test and operational use coverage?

Is there anything different about the statements executed in operational test but not covered

during acceptance test?

Product Questions

Feedback:

Is there any indication, based upon the coverage representation, to indicate whether

reliability models can be applied during acceptance test to predict operational reliability?

STRUCTURAL COVERAGE OF ACCEPTANCE TEST

             44% of executable statements were not exercised in

             acceptance test.  They may have been executed in

system unit testing.

STRUCTURAL COVERAGE OF OPERATIONAL USE
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                   ______________________________________________

                                                           Structural Coverage of

                                                     60 Operational Usage Cases

______________________________________________

                                         Procedures                         Executed

                                        Executed (%)                   Statements (%)

______________________________________________

Cumulative                           80.0                                    64.9

 Intersection                          27.9                                   10.3

______________________________________________

10% of the code was executed by all of the operational cases

ARE THE ACCEPTANCE TESTS REPRESENTATIVE

OF OPERATIONAL USAGE?

Must be true if acceptance test failures are used to predict operational failures

Coverage:

Acceptance test

            ____________________________
           |                .3%                                             |
           |      |                                                       |        |

  | | | |
  |      |                      55.7% | |
  | | | |

           |__ |________________________ | |
                  |                                     8.4% |
                  |____________________________ |

                                               Operational test

Representation:

The mix of statements in the 8.4% and 55.7% differ

Twice as likely to execute a call or if in the 8.4%
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Otherwise canÆt distinguish by structural coverage

numbers

However, no faults were revealed in the 8.4%

OBSERVATIONS

Functional test plan reasonably effective, but could be refined for future releases.

About 56% of code exercised by acceptance tests; 65% by operational use.

Acceptance test reasonably representative of operational tests, no faults found in

unexercised code.

If acceptance tests randomized, reliability models may be used to predict operational

reliability with moderate chance of success.


