
Packing Density as a Function on the Voronoi Graph of Perfect Forms

Konstantin Rybnikov

University of Massachusetts at Lowell
Mathematical Sciences

One University Ave., Lowell, MA 01854
Konstantin Rybnikov@uml.edu

Abstract

We observe that for small n the ball packing density has a unique local maximum on the reduced

Voronoi graph, whose vertices are the arithmetic equivalence classes of perfect quadratic forms and

whose edges are the walls between the corresponding perfect domains.

1 Introduction

Consider R
n (n ≥ 0) as a topological group with respect to vector addition. A lattice is a discrete

subgroup of R
n; if o ∈ R

n and Λ ⊂ R
n is a lattice, then the set {o + v o ∈ R

n, v ∈ Λ} is called a
point lattice. Let Q be a positive definite quadratic form on R

n. Denote by m(Q) the minimum of Q

on Λ \ 0. A vector v of Λ is called minimal for Q if Q[v] = m(Q). Consider a linear inhomogeneous
system the system of equations

X[v] = m(Q),

where v runs over all minimal vectors of Λ and the coefficients of an unknown quadratic form X are
considered as variables. The form Q on Λ is called perfect if every non-zero solution of the above
system is of the form X = cQ, where c ∈ R>0.

We will refer to a lattice of rank (dimension) n as an n-lattice. Same convention applies to
polytopes, subspaces, etc. With any n-lattice Λ in R

n we can consider a set of equal n-balls centered
at the elements of Λ. Suppose the interiors of the balls do not overlap. Such an arrangement of balls
is called a lattice ball packing (and, in the case of a concrete lattice Lambda, the Lambda-packing).
The density of the packing is given by

VolB

VolΠ
,

where B stands for a ball in the Λ-packing and Π for a fundamental parallelepiped of the lattice.
A problem, studied by many, is to find a lattice that gives the highest possible density among
all lattices of its dimension. Obviously, it is enough to restrict our attention to packings of balls
that are tight, i.e. no increase of the ball size is possible without violating the condition that the
interiors of the balls do not overlap. Geometrically, this means each ball touches at least two other
balls. Again, it is obvious that we can further restrict to packings where each ball touches at least
2n balls. Furthermore, we only need to examine those Λ’s where any small perturbation of the
angles and lengths does not increase the density. Such lattices are called extreme.

An important observation that goes back to Gauss (for n = 2) and Minkowski (for general
dimension) is that isometry classes of lattices in R

n are in 1-to-1 correspondence with arithmetic
equivalence classes of positive definite quadratic forms ( Q ∼= Q′ iff there is τ ∈ GLn(Z) such that
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Q′[τx] = Q[x]). Namely, given a basis of an n-lattice, the corresponding quadratic form is given
by x 7→ xtBtBx, where x is a column vector and B is the matrix of the basis. Conversely, any
symmetric positive definite n × n matrix admits a factorization M tM , where rankM = n. Then
the columns of M can be interpreted as basis vectors for a lattice.Thus, the packing problem can be
rephrased in terms of quadratic forms. When dealing with quadratic forms we fix the lattice Λ as
Z

n and change the coefficients of the (variable) form. Quadratic forms can be considered as vectors

in R
N , where N = n(n+1)

2 . This interpretation endows the set of all quadratic forms in n-variables
with a dot product. If A and B are the matrices of quadratic forms, then the dot product A ·B is
defined as Tr(AB). Hence, for a fixed n we can talk about locally best packing forms as opposed
to globally best packing forms.

Korkin & Zolotareff (1873) proved that a form, which is a local maximum of the packing density,
must be perfect. Using this characterization they were able to find all the best packing lattices
(forms) for n ≤ 8. They also constructed a few infinite series (in dimension) of perfect forms. In
particular, they described all root lattices. It is not that they were interested in reflections, it just
happens that all root lattices, except for Z

n are perfect. Not all perfect forms are extreme (locally
maximal). In order for a perfect form to be extreme it must be eutactic, which is a classical theorem
of Voronoi (there is another criterion due to Korkin and Zolotareff, see Ryshkov and Baranovskii
(1979) or Martinet (2003)). A form Q is called eutactic if its dual can be written as a strictly
positive linear combination of rank one forms built from the minimal vectors of Q (i.e. forms of
type (v · x)2, where v is a minimal vector of Q and x is a variable vector).

For each n starting from 4 there is more than one extreme form. This makes it difficult to
rigorously solve the problem of the best lattice packing; even if we suspect that certain lattice is
absolutely the best, we have to prove that other local maxima do not beat our candidate. From
a formal point of view we are solving a non-convex optimization problem on the cone of positive
quadratic forms. Since each form has infinitely many equivalent ones, it is enough to find all perfect
forms up to arithmetic equivalence. The number of arithmetic equivalence classes of perfect forms
is finite in each dimension (a theorem of Voronoi, 1908). Voronoi gave an algorithm that finds
all perfect forms in a given dimension. Voronoi thought of each perfect form as of a cone whose
extreme rays are rank one forms corresponding to the minimal vectors of the form. Two cones
are called adjacent if they share an (N − 1)-face (facet). In the literature on perfect forms these
facets are usually called walls. The graph whose vertices are perfect forms in n variables and whose
edges are common walls of these cones is called the Voronoi graph for dimension n. The reduced

Voronoi graph has one vertex for each arithmetic equivalence class and one edge for each arithmetic
equivalence class of a pair of perfect cones with a common facet. It may happen that on each side
of a wall we find arithmetically equivalent forms. That is why for n ≥ 2 the reduced Voronoi graph
has loops.

2 Packing density as a function on Voronoi’s graph

Let (G,V ) be a graph. We say that a vertex v ∈ V is a local maximum of a function f : V → R if
for any w adjacent to v we have f(w) ≤ f(v). We observed that for small values of n (n ≤ 8) the
density function has a unique local maximum on the reduced Voronoi graph. In other words, the
only local maximum of the packing density is the global maximum. In dimension 9 the situation
seems to persist (as of this time perfect forms have been classified through the dimension 8).

Conjecture 1 The packing density has a unique local maximum on the reduced Voronoi graph.
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In dimensions where this conjecture holds the best packing lattice can be found by a greedy algo-
rithm that stops at the first encountered local maximum. This means once local optimality of a
vertex v is established, one does not need to examine the neighborhoods of vertices adjacent to v.
Hypothetically, this means that in certain dimensions we might be able to find the densest packing
lattice without complete enumeration of perfect forms. Of course, for some vertices of the reduced
Voronoi graph finding all the adjacent vertices can be very difficult, as demonstrated by the case
of E8 (Dutour, Schuermann, Valentin, 2007).

2.1 n ≤ 3

In each of these dimensions the perfect form is unique and is equivalent to An.

2.2 n ≤ 6

In our pictures we use two notations, Coxeter’s (1951) notation and Conway-Sloane’s (1988) nota-
tion. Coxeter’s notation covers only root lattices and their centerings. Conway-Sloane’s notation
is the simplest one; in each dimension n perfect lattices are named P 1

n through P 33
n in the order

of decreasing density, e.g. for n = 6, 7, 8 P 1
n stands for E6, E7, E8 respectively. We will omit the

dimensional subindex when the dimension is clear from the context. There are two other systems
of notation, the original one by Korkin and Zolotareff (1873) and the one by Voronoi (1908), as
extended by Barnes (1957). Korkin-Zolotareff notation is not very convenient. Voronoi-Barnes
notation is quite systematic (see Barnes (1952) and Anzin (2003)).

In all of the following pictures there is an arrow from a vertex X to a vertex Y if and only if the
density of X is strictly less than the density of Y (except for Figures 2 and 3 where the arrow from
P 28 to P 27 corresponds to an equality.) It is known from Voronoi (1908) that in all dimensions An

is adjacent only to Dn.

2.3 n = 7

In dimension 7 all forms, except for A7 = P 33, are connected to E7 = P 1. It is worth to mention
that P 2 = E∗

7 and P 4 = D7. For n = 7 we do not show loops and multiple edges. See Figures 2-4
for some other visualization of this graph.

2.4 n = 8

The situation in dimension 8 almost repeats the one in dimension 7. Namely, all forms except for
A8 and the form number 8190 (this is not the form number in Conway-Sloane’s notation) on the
list of 8-dimensional perfect forms compiled by Dutour, Schuermann, and Vallentin are connected
to E8. A simple check shows that the latter form is connected to forms of higher density.

2.5 n = 9

One change that is worth mentioning is that in dimension 9 the densest known form is not connected
to D9, unlike the cases of n ≤ 8 (Anzin, 2003).

3 Discussion

We suspect that there is hidden convexity structure on perfect (or just extreme ?) forms, at least
in low dimensions. Perhaps the best way to look for this structure is by recasting the description of
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Figure 1: Reduced Voronoi graph for n = 4, 5, 6. Arrows point in the direction of increasing packing
density.
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Figure 2: Reduced Voronoi graph for n = 7 (loops are not shown). Arrows point in the directions
of increasing packing density. Although there an arrow from P 28 to P 27 is shown, they have the
same density.

5



1

2

3

4

5

6

7

8
910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26
27

28

29

30

31

32

33

Figure 3: Circular visualization of reduced Voronoi graph for n = 7 (loops are not shown). Arrows
point in the directions of increasing packing density. Although there an arrow from P 28 to P 27 is
shown, they have the same density.
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Figure 4: 3D visualization of reduced Voronoi graph for n = 7 (loops are not shown). Vertices with
with higher altitude have higher density.
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perfect domains in terms of Ryshkov’s polyhedron µ(n) (Ryshkov, 1970). The facets of polyhedron
µ are defined by inequalities X[v] ≥ 1, where v runs over all primitive integer vectors and X is a
variable positive quadratic form. Polyhedron µ is known to be combinatorially dual to Voronoi’s
polyhedron Π. Indeed, if R

N is regarded as a vector space, the vertices of µ are perpendicular to the
facets (not the walls!) of Π. However, polyhedron µ seems to provide more geometric insight than
perfect cones. The relationship between µ and Π as affine objects calls for further investigation.
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