
RITU DHAWAN
Evaluation of Web Personalization Software and Visualization With the Help of

Usability Study
(Under the Direction of EILEEN T. KRAEMER)

Evaluation is an important element in the creation of complex software. In this

thesis, we describe two such evaluations. In the first study, we perform usability testing

on web-based personalization software developed by John O’ Looney of the Carl Vinson

Institute of Government at the University of Georgia. Personalization of a web page

involves dynamically altering the contents of the web pages according to the preferences

of customers or clients, so that each client gets information specific to his needs. This

study assists in and suggests ways to improve the usability and learnability of this

software. The second study was a user study to determine if visualization is beneficial in

helping users to learn about and understand distributed algorithms.

INDEX WORDS: Usability, Personalization, Visualization, Algorithms,

Learnability

EVALUATION OF WEB PERSONALIZATION SOFTWARE AND VISUALIZATION

WITH THE HELP OF USABILITY STUDY

by

RITU DHAWAN

B.S., Shahu Ji Maharaj Kanpur University, India, 1995

B.Ed., Shahu Ji Maharaj Kanpur University, India, 1996

MS, The University of Georgia 1999

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTERS OF SCIENCE

ATHNES, GEORGIA

2001

 2001

Ritu Dhawan

All Rights Reserved

EVALUATION OF WEB PERSONALIZATION SOFTWARE AND VISUALIZATION

WITH THE HELP OF USABILITY STUDY

by

RITU DHAWAN

Approved:

Major Professor: Eileen Kraemer

Committee: Hamid Arabnia

 Daniel Everett

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
December 20001

This thesis is dedicated to my parents and my loving husband

iv

ACKNOWLEDGEMENTS

I wish to thank and express my sincere gratitude to my Major Advisor Dr. Eileen

Kraemer for her constant support and encouragement to make this thesis successful. I

would also like to thank my committee members Prof. Hamid Arabnia and Prof. Daniel

Everett for their time and consideration. My thanks are also due to my project mates

Rong Wu and Mihail Tudoreanu.

The author would also like to thank to the Department of Computer Science and the

University of Georgia for providing the facilities to support this research. My special

thanks to Dr. John O’ Looney for letting me do the usability testing on his software.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

CHAPTER

 1 INTRODUCTION ...1

 2 BACKGROUND ..3

 Definition ...3

 Goals ..3

Types of Usability Study ...4

 Techniques ...5

 Data Collection Methods ...8

3 EVALUATION OF SOFTWARE USED TO CREATE A PERSONALIZED

WEB PAGE ...12

 Introduction..12

 Experimental Procedures ...13

 Results..19

 Discussion..26

 Conclusion ..30

4 SECOND USABILITY STUDY OF WEB PERSONALIZATION..............31

 Introduction..31

 Experimental Procedure...32

 vi

vii

 Results..33

 Discussion..36

 Conclusion ...39

 5 CAN VISUALIZATION HELP STUDENTS TO LEARN DISTRIBUTED

ALGORITHMS? ...41

 Introduction..41

 Elements...43

Summary of procedure and results ...44

6 CONCLUSIONS AND FUTURE DIRECTIONS...46

 Web personalization software..46

 Visualization ..47

REFERENCES ..50

APPENDICES

 A HANDOUT..54

 B RAW DATA ..68

 C ALGORITHMS ...71

CHAPTER 1

INTRODUCTION

Usability is an important feature of any software designed for direct use by

humans. Research in evaluation techniques and methodologies has focused on helping

designers to evaluate prototypes and software in order to identify problems and to

promote ease-of-use, learnability and productivity. In this, thesis, we apply these

techniques and methodologies to two types of software: a web personalization package,

and program visualization software.

The web personalization package, developed by John O’ Looney of the Carl

Vinson Institute of Government at the University of Georgia, was designed for public

managers to create personalized web pages for their clients. This software will help

managers to generate web forms, which can be filled in by their clients to get information

specific to them. Due to the emergence of low cost computer-mediated communications

via the Internet and increases in online privacy protection, this technology is believed

likely to be adopted by the public sector organizations in order to increase the efficiency

and effectiveness of their work. This will also help the clients get important information

from any place without personally visiting or talking to the manager. This technique is a

low-overhead approach to reach millions of customers without spending excessive time

and money (O’Leary, 1999). In spite of having these many capabilities, some barriers to

the use of this software still exist. Managers in the public sector are less likely to have

received training and education in the use of this technology and, as this software

 1

2

involves extensive use of computers, it is very important that it is easy for this target

group to use. Another restriction is that investment in technology training is relatively

low in the public sectors and thus it useful to have the software be in a form that is ready

to use “out of the box”, without any professional training. Therefore, it is important to

perform a usability study to determine if the product is in a form that promotes large scale

acceptance of the software. The main goal of this usability study is to make this

personalization software easy to use and learn.

Visualization software programs use graphics and animation techniques to show

program code, data, and control flow in a program (Stasko, John., 1998). In the program

visualization software the abstractions of the algorithms are graphically represented with

the goal of helping users in the process of learning (Byrne, Michael. D., 1999). This

technique is developed to help students have a better understanding of the working of

distributed algorithms. The program visualization software in this study is designed to

help the user to learn two distributed algorithms, termination detection and routing, with

the help of visualization. The main goal of this usability study was to evaluate the use of

visualization in understanding these distributed algorithms.

This thesis is organized into six chapters. In chapter 2 we provide the background

on usability studies, including the goals, stages and methods of conducting these studies.

Chapters 3 and 4 describe two usability studies conducted on the web personalization

software. Chapter 5 describes the usability study on visualization in learning distributed

algorithms. Chapter 6 concludes, and presents findings and a discussion of future work.

An appendix is also included, containing the whole package that was given to the

subjects, the raw data, and comments collected from users for the studies conducted.

CHAPTER 2

BACKGROUND

Definition: The field of Human Computer Interaction (HCI) is mainly concerned with

making systems easy to learn and use. Usability is the key concept in this field. Usability

studies are usually performed by the system designers /developers or a usability specialist

to determine if the existing system or prototype meets the user’s expectations and needs

and to inform the continued design and implementation of the system.

The introduction of software into the real world without any usability testing can

adversely affect the acceptance of the software by the intended user community and thus

affect the success of the project. If software is difficult to use or hard to learn, then the

user may give up and stop using it. A thorough usability study on the software before

introducing it into the real world can prevent this.

Goals: The most important step in a usability study is to define the goals of the study

(Preece 1994). For example: Does the design of the system meet all the needs of the

prospective users? Can we make the design better? What are the changes we need to

make to our design before we can make it available in the real world?

Establishing these usability goals on a developing system serves two purposes. First, it

helps designers to aim for something concrete and to focus on the specific areas that

impact the user the most. The results of these studies then drive the user interface design

decisions. The second purpose of setting usability goals in advance is to serve as

acceptance criteria during usability evaluation, especially toward the end of the design

 3

4

process. Design efforts are iterated with evaluation until the results of the evaluation

indicate that the usability goals are finally met. Thus we can say that usability drives both

evaluation and the design process, (Rubin 1994).

Types of Usability Study: Two different types of usability goals exist: qualitative and

quantitative.

Qualitative usability goals are general, broadly stated goals that, while not easily

quantified, may help to guide design. Quantitative goals are objective and measurable

(Hughes 1999). They may be classified into ease-of-use goals and ease-of-learning goals.

Ease of use goals focus on the use of the product by users who have had product training

and who use it frequently enough to maintain expert performance. Ease of learning goals

focus on the use of the product by the first time user, the users who are still in the

learning process, or infrequent users. Usability testing is most effective when quantitative

data is collected, such as the time required to complete a task or a series of tasks (Randall

1998) or the scores for correct answers. In this thesis we performed experiments to

collect quantitative as well as qualitative data such as time and correctness of answers as

quantitative data, and general comments of users as qualitative data.

According to Lecerof and Paterno (1998) a broader definition of usability is to measure

how relevant the system is for the user, the efficiency of the system, the user’s attitude

towards the system and how he feels about the system. Learnability, safety and reliability

of the system are also important considerations.

The goals of the usability study change from system to system and user to user. For

example, if a program is used by a child it is very important that it is easy to use.

However, for banking systems, efficiency may be the primary consideration.

5

A number of cofactors should be considered when designing a usability study. These

factors include:

Who are the potential users of the system? Will the tool be used by some specialized

users or any user?

What are the main objectives of this usability study? Are we testing the tool for its

ease of use, its complexity to learn, etc?

At what developmental stage is the system? The goal of evaluation performed during

the early stage is to predict the usability of the product or to check the design team’s

understanding of the user’s requirement. During a later stage of development the

focus is more on identifying the usability problems and improving the user interface.

Usability studies are particularly effective in the initial stages of development (e.g.,

requirements gathering, product design), when changing a product’s user interface or

design is less expensive.

How much time, effort, and money are we willing to commit at this stage?

How accurate should the results of the product be?

Techniques: A number of techniques exist for usability evaluations, (Nielsen 1993),

(Duams and Redish, 1994). Heuristic evaluation uses a predefined list of recognized

heuristics to identify usability problems. In this method the engineers and/or end-users

independently examine the interface and judge its compliance with a predetermined set of

usability standards. After independent study a debriefing session is then held with all

evaluators, observers and representatives of the design team to brainstorm possible ideas

to address the major usability problems, as well as to discuss the positive elements of the

interface design. This method is very quick to learn and easy to use, results are available

6

quickly, and it is inexpensive to implement. Since evaluators conduct evaluation

independently, the results obtained are unbiased.

The goal of pluralistic walkthrough is to systematically review the usability of an

interface and its flow from a task-based, user-centered perspective while at the same time

considering the design constraints. In this method, end users, product developers and

human factors engineers evaluate a product from the perspective of the end-user. The

evaluators write down sequentially each action they would take when pursuing a

designated task. A group discussion then follows, with end-users presenting their

information first.

Feature inspection focuses on the feature set of a product. The inspectors are usually

given use cases (any common case where they can use different features of the tool) with

the end result to be obtained from the use of the product. Each feature is analyzed for its

availability, understandability, and other aspects of usability. For example, a common

user scenario for the use of a word processor is to produce a letter. The features that

would be used include entering text, formatting text, spell-checking, saving the text to a

file, and printing the letter.

In a formal usability inspection usability issues are reviewed within the context of

specific user profiles and defined goal-oriented scenarios by applying a task performance

model and heuristics. This involves a six-step process, namely Planning, Kick-off

meeting (team together for first time), Preparation, Review, Rework, and Follow-up.

Every member has his own responsibility. A moderator manages the process. The design

owner is responsible for representing and upgrading the product being evaluated. An

evaluator finds and reports the usability problems, and another experimenter records all

7

identified problems and decisions. This study provides unbiased findings, lists of

usability problems and implemented solutions. Such an evaluation of both cognitive and

behavioral tasks, is an efficiently managed process.

Cognitive walkthrough is used to evaluate the ease of learning to use a tool, mainly by

exploration. It involves imagining people’s thoughts and actions when they use a product

interface for the first time (Shneiderman 1998). The method uses an explicitly detailed

procedure to simulate a user’s problem-solving process at each step, checking to see if

the user’s goals and memory for actions can be assumed to lead to the next correct action.

There are three steps in the procedure (Wharton 1994):

Preparatory: to find out the type of users, tasks and action sequence for each task.

Walkthroughs: can be an individual or group process.

Analysis: where the results are analyzed.

Empirical methods involve data collection through an experimental test and the

evaluation of that data to prove or disprove a hypothesis. In this method, a hypothesis is

posed depending on a set of objective measures for the evaluation. A plan for how

measures are collected is determined and then the subjects for the test are found and the

data is collected and analyzed to determine whether the proposed hypothesis is correct or

not. This study is effective for establishing cause and effect and for addressing a specific

question or problem through focused testing.

The studies mentioned in this thesis also take a similar approach, where users are given

specific tasks and the results obtained are used to evaluate the software or the tool. Both

the studies first determined the objectives for the evaluation, the data to collect, and the

criteria to recruit users. Then, the subjects were recruited, primarily graduates and

8

undergraduates from the Computer Science department at the University of Georgia. Pilot

studies were conducted before the actual experiments. Each study went through two runs

of experiment.

Multiple methods exist for collecting data. An essential element of these methods is that

no feature of important information should be lost and that we can get the best response

possible.

Data collection methods: these include the use of instrumented software, usability

questionnaires, focus groups, field research, think aloud protocol, and log sheets. Some of

these are described below:

a) Instrumented software: In this method extra controls are added to the software so

that every mouse click and keystroke performed by the user is stored in a binary log

file. The time taken to complete each action is also recorded. In this way the analyst

can explore the user’s interactions in a number of ways such as:

Types of tasks performed by the user.

Features frequently or rarely used.

Order of performing the tasks.

Time taken by the user to carry out specific tasks.

Errors made by the users, such as selecting an incorrect menu choice followed by a

correct menu choice.

Frequency of request for online assistance.

b) Usability questionnaire: A usability questionnaire is a way of measuring the

usability of a system through answers to questions and ratings given by the users. One

can collect quantitative as well as qualitative data using this technique (Preece 1994).

9

This data helps in producing charts and graphs, which provide a visual overview of

software usability. In the web personalization study of this thesis the data collected

from the questionnaire was used to make some graphs and to calculate data such as

the estimated time it will take to develop an application of the same level of

complexity as the user developed in the experiment.

The quality of the data collected by the questionnaire depends on how much thought

goes into their design and also how sincere the user is in answering the questions.

c) Focus group: This is a small group of users who meet to discuss the usability of the

system. Usually there is a coordinator who encourages the discussion. The focus

group allows users to exchange ideas about the product in a ‘peer to peer’ situation.

Results from their discussions are usually presented as a report, which is fed back to

the company’s usability group. The informality and group setting of the focus group

allow problems and feelings to be aired in a way not possible in other more formal

usability test situations. These groups allow direct contact with the users, leading to

specific and constructive suggestions.

d) Field research: This is an attempt to put new interfaces in realistic environments for

a fixed trial period. This involves going to the client or customer sites to look at the

active software and also observe and interview the users. Field research gives a

realistic picture of problems and acceptance, as the researchers or the software

developers observe the sites after installation of the software.

e) Think aloud protocol: In this method users are required to record their moves either

in writing, on audiotape or on video. They are asked to work with the software in a

normal way and should feel free to explain out loud what they are doing and if they

10

have any suggestions, thoughts, reactions or problems that they encounter while using

the software. This verbal version of the instrumented software has many advantages,

for example:

It lets designers know any wrong move that the user conducts.

It allows you to see the point where the users hesitate, change their mind or give up,

etc.

Usability testing conducted at Lotus is an example of the think aloud protocol, in that

users are observed by watching them and hearing their comments while they perform

given tasks, Lewis (1982).

f) Log sheets: This is another inexpensive and remarkably effective method of

collecting data for a usability study. It consists of a sheet of paper with headings, such

as Time, Task, Problem and so on. The users record into these sheets whenever they

encounter any problems. These sheets are collected daily and are used to provide

feedback to the developers on any usability problems.

g) Usability Laboratories: These laboratories can vary from a highly equipped

resource, full of hardware and software, to a simple workstation in a room set aside

for testing. Usability-laboratory staff participate in design reviews, provide

information on software tools and help to develop the set of tasks for the usability

test. The detailed test plans are developed many days before the usability test, which

comprises of the list of tasks, subjective satisfaction and debriefing questions. The

number, types, and source of participants are identified and pilot studies are

conducted a week ahead of the real testing. During the usability study the participants

are told what they will be doing and how long they will be expected to stay.

11

Participants in this study should always be volunteers and should fill out a consent

form before starting the test. During the testing users are invited to think aloud about

what they are doing and after some time period they are asked to make general

comments or suggestions. Two examples of this type of laboratories are the IBM

Usability Center in the UK (Shneiderman 1998) and a usability laboratory at

Microsoft, in Redmond, Washington (Reed 1992).

h) Online or telephone consultants: Online and phone consultants can provide

effective and personal assistance to the users experiencing difficulties with the

software. These consultants are an excellent source of information in the problems

users have and can provide suggestions for improvement and extension of the system.

Example: America Online has live chat rooms for discussion of user problems.

i) Online suggestion box or trouble reporting: This type of testing involves electronic

mail services to allow users to send messages to the designers or developers. Such

online suggestion boxes encourage users to make productive comments, used towards

improvement of the system.

There are many more good evaluation techniques, which are not discussed here, such as

online bulletin boards or newsgroups, user newsletters and conferences, and competitive

usability testing.

CHAPTER 3

EVALUATION OF SOFTWARE USED TO CREATE A

PERSONALIZED WEB PAGE

Introduction: Personalization of a web page involves dynamically altering the contents

of the web pages according to the preferences of customers or clients, so that each client

gets information specific to his needs. Managers of public and private firms use software

to personalize web pages for their clients. These personalization technologies can be used

to increase the efficiency and effectiveness of a manager’s work by enhancing transaction

processing and the delivery of services (Wells et al., 2000) as well as save clients time by

providing only the information that meets their needs (Smyth and Cotter, 2000). Design

of the personalization of the web pages may depend upon the status, condition,

environment, interests, behavior, and other characteristics of the client (Mobasher et. al.,

2000).

This study involves the evaluation of software to be used by managers in the

government sector to create personalized web pages based on the needs of their clients.

Two different types of personalization applications can be developed using this software:

Occurrence Type and Priority Type. In the Occurrence type the users receive messages

based on the user’s profile (set of characteristics as determined by the way the user has

answered a set of questions). The Priority type application provides all users with the

same set of messages, but the messages are in different order depending on the user’s

profile.

 12

13

There were three main goals in this study:

1. To identify the elements of the software system that need improvement, and to

suggest to the creator ways to improve the software.

2. To identify the elements of the training material that need improvement and find

ways to improve them.

3. To evaluate the user’s ability to create personalized web pages using this software

“out of the box”. That is, to determine if, and to what extent, users are able to

learn the software on their own, without individualized instruction.

Experimental Procedure: Forty students from a Human Computer Interaction (HCI)

class offered in the spring semester of 2001 at the University of Georgia in the

department of Computer Science participated in the study. Appropriate approval was

obtained from the human subjects office at the University of Georgia. The majority of the

students were majoring in Computer Science. The study was conducted using PC

computers running Netscape Navigator (version 7) or Internet Explorer (version 4 and

above).

Before starting the usability study the users were asked to sign a consent form, which

contained information about the purpose of the study, the time allotted to perform the

tasks and the kind of tasks to be performed. The consent form also stated that the goal of

study is to evaluate the usability of the software, rather than to judge the performance of

the participants. Finally, the subjects were reminded that their participation is voluntary.

The users were randomly assigned to one of two groups, each group containing

approximately 20 students. One group evaluated the software for its use in creating the

occurrence type of applications and the other group evaluated it for creating the priority

14

type applications. Students in each group were asked to perform two levels of tasks, one

simple and the more complex. The groups were further divided into subgroups containing

a maximum of four subjects and one supervisor. The students were given 75 minutes to

go over the training material (appendix A, page 56), understand the tasks they were to

perform, and actually perform the tasks. The training material contained a full description

of the experiment, the step-by-step procedure the subjects were to follow to complete the

exercises, some examples showing those steps, and the actual exercises to be performed.

The tasks were to create two different web applications using “marketing reports” (the

exercises describing the high or low risk of a condition a person has depending upon the

factors affecting those conditions) developed specifically for this study. One marketing

report was for an emergency management advisor web site and the other was for a public

health wellness improvement web site (appendix A, page 56). To create the websites the

students were asked to develop questions or statements based on the conditions described

in those marketing reports and then specify the logic through which to associate messages

with each condition. The supervisors were advised to merely distribute the handouts with

the directions and the explanation of the task and let the user go through the directions

and tasks independently, in order to accurately evaluate the “out of the box” usability of

this software.

Users were also provided with a questionnaire, which they were asked to answer

after completing the experiment (appendix A, page 55). Additional information about the

subjects, such as computer skills, SAT scores, gender, and grade point average was also

collected at this time.

15

The training material provided to the group developing occurrence type

applications was different from that provided to the group developing priority type

applications. The examples provided and the strategies to build logic on the

statement/questions were different for the two applications. Specifics of each group’s

procedure are described below:

Occurrence type group: In this group, the user’s first task was to figure out the

questions that needed to be asked to develop the application. The next step was to attach

messages to the questions and set up the logic for which text message would be returned

in response to each question. The most important thing for the user was to make sure that

all the questions were logically associated with text so that no matter how a web client’s

profile was configured, the client would receive a single message for each item. For

example, the users were asked to set some type of logic with all the messages so that,

depending on the client’s answers, they will receive a message showing either high or

low risk of a particular outcome (e.g., sudden illness, disease, a dangerous situation,

taxation etc.). For example:

(1) Simple text-logic relationship:

Marketing Report: People who smoke are at higher risk of having cancer.

Condition Statement: You smoke very frequently.

Scale:Very False 1 2 3 4 5 Very True

16

Example of setting logical text with the condition:

Logic Text Message

Smoking condition is equal to or greater than

(=GT) 4.

You are very likely to have

cancer

Smoking condition is equal or less than (=LT)

3.

You are not likely to have

cancer.

 (2) Complex two factor relationship:

Marketing Report:

People who smoke are at higher risk of having cancer.

The older a person is the more likely he is to have cancer.

Condition Statements:

You smoke frequently.

Scale:Very False 1 2 3 4 5 Very True

You are old.

Scale:Very False 1 2 3 4 5 Very True

What message is returned (high or low risk of cancer) is determined by set of logic

statements shown in the following table:

Text Message Logic Settings

1. HIGH RISK: You are very likely to
have cancer.

1. Smoking condition is equal to or
greater than (=GT) 4. Old condition
equal to or greater than (=GT) 3.

 2. Smoking condition is equal to or
greater than (=GT) 3. Old condition is
equal to or greater than (=GT) 4.

17

2. LOW RISK: You are not likely to
have cancer.

3. Smoking condition is equal to or
greater than (=GT) 1. Age condition is
equal to or less than (=LT) 2.

 4. Smoking condition is equal to or
less than (=LT) 2. Age condition is
equal to or greater than (=GT) 1.

 5. Smoking condition is equal to (=) 3.
Age condition is equal to (=) 3.

No matter how the user answers these questions he should receive exactly one message

(high risk or low risk) per condition, the message that best suits his or her profile. In the

occurrence type of application, as the number of testing factors increases, the complexity

of the logic pattern to determine the end result also increases. The developers of

occurrence type applications must be very careful when setting the logic, to avoid

duplicate responses. Many more complex text logic patterns are described in the training

material given to the users, and can be seen in appendix A, page 55. The last step in the

development of the application was to test the application for its correctness. The users

had to answer a set of questions they developed and check if they received the right

response.

After the students completed the experiment, they were asked to fill out a

questionnaire consisting of 12 questions. Some of the questions were to rate their

agreement with a statement on a scale of 1 to 5 and some questions solicited general

comments about problems, usefulness and ways to improve the application. Users were

asked to fill in the start and stop time for both the tasks and to indicate the type of the

application they built. Subjects were also asked to rate their experience with learning new

18

software, their perception of their ability to teach others to use the application, their

difficulty in analyzing the exercise problem to create the logic, their difficulty in using

the software to implement the logic, and the clarity of the directions. Information about

problems experienced while developing the application, opinions on useful design

features of the software and suggestions to improve the usability of the application were

also collected. The detailed questionnaire is included in the appendix A, page 54.

Priority type group: The experimental procedure for the priority type group was similar

to that of the occurrence type group. The primary difference was that the training material

described the strategies to perform priority type applications. The resulting web page

created by using this application shows all the messages associated with the text but what

matters in this application is the order in which they appear. That is, the subjects

developing the priority type applications were involved in determining in what sequence

or order a series of messages would appear, and this order was guided by the information

in the marketing reports. The sequence in which the messages appear can be affected by a

number of contributing factors. For some issues in the report, there will be only a single

factor that is reported as affecting a person’s risk or interest and hence only one priority

value. For other issues, multiple factors will contribute to risk or interest. In the case

where multiple factors make a contribution, the contribution to risk/interest is

apportioned equally to each factor. The developer of the application has to concentrate on

the relationship between a message and the priority that the message should have in

relation to the other messages in the set of the messages to be displayed. Unlike the

occurrence type, the users do not have to worry about eliminating duplicate messages.

This can be explained in more detail using the following example: For job success the

19

contributing factor is school grades, and for success as a wrestler there are two

contributing factors, age and body weight. A person would be of equal risk of job success

and wrestling success only when all three factors (school grades, age and body weight)

are of same value on a 5-point value scale. If the school grade factor and age factor are

rated 3, but body weight is rated at 4 on the scale, then the wrestling success message will

appear before the job success as the total value for the wrestling factor is 3.5 (3 (for age)

+ 4 (for body weight) /2) which is higher than the value of job success (3). Detailed

examples on priority type applications are described in the appendix. Again, the subject

was expected to test the correctness of the result, and complete the questionnaire.

Results: Data collected includes the time to complete the task and the artifact created by

the subject. The experimenter then evaluated the quality of the artifact (website)

produced. Users of each group were provided with a grade ranging from 0 to 10 for both

exercises based on the correctness of the tasks. Results are summarized in table 1(raw

data included in appendix B, pages 67 and 68). The correctness was measured based on

the type of questions asked, type of messages associated with the questions, correctness

of message-logic pairs, and completeness of the task.

According to table 1 there was no statistically significant difference between the

mean scores for exercise 1 and exercise 2 for both the application types occurrence and

priority. Table 1 suggests that the subjects who worked with the priority type applications

scored somewhat higher on both the exercises than those who worked on the occurrence

type, but the difference was not statistically significant.

20

Table 1: Average scores obtained by the user for exercise 1 and 2 for Occurrence and

Priority type applications.

Occurrence Priority

Exercise 1 Exercise 2 Exercise 1 Exercise 2

Mean
3.4 3.1 4.2 3.2

Std
3.0 3.2 3.6 3.7

Variance
9.2 10.1 13.1 13.7

The time required to perform exercise 1 and exercise 2 for both groups was calculated

and analyzed. Figure 1 shows the time each user took to perform task 1 (solid line) and

task 2 (scattered line) for occurrence type applications and Figure 2 shows the same for

priority type applications. Almost all the users for both types of applications took more

time to complete exercise 1 than to complete exercise 2.

Time for completing exercise 1 and 2

0

10

20

30

40

50

60

70

80

0 5 10 15 20

Users

ti
m

e
(m

in
)

Exercise 1

Exercise 2

Figure 1: Graph showing the time required to complete task 1 and task 2 for the users
of occurrence type of applications.

21

Time to do Exercise 1 and 2(Priority)

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

Users

T
im

e
(m

in
)

Exercise 1

Exercise 2

Figure 2: Graph showing the time required to complete task 1 and task 2 for the
users of priority type of applications.

The average time, standard deviation and the variance for both exercises for each group

are presented in table 2. Mean values for exercise 1 for both applications are greater than

exercise 2, though they were not statistically different. The times required to complete

exercise 1 and exercise 2 for occurrence type applications were also compared with those

of priority type applications, as presented in table 2 and graphed in figure 3. The average

time required to perform both the exercises for the occurrence type application was

greater than the average time to complete the exercises for the priority type, but again the

difference was not statistically significant.

22

Table 2: Time required to perform exercise 1 and exercise 2 for both Occurrence and

Priority type of applications.

Occurrence Priority

Exercise 1 Exercise 2 Exercise 1 Exercise 2

Mean
29 15.7 27.2 14.1

Std
14.7 6.9 18.7 6.8

Variance
216 46.9 348.5 45.9

Time difference between Occurence and Priority

0

5

10

15

20

25

30

35

40

45

50

1

A
v
e
ra

g
e
 T

im
e

Occ Ex1 Pr Ex1 Occ Ex2 Pr Ex2

Figure 3: Comparison of average time required to perform both tasks using occurrence

type applications with those of priority type applications.

23

Users were also asked to estimate the time it would take them to perform another task of

same difficulty after this experiment. The actual fraction of time required to perform

exercise 2 after completing exercise 1 was calculated and compared to the estimated time.

The correlation between the two for the occurrence type of study was 0.51 and that for

the priority type was 0.133, as seen in figures 4 and 5 (the correlation was calculated

using EXCEL). These numbers determine that the times (the time required to complete

exercise 2 and the time estimated to complete another exercise) for both the applications

were not highly correlated. Subjects estimated that it would take them an average of 50%

(occurrence type) and 42% (priority type) of the time originally required to complete an

exercise of similar difficulty.

Comparison between time took and estimated time

(Occurence)

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

Users

p
e

rc
e

n
t

Used Time

Estimated Time

Correlation - .51

Figure 4: Graph showing the correlation between the actual percent of time taken by the

user to perform exercise 2 compared to exercise 1 and estimated time it will take the user

to perform another exercise of same difficulty for occurrence type applications.

24

Comparison between time took and estimated time

(Priority)

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

Users

P
e

rc
e

n
t

Actual Time

Estimated time

Correlation= 0.133

Figure 5: Graph showing the correlation between the actual percent of time taken by the

user to perform exercise 2 compared to exercise 1 and estimated time it will take the user

to perform another exercise of same difficulty for priority type applications.

Users remarks were also collected and are summarized as follows:

Comments about problems experienced: According to some people the instructions were

unclear, hard, confusing and tedious to read and understand in the given amount of time.

They had problems understanding the tasks, deciding where to start and the kinds of

questions to ask. They also had trouble understanding the results and goal of the

application. According to them the buttons they were asked to press in the instructions

were hard to locate due to the structuring of the text blocks page.

Comments about useful or helpful design features: Adding messages and attaching the

logic with the messages was easy, intuitive and well designed. Buttons, text fields and

revision functions were helpful and well placed. All the components were highly visible

25

and help messages were useful. The users liked the testing feature in the software, where

they could determine the correctness of the logic and could go back and correct it if the

logic was wrong. Pop-up windows to confirm the logic decisions were also helpful. With

smaller tasks or simpler problems the logic was easy to use, but with larger problems

users felt it would be very difficult. After finishing the first exercise the second exercise

seemed much simpler. This suggests that once you are familiar with the software, it is

much easier to use. The main control panel and the feedback on logic is good but could

be improved, and the overall graphical user-interface was easy to use.

Comments about improving the usability of the application: The main suggestion was to

provide simple, clear, concise and step-by-step instructions. In the current software when

they create or change a text block, they have to submit each text block separately, so the

user should be able to add all the text blocks at once and in the end click the submit

button for all the changes made. The use of multiple sections and colors on one control

page made the screen seem busy. One way to simplify the screen would be to divide the

control across multiple pages; this will help improve clarity and reduce the numbers of

fields the user can select. For a non-technical field graduate, logic examples and

walkthrough applications would help. On every page there should be links to the control

panel and to test and review the logic. The layout of the screen, especially the text logic

screens, were hard to pick up at first glance. According to some, the biggest problem was

that the software lacks a clear and brief instruction on the interface. Bulleted steps written

on the interface and a short tutorial online help are extremely helpful. The instructions

need to be rewritten, perhaps with a more complete initial overview and more explanation

of what the different fields mean/do for setting the logic.

26

Discussion: The main goal of this study was to evaluate the ease-of-use and learnability

of the web personalization software and also to get some feedback about the elements of

the software. In addition to these goals, the effect of directions, tasks and time on the

study itself were evaluated. This section discusses the results obtained by analyzing the

data collected during the study and various problems identified by the subjects in the

software and the study. These results and suggestions will be used to refine the features

provided by the tool and make them better in terms of usability. They will also be used to

evaluate and improve the tasks, directions and the overall study, which will work toward

making the software more usable for the intended users. The average scores and time for

both the occurrence and priority type of applications suggest that subjects had more

difficulty with occurrence type applications than the priority type. This might be because

the developer of occurrence type applications needed to apply a complex logic pattern

that determines which user will receive which message, and also to prevent duplicate

responses. The priority type applications were relatively easy, and the developers did not

have to deal with eliminating duplicate messages. They only had to deal with the priority

that the messages should have in relationship to the other messages in the set of messages

to be returned. Almost all the students spent more time to complete exercise 1 than to

complete exercise 2 for both types of applications as shown in figures 1 and 2. The

average time to complete exercise 1 for the two applications was also more than the

average time to complete exercise 2 (see table 2). This may be because of the reason that

they got familiar with the software and the study by the time they finished exercise 1 and

thus could finish exercise 2 faster.

27

By looking at the average scores obtained by the students shown in Table 1 of the results

section we can see that the subjects did not perform well. Several factors may account for

this. For example, the directions to perform the exercises were not clear, the software

itself was not that user friendly, and bugs existed in the software. We discuss each of

these problems in greater detail in this section.

Problems with the software: According to the users there were many different problems

with the software. The buttons they were asked to press in the instructions were hard to

locate on the web page, because the correlation between the steps on the web page and

the steps mentioned in the directions is poor. The current tool has many items clustered

on the same page. For example, all the steps from first to last are on the same page. These

steps can be broken down so that they come one after another. This will make things

easier and the user will not have to find out what step they need to perform next, rather

the application would take them through those steps automatically. Thus, the overall

structure of the application forms and text block pages need reorganization. Something

could be done regarding the position of the buttons, such as having the submit button on

the bottom of the application form or on both bottom and top instead of only the top.

There were also some parsing errors found during the experiment. For example, the users

could not submit questions or messages containing semicolons, commas or quotes. This

problem had the potential to distract the user and then cause them to take more time to

complete the tasks than they should normally take. All these things can cause the user to

lose interest and finally give up and stop using the software. The directions consist of

some examples explaining how to set the logic-text blocks but the students do not have

28

that much patience to first go through the examples and then do the exercises. Most of

them wanted to get done with it as soon as they could.

Problems with the study: As discussed above, results from table 1 suggest that the users

had more problems with occurrence type applications than with priority type applications.

Subjects performing tasks to develop occurrence type applications also took more time

than those who developed priority type applications. This may be due to the level of the

tasks/exercises they had to perform, which became difficult to understand and complex to

implement as the number of contributing factors increased. According to the remarks of

the students, the directions were not clear and were hard to understand; they were

provided with an extensive set of instructions that were confusing. Some subjects lost the

overall picture of what the software was designed to do.

Time was also a big issue, as they had to go through the instructions as well as perform

two tasks in 75 minutes. The students were also asked to specify the start and stop time

for both the exercises but during the evaluation of the results it was found that in some

cases students put the start and stop time but did not develop an application. Again,

problems with the directions may be to blame. The other reason that users lost their

applications may be due to the crash of the system during development or by accidentally

clicking the delete application button.

After evaluating the results and identifying the problems in both the study and the

software we decided to conduct the study again, and the changes described below were

made:

Changes to the study: Due to the problems students faced we decided to provide handouts

with bulleted step-by-step instructions to develop applications. Extensive instructions

29

were also provided on the site where subjects developed the application. As soon as the

user logs in, a simple training task with the step-by-step procedure to create the web page

is automatically given. This way the user will know in a short time what they have to do

and what they should produce as a result. As the second study focuses more on the time it

takes the users to complete the exercises correctly, the supervisor checks the time the

subject starts the exercise and enters the stop time only when the exercise is completed

correctly. The tasks should also be modified, as according to some users the tasks were

unclear and hard to understand.

Suggested changes to the software: In the previous software all the steps involved in

developing an application are clustered on the front page. To simplify this, instead of

having all the steps on one page, we decided to organize the page so that the first time

users see only the minimal number of screens and controls needed to complete a basic

application. Optional parameters were either eliminated or put into a place where they are

not visible unless the user decides to request them. The whole procedure was divided

mainly into 3 step-by-step procedures in a lock-step fashion, first profile

questions/conditions, then messages and then adding logic. The hope is that this change

will make the revision process easier compared to the previous version of the software.

Previously, to revise a text logic block the user had to either know the number of the

block he wanted to change or had to choose from a form containing all the test logic

blocks the ones he wanted to change. In the new version of the software, users click on a

specific message and then get access to the logic patterns that are associated with that

message.

30

To make the software easy to use and understand, the color scheme used on the web page

can be changed, so that the buttons are more visible and obvious. We can also work on

making legends and labels on the page more explanatory so that they are easy to

understand.

Conclusion: The personalization software used in this study was evaluated for its

usability and learnability to develop applications to create personalized web sites. This

software is developed to be used by managers in public sector, to develop applications to

personalize web sites for their clients. The results and the user feedback obtained from

this study suggest that the software and the study require substantial changes to make the

software easy to use and learn. The main drawback of this study was that the subjects had

to perform several tasks in a limited amount of time (around 75 minutes). They had to

read through an extensive amount of material, including directions to perform

applications, examples, and strategies for doing the applications, and simultaneously

perform the exercises to develop two personalization applications. Likely, this was too

much work for the given amount of time. The bugs and problems in the software, as

mentioned in the results, were also a big distraction for the subjects performing the task.

The results and the feedback received from this study will help us in improving the

software as well as the directions, so that we can reach our main goal, making the

software easy to use and learn. After making all the changes to the study and the

software, another usability study was conducted on the software. This second study was

more controlled and focused more on the correctness of the task rather than time required

to complete the task. The second study is described in chapter 4.

CHAPTER 4

SECOND USABILITY STUDY OF WEB PERSONALIZATION

Introduction: An evaluation of the results of the initial user study provided suggested

changes and other feedback from the subjects. The software was revised in accordance

with these results. However, it is important to repeat the usability study to assess the

improvement in the usability of the software. A repetitive, cyclical design process lends

itself easily to user-centered design; it is useful for designers and developers to revise the

design iteratively through rounds of testing. The main aim of the repeated usability study

should be to compare the first and second study to see whether the new version is more

usable than the old version. The number of times a usability study should be repeated

depends on various factors, including planned time-to-market of the software, cost

considerations, and user’s expectations of the software. For software to survive in the

world of users it is crucial that it fulfill the expectations of its users. The usability study

helps us to do that. Repeating the usability study also helps in improving the usability

study itself, for example by changing elements such as directions, questions asked, and

specifics of the tasks.

The second usability study was divided into four parts. The first step involved working

with the developer of the software, John O’ Looney, to modify the software and make

almost all the changes recommended by the subjects in the previous study. The second

step was to modify the usability study plan based on the recommended changes, modify

the directions, create a practice test and modify the exercises. Third was to execute the

 31

32

usability study, and the last step was to analyze the collected data. The main goal of this

usability study was to make recommended changes to the software and to improve the

software in order to make it as usable as possible. The usability of this software was

again evaluated for its usability and learnability after all the changes were made to the

software, directions and the study.

Experimental Procedure: The comments and the results from last experiment were used

to make changes to the study and the software, as follows:

The main page of the software was divided into many pages, unlike the previous

version of the software, in which all the steps were on the same page.

The directions were made simple and small. They contained the step-by-step

procedure for both a sample exercise and the real exercise (appendix A page55).

Before starting the experiment, the software and the directions were thoroughly tested

for bugs and to confirm the flow of the steps for creating the personalization

application.

A total of 20 students were recruited from the department of computer science, 15

graduate students (13 males and 2 females) and 5 (4 males and 1 female) undergraduates.

The subjects used in this experiment were different from the subjects used in the previous

experiment to eliminate biased results. The experiment was conducted using Internet

Explorer on PC’s. Evaluation of this experiment was based on the time it takes a person

to learn the web personalization software. For the results to be included in the study the

subject was required to stay until he or she finished the task correctly, but no longer than

75 minutes. Before they started the experiment, subjects were asked to sign a consent

form specifying that this experiment was to evaluate the personalization software and not

33

their ability, that they did not have any mental or physical risk while performing this

experiment, and reminding them that they were free to stop at any time without

completing exercise (No one left early) (see form page 53, appendix A). The subjects

were asked to perform a practice task before doing the actual task. A list of bulleted steps

to perform the practice task as well as actual task was provided with the exercises. For

reference, the extensive directions were included on the web page where the software was

located. The directions were also accompanied with a questionnaire, which subjects were

asked to fill out when they completed the study. They were also asked to record the stop

and start time of the practice exercise and the real task on the questionnaire. Unlike the

previous study, in this experiment the subjects were asked to build only the occurrence

type of application, due to less availability of subjects and tasks. The subjects were asked

to create questions/statements depending on the issues mentioned in the task (included in

the appendix A, page 61), create appropriate messages accordingly and then build the

logic to attach the messages to the questions/statements (as explained in detail in the

previous chapter). These steps are the main steps to be performed by the target users

while developing the software. At the end, subjects were also asked to test their

application. The logic of the task for each subject was tested against the correct logic for

the task and if the subject’s logic was not totally correct, the subjects were asked to go

back and correct their logic. This process was repeated until their logic was completely

correct or the total time they required was over 75 minutes. One student was picked

randomly from among the list of students who participated and was provided with a prize

of $20.

34

Results: This experiment was conducted to evaluate the learnability of the software and

thus the time required by the students to complete the exercise correctly was recorded. As

time was not a limitation in this experiment and the results of the subjects were checked

as they finished and subjects were asked to correct their work if something was incorrect,

70 percent of the subjects scored 10 on a scale of 0 to 10. The maximum and minimum

time required to complete exercise 1 correctly was 46 and 20 minutes respectively with

an average of 32 minutes (Table 3).

The average score obtained by the subjects in this usability study was 8.5 with a standard

deviation of 2.5 (Table 3), raw data included in the appendix (B, page 69).

Table 3: Average score obtained and average time required to complete the exercise by
all the students as well as those who received a perfect score.

Scores
Average time to

complete exercise
correctly

Time to do real
exercise

Average 8.5 32 32

Standard deviation 2.5 7.6 10.4

The students were asked to perform a practice run before they start the real exercise to

permit them to have a good understanding of the software. The students were taken

through all the steps to complete the sample exercise using a set of directions. Then they

were asked to do the same for the real exercise. Table 3 shows the average time required

by the subjects to do the practice and the real exercise.

The subjects were asked to comment about the problems with the software and the ways

to improve it. These comments are described below:

35

Problems with the software: Students commented that because the directions were

provided both on screen and on paper, they were not sure which to follow. Some

students mentioned that the step-by-step directions were very detailed and a little

confusing; they were not always sure where to go. Getting the logic pattern right was a

challenge for some subjects. One student found that the feature permitting the addition of

logic from the review page was not working and he wasted some time trying to make it

work.

Helpful design features: Students really liked the feature that they can revise as many

times as they want and test their logic. They could also delete and modify logical links.

The whole idea of creating logic and assigning values was very interesting to them.

According to some subjects the logic sets were neatly broken down and were very

objective. The overall layout, the color combination and graphical user interface was

good and the handout was also very clear.

Suggestions to improve usability of the application: Some subjects felt the need of some

introduction about what this software is about. With the directions provided it was hard to

judge if the application was user friendly or not, if they did it right, because they followed

the directions on the handout not the directions by the application. Some subjects

suggested giving the user a matrix or some kind of a flowchart with all possible values of

responses so that user does not have to worry whether all conditions are taken care of or

not. They also recommended giving some more complex examples for building the logic.

There were some suggestions about allowing the user to return to the review logic page

and the test page from all the pages and having more detailed directions about the use of

36

the different button selections. They thought that the pages were a bit crowded with

information and noted that subjects did not spend time to read that information.

Discussion: As mentioned in the results, around 70 percent of the students received a

perfect score of 10. This may be due to many reasons. A primary reason is that the results

of each student were tested when they were done and subjects were asked to correct their

work if their logic was incorrect. They were allowed to take as much time as they wanted

and they were not allowed to leave before they either got it right or 75 minutes had

elapsed. Another reason for the improvement in the scores was due to the practice

exercise. This exercise was designed to take students through all the steps for creating an

application and then testing the logic. This exercise included the exact

questions/statements and messages the subjects had to fill out in order to develop that

particular application and gave them an idea about the type of questions and messages

they had to develop for the real exercise. It made them think logically and find the ways

to make their logic correct. Another reason for their completing the exercise correctly

could be that they were told that their answers will be checked after they are done and

that made them do the exercise more sincerely. The quantitative results (scores and time)

from this study could not be compared with the results of the previous study because no

subject could complete the tasks correctly in the previous study. Comments collected in

this experiment suggest that the software this time was much easier to use, but we are not

sure if this is because of difference in the comments or due to difference in the users.

In the older application all the steps to develop an application were included on one

control page, shown in Figure 6. In the new version of the software, the steps in creating

the application were divided into different pages where one step led to another as shown

37

in Figure 7, 8 and 9. This feature helped students to be on the right track and go with the

flow of steps; they did not have to think what they had to do next. The used directions in

this experiment were also short and bulleted.

Directions in bullets were also provided on each page containing a specific step to

perform the application, so if the students did not want to look at the directions on the

paper they could perform that step by reading the direction on the web page itself. As

mentioned above, the applications were tested for correctness with the subjects present

and subjects were asked to redo their logic if it was wrong. Most of the subjects did the

exercise correct in one run and only a few of them took two to three runs to complete it

correctly. In spite of all these improvements, several subjects still could not complete the

test correctly: it took them a great amount of time to understand and do the sample

exercise and by the time they started the real exercise it was past one hour and they were

not forced to stay after that.

38

Figure 6: Snap shot of older version of the web personalization software.

Figure 7: Snapshot of step 1 (create new application), in the new version of web

personalization software.

Figure 8: Snapshot of step 2 (Add message), in the new version of web personalization

software, which appears after the user is done with step1.

According to the comments made, this software still requires revisions before being ready

for use “out of the box”. Based on the maximum time required (46 minutes) to do the

exercise correctly, it can be suggested that an exercise of this level is doable and

learnable within an hour, whereas it is hard to do two exercises within the same amount

of time.

39

Figure 9: Snapshot of page, which leads to step 3 (building logic) of building an

application.

Although we can easily create simple applications where only one factor or two factor

logic is involved, it is very hard to create applications where many conditions (more than

three of four) and questions/statements are involved. The software should have some kind

of capability where it can build the logic by itself or at least assist in thinking logically in

some way.

Conclusion: The results presented in this chapter shows that this software is much easier

to use and learn compared to its previous version because many users were able to

complete the same task correctly in the second study. Based on the average scores and the

comments we can say that changes made to the software and the study helped the

subjects to perform well. The main recommendations to the developer would be to have

40

more clear directions on the pages of the software, as presented in the handout, and the

use of a graphical representation that covers all the cases required to build the logic for

personalization. This research shows that for this software to be successfully used “out of

the box” by its target user group, the developers must implement some demo exercises

that use different levels of logic, so that the user has the opportunity to become familiar

with all the steps involved in creating the personalized application, as well as be able to

refresh his logical thinking. The software still needs to go through several stages before it

could be ready to be used commercially, since the main goal of developing this software

is to be able to use it “out of the box”, which means that no training should be involved

prior to using it.

CHAPTER 5

CAN VISUALIZATION HELP STUDENTS TO LEARN DISTRIBUTED

ALGORITHMS?

Introduction: Increases in technology have provided new developments in the area of

graphics and visualization. Such graphical representations of data have the potential to

aid in the cognitive process. In the field of visualization, researchers and developers have

created many types of visualizations or visual depictions of information (Card, Mackinlay

& Shneiderman, 1999). Program visualization is a technique designed to help

programmers understand the state and behavior of a program. Roman and Cox (1992) in

their paper defined visualization as a mapping from programs to graphical

representations.

Program visualization tools provide a continuous graphical representation of the state and

the progress of the program as it executes. Tuning and debugging are typical uses of

program visualization. Various studies have discussed the importance of visualization in

understanding a program, such as the use of graphical visualization for better

performance evaluation and understanding of execution of parallel discrete-simulation

systems (PDES) (Carothers et al, 1999). Topol et al., (1998) discussed the use of two

phase visualization (PvaniM) to provide insight into the behavior, efficiency and

operation of distributed and parallel programs in a network computing environment.

Stasko and Kraemer, 1993, discussed the importance of and developed a methodology to

create application-specific visualizations of parallel programs.

 41

42

Although many researchers believe that visualization is helpful in understanding

distributed algorithms, the results obtained from user studies are inconclusive. Most of

the studies were based on general observations and interviews done on the students as

mentioned in the study performed by Storey et al. (1997) to compare three visualization

systems for browsing program code and exploring software structure. In some cases the

tool used itself hindered the uses progress. Mulholland, (1998) studied the effectiveness

of four prolog program visualization systems. The study resulted in mixed up and

inconclusive results due to the misunderstanding of the traces made by the tracers.

Evaluation of algorithm animations used for learning was done by Byrne et al, 1999.

They suggested that one way animations may aid in the learning of procedural knowledge

is by encouraging learners to predict the algorithm’s behavior, but no significant results

were found. Kehoe et al., 2001 focused on understanding the use of animation and other

learning materials by learners to understand a new algorithm. This study was not very

controlled and thus not many definite results were found. Zernik et al. (1992), used

visualization tools in the understanding execution of sophisticated concurrent programs.

Brown and Sedgewick (1985), present different techniques for animation for algorithm

execution that allow students to explore the algorithm’s behavior by changing data and

parameter values and observing the resultant behavior.

A study was conducted by Rong Wu, Mihail Tudoreanu and Ritu Dhawan under the

supervision of Dr. Eileen Kraemer. The main aim of this study was to see if visualization

can help in understanding and learning of distributed algorithms. A study was conducted

to determine the effect of visualization on understanding and learning two distributed

algorithms: The Dijkstra-Scholten Distributed Diffusing Termination Detection and

43

Distance Vector (Bellman-Ford) Routing Algorithm. Two experiments were conducted to

evaluate the usefulness of visualization on the user’s ability to learn about the above-

mentioned algorithms. The second experiment was a rerun of the first experiment after

modifying the code, visualization and the user interface, based on the user’s feedback and

the results obtained from the first study. The visualization, pseudocode, output and the

questions were all embedded in the user interface. This chapter mainly focuses on my

contribution to this study. A brief summary of the experiment, results and the conclusions

of this study are also presented.

Elements: There were three main elements in the design of the study:

The choice of algorithms

The design of the visualization

The creation of questions for each algorithm

My Contributions:

Implementation of the algorithms:

The algorithms were selected based on the fact that they were interesting and have

appropriate complexity for the participants. Both the algorithms were implemented in

Java and the distributed systems were simulated using threads. These algorithms are

briefly described below:

Dijkstra-Scholten Distributed Diffusing Termination Detection (Dijkstra and

Scholten(1980):

This algorithm is designed to allow a node to determine if a task that is computed by

multiple nodes has finished or not. The problem is based on how the initiator of the

project detects the project’s completion. The initiator starts sending the messages to other

44

nodes and then either these nodes acknowledge back or send messages to more nodes.

The termination is detected when all the nodes send acknowledgment back to their

parents and the initiator (root), which mean all the nodes have finished the processing.

Distance Vector Routing Algorithm:

The second algorithm dealt with the updating of network routing tables. Each node was

involved in keeping a table containing information about shortest distances to other node

to which it is directly or indirectly linked. The pseudocode and detailed description for

both the algorithms is attached in the appendix (appendix C, page 70).

Participated in the discussion and meetings to develop the study.

Implemented the demo visualization program (about finding the greatest value in

an unordered array) used in the second. This was embedded in the same testing

environment as the one used for the formal study.

Provided the output and the pseudocode of the algorithms to be incorporated in

the real study environment of the formal. This was used to make students familiar

with the study environment.

Helped in developing the tasks used in both study.

Summary of procedure and results: Two studies were conducted on graduate and

undergraduate students in the department of computer science. The students were asked

to answer some questions about the algorithms mentioned above either using

visualization or using the code and the output. The first study used both the algorithms

mentioned above. The second study used only the Dijkstra Scholten algorithm due to a

smaller number of subjects and the limited time available.

45

No significant difference in the score obtained by the subjects or time required to

do the tasks was found between the two (viz and non-viz) groups. Thus results from first

study were inconclusive. The second study was conducted after applying changes to the

study and the material based on the problems found and users feedback from the first

study. There was a significant difference among the scores of students using visualization

versus non-visualization. The students in the visualization group performed well

compared to those in the non-visualization group. These results suggest that visualization

can be helpful in understanding and learning of the distributed algorithms.

The results obtained in this study are presented and discussed in more detail by another

graduate student, Rong Wu, in her thesis (fall 2001).

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

Web personalization software: Two studies were performed. Both the studies used both

undergraduate and graduate students:

Study one was designed to measure the use of the software in a given amount of time.

The subjects performed two tasks, to develop either occurrence type or priority type

applications. The results obtained from experiment one suggest that there was no

significant difference between the scores of subjects developing occurrence type and

priority type of applications. Further, no significant difference was found between the

times required to build occurrence type and priority type application. Many changes were

made to the software and the study based on the results and users feedback from the first

study.

A second study was performed on the subjects to determine the usability as well as

learnability of the web personalization software. There was no time limit for completing

the task. The students were asked to perform only one task, to develop an occurrence type

application. Around 70 percent of the students obtained full scores in the second study.

However, in this study, the logic created by subjects was tested and they were asked to

correct it if it was wrong. Checking the students results and asking them to correct their

work is a significant contributing factor in their high scores. Feedback collected from this

study suggests that the changes made to the software and the training material also helped

students to perform well.

 46

47

This study assisted in making the software better than what it was before the study. It also

helped in evolving the training material, based on the results and the feedback from the

study. The researchers believe that this study gives important feedback for further

improvement of this software, so that it can be used ‘out of the box’ by the managers of

the government firm. Once ready to be used formally by the managers it will help in

increasing their work efficiency and productivity as well as also saving clients money and

time.

Visualization: Two studies were conducted to see if visualization helps in learning and

understanding of the software. The average scores obtained from the visualization and

non-visualization group. There was no significant difference between the scores of the

visualization and non-visualization groups in the first experiment for both the algorithms.

The results and feedback from study two helped in recognizing the problems in the first

study. The changes were made and the second experiment was conducted.

The second experiment shows that due to the changes and unlimited amount of time (i.e.

they could stay for as long as they wanted, but were not forced to stay after 75 minutes)

provided they performed really well as compared to the non-visualization group. Based

on these results we can say that visualization can help in understanding of distributed

algorithms. However it is very important that this study is repeated with more refined

fashion on some more complex algorithms.

The first study was inconclusive. The results of second study indicate that visualization

can be helpful in understanding the distributed algorithms used in this study. This is a big

step in determining how visualization can help students in learning complex algorithms.

48

My contribution in the study of Web Personalization Software:

Worked with the developer of the software and designed the study under

supervision of Dr. Eileen Kraemer.

Conducted the experiments.

Collected and analyzed the data.

Modified the tasks and the training material based on the users feedback, for the

second study.

Assisted the developer in modifying the software and fixing the bugs found

during the first study.

My contribution in the Visualization Study:

Participated in the discussion and meetings to develop the study.

Implemented the demo visualization program (about finding the greatest value in

an unordered array) used in the second. This was embedded in the same testing

environment as the one used for the formal study.

Provided the output and the pseudocode of the algorithms to be incorporated in

the real study environment of the formal. This was used to make students familiar

with the study environment.

Helped in developing the tasks used in both study.

Both the studies conducted on the web personalization software determined the

problems as well as useful features of the software. The results and the studies gave a

fair evaluation of the learnability and the usability of the software. Chapters 3 and 4

and this chapter provide some more suggestions and recommendations for developing

the software, so that it can be directly (without any prior training) used by the public

49

managers. This study is a valuable step forward for this software to be used “out of

the box” for the target users.

The following are specific recommendations so that the software can be used “out of

the box”:

This software is designed for public managers who may not be as computer

literate as the subjects used in this study, therefore we recommend performing a

usability study on a population with background more similar to the managers.

Include some logical tables in examples, as shown in the directions for the second

experiment, which cover all the possibilities to build logic for a particular

condition.

Directions supplied with the second study are recommended to be used with the

software for future studies.

Implementation of a “self testing feature” should be very helpful too.

There are still some minor bugs in the web personalization software as described

in chapter 4, which need to be fixed.

The visualization study helped in determining that visualization can be useful in

understanding distributed algorithms. The implementation of the algorithms was one of

the main elements of the study on which the visualization and the whole study was built.

We found some positive results regarding the use of visualization, however, it would be

interesting to see the effect of visualization on some more complex distributed

algorithms. A comparative study with different visualizations on the same algorithm

should be helpful, where we can evaluate different types of visualizations.

REFERENCES

1. Brown M. H., and Sedgewick R. 1985. Techniques for Algorithm Animation.

IEEE Software, 2:1, 28-39.

2. Byrne, Michael D, Catrambone, Richard and Stasko, John, 1999. Evaluating

Animations as student Aids in Learning Computer Algorithms. Computer & Education,

33:4, 253-278.

3. Card, S., Mackinlay, J., and Shneiderman, B. (Eds). Reading in Information

Visualization: Using Vision to Think. Los Altos, CA: Morgan Kaufmann.

4. Carothers, C. D., Topol, B., Fujimoto, R. M., Stasko, J. T., and Sunderam, V.

1999. Visualizing Parallel Simulations That Execute in Network Computing

Environments. Future Generation Computer Systems, 15, 513-529.

5. Dijkstra, E. W., and Scholten, C. S. 1980. Termination detection for diffusing

computations. Inf. Process. Lett. 11, 1-4.

6. Dumas, J. S. and Redish, J. C. A Practical Guide to Usability Testing. Norwood,

N.J.:Ablex, 1994.

7. Graham, M., Kennedy, J., and Benyon, D. 2000. Towards a methodology for

developing visualizations. Int. J. Human-Computer Studies 53:789-807.

8. Hughes, M. 1999. Rigor in usability testing. Technical Communication

46(4):488-494.

9. Human-Computer Interaction. Preece, J., Rogers, Y., Sharp, H., Benyon, D.,

Holland, S., and Carey, eds. Workingham, England:Addison-Wesley, 1994.

 50

51

10. Kehoe, C., Stasko, J., and Taylor, A., 2001. Rethinking the Evaluation of

Algorithm Animations as Learning Aids: An Observational Study. Int. J. Human

Computer Studies, 54, 265-284.

11. Lecerof, A., and Paterno, F. 1998. Automatic support for usability evaluation.

IEEE Transactions on Software Engineering 24:10, 863-887.

12. Lewis, C. Using the ‘Thinking Aloud’ Method in Cognitive Interface Design.

Research Report RC9265, IBM Thomas J. Watson Research Center, Yorktown Heights,

N. Y., 1982.

13. Mobasher, B. Cooley, R., and Srivastava, J. 2000. Automatic personalization

based on web usage mining. Communications of the ACM, 43:8, 142-151.

14. Mulholand, P. 1998. A Principled approach to the evaluation of SV: A case study

in Prolog. In J. Stasko, J. Domingue, M. H. Brown, and B. A. Price, editors, Software

Visualization-Programming as a Multimedia Experience. Chapter 29. MIT Press.

Cambridge, MA. London, England. 439-452.

15. Mulvenna, M. D., Anand, S. S., and Buchner, A. G. 2000. Personalization on the

net using web mining. Communications of the ACM 43(8):123-134.

16. Nielsen, J. Usability Engineering. Boston: Academic Press, 1993.

17. North, C., and Shneiderman, B. 2000. Snap-together visualization: can users

construct and operate coordinate visualizations? Int. J. Human-Computer Studies 53:715-

739.

18. O’Leary, Mick 1999. Web Personalization Does it Your Way. Online, 23:2, 79-

82.

52

19. Randall, N. 1998. Making software easier through usability testing. PC Magazine

17(17):285-287.

20. Reed, S. 1992. Who defines usability? You do. PC Computing 5:12, 220-230.

21. Roman, G. C., and Cox, K. C. 1992. Program Visualization: The Art of Mapping

Programs to Pictures. Proceedings of the 14
th

 International Conference on Software

Engineering. Melbourne, Australia. May 1992. 92:6, 412-420.

22. Rubin, J. 1994. Handbook of Usability testing: How to plan, design, and conduct

effective tests. New York, NY: John Wiley and Sons, Inc.

23. Shneiderman, B. 1998. Designing the User Interface: Strategies for effective

human-computer interation. Reading, MA:Addison-Wesley.

24. Smyth, B. and Cotter, P. 2000. A personalized television listings services.

Communications of the ACM, Aug 2000; 43:8, 107-111.

25. Stasko, John, Domingue, John, Brown, Marc H. and Price, Blaine A. (editors),

1998. Software Visualization: Programming as a Multimedia Experience. MIT Press,

Cambridge, MA.

26. Stasko, J. T., and Kraemer, E. 1993. A Methodology for Building Application-

Specific Visualizations of Parallel Programs. J. Parallel and Distributed Computing, 18,

258-264.

27. Storey, M.A.D., K. Wong, H. A. Muller. 1997. How do program understanding

tools affect how programmers understand programs? Proceedings of the Fourth Working

Conference on Reverse Engineering. Amsterdam, Netherlands. 6-8.

53

28. Sutcliffe, A. G., Ennis, M., and Hu J. Evaluating the effectiveness of visual user

interfaces for information retrieval. Int. Human-Computer Studies 53:741-763.

29. Topol, B., Stasko, J. T., and Sundram, V. 1998. PvaniM: A Tool for Visualization

in Network Computing Environments. Concurrency: Practice And Experience, 10:14,

1197-1222.

30. Wells, N., Wolfers, J. and Riecken, R. C. 2000. Finance with a personalized

touch. Communications of the ACM, Aug 2000. 43:8, 30-34.

31. Wharton, C., Rieman, J., Lewis, C., and Polson, P. “The Cognitive Walkthrough:

A Practitioner’s Guide,” Usability Inspection Methods, J. Nielsen and R. L. Mack, eds.

New York: John Wiley & Sons, 1994.

32. Zernik, D., Snir, M., and Malki, D. 1990. Using Visualization Tools To

Understand Concurrency. IEEE Software, 9:3, 87-92

APPENDIX A

HANDOUT

Consent form:

The purpose of the study is to better understand the potential for governments to develop customized information and
service delivery via the Internet. In particular, we want to know just how difficult and time-consuming it is likely to be
for public managers to build customization software applications. As most public managers have education levels
similar to yours, your performance on a task of software application building will give us some insight into the likely
performance of public managers. The task will likely take most of the class period and will involve the use of logic and
the ability to learn a new software interface.

During (or after) participation you could experience discomfort because of a feeling that your individual performance is
being judged. You should be assured that this is not the case. While your individual performance time and score will
be recorded, it will not be identified or connected in any way with you. To protect your confidentiality, we are asking
participants to use a code word to identify their work and other information provided. As the researchers will not know
this code word, your individual performance cannot be known to the researhers, your instructor or others. Hence, there
is almost no risk that your performance could affect your class standing/grade or change anyone’s perceptions of your
ability. Also, while we greatly appreciate your help in this research effort, your participation is entirely voluntary. The
researchers can be reached by telephone at: 706-542-5799 , 706-542-0597 and 706-542-9606 and by email at:
eileen@cs.uga.edu , olooney@cviog.uga.edu and dhawan@cs.uga.edu.

No discomfort and stresses are foreseen.

No risks are foreseen.

I agree to take part in a research study titled “Customization/Personalization Software Usability Study”, which is being
conducted by Eileen Kraemer (Computer Science Dept., 706-540-5799), and her graduate student Ritu Dhawan under
the direction of Eileen Kraemer and John O’ Looney (Carl Vinson Institute of Government, 706-542-9606). I do not
have to take part in this study; I can stop taking part at any time without giving any reason, and without penalty. I can
ask to have information related to me returned to me, removed from the research records, or destroyed. I understand the
procedures described above and I am over 18 year old.

My questions have been answered to my satisfaction, and I agree to participate in this study. I have been given a copy
of this form.

/ /2001

Researcher’s Name (Please Print) Researcher’s Signature Date

/ /2001

Participant’s Name (Please Print) Participant’s Signature Date

For questions or problems about your rights please call or write: Chris A. Joseph, Ph.D., Human Subjects
Office, University of Georgia, 606A Boyd Graduate Studies Research Center, Athens, Georgia 30602-7411;
Telephone (706) 542-6514; E-Mail Address IRB@uga.edu.

 54

55

Questionnaire:

NOTE: Please take one copy of the consent form with you and give one to the

researcher.

Id Code: ________________ (same as the userID you will use on the login).

Time to Start Sample Exercise:___________
Time of Finishing Sample Exercise:_________
Time to Start Exercise 1:___________ Time of Finishing Exercies1:_________.

Type of Task: (circle one) Occurrence Priority

General experience and comfort with learning to use new software applications

without instruction:

 Little 1 2 3 4
5

A great deal

How important do you think it is that governments provide web sites that have been

personalized to the individual needs of citizens?

Very Unimportant 1 2 3 4 5 Very
Important

To what degree do you think that a college graduate in a non-technical field would

be able to create a web site that was personalized for individual citizens?

Very unlikely 1 2 3 4
5

Very likely

Rate the degree to which the following were barriers to using the software:

Analyzing the exercise problem to create the logic:
Not a barrier 1 2 3 4

5
Very much a barrier

Using the software interface to implement the logic:
Not a barrier 1 2 3 4

5
Very much a barrier

Do you think you are capable of teaching others to use this application?

Very unlikely 1 2 3 4
5

Very likely

Given the nature of the task, to what degree were the directions clear and

understandable? (If you rate as unclear, please specify or note on directions where

this is the case)

Very Unclear 1 2 3 4 5 Very Clear

56

Estimate (as a percent of the total time you spent on Exercise 1, the first exercise)

the time you think it would take you to complete another assignment of similar

difficulty.

Circle one: [100% 90% 80% 70% 60% 50% 40% 30% 20%
10%]

What kind of problems did you experience with this application?

What design feature did you find useful or helpful?

What suggestions do you have for improving the usability of this application?

Directions: Directions for Experiment # 1: Please refer to the following website for
detailed directions and examples used to develop web personalization application.

http://webster.cs.uga.edu/~dhawan/personalization.html

Directions for Experiment # 2:
This experiment involves creation of personalized web pages using personalization

software. In this experiment you will perform two exercises, attached at the end of this
handout and entitled, (1) Emergency Management Application Marketing Report and (2)
Health and Wellness Advisor Application Marketing Report. A step-by-step procedure
and strategies to perform the tasks with related examples are also included in this
handout.

 The three main steps in creating a personalized application are:
1. Creating profile question/statements. These profile questions are used to

classify users into groups and are the basis for the selection of messages to
present.

2. Adding messages. These are the messages that will appear on the
personalized web page.

3. Building the logic. This determines which messages each group of users will
receive.

Before performing the real exercises you will perform a SAMPLE exercise to
familiarize you with the real exercises. In case the description provided in the handout is
not sufficient, a detailed description and related examples are also available at:
http://iep.cviog.uga.edu/ptechnew/directions.asp

The SAMPLE exercise will help you to understand the steps involved in completing
the real exercises and to get the feel of the final product. Go through the sample

exercise on page A1 very carefully and follow the directions given below. After you
finish the SAMPLE exercise you will follow the same steps to complete the two exercises
provided at the end of the handout.

57

Directions

1. Choose the type of application you want to develop, Occurrence in your case.
2. Type in a unique ID for yourself to login and click on the “Begin Application

Building” button.
3. Record this ID and start and stop time of your sample test, Exercise 1 and

Exercise 2.
4. Directions are provided on each page we will go through to build the application.

However, you should focus on the directions provided on this handout and refer to
the onscreen directions only if you need further assistance.

Step 1: Create New Profile Set

Once you have logged in, you will be taken to a Control Page where you will begin to
build an application. The type of application you chose will be displayed. Since you are
using this software for the first time, choose the New Application button

Click on the “New Application” button to go to the “Personalization System

Creation Form”. When you reach this form, you will notice that it has already
been given a unique name and that two sample profile questions have been filled
in.

Click the submit button to finish setting up an application that provides
personalized messages to people based on their level of physical fitness and
whether they smoke or not.

NOTE: you should only use YES-NO (this choice automatically provides
a Yes and No label for these two answer choices) or SCALE (this choice
automatically create a response set of five choices, essentially 1 to 5 on a 5
point Very False-to-Very True Scale). You can ignore Weight and other
optional factors that are marked in blue.

After submitting the Creation Form, you will see two buttons.

Step 2: Add Messages and Go to Control Panel

Step 2: Add Messages

By clicking the Step 2: Add Messages button you will be taken to a form where you can
begin creating messages:

NOTE: For this sample exercise you need a total of two messages, provided below:

On this page you will see a text field labeled as message #1.

 Type in the following message in that field:

58

“You have a high risk of heart attack”

 Click on the “Add Message” button.

 Next you will be given the options to correct your message, add another message,
or move on to Step 3 (building Logic).

Click on the “Add Another Message” button and you will see the label of the
message text field changed to “message # 2”.

Enter the following message in the message # 2 field.
“You have a low risk of heart attack”

Click the “Add Message” button.

Click on “Finish adding messages Go to step3: Building logic”

Step 3: Building Logic

This will bring you to an “Adding Logic” form where you will begin to
create a logical link between the Profile statements/questions set in Step 1
and the Messages you created in Step 2.

I exercise frequently.

Very false Very true

1 2 3 4 5

Yes
High
Risk

High
Risk

High
Risk

High
Risk

High
Risk

No
High
Risk

High
Risk

High
Risk

Low
Risk

Low
Risk

Here you specify the required pattern by using the series of condition Operator

radio buttons in combination with the series of Value radio buttons. The Operator
buttons are: = [Equal to], LT= [Less Than or Equal to], GT= [Greater Than or
Equal to].

A
re

 y
o

u
 a

 h
ea

v
y

 s
m

o
k

er
?

Value buttons include an NA or Not Applicable button and five more buttons
that have underlying values ranging left to right from 1 to 5. (Note: if you
specified a Yes/NO, the value for Yes is 1 and value for No is 2). Using a
combination of an Operator and a Value button, you can specify that a text will be
returned based on any set of values (both within a single condition statement or
across a number of condition statements). The default Value button begins with
each condition statement being NA. You will need to specify at least one of the
statements as applicable to obtain an answer.

59

The chart above indicates the profile associated with low or high risk of heart
attack. Three logic statements, corresponding to the three marked boxes, are
necessary to specify this.

Logic 1: People who answer “Yes” for condition 1 (Are you a heavy smoker?) are
at high risk, no matter how they answer condition 2 (I exercise frequently). This
can be indicated by selecting greater than or equal to 1 for condition 2 or by
selecting N/A for condition 2.

Logic 2: People who answer “No” for condition 1 (Are you a heavy smoker?),
and less than or equal to 3 for condition 2 (I exercise frequently) are at high risk.

Logic 3: People who choose “No” for condition 1(Are you a heavy smoker?) and
greater than or equal to 4 for condition 2 (I exercise frequently) are at low risk.

NOTE: you have to always choose “=” for operator button if it’s a YES/NO type
question.

Important Tip: If you want a text block to be returned no matter what, you will need to
set one of the statements to a logic value of 1 (or very false) and keep the default
direction value of Greater than or equal to (GT=).

These logics can be implemented using the following steps:

Choose from “This Message #:…..” window, a message you want to be
returned based on the logical link you will create.

Choose a combination of operator and value button based on the above
example of logic to create a logical connection.

After creating each logic click on the “Make Logical Connection“ button.

You will get a message box. Confirm by clicking “OK” on the text message box.

This will lead you to a page where you have option to, Make More Logical

Connections, Review your Messages/Logic, GO to Step 4 (Finish & Test the

Application) or Go to the Control Panel.

Click on “Make More Logical Connections” and repeat the same steps given
above till you have made at least one logical connection with each messages. (In this
case you have to create 3 logics for two messages to achieve logic shown in the chart
above).

NOTE: Besides these examples you can make more message/logic
connections for each message.

If you want to revise your logical connection, click on “Review your logic

and messages” and click “review link” besides the message you want to
revise the logical link of. You can also add more logic sets to the message by

60

clicking on “Add link” besides the message you want to add more logical link
to.

After making all logical connections we can click on button “GO to Step

4 (Finish & Test the Application)” to test the application we just built.

Step 4. Test the correctness of your logic

If you choose the “Finish and Test.” button, you will then see a form that
replicates what a potential client or user might see. Click on the various radio
buttons, to provide profile data, and click the “Test Application” button.

Test the various responses to the condition statements to be sure that they return
the appropriate text.

Example: In this sample test:
If you choose:

Are you a heavy smoker? As Yes, and
I exercise frequently. As (=LT) 3
and then click on “Test Application”. You should be able to see “You have a
high risk of heart attack” or

If you choose:
Are you a heavy smoker? As No, and
I exercise frequently. As (=GT) 4
and then click on “Test Application”. You should be able to see “You have a low
risk of heart attack”

 If you do not get the correct response, you can go back to the “Control Page” and
then click the “Review Messages/Logic” button to revise your logic.

5. You can always go to the Control Panel and revise the application you have

built.

6. The material following this consists of the strategies and some examples for

performing the exercises and the two exercises you have to complete in this

experiment. You will create a total of two applications, one for each exercise.

Name your applications exactly as specified below and then follow the same

step-by-step directions you used to create the sample exercise to complete

each of them. In both the exercises you need to create 3 condition

question/condition statements, 6 messages and 10 logic sets. For each

application you will go to the control page and start by clicking on the “New
Application” button. This will take you to the Create application form page;

give a name to your application as specified below.

Name for exercise 1: Emergency + your ID

Name for exercise 2: Health + your ID

Remember to record start and stop times on the questionnaire.

61

Steps to perform Exercise 1: Emergency Management Application Marketing

Report

Please go through Exercise 1(pages B1 - B3) very carefully and then perform the

following steps.

1. Go to the control page to start the new application.
2. Click on create/load another application.
3. Click on new application.
4. Fill in the new name for your application, Emergency + your ID in this case.
5. Erase the profile questions already filled in and type in the following questions in

the profile statement/question box and specify the kind for each in the drop down
“Kind Menu”. These conditions are based on conditions given in exercise 1, under
Issue A, B and C.

NOTE: There are three different issues in exercise 1 and all of the can be addressed
asking following questions:

Statement/questions Kind

1. Your family has many children. SCALE
2. Do you have electronic gear? YES/NO
3. You own an aggressive pet. SCALE

6. After filling the form, click on submit.
7. Click on “Add Messages”.
8. Add messages, a total of 6 in this case. One specifying high risk and another low

risk for each emergency conditions given in the exercise and as we did for the
sample test. Follow the exact directions in step 2 mentioned above.

NOTE: Keep your messages very simple: "You are at [high/low] risk of". Each
message should convey only ONE idea (e.g., "You are at high risk of illness", NOT
"You are at high risk of illness and high risk of crime.").
9. Create logic links, a total of 10 logical connections for this exercise. You have to
create logic depending conditions given in each issues in the exercise. The number of
logical pattern you have to create for each issue and type of issue (one condition, two
condition or three condition are given in the exercise). One message (e.g., "You are at
high risk of illness") will sometimes need to be linked to more than one logical
pattern depending on the conditions specified in the exercise. This is the main part

of the exercise, and it is very important for you to correctly specify the logic

patterns for each type of issue. If you wish you can use the scratch paper

provided to create charts as shown in the sample test to build your logic.

NOTE: Examples to create logic for one condition factor and two conditions

factor are given in the strategies to perform the application, pages 10 - 14.

9. Test the logic for correctness.

62

Steps to perform Exercise 2: Health and Wellness Advisor Application Marketing

Report

1. Exercise 2 is described in page C1.

2. Follow the same procedure as described for exercise1.

3. Name your exercise 2 as Health + your ID.

EXERCISE 1: Emergency Management Application Marketing Report

Your goal in personalizing the emergency management section of the web site

should be to provide the citizen-users with a sense of their risk (HIGH or LOW) for

each of the following dangers:

A. Sudden illness
B. Sudden Illness
C. Neighborhood Dispute Risk
D. Crime

To keep the messages simple, you will need only to indicate whether a family is likely to
be at high or low risk for each of these threats. For the entire exercise you will need to
produce:

3 condition statements/questions

6 messages (a high and a low risk message for each area)

10 logic patterns/links

Issue A. Illness Risk [2 logic patterns]

One Condition/profile factor affects illness risk:

All else being equal, the more children in the family the more the family is at risk
of a sudden illness. (SCALE)

Issue B. Neighborhood Dispute Risk [3 logic patterns]

Two Condition/profile factors affect dispute risk:

No matter how other factors affect risk for neighborhood disputes, families with
electronic gear are at high risk for neighborhood disputes. (YES/NO)

All else being equal, the more aggressive the family pet, the more likely the
family will be at higher risk of a neighborhood dispute. (SCALE)

GUIDING EXAMPLE for Dealing with Issue B

63

All else being equal, wealthier people are more likely to need a reminder to file a luxury

tax.

No matter how other factors affect the likely need to file a luxury tax, a person with a

disability will be at a low risk of having to file a luxury tax.

Example Text-Logic Patterns Needed

Text

Message

Logic

1. HIGH

RISK: You

are very

likely to

need to

file a

luxury tax.

1. Wealth condition is equal to or greater than (=GT) 4.

Disability condition is No (=) NO.

2.LOW

RISK: You

are not

likely to

need to

file a

luxury tax.

2. Wealth condition is equal to or less than3. (=LT) 3

Disability condition is No (=) NO.

3. Wealth condition is equal to or greater than (=GT) 1. (I.e., any wealth

condition)

Disability condition is Yes (=) Yes.

Issue C. Crime Risk [5 logic patterns]

Two Condition/profile factors affect crime risk:

All else being equal, families with more aggressive pets are at higher risk of
crime. (SCALE)

 All else being equal, families with more children are at higher risk of crime.
(SCALE)

64

While a number of different logic patterns could be used to establish high and low

risk, for the purpose of this exercise, you are instructed to provide a high risk message

when: at least one condition is at the True or Very True level (i.e., equal to or greater than
4), while the other condition is at least at the neutral level (i.e., equal to or greater than 3).
It takes two logic patterns to state this. Because the low risk group must include all of
the remaining possibilities, this would mean that if either condition were less than the
neutral level (i.e., equal to or less than 2), the person would be of low risk –no matter
what the value of the other condition was. Low risk would also occur when both
conditions are neutral. It takes three logic patterns to state this.

Two-Factor-Plus-Qualification Scenario

 All else being equal, wealthier people are more likely to need a reminder to file a
luxury tax. (SCALE)

All else being equal, the more homes people own the more likely they are to need
to file a luxury tax. (SCALE)

65

Example Text-Logic Patterns Needed

Text Message Logic Settings

1. HIGH RISK: You are very likely to
need to file a luxury tax.

1. Wealth condition is equal to or greater
than (=GT) 4.

Home ownership condition is equal to or
greater than (=GT) 3.

 2. Wealth condition is equal to or greater
than (=GT) 3.

Home ownership condition is equal to or
greater than (=GT) 4.

 2. LOW RISK: You are unlikely to
have to file a luxury tax.

3. Wealth condition is equal to or greater
than (=GT) 1.

Home ownership condition is equal to or
less than (=LT) 2.

4. Wealth condition is equal to or less than
(=LT) 2.

Home ownership condition is equal to or
greater than (=GT) 1.

5. Wealth condition is equal to (=) 3.

Home ownership condition is equal to (=)
3.

66

EXERCISE 2: Health and Wellness Advisor Application Marketing Report

 Your immediate goal in personalizing the health and wellness section of the web site is
to provide the citizen-users with a sense of their level of risk (HIGH or LOW) for each of
the following dangers:

A. Heart attack
B. Bone disease
C. Cancer

 Keep the messages simple: only indicate whether a family is likely to be at high or
low risk for each of these threats

 For the entire exercise you will need to produce:

3 condition statements/questions

6 messages (a high and a low risk message for each area)

10 logic patterns/links

Our research indicates that:

Issue A. Heart Attack [2 logic patterns]

All else being equal, the older one is the higher one’s risk of a heart attack.
(SCALE)

Issue B. Cancer [3 logic patterns]

All else being equal, the more one exercises, the less risk of cancer. (SCALE)
No matter how other factors affect risk for cancer, if one smokes, one is at high
risk of cancer. (YES/NO)

Issue C. Workplace Injury [5 logic patterns]

All else being equal, the older one is the higher risk for workplace injury.
(SCALE)

All else being equal, the more one exercises, the higher the risk of workplace
injury. (SCALE).

While a number of different logic patterns could be used to establish high and low

risk, for the purpose of this exercise, you are instructed to provide a high risk message

when: at least one condition is at the True or Very True level (i.e., equal to or greater than
4), while the other condition is at least at the neutral level (i.e., equal to or greater than 3).
Because the low risk group must include all of the remaining possibilities, this would
mean that if either condition were less than the neutral level (i.e., equal to or less than 2),

67

the person would be of low risk –no matter what the value of the other condition was.
Low risk would also occur when both conditions are neutral. It takes three logic patterns
to state this. (see example from first marketing report).

SAMPLE EXERCISE: Sample Application Marketing Report

Application is already given a unique name

Your goal in personalizing the sample web site should be to provide the citizen-users

with a sense of their risk (HIGH or LOW) for the following danger:

A. Heart Attack
To keep the messages simple, you will need only to indicate whether a family/person is
likely to be at high or low risk for each of these threats. For the entire exercise you will
need to produce:

2 condition statements/questions (Already created and filled in for sample test)
2 messages (a high and a low risk message for each area)

3 logic pattern/links

NOTE: For the sample exercise you will be provided with the statement/questions

and messages.

Issue A. Heart Attack

Two Condition/profile factors affect heart attack risk:

No matter how other factors affect risk for heart attack, a person who smokes is at
high risk of heart attack. (YES/NO)

All else being equal, the less the person exercises, the higher is the risk of heart
attack. (SCALE)

Statement/question: These questions/statements are based on the conditions

provided above.

1. Are you a heavy smoker?
2. I exercise frequently.

NOTE: These statement/questions are already provided and typed in for you. In the

real exercises you will provide your own statements and questions.

Message: These messages are based on the danger (Heart attack) provided above.

1. You have a high risk of heart attack.
2. You have a low risk of heart attack.

APPENDIX B

RAW DATA

Raw Data For Experiment # 1 on Web Personalization Software (occurrence type

application):

Code Correctness Exercise 1 Exercise 2
Ex1 Ex2 start stop Diff start stop Diff

 time time time time

smith 6 5 3:45 4:00 15 4:01 4:08 7
bob 1 7 12:35 1:04 29 1:06 1:31 25
666 0 0 2:30 3:10 40 3:10 3:30 20
jcc 0 0 4:50 5:15 25 5:15 5:30 15
Rugger 1 0 4:50 5:25 35 5:25 5:45 20
conin666 0 0 4:55 5:30 35 5:30 5:50 20
Belllover 6 5 6:45 7:15 30 7:15 7:43 28
cs6800 1 2 12:33 1:40 67 1:40 1:45 5
quirk 0 0 2:40 3:00 20 3:00 3:15 15
sisyphus 1 1 4:55 5:45 50 5:45 6:05 20
mitchell 5 5 3:55 4:11 16 4:13 4:18 5
mi 8 9 3:00 3:17 17 3:17 3:32 15
vicki 6 5 10:15 10:45 30 10:45 11:03 18
crazy 5 7 10:15 10:55 40 10:55 11:10 15
smlee 3 4 2:46 3:05 19 3:05 3:13 8
BEP 7 0 11:14 11:46 32 11:47 12:04 17
Jinling 1 2 11:30 11:50 20 11:50 12:15 25
sahib! 7 9 1:00 1:12 12 1:12 1:24 12
paperclip 8 0 12:40 1:30 50 - -
reux 0 0 1:10 1:16 6 1:16 1:24 8
CME 5 5 7:13 7:34 21 7:35 -
mean 3.38 3.14 29 15.68
var 9.14 10.12 216 46.89
std 3.02 3.18 14.69 6.84

68

69

Raw Data For Experiment # 1 on Web Personalization Software (priority type

application):

code Correctness Exercise 1 Exercise2
 Ex1 Ex2 start stop time start stop Time
 Time time diff time tme diff
shah4356 10 10 3:45 4:00 15 4:00 4:06 6
Superman 5 5 6:53 7:32 39 7:32 7:54 22
tata 0 0 10:22 10:30 8 10:31 10:39 8
Holly 2 2 5:33 5:45 12 5:46 5:53 7
toons 5 7 12:50 1:10 20 1:10 1:26 16
jayjay 6 0 1:06 1:19 13 1:20 1:24 4
br-30605 0 0 12:47 1:05 18 1:06 1:23 17
alpha1 10 10 12:57 1:08 11 1:08 1:17 9
cowboy 0 0 12:47 1:12 25 1:13 1:35 22
Q26789 0 0 12:35 1:30 55 1:30 1:45 15
IS8526 5 0 12:30 1:40 70 1:41 1:50 9
nebraska 6 4 2:40 3:15 35 3:15 3:30 15
newbie 8 5 2:37 2:52 15 2:52 3:04 12
hahaha 2 2 4:53 5:25 32 5:25 5:52 27
mean 4.21 3.21 27.15 14.07
var 13.10 13.72 348.47 45.91
std 3.61 3.70 18.66 6.77

APPENDIX C

ALGORITHMS

1) Dijkstra-Scholten Distributed Diffusing Termination Detection

//Node Class: each node contains pipes to read incoming messages and send
//outgoing messages. contains parent in not root.
//starts the thread if the node is a root.

public class Node{
 int parent = -1; //parent ID or -1 for no parent
 int n= 0; //number of nodes
 public Pipe[] outgoing; //outgoing link to node i; null for no link
 public Pipe[] incoming; //incoming link from node i, null for no link
 public boolean root = false; //true if this is a root
 public int myid = 0; //the ID of this node
 boolean idle = true; //true if this node is idle (not working)
 int count = 0; //counter to keep track of messages not acknowledged

 public Node(int num, int id){ //initialize the node
n = num;
myid = id;

//at most n outgoing and incoming links
outgoing = new Pipe[n];
incoming = new Pipe[n];

//initially this node is not connected to any other node
for(int i=0; i<n; i++){

 outgoing[i] = null;
 incoming[i] = null;
 }
 }//end of Constructor

 public void addOutLink(Pipe p, int neigh){//add outgoing link to node neigh
System.out.println("NODE "+ myid+": outgoing link to "+ neigh);
outgoing[neigh] = p;

 }//end of addOutLink

 public void addInLink(Pipe p, int neigh){ //add incomming link from node neigh
incoming[neigh] = p;
System.out.println("NODE "+ myid+": incoming link from "+ neigh);

 }//end of addInLink

71

72

 public void run(){ //what this node does
 int aux;
 System.out.println("NODE "+myid+": "+"root is "+root); //write the current
values of the variables
 System.out.println("NODE "+myid+": "+"counter is "+counter);
 System.out.println("NODE "+myid+": "+"idle is "+idle);
 System.out.println("NODE "+myid+": "+"parent is "+parent);
 if(root == true)
 Application.sendMsg(); //the underlying application may send messages to
other nodes
 while(true){ //this is a daemon, so it runs continuously
 for(int i=0; i<n; i++){ //check each possible link of the node
 if(incoming[i] != null){ //there is a link from i
 aux=incoming[i].get(); //get the message if any
 if(aux != NO_MSG){ //if there is a message
 System.out.println("NODE "+myid+": message type "+aux+" from
node "+i);
 if(aux == APP_MSG){ //application message
 idle = false; //start working
 System.out.println("NODE "+myid+" :"+ "idle is"+ idle);
 if(parent==-1 && root==false){
 parent = i;
 System.out.println("NODE " + myid+": parent is "+
parent); }
 else{ outgoing[i].put(ACK_MSG); //send an
acknowledgement
 System.out.println(" NODE " + (char)('A'+myid)+
 ": Sending Ack to the parent "+(char)('A'+Parent));
}
 //the underlying application may send messages to other nodes
 Application.sendMsg();

System.out.println("NODE "+myid+": App message sent to
"+otherNodes);

 System.out.println("NODE "+myid+": counter is "+counter);
 }
 if(aux == Pipe.Ack){ //message is an acknowledgement
 count--;
 System.out.println("NODE "+myid+": counter is "+count); }
 }//if (aux != NO_MSG)
 }//if (incoming[i] != null)
 }//end of for loop

 Application.checkIdle(); //check if the underlying application finished; this
might modify idle
 System.out.println("NODE "+myid+": done is "+done);

73

 if(root && idle == true && count ==0)
 System.out.println("Node "+myid+": task finished");
 if(!root && parent != -1 && idle == true && count==0){ //acknowledge to
parent
 outgoing[parent].put(ACK_MSG);
 System.out.println("NODE "+myid+ ": "+ "ack sent to parent "+parent);
 parent = -1;
 System.out.println("NODE "+myid+ ": "+ "parent is "+parent); }
 }//end of while(true)
 }//end of run method
}//end of class Node

Explanation of Dijkstra-Scholten Distributed Diffusing Termination Detection

The algorithm presented here assumes a distributed environment, which consist of a set
of nodes that can communicate with each other only through message passing. The nodes
are independent machines, like the ones that form the Internet, and they are linked to
some of the other nodes (not necessarily all) by links or channels. A node knows only the
number and the name of its neighbors, i.e., nodes to which it has a link. The only
interaction between the nodes is via messages sent or received on the links. For example,
it is impossible for a node to find the value of a variable A at one of the neighbors
directly; it must send a message to ask for that value, and if the neighbor understands the
request, it sends the value back.

A termination detection algorithm is designed to allow a node to determine if a task that
is computed by multiple nodes has finished or not. Such a task (also referred to as an
application) can be a project on which multiple people, each at home and using only
email, work. The project might be a software product, which is divided among multiple
people. Each person knows how to do certain things and cannot perform another. After
they program some parts of a module (i.e. the networking functions), they might need to
send that module to some other people so they can work out other aspects of the module
(such as the dialog interface). At any time they might receive a request to do something
from the people they know of (neighbors in the distributed environment). They can
decide to work on that request, or to divide it among other people, or both.

The problem is how the initiator of the project detects the project’s completion. It is
possible that people not known to the initiator are still working on the project.
Furthermore, even if everybody responds that they are done, the assumption that the task
is finished might not be correct. A request might be in transit between two people that are
not working, and neither the sender or the receiver might be aware of the status of the
request: the sender might assume that the request was already processed, and the receiver
might not know that a work request is going to arrive. Thus, the task is not finished until
the job in the request is performed.

74

The termination detection algorithm is design to provide the initiator of the project with
an answer of whether the application (project) is finished. Note that the project itself can
be any distributed application (any algorithm) not only the example presented above.
Termination detection works on top of this underlying application, i.e., people are still
performing their duties, but they also do the termination detection.

The termination detection needs to know three things about each node (person), whether
they are idle or working, the number of other nodes to which this node has sent a request,
and the person that gave them a request. Three variables are kept at each node (and
because this is a distributed environment are known only to that node):

-a boolean named idle, which is false when the node is doing something.
-an integer named count which contains the number of application messages
(requests) that have not yet been acknowledged. An application message is any
message that would be sent by the application even when the termination
detection is not used. An acknowledgement is a new type of message different
from any application message.
-a string named parent that contains the name of the node that gave some work to
this node.

The parent is initially null, to show the fact that the node is not working on a task. The
initiator (called root) also does not have a parent. When a node receives a request
(application message) and it has not already had a parent, then its parent becomes the
node that sent the request. A node, however, does not change its parent if it is not null.

When a node is done, it sends an acknowledgement to its parent. The node replies
immediately with an acknowledgement to every application message that was received
after its parent was set.

The parent variable creates a virtual tree of all the nodes that are involved in computing
the task (work for the underlying application). This tree can expand as more nodes are
involved in the application and can shrink as they finish their parts, due to the distributed
nature, it is possible for a part of the tree to shrink while another part expands. A node
can enter and exit the tree multiple times for the same project.

A node exits the tree only when it knows it is done (although it may be activated again
later). For a node to be done, it is not enough to be idle, it also needs to have no other
children. Otherwise, those children might be still working on the project, and the
detection might give false answers.

The project is done when the root is done. This property can be detected by the root and
ensures that no node is working on the project.

Question instructions:
-assume that at most one application task is performed in the entire network at one
time

75

2) Distance Vector (Bellman-Ford) Routing Algorithm

//Node Class: each node contains pipes for incoming and outgoing links.

//each node is a separate process
public class Node extends Thread{
 //true if the table has changed since the last update
 boolean changed = false;
 int n= 0; //the max number of nodes in the network
 public RoutingTable table; //routing table
 public Pipe[] outgoing; //outgoing channels
 public Pipe[] incoming; //incoming channels
 public int myid; //this node's id

 public Node(int num, int id){
 n = num;
 myid = id;

 //reset the links
 outgoing = new Pipe[n];
 incoming = new Pipe[n];
 for(int i=0; i<n; i++){
 outgoing[i] = null;
 incoming[i] = null;
 }
 }//end constructor

 //method to add outgoing link
 public void addOutLink(Pipe p, int neigh){
 outgoing[neigh] = p;
 System.out.println("Node "+myid+" outgoing link to "+neigh);
 }//end of addOutLink

 //method to add incomming link
 public void addInLink(Pipe p, int neigh){
 incoming[neigh] = p;
 System.out.println("Node "+myid+" incoming link from "+neigh);
 }//end of addInLink

 public void run(){

 //updates to neighbors are always going
 //to contain the self destination at distance 0

76

 //the destination table contains the self destination, with
 //the next hop the node itself, at distance 0
 table.addEntry(myid, myid, 0);

 int l=0;
 //check each channel of that node
 for(int i=0; i<n; i++){
 if(incoming[i] != null){
 //add an entry to the table for each neighbor
 table.addEntry(i, i, 1);
 }//end of if
 }//end of for

 System.out.println("Node "+myid+": "+table);

 //this broacasts the destinations and their corresponding
 //distances to all neighbors
 broadcastTable();

 while(true){//always look for update
 for(int x=0; x<n; x++){
 if(incoming[x]!=null){ //connected to x
 if(incoming[x].recovered){ //x just came up
 //add it to the table
 table.addEntry(x, x, 1);
 changed=true;
 }
 if(incoming[x].failed){ //if link failed
 //invalidate all table entries that have x as
 //the next hop
 invalidateNextHop(x);

 //make sure the new table gets broadcast
 changed=true;
 }
 else if(incoming[x].hasMsgs()){//a table was received
 comTable = incoming[x].get();
 System.out.println("Node "+myid+": received from "+x+
 " update "+printTable(comTable));
 for(dest in comTable){
 //get the entry for "dest" in the table
 //an entry is a 3-uple <dest, next, distance>
 TableEntry e=table.getEntryFor(dest);
 if(e==null){//don't know about dest
 table.addEntry(dest, x,
 1 + comTable.distanceTo(dest));

77

 System.out.println ("Node "+myid+": dest "+
 dest+", next hop "+x+
 ", distance "
 +table.distanceTo(dest));

 changed = true;
 }//end of if

 else if(comTable.distanceTo(dest)+1 <
 table.distanceTo(dest)){

 //record a shorter distance to an
 //existing destination
 table.modifyEntry(dest, x,
 comTable.distanceTo(dest)+1);

 System.out.println("Node "+myid+": dest "+ dest+
 ", next hop "+x+", distance "+table.distanceTo(dest));

 changed = true;
 }//end of else if
 }//end of for all dest

 for(dest in table){
 //an entry is a 3-uple <dest, next, distance>
 TableEntry e=table.getEntryFor(dest);

 //if x is used to reach e.dest
 if(e.next==x){
 //an entry is 2-uple <dest, distance>
 UpdateEntry upEnt=comTable.getEntryFor(e.dest);
 if(upEnt != null &&
 e.distance != upEnt.distance+1){
 //need to change this distance
 table.modifyEntry(e.dest, e.next,
 upEnt.distance+1);

 System.out.println("Node "+myid+": dest "+dest+
 ", next hop "+x+", distance "+table.distanceTo(dest));

 changed=true
 }
 if(upEnt == null){
 //x does not know about e.dest anymore
 table.removeEntry(e);

System.out.println("Node "+myid+ ": invalidating dest
"+e.dest);

78

 changed=true;
 }
 }//e.next==x

 //if x is not the next neighbor
 if(e.next!=x){

 if(comTable.getEntryFor(e.dest) == null){
 //x does not know about e.dest

 //send this to x
 changed=true;
 }
 }//e.next != x
 }//for
 }//end of elseif
 }//if incoming[x] != null

 //if necessary broadcast updates
 if(changed){
 System.out.println("Node "+myid+": table "+table);
 broadcastTable();
 changed=false;
 }
 }//for x=...
 }//while
 }//end of run method
 //invalidate all entries that have x as next hop
 //and prints out the invalidated entries
 public void invalidateNextHop(int x);

 //sends an update message to all neighbors
 //prints the neighbors that are included in the broadcast
 public void broadcastTable();
}//end of node

Distance Vector (Bellman-Ford) Routing Algorithm

The algorithm presented here assumes a distributed environment, which consist of a set
of nodes that can communicate with each other only through message passing. The nodes
are independent machines, like the ones that form the Internet, and they are linked to
some of the other nodes (not necessarily all) by links or channels. A node knows only the
number and the name of its neighbors, i.e., nodes to which it has a link. The only

79

interaction between the nodes is via messages sent or received on the links. For example,
it is impossible for a node to find the value of a variable A at one of the neighbors
directly; it must send a message to ask for that value, and if the neighbor understands the
request, it sends the value back.

A routing algorithm is designed to allow a node to address messages to any reachable
node in the network. Because initially only the neighbors are known, it is impossible for a
node to send a message to any other nodes except its neighbors. The routing algorithm
assumes that nodes cooperate and forward each other’s messages. In this way, a node can
communicate to any other reachable node.

A routing algorithm must handle crashes and additions of both links and nodes. If a link
or node fails, it may be necessary to use a different route between the same two nodes.
Similarly, additional links or nodes might offer shorter routes or might make it possible
to reach new nodes.

In distance vector routing a node knows, based on the destination of the message, to
which neighbor to forward that message (next hop). Therefore, a node keeps a table that
has three fields: destination, next hop, and distance. The first two fields are used for
forwarding messages, while the third is employed to choose the shortest path. In most
cases the shortest path excludes loops.

To build the routing table, neighbors tell each other what are the destinations they have
heard of and what is the distance to that destination. When an update message is received
(from one of the neighbors), a node checks to see if new destinations are included or if a
shorter route exists to an already known destination.

Initially, a node knows only of its neighbors and starts with a table that contains one entry
for each neighbor, with that neighbor as destination, as next hop, and with the distance

equals to one. That implies that to send a message to a neighbor, the next hop is the
neighbor itself at distance of one.

The table is modified only when an update message with new destinations or shorter
distances is received, when a failure is detected, or when a new link appears (for
simplicity, we don’t discuss how a link failure or addition is sensed). In case of a link
failure, all destinations that use that link are removed from the table. Note that a node
crash appears to all its neighbors as a link failure; it is impossible for the neighbor to
determine whether the link or the node has failed.

An update message is sent to all the neighbors in three cases:
-when the table is changed.
-when a new link is detected.
-when an update message from a neighbor does not contain a destination known
to this node (The can happen after one of the neighbor’s links has failed), or it
contains a longer route to a destination.

Question instructions:

80

-stable state means that no update message is in transit on any link, and that the
routing algorithm will produce no further update message before at least one link
fails or appears. Messages that are being forwarded among nodes are not routing
messages.

