
“Software Design Document – eCommerce Site” Friday, March 23, 2007

eCommerce Site
and

Business Management Portal

Software Design Document

*** DRAFT ***

Brian C. Green

Object Oriented Programming Analysis – winter 2007 Page 1 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

Object Oriented Programming Analysis · Final Project

Drexel University, Goodwin College of Professional Studies, winter 2007 Term. Permission is granted to

copy, distribute but not modify this document, under terms of academic use.

Document created in:

Philadelphia PA, USA.

This document was prepared using OpenOffice.org 2.2 from Sun Microsystems on a Dell Latitude D400

from Dell Computers Inc. The illustrations where made with Visio 2003 from Microsoft Corporation. The

UML illustrations where made using Rational Rose Enterprise Edition, v7.1.9642.27 from IBM

Corporation.

Object Oriented Programming Analysis – winter 2007 Page 2 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

THIS PAGE INTENTIONALLY

LEFT BLANK

Object Oriented Programming Analysis – winter 2007 Page 3 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.1 Introduction

1.1.1 System Overview

1.1.2 Design Map

1.1.3 Supporting Material

1.2 Design Considerations

1.2.1 Assumptions

1.2.2 Constraints

1.2.3 System Environment

1.2.4 Design Methodology

1.2.5 Risks and Volatile Areas

1.3 Architecture

1.4 High Level Design

1.4.1 Use Case

1.4.2 Database

1.4.3 Web Server

1.5 Low Level Design

1.5.1 Sequence

1.5.2 Function List

1.6 User Interface Design

1.6.1 Application

1.6.2 Browse

1.6.3 Management

Object Oriented Programming Analysis – winter 2007 Page 4 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.1 INTRODUCTION

1.1.1 System Overview

A jewelry retail and manufacturing operation has a need for an application to manage

their business. This application should be web-based, and able to accommodate various

business functions to handle day-to-day operation. Among the requirements are:

1. Web Based Application

2. Database driven (SQL)

3. Secure

4. Facilitate Retail and Wholesale Operations:

a. Customer Sales

b. Wholesale Sales

c. Process customer payments

d. Accounts Receivable

e. Account Processing

2. Facilitate Back Office Operations:

a. Supply Inventory

b. Product Inventory

c. Shipping

d. Receiving

e. Accounts Payable

f. Scheduling

1.1.2 Design Map

Software Methodology

The overall project requirements will be clearly defined in the outset of the project, with

dated Gantt chart and clear project responsibilities. Since the customer has no need to

review programming technique or progress, a design methodology of the type

“Waterfall” will be used. The waterfall methodology allows the project to be developed

and managed when segmented into a hierarchy of phases, activities, tasks and steps. This

model lends itself well to the Gantt chart, which will help monitor the development

process, and increase the likelihood of an on time delivery of the source code.

The development process will be broken into 5 Phases:

Design à Code à Test à Bug Fixes à Documentation

Design Phase

Object Oriented Programming Analysis – winter 2007 Page 5 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

The design phase consists of producing this document, which includes the

software design requirements. These requirements will be reviewed by the

primary contact for the final deliverable, and once approved, will continue to the

“code” phase.

Code

The code phase involves application development, based on the design

specifications contained in this document. This phase is further subdivided into

three distinct portions: API Interface, Primary Interface, and Database Design.

Test

The testing phase will document all user processes, and verify their functionality.

The customer will be involved in this phase to ensure the system is functioning as

expected. Additionally, “Bugzilla” will be utilize to track and close any

encountered issues.

Bug Fixes

During the testing phase, the bug fix phase will run concurrently, as development

repairs any bugs, and testing verifies bug fixes.

Documentation

Finally, in the documentation phase, the final documentation deliverable is

prepared and presented to the customer. Documentation will include source, and

user documentation, as well as known issues and limitations.

1.1.3 Supporting Material

FEDEX and UPS Integration

The Web API for FedEx and UPS should be utilized for shipping / receiving functions, as

well as automatic payment systems. These documents can be found at:

http://www.fedex.com/us/solutions/shipapi/sample_code.html?link=4

http://www.programmableweb.com/api/UPS

Payment systems will be handled using Google’s Checkout service to process accounts

receivable, payable, and retail checkout. The API can be found here:

https://www.google.com/accounts/ServiceLogin?service=sierra&continue=https%3A%2

F%2Fcheckout.google.com%2F%3Fgsessionid%3DnVbqyZXZioQ%26upgrade%3Dtrue

&hl=en_US&nui=1<mpl=default

Object Oriented Programming Analysis – winter 2007 Page 6 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

THIS PAGE INTENTIONALLY

LEFT BLANK

Object Oriented Programming Analysis – winter 2007 Page 7 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.2 DESIGN CONSIDERATIONS

1.2.1 Assumptions

Database Architecture

The Database architecture should be SQL based. The customer currently utilizes

Microsoft technologies, and requests to maintain the status quo. Thus, Microsoft SQL

Server 2005 Enterprise is the preferred database engine.

The hardware required for the database will be determined in testing, based on the

performance metrics measured. Hardware requirements will not be considered in the

database structure and performance design.

Web Technology

As afore mentioned, Microsoft is the current enterprise technology for the business, and

will remain so indefinitely. ASP (Active Server Pages) should be used as the Web

Scripting technology, although ASP.NET may also be used if more rapid development is

required.

To maintain forward compatibility, VBScript is the scripting language to be used for

server side scripting.

Browser Support

The web user interface will support Firefox 1.x and later, and Internet Explorer 6.x and

later. Both browsers must be fully tested, and implemented.

API’s

The final system will interface with UPS and FedEX for all shipping functions, and

Google Checkout for all payment functions.

1.2.2 Constraints

Software

Since VBScript is being utilized, development is restricted to only those functions within

the VBScript library. The customer has not authorized the purchase of any libraries,

other then those included with VBScript. However, ASP.NET may be utilized if the

development group finds it will be beneficial to the customer.

Object Oriented Programming Analysis – winter 2007 Page 8 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

The SQL Server 2005 license will be a 5 concurrent user license. Therefore, the

application should be designed to consider the restriction of SQL licensing. Performance

monitoring and testing will need to account for, and properly test, in this environment.

Likewise, an existing Microsoft Server 2003 server will be used to house the Web, and

Database infrastructure. It is important that the database and web architecture have the

ability to be run from the same platform and device.

Hardware

Only one server will be utilized in the final build. Testing and performance monitoring

should be baselined on this configuration. The server will have up to two processors, and

2 GB of RAM.

1.2.3 System Environment

Intel based Microsoft Server 2003 system will be utilized for the final deliverable to the

customer. Relevant specifications are:

(2) Intel XEON PIV 3.2GHz Dual Core

(1) 2GB DDR RAM Memory

SATA Raid 1 HD (120GB)

1.2.4 Design Methodology

The waterfall design methodology was chosen for this project, as it seems most

appropriate to the design process. A brief description of the Waterfall methodology:

“All projects can be managed better when segmented into a hierarchy of chunks such as

phases, stages, activities, tasks and steps. In system development projects, the simplest

rendition of this is called the "waterfall" methodology, as shown in the following figure:

Object Oriented Programming Analysis – winter 2007 Page 9 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

In looking at this graphic, which was for major defense systems developments, please

note this presumes that the system requirement have already been defined and scrubbed

exhaustively, which is probably the most important step towards project success.

Nevertheless, the graphic illustrates a few critical principles of a good methodology:

• Work is done in stages,

• Content reviews are conducted between stages, and

• Reviews represent quality gates and decision points for continuing.

The waterfall provides an orderly sequence of development steps and helps ensure the

adequacy of documentation and design reviews to ensure the quality, reliability, and

maintainability of the developed software. While almost everyone these days disparages

the "waterfall methodology" as being needlessly slow and cumbersome, it does illustrate

a few sound principles of life cycle development.”

This design methodology will be utilized for a phased approach to design. No phase can

begin, until its master has been completed, with the exception of Testing and Bug Fix,

which can run concurrently.

1.2.5 Risks

Google API Risk

The Google API, which was chosen for the checkout system, was chosen due to its low

initial cost and current usage trends. However, this interface is relatively new, and in Beta

testing. This indicates it is possible for the API interface to change as well, which may

require follow-up, or redesign of the interface prior to the project completion.

Object Oriented Programming Analysis – winter 2007 Page 10 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.3 ARCHITECTURE

The software will consist of a database, an Operating System, a web server, VB Code,

and several APIs to third parties:

Operating System: MS Windows 2003

Database: MS SQL Server 2005 Enterprise

Web Server: MS Internet Information Services 6.0

Code: ASP VBScript

API: Google Checkout

API: FedEX

API: UPS

Figure 1.3.0.1

The high-level interaction of the components can be seen in figure 1.3.0.1. Using the

Model-View-Controller method, users interact with a web interface, driven by the code

on the server, which stores the data in the Microsoft SQL Server Database. This

architecture allows for independent development of each component.

Object Oriented Programming Analysis – winter 2007 Page 11 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.4 HIGH LEVEL DESIGN

1.4.1 Use Case

There are three possible user roles:

Guest

This is a visitor without an account. This visitor can browse the “store”, and

request information. Additionally, this user can create an account. However,

until the account is created, this user can not purchase products, or make

payments.

Registered User

This user inherits all the functionality of a guest, but can also order goods, check

order status, make payments, and change their preferences.

Administrator

Administration users inherit all functions from the registered user, but can also

change application settings, manage the store front, order supplies, perform

inventory functions, and accounting.

The use case is as follows:

Browse Catalog

Request Information

Accounts Payable

Ship OrderOrderSupplies

Inventory

Guest

View Order

Manage Account

Pay Bill

Accounts Recievable

Admin

Place Order

Customer

Object Oriented Programming Analysis – winter 2007 Page 12 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.4.2 Database Design

Database Class Diagram:

Account

Bank

AccountNumber

ID

RoutingNumber

ControlNumber

OrderItems

ID

OrderID

ProductID

Price

Tax

ShippingCompany

ID

Name

Terms

AccountNumber

name

ShippingProfile

ID

ShippingCompanyID

Description

ServiceTypeID

Name

Address

CustomerID

n

1

n

1

Suppliers

ID

Name

Address

City

State

Zip

ShippingID

terms

Payable

ID

SupplierID

SupplyOrderID

RecurringFrequency

name

AccountID

CheckNumber

TrackingNumber

PaypalID

PaypalTracking

n

1

n

1

0..n

1

0..n

1

SupplyOrder

ID

Tracking

Status

Cost

Description

Number

MaterialID

ProductID

n

1

n

1

1

1

1

1

MaterialsCatagory

ID

Name

Description

MaterialInventory

ID

MaterialCatID

MaterialID

Units

n

n

n

n

Materials

ID

CatagoryID

Description

UnitPrice

UnitType

SupplierID

1n 1n

Permission

ID

Attribute

Description

Customers

ID

LastName

FirstName

Middle

UserID

Password

ReminderQuestion

ReminderAnswer

Address1

City1

State1

Zip1

PhoneHome

PhoneCell

PhoneWork

Email1

Email2

Email3

n 1n 1

Receivable

ID

CustID

OrderID

name2

CheckNumber

PayPalID

AdminID

1
1
1

1

Administrators

ID

Name

Password

Description

Email

Permission

1

n

1

n

1

1

1

1

MaterialsCatagory

ID

Name

Description

Orders

ID

CustomerID

ShippingID

PaymentID

ProductID

OrderDate

TrackingNumber

Status

1

1

1

1

1

n

1

n

1

1

1

1

RequiredMaterial

ID

ProductID

MaterialID

Count

n

1

n

1

ProductCatagory

ID

Description

Name

Products

ID

Description

Name

Cost

Retail

Weight

SizeInBoxWIDTH

SizeInBoxHEIGHT

SizeInBoxLENGTH

Supplier

Count

PictureURL

n

n

n

n

1..nn 1..nn 1..n 11..n 1

ProductKeywords

ID

Keyword

ProductsID

1..n

n

1..n

n

Object Oriented Programming Analysis – winter 2007 Page 13 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.4.3 Web Server Design

Web Class Diagram:

Customer

UserID

Count

Session

changePassword()

search()

login()

changePassword()

displayProductDetails()

addToCart()

accountHistory()

makePayment()

checkOut()

shippingProfile()

paymentProfile()

order()

shipping()

createAccount()

requestInformation()

Admin

LoginID

Session

opname()

inventory()

report()

productManagement()

storeFrontContentManagement()

supplyOrder()

accountsPayable()

accountsRecievable()

manageCustomer()

manageShipping()

manageAccounts()

Authenticate

UserID

Password

Session

authenticate()

getSessionID()

Sentinel

name

shippingStatus()

processPayPal()

Database

dbName

dbUser

dbPass

dbType

connect()

disconnect()

query()

NOTE: In the Web Class Diagram, the classes represent the control elements. These

classes are each created from a View class (not shown).

Object Oriented Programming Analysis – winter 2007 Page 14 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.5 LOW LEVEL DESIGN

1.5.1 Sequence

Sequence Diagram One – Browse Catalog

 : Customer
 : Customer : Database

selectProduct

queryProductDetails

returnProductDetails

returnProductDetails

Sequence Diagram Two – Registered User Login

 : Customer
 : Customer : Database : Authenticate

login(user, password)

authenticate(user, password)
connect(user, password)

succeess/invalid login
succeess/invalid login

If login is = sucess then

display user home

page.

If login = invalid login

then display login error

page

Object Oriented Programming Analysis – winter 2007 Page 15 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

Sequence Diagram Three – Place an Order

 : Customer
 : Customer : Admin : Database : Sentinel

order()
checkInventory(InventoryID)

query(inventoryID)

inStock/outOfStock
InStock/OutOfStock

viewOrder()

View order if selected item is

InStock. Proceed to place order

If selected item is outOfStock

then display out of stock

information

makePayment()
processPayPal()

query(storeOrderInformation)

sucess/error

If order is sucess then display

success

If there is an error in the order then

display the error

Object Oriented Programming Analysis – winter 2007 Page 16 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

Sequence Diagram Four – Manage User Account

 : Customer
 : Customers : Database : Authenticate

If sucess=1 then display

"Password Sucessfully Changed"

If sucess <> 1 then display "Error

in setting new password"

authenticate(user, password)

loggedIn=1

changePassword(user, oldPassword, newPassword)

query(sql)

success
success

Object Oriented Programming Analysis – winter 2007 Page 17 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.5.2 Function List

Function Definition Conventions:

functionName(argument, [optional])

Brief description of the function

à Input Arguments

Brief description of each argument

ß Return

Brief description of return variables

Database Class Functions

connect(server, user, pass)

Connects to the specified database.

à Server, User, Pass

Specify the Server name (i.e., (local)), a valid database

user, and the associated password.

ß ID

If the connection is successful, the connection ID will be

returned. Failed connections return false.

disconnect(ID)

Closes the database connection to the specified connection ID.

à ID

Specifiy the connection ID.

ß 1/0

Will return true if the connection is closed, else returns

false.

query(ID, query)

Executes the requested query on the specified connection ID.

à ID, query

Specify the connection ID. Provide a valid SQL Statement

ß b, ra, result

“b” will return true if no errors encountered from SQL,

false if an error was encountered.

“ra” is the number of rows effected by the SQL statement,

if returned by DBMS

“result” is the record set, as an associative and numerical

array. Associations are the column names.

Object Oriented Programming Analysis – winter 2007 Page 18 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

Sentinel Class Functions

shippingStatus(provider, tracking, [account], [receiver])

Handles all shipping functions, and shipping API.

à provider, tracking, account, receiver, action

• Provider must be equal to FedEX or UPS.

• Tracking – tracking number. If 0, then shipping

function is called, using the account, and receiver

variables.

• Account – provide only if tracking is set to

“0”Receiver – an array – Lastname, Firstname,

Address, City, State, Zip, Country, Apartment,

Special. Must be a numerical array.

ß status

Returns a tracking number if a shipment is successfully

placed. If tracking, the status returns true if delivered, and

0 if NOT delivered.

processPayPal(ID, amount, payment)

Handles Google Checkout functions.

à ID, user, pass, amount, payment

• ID - Provide payment ID.

• Amount – Payment amount. Positive if a charge,

negative for a refund or void.

• Payment – Array containing CardID, Expiry, Type,

NameOnCard, and CardCode

ß ID

Returns the transaction ID. Returns false if the payment

fails.

Authenticate Class

authenticate(ID, pass)

Authenticates a user using the ID and password.

à ID, pass

• ID – User login ID.

• Pass – Password

ß ID

Returns false if login fails, else the session ID.

Object Oriented Programming Analysis – winter 2007 Page 19 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

session(ID)

Check a session.

à ID

ID – the session ID.

ß ID

Returns status of session, true or false.

Admin Class Functions

inventory(ID, [count])

Handles inventory functions.

à action, ID, count

• ID – The product ID.

• Count – If a count is entered, the product inventory

count will be changed. Use +n to increment, and –n

to decrement the count. An integer with no operator

will change the inventory count to the supplied

integer.

ß count

The items inventory count after function is run.

report(type, array)

Provides report.

à type, array

• Type – specify the type of report.

• Array – provide the report variables as an

associative array.

• ***Report function is documented in accounting

design documentation.

ß report

The report text is returned, as an array. Position zero is the

number of columns per row.

productManagement(ID, [detail])

Change product description, and image.

à ID, Detail

• ID – The product ID.

• Detail – Array containing: Name, Description,

price, packageingDimensions, and ImageURL

ß detail

Product details, as array containing: Name, Description,

price, packageingDimensions, and ImageURL.

Object Oriented Programming Analysis – winter 2007 Page 20 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

storeFrontContentManagement(ID, status)

Adds and removes products from the store.

à ID, status

• ID – The product ID.

• Status – 1 = show product, 0 = hide product

ß 1/0

Returns false if error, else returns true.

supplyOrder(ID, [count])

Changes status of non-revenue items.

à ID, count

• ID – The material ID.

• Count – If a count is entered, the inventory count

will be changed. Use +n to increment, and –n to

decrement the count. An integer with no operator

will change the inventory count to the supplied

integer.

ß count

Returns the count on the material ID

accountsPayable(ID, number, amount)

Updates supplier account details with payments owed and sent.

à ID, number, amount

• ID – Account ID.

• number - check or invoice number Prefix checks

with “-“ and invoices with “+”.

• Amount – invoice or check amount

ß id

Returns the accounting package control number. (ID field

in database).

accountsRecievable(ID, number, amount)

Updates charge accounts with payments received.

à ID, number, amount

• ID – Account ID.

• number - check or invoice number Prefix checks

with “-“ and invoices with “+”.

• Amount – invoice or check amount

ß id

Returns the accounting package control number. (ID field

in database).

Object Oriented Programming Analysis – winter 2007 Page 21 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

manageCustomer(ID, [details])

Updates accounts.

à ID, details

• ID – Account ID.

• Details – “0” to convert to non-charge account, “1”

to “99” to convert to a charge account, where the

integer is the number of days the net is due.

ß details

Returns the terms, 0 – 99.

manageShipping(carrier, [details])

Updates shipping company status, and account details to use when

shipping.

à carrier, details

• Carrier – must be “FedEx” or “UPS”.

• Details – array, containing account number, and

metric

ß details

Returns the account number and metric (0 – 10, shipping

preference, where 0 is highest preference).

manageAccounts(ID, [details])

Updates supplier account information.

à ID, details

• ID – Account ID.

• details – Array, containing the name, address, city,

state, zip, phone, fax, email, terms(0 – 99),

contactname

ß details

Returns the account details

Customer Class Functions

changePassword(ID, [pass])

Changes an account password.

à ID, pass

• ID – Account ID.

• Pass - Password

ß pass

Password hash (MD5).

Object Oriented Programming Analysis – winter 2007 Page 22 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

search(terms)

Process search box entries.

à terms

Terms – Array, containing each word for the search

ß results

Returns item ID’s matching the search result, in order of

relevance, as an array.

login(user, [pass])

Login.

à ID, pass

• ID – Account ID.

• Pass - Password

ß id

Session ID.

displayProductDetails(ID)

Gets the products details from the database.

à ID

ID – Product ID.

ß details

Array with Description, Name, Price, ImageURL

addToCart(ID, [product], [count])

Product is added or removed from the shopping cart.

à ID, product, count

• ID – session ID.

• Product – product ID number

• Count – number of items. Use “+” to increment,

and “-“ to decrement.

ß count

If only ID supplied, an array containing the product ID’s in

the shopping cart is returned. If product ID is supplied,

count is returned.

accountHistory(ID)

Gets past purchase IDs.

à ID

ID – Account ID.

ß details

An array containing invoice ID’s of past account activity.

Object Oriented Programming Analysis – winter 2007 Page 23 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

makePayment(ID, cardinfo, amount)

Allows charge account customers to submit payments via credit card.

à ID, cardinfo, amount

• ID – Account ID.

• Cardinfo – Array containing credit card data

• Amount – amount of payment

ß ID

Payment ID if successful, else returns FALSE.

checkOut(ID, [payment], [cardinfo])

Allows registered users to pay for items, and queue for shipping.

à ID

ID – Session ID.

ß details, amount, ID

• Details – Array containing ProductID, Price, Count.

• Amount – total amount of purchase

• ID – If payment information supplied, confirmation

code returned.

shippingProfile(ID, [terms])

Allows charge account customers to change their shipping preference.

à ID, cardinfo, amount

• ID – Account ID.

• Terms – Array containing Carrier, ServiceLevel

ß terms

Returns the shipping terms as an array containing the

carrier, and terms (1 – overnite, 2 – 2 next day air, 3 –

ground)

paymentProfile(ID, [cardinfo])

Stores and retrieves payment profile.

à ID, cardinfo

• ID – Account ID.

• Cardinfo – Array containing credit card data

ß cardinfo

Returns the card information as an array.

order(orderID)

Gets order status, and tracking number.

à orderID

orderID – Order ID number

ß tracking

Tracking number.

Object Oriented Programming Analysis – winter 2007 Page 24 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

shipping(ID)

Updates shipping.

à ID

ID – Account ID.

ß shipping

Orders pending shipping, as array.

createAccount(details)

Creates a new acount.

à details

Details – an array containing lastname, firstname, userid,

password, email.

ß error

0 = success. 1 = failed, 2 = userID already in use.

requestInformation(name, email)

Sends an email with more information, and sends email to site admin.

à name, email

• Name – users name

• Email – email address

ß error

0 = success, 1 = invalid email, 2 = failed.

Object Oriented Programming Analysis – winter 2007 Page 25 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

1.6 USER INTERFACE DESIGN

1.6.1 Application

The application design concept exists of a basic e-Commerce store front, which allows

visitors to browse and create accounts, as well as place orders. Below is a basic concept

of the store front, as it would appear to a user on first arrival:

This is a concept only, and branding will be necessary. The customer has provided a logo

for branding:

1.6.2 Browse

Browsing interface concept:

Object Oriented Programming Analysis – winter 2007 Page 26 of 27

“Software Design Document – eCommerce Site” Friday, March 23, 2007

The Registered users will have access to all the customer class functions, via the web

interface.

1.6.3 Management Interface

The management interface requires a secure login, and only those users with

administrative attributes should have access to the admin class.

Admin Page concept:

Object Oriented Programming Analysis – winter 2007 Page 27 of 27

