
1

I VPR 1

© Copyright 2006 Haim Levkowitz

JavaScript Execution

Environment

• JavaScript Window object represents

window in which browser displays

documents

• Window object provides largest enclosing

referencing environment for scripts

• All global variables are properties of
Window

I VPR 2

© Copyright 2006 Haim Levkowitz

Execution Environment (2)

• Implicitly defined Window properties:

• document - reference to Document object that
window displays

• frames - array of references to frames of document

• Every Document object has:

• forms - array of references to forms of document

• Each Form object has elements array

• which has references to form’s elements
• Document also has anchors, links, & images

2

I VPR 3

© Copyright 2006 Haim Levkowitz

The Document Object Model
• DOM 0 supported by all JavaScript-enabled browsers

(no written specification)

• DOM 1 released in 1998

• DOM 2 is latest approved standard

• Nearly completely supported by NS7

• IE6’s support lacking some important things

• DOM = abstract model

• defines interface between HTML documents and
application programs—an API

I VPR 4

© Copyright 2006 Haim Levkowitz

simple document

• <html xmlns=“http://www.w3.org/1999/xhtml”>

<head> <title> A simple document </title>

</head>

<body>

<table>

<tr>

<th> Breakfast </th>

<td> 0 </td>

<td> 1 </td>

</tr>

<tr>

<th> Lunch </th>

<td> 1 </td>

<td> 0 </td>

</tr>

</table>

</body>

3

I VPR 5

© Copyright 2006 Haim Levkowitz

FIGURE 5.1 DOM structure

for simple document

I VPR 6

© Copyright 2006 Haim Levkowitz

Document Object Model (2)

- language that supports DOM

- must have binding to DOM constructs

- In JavaScript binding

- HTML elements represented as objects

- element attributes represented as properties, e.g.,

<input type = "text" name = "address">

 represented as object

with two properties: type and name

with values: "text" and "address"

4

I VPR 7

© Copyright 2006 Haim Levkowitz

Element Access in JavaScript

• First way to do it

Given document with just one form and one widget:
 <form action = "">

 <input type = "button“ name =

"pushMe">

 </form>

use DOM address
 document.forms[0].element[0]

Problem: document changes

I VPR 8

© Copyright 2006 Haim Levkowitz

Element Access in JavaScript

(2)
• Second way

Given document with element and all of its
ancestors (except body) having name attributes
 <form name = "myForm" action = "">
 <input type = "button“ name =
"pushMe">
 </form>
use named access
document.myForm.pushMe

• Problem: XHTML 1.1 spec doesn’t allow name
attribute on form elements

5

I VPR 9

© Copyright 2006 Haim Levkowitz

Element Access in JavaScript

(3)

• Third way

Where element ids are defined use
getElementById method

• (defined in DOM 1),

I VPR 10

© Copyright 2006 Haim Levkowitz

e.g., for

• <form action = "">

 <input type = "button“ id =

"pushMe">

</form>

use
document.getElementById("pushMe")

6

I VPR 11

© Copyright 2006 Haim Levkowitz

Element Access in JavaScript

(4)

• Checkboxes and radio button have implicit array

• which has their name
 <form id = "topGroup">
 <input type = "checkbox" name =
"toppings"
 value = "olives" />
 ...
 <input type = "checkbox" name =
"toppings"
 value = "tomatoes" />
</form>
...

I VPR 12

© Copyright 2006 Haim Levkowitz

• var numChecked = 0;

var dom =

document.getElementById("topGroup");

for index = 0; index <

dom.toppings.length; index++)

 if (dom.toppings[index].checked]

numChecked++;

7

I VPR 13

© Copyright 2006 Haim Levkowitz

Events and Event Handling

• event is notification that something

specific has occurred

• with browser or action of user

• event handler

• script, implicitly executed

• in response to appearance of event

• process of connecting event handler to

event is called registration

I VPR 14

© Copyright 2006 Haim Levkowitz

TABLE 5.1

Events and Their Tag

Attributes

8

I VPR 15

© Copyright 2006 Haim Levkowitz

TABLE 5.1 Events and Their

Tag Attributes (Continued)

I VPR 16

© Copyright 2006 Haim Levkowitz

Events and Event Handling (2)

• same attribute can appear in several different tags

• e.g., onclick attribute can be in <a> and <input>

• see Table 5.2 (pp 198-199) …

• text element gets focus in three ways:

• When user puts mouse cursor over it

• and presses left button

• When user tabs to element

• By executing focus method

9

I VPR 17

© Copyright 2006 Haim Levkowitz

TABLE 5.2

Event Attributes and Their

Tags

I VPR 18

© Copyright 2006 Haim Levkowitz

TABLE 5.2 Event Attributes

and Their Tags (Continued)

10

I VPR 19

© Copyright 2006 Haim Levkowitz

Events and Event Handling (3)

• Event handlers can be registered in two

ways:

• …

I VPR 20

© Copyright 2006 Haim Levkowitz

By assigning event handler

script to event tag attribute

• <input type = "button" name =

"mybutton"

onclick = "alert('Mouse

click!');" />

11

I VPR 21

© Copyright 2006 Haim Levkowitz

By assigning function to event

tag attribute

• <input type = "button" name =

"mybutton"

onclick = "myHandler();" />

I VPR 22

© Copyright 2006 Haim Levkowitz

Handling Events from Body

Elements

• Example: load event

• triggered when loading of document is

completed

• load.html

12

I VPR 23

© Copyright 2006 Haim Levkowitz

Handling Events from Buttons

• Plain Buttons – use onclick property

• Radio buttons - handler can be registered

in markup, sending particular button that

was clicked to handler as parameter

• e.g., if planeChoice is name of handler

and value of button is 172, use

• onclick = planeChoice(172)

I VPR 24

© Copyright 2006 Haim Levkowitz

radio_click.html

13

I VPR 25

© Copyright 2006 Haim Levkowitz

Radio button alternative

• register handler by assigning it property of

JavaScript objects associated with HTML

elements

I VPR 26

© Copyright 2006 Haim Levkowitz

radio_click2.html

14

I VPR 27

© Copyright 2006 Haim Levkowitz

Handling Events from Buttons

(2)

• Specifying handlers by assigning them to event
properties

• Disadvantage

• there is no way to use parameters

• Advantages

• It’s good to keep HTML and JavaScript
separate

• handler could be changed during use

I VPR 28

© Copyright 2006 Haim Levkowitz

Handling Events from Textbox

and Password Elements

• Focus Event

• can be used to detect illicit changes to text

box

• by blurring element every time element

acquires focus

• nochange.html

15

I VPR 29

© Copyright 2006 Haim Levkowitz

Checking Form Input

• good use of JavaScript -- find errors in input

before sent to server for processing

• save server time & network traffic

• must do:

• Detect error and produce alert message

• Put element in focus (focus function)

• put cursor in element

• Select element (select function)

• highlight text

I VPR 30

© Copyright 2006 Haim Levkowitz

• To keep form active after event handler
finished, handler must return false

• pswd_chk.html …

• validator.html …

16

I VPR 31

© Copyright 2006 Haim Levkowitz

pswd_chk.html

I VPR 32

© Copyright 2006 Haim Levkowitz

validator.html

17

I VPR 33

© Copyright 2006 Haim Levkowitz

The DOM 2 Event Model

• Does not include DOM 0 features

• but they are still supported by browsers

• DOM 2 is modularized

• one module is Events

• has two submodules,

• HTMLEvents

• MouseEvents, whose interfaces

• Event (blur, change, etc.)

• MouseEvent (click, mouseup, etc.)

I VPR 34

© Copyright 2006 Haim Levkowitz

• Event propagation

• node of document tree where event is
created called

• target node

• capturing phase (first phase)

• Events begin at root and move toward
target node

• Registered and enabled event handlers at
nodes along way are run

18

I VPR 35

© Copyright 2006 Haim Levkowitz

• second phase is at target node

• If there are registered handlers there for
event, they are run

• third phase is bubbling phase

• Event goes back to root; all encountered
registered handlers are run

• Not all events bubble

• (e.g., load and unload)

I VPR 36

© Copyright 2006 Haim Levkowitz

• Any handler can stop further event

propagation

• by calling stopPropagation method

of Event object

19

I VPR 37

© Copyright 2006 Haim Levkowitz

• DOM 2 model uses Event object

method, preventDefault, to stop

default operations

• such as submission of form

• if error has been detected

I VPR 38

© Copyright 2006 Haim Levkowitz

• Event handler registration is done with

• addEventListener method

20

I VPR 39

© Copyright 2006 Haim Levkowitz

• Three parameters:

• 1. Name of event, as string literal

• 2. handler function

• 3. Boolean value that specifies whether event

is enabled during capturing phase

• node.addEventListener("change",

chkName, false);

I VPR 40

© Copyright 2006 Haim Levkowitz

• temporary handler can be created by

registering it and then unregistering it with

• removeEventListener

• currentTarget property of Event

always references object on which

handler is being executed

21

I VPR 41

© Copyright 2006 Haim Levkowitz

• MouseEvent interface

• subinterface of Event

• has two properties

• clientX and clientY

• that have x and y coordinates of mouse
cursor, relative to upper left corner of browser
window

• example: revision of validator, using DOM 2
event model

I VPR 42

© Copyright 2006 Haim Levkowitz

validator2.html

22

I VPR 43

© Copyright 2006 Haim Levkowitz

• Note: DOM 0 and DOM 2 event handling

can be mixed in document

I VPR 44

© Copyright 2006 Haim Levkowitz

The navigator object

• Indicates which browser being used

• Two useful properties

• appName property has browser’s name

• appVersion property has version #

• navigate.html

