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Let ’s get  st ar t ed wit h...

Logic!
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Logic

• Cr ucial f or  mat hemat ical r easoning

• Used f or  designing elect r onic cir cuit r y

• Logic is a syst em based on pr oposit ions.

• A pr oposit ion is a st at ement  t hat  is eit her
t r ue or  f alse (not  bot h).

• We say t hat  t he t r ut h value of  a pr oposit ion
is eit her  t r ue (T) or  f alse (F).

• Cor r esponds t o 1 and 0 in digit al cir cuit s
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The St at ement / Pr oposit ion Game

“Elephant s ar e bigger  t han mice.”

I s t his a st at ement ? yes

I s t his a pr oposit ion? yes

What  is t he t r ut h value

of  t he pr oposit ion? t r ue
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The St at ement / Pr oposit ion Game

“520 < 111”

I s t his a st at ement ? yes

I s t his a pr oposit ion? yes

What  is t he t r ut h value

of  t he pr oposit ion? f alse
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The St at ement / Pr oposit ion Game

“y > 5”

I s t his a st at ement ? yes

I s t his a pr oposit ion? no

I t s t r ut h value depends on t he value of  y,
but  t his value is not  specif ied.

We call t his t ype of  st at ement  a
pr oposit ional f unct ion or  open sent ence.
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The St at ement / Pr oposit ion Game

“Today is J anuar y 1  and  99 < 5.”

I s t his a st at ement ? yes

I s t his a pr oposit ion? yes

What  is t he t r ut h value

of  t he pr oposit ion? f alse
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The St at ement / Pr oposit ion Game

“Please do not  f all asleep.”

I s t his a st at ement ? no

I s t his a pr oposit ion? no

Only st at ement s can be pr oposit ions.

I t ’s a r equest .
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The St at ement / Pr oposit ion Game

“I f  elephant s wer e r ed,

t hey could hide in cher r y t r ees.”

I s t his a st at ement ? yes

I s t his a pr oposit ion? yes

What  is t he t r ut h value

of  t he pr oposit ion? pr obably f alse
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The St at ement / Pr oposit ion Game

“x < y if  and only if  y > x.”

I s t his a st at ement ? yes

I s t his a pr oposit ion? yes

What  is t he t r ut h value

of  t he pr oposit ion? t r ue

… because it s t r ut h value
does not  depend on
specif ic values of  x and y.
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Combining Pr oposit ions

As we have seen in t he pr evious examples,
one or  mor e pr oposit ions can be combined
t o f or m a single compound pr oposit ion.

We f or malize t his by denot ing pr oposit ions
wit h let t er s such as p, q, r , s, and
int r oducing sever al logical oper at or s.
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Logical Oper at or s (Connect ives)

We will examine t he f ollowing logical oper at or s:

• Negat ion (NOT)

• Conj unct ion (AND)

• Disj unct ion (OR)

• Exclusive or  (XOR)

• I mplicat ion      (if  – t hen)

• Bicondit ional  (if  and only if )

Tr ut h t ables can be used t o show how t hese
oper at or s can combine pr oposit ions t o
compound pr oposit ions.
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Negat ion (NOT)

Unar y Oper at or , Symbol:  ¬¬

t r ue (T)f alse (F)

f alse (F)t r ue (T)

¬¬PP
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Conj unct ion (AND)

Binar y Oper at or , Symbol:  ∧∧

FFT

FTF

FFF

TTT

P∧QQP
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Disj unct ion (OR)

Binar y Oper at or , Symbol:  ∨∨

TFT

TTF

FFF

TTT

P∨∨QQP
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Exclusive Or  (XOR)

Binar y Oper at or , Symbol:  ⊕⊕

TFT

TTF

FFF

FTT

P⊕⊕QQP
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I mplicat ion (if  - t hen)

Binar y Oper at or , Symbol:  →→

FFT

TTF

TFF

TTT

P→→QQP
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Bicondit ional (if  and only if )

Binar y Oper at or , Symbol:  ↔↔

FFT

FTF

TFF

TTT

P↔↔QQP
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St at ement s and Oper at or s
St at ement s and oper at or s can be combined in any

way t o f or m new st at ement s.

T

F

T

F

¬Q

T

T

F

F

¬P

TFT

TTF

TFF

FTT

(¬P)∨(¬Q)QP
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St at ement s and Oper at ions
St at ement s and oper at or s can be combined in any

way t o f or m new st at ement s.

T

T

T

F

¬ (P∧Q)

F

F

F

T

P∧Q

TFT

TTF

TFF

FTT

(¬P)∨(¬Q)QP
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Equivalent  St at ement s

T

T

T

F

(¬P)∨(¬Q)

T

T

T

F

¬(P∧Q)

TFT

TTF

TFF

TTT

¬(P∧Q)↔↔(¬P)∨(¬Q)QP

The st at ement s ¬(P∧Q) and (¬P) ∨ (¬Q) ar e logically

equivalent , since ¬(P∧Q) ↔↔ (¬P) ∨ (¬Q) is always t r ue.
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Taut ologies and Cont r adict ions

A t aut ology is a st at ement  t hat  is always t r ue.

Examples:

• R∨(¬R)

• ¬(P∧Q)↔↔(¬P)∨(¬Q)

I f  S→→T is a t aut ology, we wr it e S⇒T.

I f  S↔↔T is a t aut ology, we wr it e S⇔T.
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Taut ologies and Cont r adict ions

A cont r adict ion is a st at ement  t hat  is always

f alse.

Examples:

• R∧(¬R)

• ¬(¬(P∧Q)↔↔(¬P)∨(¬Q))

The negat ion of  any t aut ology is a cont r a-

dict ion, and t he negat ion of  any cont r adict ion is

a t aut ology.
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Exer cises

We alr eady know t he f ollowing t aut ology:

¬(P∧Q) ⇔⇔ (¬P)∨(¬Q)

Nice home exer cise:

Show t hat  ¬(P∨Q) ⇔⇔ (¬P)∧(¬Q).

These t wo t aut ologies ar e known as De
Mor gan’s laws.

Table 5 in Sect ion 1.2 shows many usef ul laws.

Exer cises 1 and 7 in Sect ion 1.2 may help you
get  used t o pr oposit ions and oper at or s.
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Let ’s Talk About  Logic

• Logic is a syst em based on pr oposit ions.

• A pr oposit ion is a st at ement  t hat  is eit her
t r ue or  f alse (not  bot h).

• We say t hat  t he t r ut h value of  a pr oposit ion
is eit her  t r ue (T) or  f alse (F).

• Cor r esponds t o 1 and 0 in digit al cir cuit s
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Logical Oper at or s (Connect ives)

• Negat ion (NOT)

• Conj unct ion (AND)

• Disj unct ion (OR)

• Exclusive or  (XOR)

• I mplicat ion      (if  – t hen)

• Bicondit ional  (if  and only if )

Tr ut h t ables can be used t o show how t hese
oper at or s can combine pr oposit ions t o
compound pr oposit ions.
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Taut ologies and Cont r adict ions

A t aut ology is a st at ement  t hat  is always t r ue.

Examples:

• R∨(¬R)

• ¬(P∧Q)↔↔(¬P)∨(¬Q)

I f  S→→T is a t aut ology, we wr it e S⇒T.

I f  S↔↔T is a t aut ology, we wr it e S⇔T.
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Taut ologies and Cont r adict ions

A cont r adict ion is a st at ement  t hat  is always
f alse.

Examples:

• R∧(¬R)

• ¬(¬(P∧Q)↔↔(¬P)∨(¬Q))

The negat ion of  any t aut ology is a cont r adict ion,
and t he negat ion of  any cont r adict ion is a
t aut ology.
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Pr oposit ional Funct ions

Pr oposit ional f unct ion (open sent ence):

st at ement  involving one or  mor e var iables,

e.g.: x-3 > 5.

Let  us call t his pr oposit ional f unct ion P(x),
wher e P is t he pr edicat e and x is t he var iable.

What  is t he t r ut h value of  P(2) ? f alse

What  is t he t r ut h value of  P(8) ?

What  is t he t r ut h value of  P(9) ?

f alse

t r ue
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Pr oposit ional Funct ions

Let  us consider  t he pr oposit ional f unct ion
Q(x, y, z) def ined as:

x + y = z.

Her e, Q is t he pr edicat e and x, y, and z ar e t he
var iables.

What  is t he t r ut h value of  Q(2, 3, 5) ? t r ue

What  is t he t r ut h value of  Q(0, 1, 2) ?

What  is t he t r ut h value of  Q(9, -9, 0) ?

f alse

t r ue
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Univer sal Quant if icat ion

Let  P(x) be a pr oposit ional f unct ion.

Universally quant if ied sent ence:

For  all x in t he univer se of  discour se P(x) is t r ue.

Using t he univer sal quant if ier  ∀:

∀x P(x)   “f or  all x P(x)” or  “f or  ever y x P(x)”

(Not e: ∀x P(x) is eit her  t r ue or  f alse, so it  is a
pr oposit ion, not  a pr oposit ional f unct ion.)
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Univer sal Quant if icat ion

Example:

S(x): x is a UMBC st udent .

G(x): x is a genius.

What  does ∀x (S(x) →→ G(x)) mean ?

“I f  x is a UMBC st udent , t hen x is a genius.”

or

“All UMBC st udent s ar e geniuses.”
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Exist ent ial Quant if icat ion

Exist ent ially quant if ied sent ence:

Ther e exist s an x in t he univer se of  discour se
f or  which P(x) is t r ue.

Using t he exist ent ial quant if ier  ∃:

∃x P(x)    “Ther e is an x such t hat  P(x).”

      “Ther e is at  least  one x such t hat  P(x).”

(Not e: ∃x P(x) is eit her  t r ue or  f alse, so it  is a
pr oposit ion, but  no pr oposit ional f unct ion.)
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Exist ent ial Quant if icat ion

Example:

P(x): x is a UMBC pr of essor .

G(x): x is a genius.

What  does ∃x (P(x) ∧∧ G(x)) mean ?

“Ther e is an x such t hat  x is a UMBC pr of essor
and x is a genius.”

or

“At  least  one UMBC pr of essor  is a genius.”
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Quant if icat ion

Anot her  example:

Let  t he univer se of  discour se be t he r eal number s.

What  does ∀x∃y (x + y = 320) mean ?

“For  ever y x t her e exist s a y so t hat  x + y = 320.”

I s it  t r ue?

I s it  t r ue f or  t he nat ur al number s?

yes

no
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Dispr oof  by Count er example

A count er example t o ∀x P(x) is an obj ect  c so
t hat  P(c) is f alse.

St at ement s such as ∀x (P(x) →→ Q(x)) can be

dispr oved by simply pr oviding a count er example.

St at ement : “All bir ds can f ly.”

Dispr oved by count er example: Penguin.
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Negat ion

¬(∀x P(x)) is logically equivalent  t o ∃x (¬P(x)).

¬(∃x P(x)) is logically equivalent  t o ∀x (¬P(x)).

See Table 3 in Sect ion 1.3.

I  r ecommend exer cises 5 and 9 in Sect ion 1.3.
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… and now f or  somet hing

complet ely dif f er ent …

Set  Theor y

Act ually, you will see t hat  logic and
set  t heor y ar e ver y closely r elat ed.
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Set  Theor y

• Set : Collect ion of  obj ect s (“element s”)

• a∈A                      “a is an element  of  A”
                             “a is a member  of  A”

• a∉A                      “a is not  an element  of  A”

• A = {a1, a2, …, an}   “A cont ains…”

• Or der  of  element s is meaningless

• I t  does not  mat t er  how of t en t he same
element  is list ed.
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Set  Equalit y

Set s A and B ar e equal if  and only if  t hey
cont ain exact ly t he same element s.

Examples:

• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B

• A = {dog, cat , hor se},
   B = {cat , hor se, squir r el, dog} : A ≠ B

• A = {dog, cat , hor se},
   B = {cat , hor se, dog, dog} : A = B
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Examples f or  Set s

“St andar d” Set s:

• Nat ur al number s N  = {0, 1, 2, 3, …}

• I nt eger s Z = {…, -2, -1, 0, 1, 2, …}

• Posit ive I nt eger s Z+ = {1, 2, 3, 4, …}

• Real Number s R = {47.3, -12, π, …}

• Rat ional Number s Q  = {1.5, 2.6, -3.8, 15, …}
(cor r ect  def init ion will f ollow)
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Examples f or  Set s

• A = ∅∅                         “empt y set / null set ”

• A = {z}            Not e: z∈A, but  z ≠ {z}

• A = {{b, c}, {c, x, d}}

• A = {{x, y}}
Not e: {x, y} ∈A, but  {x, y} ≠ {{x, y}}

• A = {x |  P(x)}

“set  of  all x such t hat  P(x)”

• A = {x |  x∈N  ∧ x > 7} = {8, 9, 10, …}

“set  builder  not at ion”
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Examples f or  Set s

We ar e now able t o def ine t he set  of  r at ional
number s Q:

Q  = {a/ b |  a∈Z ∧ b∈Z+}

or

Q  = {a/ b |  a∈Z ∧ b∈Z ∧ b≠0}

And how about  t he set  of  r eal number s R?

R = {r  |  r  is a r eal number }

That  is t he best  we can do.
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Subset s

A ⊆⊆ B           “A is a subset  of  B”

A ⊆⊆ B if  and only if  ever y element  of  A is also
          an element  of  B.

We can complet ely f or malize t his:

A ⊆⊆ B ⇔ ∀x (x∈A → x∈B)

Examples:

A = {3, 9}, B = {5, 9, 1, 3},           A ⊆⊆ B ? t r ue

A = {3, 3, 3, 9}, B = {5, 9, 1, 3},   A ⊆⊆ B ?

f alse

t r ue

A = {1, 2, 3}, B = {2, 3, 4},           A ⊆⊆ B ?
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Subset s
Usef ul r ules:

• A = B ⇔ (A ⊆⊆ B) ∧∧ (B ⊆⊆ A)

• (A ⊆⊆ B) ∧∧ (B ⊆⊆ C) ⇒ A ⊆⊆ C   (see Venn Diagr am)

U

A
B

C
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Subset s

Usef ul r ules:

• ∅∅ ⊆⊆ A f or  any set  A

• A ⊆⊆ A f or  any set  A

Pr oper  subset s:

A ⊂ B     “A is a pr oper  subset  of  B”

A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ∃x (x∈B ∧ x∉A)

or

A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ¬∀x (x∈B → x∈A)
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Car dinalit y of  Set s

I f  a set  S cont ains n dist inct  element s, n∈N ,
we call S a f init e set  wit h car dinalit y n.

Examples:

A = {Mer cedes, BMW, Por sche},   | A|  = 3

B = {1, {2, 3}, {4, 5}, 6} | B|  = 4

C = ∅ | C|  = 0

D = { x∈N |  x ≤ 7000 } | D|  = 7001

E = { x∈N |  x ≥ 7000 } E is inf init e!
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The Power  Set

P(A)           “power  set  of  A”

P(A) = {B |  B ⊆⊆ A}     (cont ains all subset s of  A)

Examples:

A = {x, y, z}

P(A) = {∅∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

A = ∅
P(A) = {∅}

Not e: | A|  = 0,  | P(A)|  = 1
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The Power  Set

Car dinalit y of  power  set s:

|  P(A) |  = 2 | A|

• I magine each element  in A has an “on/ of f ” swit ch

• Each possible swit ch conf igur at ion in A
cor r esponds t o one element  in 2A

zzzzzzzzz

yyyyyyyyy

xxxxxxxxx

87654321A

• For  3 element s in A, t her e ar e
2××2××2 = 8 element s in P(A)
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Car t esian Pr oduct

The or der ed n-t uple (a1, a2, a3, …, an) is an

or der ed collect ion of  obj ect s.

Two or der ed n-t uples (a1, a2, a3, …, an) and

(b1, b2, b3, …, bn) ar e equal if  and only if  t hey

cont ain exact ly t he same element s in t he same

or der , i.e. ai = bi f or  1 ≤ i ≤ n.

The Car t esian pr oduct  of  t wo set s is def ined as:

A×B = {(a, b) |  a∈A ∧ b∈B}

Example: A = {x, y}, B = {a, b, c}

A×B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
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Car t esian Pr oduct

The Car t esian pr oduct  of  t wo set s is def ined as:

A×B = {(a, b) |  a∈A ∧ b∈B}

Example:

A = {good, bad}, B = {st udent , pr of }

A×B = {(good, st udent ), (good, pr of ), (bad, st udent ), (bad, pr of )}

(st udent , good), (pr of , good), (st udent , bad), (pr of , bad)}B×A = {
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Car t esian Pr oduct

Not e t hat :

• A×∅ = ∅
• ∅×A = ∅
• For  non-empt y set s A and B: A≠B ⇔ A×B ≠ B×A

• | A×B|  = | A| ⋅| B|

The Car t esian pr oduct  of  t wo or  mor e set s is

def ined as:

A1×A2×…×An = {(a1, a2, …, an) |  ai∈A f or  1 ≤ i ≤ n}
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Set  Oper at ions

Union: A∪B = {x |  x∈A ∨ x∈B}

Example: A = {a, b}, B = {b, c, d}

               A∪B = {a, b, c, d}

I nt er sect ion: A∩B = {x |  x∈A ∧ x∈B}

Example: A = {a, b}, B = {b, c, d}

               A∩B = {b}
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Set  Oper at ions

Two set s ar e called disj oint  if  t heir  int er sect ion
is empt y, t hat  is, t hey shar e no element s:

A∩B = ∅

The dif f er ence bet ween t wo set s A and B
cont ains exact ly t hose element s of  A t hat  ar e
not  in B:

A-B = {x |  x∈A ∧ x∉B}
Example: A = {a, b}, B = {b, c, d}, A-B = {a}
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Set  Oper at ions

The complement  of  a set  A cont ains exact ly
t hose element s under  consider at ion t hat  ar e not

in A:

Ac = U-A

Example: U = N,  B = {250, 251, 252, …}

                         Bc = {0, 1, 2, …, 248, 249}
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Set  Oper at ions
Table 1 in Sect ion 1.5 shows many usef ul equat ions.

How can we pr ove A∪(B∩C) = (A∪B)∩(A∪C)?

Met hod I :

     x∈A∪(B∩C)

⇔ x∈A ∨ x∈(B∩C)

⇔ x∈A ∨ (x∈B ∧ x∈C)

⇔ (x∈A ∨ x∈B) ∧ (x∈A ∨ x∈C)
  (dist r ibut ive law f or  logical expr essions)

⇔ x∈(A∪B) ∧ x∈(A∪C)

⇔ x∈(A∪B)∩(A∪C)
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Set  Oper at ions
Met hod I I : Member ship t able

1 means “x is an element  of  t his set ”
0 means “x is not  an element  of  t his set ”

111111   1   1

111101   1   0

111101   0   1

111101   0   0

111110   1   1

001000   1   0

010000   0   1

000000   0   0

(A∪B) ∩(A∪C)A∪CA∪BA∪(B∩C)B∩CA   B   C
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Set  Oper at ions

Ever y logical expr ession can be t r ansf or med int o an
equivalent  expr ession in set  t heor y and vice ver sa.

You could wor k on Exer cises 9 and 19 in Sect ion 1.5
t o get  some pr act ice.
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… and t he f ollowing mat hemat ical
appet izer  is about …

Funct ions
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Funct ions

A f unct ion f  f r om a set  A t o a set  B is an
assignment  of  exact ly one element  of  B t o each

element  of  A.

We wr it e

f (a) = b

if  b is t he unique element  of  B assigned by t he
f unct ion f  t o t he element  a of  A.

I f  f  is a f unct ion f r om A t o B, we wr it e

f : A→B

(not e:  Her e, “→“ has not hing t o do wit h if … t hen)
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Funct ions

I f  f :A→B, we say t hat  A is t he domain of  f  and B
is t he codomain of  f .

I f  f (a) = b, we say t hat  b is t he image of  a and a is
t he pr e-image of  b.

The r ange of  f :A→B is t he set  of  all images of

element s of  A.

We say t hat  f :A→B maps A t o B.



21

Fall 2002 CMSC 203 - Discrete Structures 61

Funct ions

Let  us t ake a look at  t he f unct ion f :P→C wit h

P = {Linda, Max, Kat hy, Pet er }

C = {Bost on, New Yor k, Hong Kong, Moscow}

f (Linda) = Moscow

f (Max) = Bost on

f (Kat hy) = Hong Kong

f (Pet er ) = New Yor k

Her e, t he r ange of  f  is C.
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Funct ions

Let  us r e-specif y f  as f ollows:

f (Linda) = Moscow

f (Max) = Bost on

f (Kat hy) = Hong Kong

f (Pet er ) = Bost on

I s f  st ill a f unct ion? yes

{Moscow, Bost on, Hong Kong}What  is it s r ange?
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Funct ions

Ot her  ways t o r epr esent  f :

Bost onPet er

Hong
Kong

Kat hy

Bost onMax

MoscowLinda

f (x)x Linda

Max

Kat hy

Pet er

Bost on

New Yor k

Hong Kong

Moscow
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Funct ions

I f  t he domain of  our  f unct ion f  is lar ge, it  is
convenient  t o specif y f  wit h a f or mula, e.g.:

f :R→R

f (x) = 2x

This leads t o:

f (1) = 2

f (3) = 6

f (-3) = -6

…
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Funct ions

Let  f 1 and f 2 be f unct ions f r om A t o R.

Then t he sum and t he pr oduct  of  f 1 and f 2 ar e
also f unct ions f r om A t o R def ined by:

(f 1 + f 2)(x) =  f 1(x) + f 2(x)

(f 1f 2)(x) =  f 1(x) f 2(x)

Example:

f 1(x) = 3x,  f 2(x) = x + 5

(f 1 + f 2)(x) =  f 1(x) + f 2(x) = 3x + x + 5 = 4x + 5

(f 1f 2)(x) =  f 1(x) f 2(x) = 3x (x + 5) = 3x2 + 15x
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Funct ions

We alr eady know t hat  t he r ange of  a f unct ion
f :A→B is t he set  of  all images of  element s a∈A.

I f  we only r egar d a subset  S⊆A, t he set  of  all

images of  element s s∈S is called t he image of  S.

We denot e t he image of  S by f (S):

f (S) = {f (s) |  s∈S}
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Funct ions

Let  us look at  t he f ollowing well-known f unct ion:

f (Linda) = Moscow

f (Max) = Bost on

f (Kat hy) = Hong Kong

f (Pet er ) = Bost on

What  is t he image of  S = {Linda, Max} ?

f (S) = {Moscow, Bost on}

What  is t he image of  S = {Max, Pet er } ?

f (S) = {Bost on}
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Pr oper t ies of  Funct ions

A f unct ion f :A→B is said t o be one-t o-one (or
inj ect ive), if  and only if

∀x, y∈A (f (x) = f (y) → x  = y)

I n ot her  wor ds: f  is one-t o-one if  and only if  it
does not  map t wo dist inct  element s of  A ont o t he
same element  of  B.
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Pr oper t ies of  Funct ions

And again…

f (Linda) = Moscow

f (Max) = Bost on

f (Kat hy) = Hong Kong

f (Pet er ) = Bost on

I s f  one-t o-one?

No, Max and Pet er  ar e
mapped ont o t he same
element  of  t he image.

g(Linda) = Moscow

g(Max) = Bost on

g(Kat hy) = Hong Kong

g(Pet er ) = New Yor k

I s g one-t o-one?

Yes, each element  is
assigned a unique
element  of  t he image.
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Pr oper t ies of  Funct ions

How can we pr ove t hat  a f unct ion f  is one-t o-one?

Whenever  you want  t o pr ove somet hing, f ir st
t ake a look at  t he r elevant  def init ion(s):

∀x, y∈A (f (x) = f (y) → x  = y)

Example:

f :R→R

f (x) = x2

Dispr oof  by count er example:

f (3) = f (-3), but  3 ≠ -3, so f  is not  one-t o-one.
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Pr oper t ies of  Funct ions

… and yet  anot her  example:

f :R→R

f (x) = 3x

One-t o-one: ∀x, y∈A (f (x) = f (y) → x = y)

To show: f (x) ≠ f (y) whenever  x ≠ y

x ≠ y

⇔ 3x ≠ 3y

⇔ f (x) ≠ f (y),

so if  x ≠ y, t hen f (x) ≠ f (y), t hat  is, f  is one-t o-one.
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Pr oper t ies of  Funct ions

A f unct ion f :A→B wit h A,B ⊆ R is called st r ict ly
incr easing, if

∀x,y∈A (x < y → f (x) < f (y)),

and st r ict ly decr easing, if

∀x,y∈A (x < y → f (x) > f (y)).

Obviously, a f unct ion t hat  is eit her  st r ict ly
incr easing or  st r ict ly decr easing is one-t o-one.
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Pr oper t ies of  Funct ions

A f unct ion f :A→B is called ont o, or  sur j ect ive, if
and only if  f or  ever y element  b∈B t her e is an
element  a∈A wit h f (a) = b.

I n ot her  wor ds, f  is ont o if  and only if  it s r ange is
it s ent ir e codomain.

A f unct ion f : A→B is a one-t o-one cor r espondence,
or  a bij ect ion, if  and only if  it  is bot h one-t o-one
and ont o.

Obviously, if  f  is a bij ect ion and A and B ar e f init e
set s, t hen | A|  = | B| .
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Pr oper t ies of  Funct ions

Examples:

I n t he f ollowing examples, we use t he ar r ow
r epr esent at ion t o illust r at e f unct ions f :A→B.

I n each example, t he complet e set s A and B ar e
shown.
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Pr oper t ies of  Funct ions

I s f  inj ect ive?

No.

I s f  sur j ect ive?

No.

I s f  bij ect ive?

No.

Linda

Max

Kat hy

Pet er

Bost on

New Yor k

Hong Kong

Moscow



26

Fall 2002 CMSC 203 - Discrete Structures 76

Pr oper t ies of  Funct ions

I s f  inj ect ive?

No.

I s f  sur j ect ive?

Yes.

I s f  bij ect ive?

No.

Linda

Max

Kat hy

Pet er

Bost on

New Yor k

Hong Kong

Moscow

Paul
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Pr oper t ies of  Funct ions

I s f  inj ect ive?

Yes.

I s f  sur j ect ive?

No.

I s f  bij ect ive?

No.

Linda

Max

Kat hy

Pet er

Bost on

New Yor k

Hong Kong

Moscow

Lübeck
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Pr oper t ies of  Funct ions

I s f  inj ect ive?

No! f  is not  even
a f unct ion!

Linda

Max

Kat hy

Pet er

Bost on

New Yor k

Hong Kong

Moscow

Lübeck
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Pr oper t ies of  Funct ions

I s f  inj ect ive?

Yes.

I s f  sur j ect ive?

Yes.

I s f  bij ect ive?

Yes.

Linda

Max

Kat hy

Pet er

Bost on

New Yor k

Hong Kong

Moscow

LübeckHelena
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I nver sion

An int er est ing pr oper t y of  bij ect ions is t hat
t hey have an inverse f unct ion.

The inverse f unct ion of  t he bij ect ion f :A→B
is t he f unct ion f -1:B→A wit h

f -1(b) = a whenever  f (a) = b.
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I nver sion

Example:

f (Linda) = Moscow

f (Max) = Bost on

f (Kat hy) = Hong Kong

f (Pet er ) = Lübeck

f (Helena) = New Yor k

Clear ly, f  is bij ect ive.

The inver se f unct ion
f -1 is given by:

f -1(Moscow) = Linda

f -1(Bost on) = Max

f -1(Hong Kong) = Kat hy

f -1(Lübeck) = Pet er

f -1(New Yor k) = Helena

I nver sion is only
possible f or  bij ect ions
(= inver t ible f unct ions)
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I nver sion

Linda

Max

Kat hy

Pet er

Bost on

New Yor k

Hong Kong

Moscow

LübeckHelena

f

f -1

f -1:C→P is no
f unct ion, because

it  is not  def ined
f or  all element s of
C and assigns t wo
images t o t he pr e-
image New Yor k.
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Composit ion

The composit ion of  t wo f unct ions g:A→B and
f :B→C, denot ed by  f °g, is def ined by

(f °g)(a) = f (g(a))

This means t hat

•  f irst , f unct ion g is applied t o element  a∈A,
   mapping it  ont o an element  of  B,

•  t hen, f unct ion f  is applied t o t his element  of
   B, mapping it  ont o an element  of  C.

•  Theref ore, t he composit e f unct ion maps
   f r om A t o C.
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Composit ion

Example:

f (x) = 7x – 4, g(x) = 3x,

f :R→R, g:R→R

(f °g)(5) = f (g(5)) = f (15) = 105 – 4 = 101

(f °g)(x) = f (g(x)) = f (3x) = 21x - 4
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Composit ion

Composit ion of  a f unct ion and it s inver se:

(f -1°f )(x) = f -1(f (x)) = x

The composit ion of  a f unct ion and it s inver se
is t he ident it y f unct ion i(x) = x.
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Gr aphs

The graph of  a f unct ion f :A→B is t he set  of
or der ed pair s {(a, b) |  a∈A and f (a) = b}.

The gr aph is a subset  of  A×B t hat  can be used
t o visualize f  in a t wo-dimensional coor dinat e
syst em.
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Floor  and Ceiling Funct ions

The f loor  and ceiling f unct ions map t he r eal
number s ont o t he int eger s (R→Z).

The f loor  f unct ion assigns t o r ∈R t he lar gest
z∈Z  wit h z ≤ r , denot ed by r .

Examples:  2.3 = 2, 2 = 2, 0.5 = 0, -3.5 = -4

The ceiling f unct ion assigns t o r ∈R t he smallest
z∈Z  wit h z ≥ r , denot ed by r .

Examples:  2.3 = 3, 2 = 2, 0.5 = 1, -3.5 = -3
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Exer cises

I  r ecommend Exer cises 1 and 15 in Sect ion 1.6.

I t  may also be usef ul t o st udy t he gr aph displays
in t hat  sect ion.

Anot her  quest ion: What  do all gr aph displays f or

any f unct ion f :R→R have in common?
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… and now f or …

Sequences
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Sequences

Sequences r epr esent  ordered list s of  element s.

A sequence is def ined as a f unct ion f r om a subset
of  N t o a set  S. We use t he not at ion an t o denot e
t he image of  t he int eger  n. We call an a t er m of
t he sequence.

Example:

subset  of  N :        1   2   3   4   5   …

S:                        2   4   6   8   10  …
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Sequences

We use t he not at ion {an} t o descr ibe a sequence.

I mpor t ant : Do not  conf use t his wit h t he {} used
in set  not at ion.

I t  is convenient  t o descr ibe a sequence wit h a
f ormula.

For  example, t he sequence on t he pr evious slide
can be specif ied as {an}, wher e an = 2n.
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The For mula Game

1, 3, 5, 7, 9, … an = 2n - 1

-1, 1, -1, 1, -1, … an = (-1)n

2, 5, 10, 17, 26, … an = n2 + 1

0.25, 0.5, 0.75, 1, 1.25 … an = 0.25n

3, 9, 27, 81, 243, … an = 3n

What  ar e t he f or mulas t hat  descr ibe t he
f ollowing sequences a1, a2, a3, … ?
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St r ings

Finit e sequences ar e also called st rings, denot ed
by a1a2a3…an.

The lengt h of  a st r ing S is t he number  of  t er ms

t hat  it  consist s of .

The empt y st ring cont ains no t er ms at  all. I t  has
lengt h zer o.
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Summat ions

I t  r epr esent s t he sum am + am+1 + am+2 + … + an.

The var iable j  is called t he index of  summat ion,
r unning f r om it s lower limit  m t o it s upper limit  n.
We could as well have used any ot her  let t er  t o
denot e t his index.

∑
=

n

mj

jaWhat  does          st and f or ?
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Summat ions

I t  is 1 + 2 + 3 + 4 + 5 + 6 = 21.

We wr it e it  as         .∑
=

1000

1

2

j

j

What  is t he value of          ?∑
=

6

1j

j

I t  is so much wor k t o calculat e t his…

What  is t he value of          ?∑
=

100

1j

j

How can we expr ess t he sum of  t he f ir st  1000
t er ms of  t he sequence {an} wit h an=n2 f or

n = 1, 2, 3, … ?
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Summat ions

I t  is said t hat  Fr iedr ich Gauss came up wit h t he
f ollowing f or mula:

∑
=

+=
n

j

nn
j

1 2

)1(

When you have such a f or mula, t he r esult  of  any
summat ion can be calculat ed much mor e easily,
f or  example:

5050
2

10100

2

)1100(100100

1

==+=∑
=j

j
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Ar it hemet ic Ser ies

How does: ∑
=

+=
n

j

nn
j

1 2

)1(

Obser ve t hat :

1 + 2 + 3 +…+ n/ 2 + (n/ 2 + 1) +…+ (n - 2) + (n - 1) + n

???

= [1 + n]  + [2 + (n - 1)]  + [3 + (n - 2)]  +…+ [n/ 2 + (n/ 2 + 1)]

 = (n + 1) + (n + 1) + (n + 1) + … + (n + 1)    (wit h n/ 2 t er ms)

 = n(n + 1)/ 2.

Fall 2002 CMSC 203 - Discrete Structures 98

Geomet r ic Ser ies

How does: ∑
=

+

−
−=

n

j

n
j

a

a
a

0

)1(

)1(

1

Obser ve t hat :

S = 1 + a + a2 + a3 + … + an

???

aS  =   a + a2 + a3 + … + an + a(n+1)

so,   (aS - S) = (a - 1)S = a(n+1) - 1

Ther ef or e, 1 + a + a2 + … + an = (a(n+1) - 1) /  (a - 1).

For  example: 1 + 2 + 4 + 8 +… + 1024 = 2047.
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Usef ul Ser ies

1.

2.

3.

4.

∑
=

+

−
−=

n

j

n
j

a

a
a

0

)1(

)1(

1

∑
=

+=
n

j

nn
j

1 2

)1(

∑
=

++=
n

j

nnn
j

1

2

6

)12)(1(

∑
=

+=
n

j

nn
j

1

22

3

4

)1(
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Double Summat ions

Cor r esponding t o nest ed loops in C or  J ava, t her e is
also double (or  t r iple et c.) summat ion:

Example:

∑∑
= =

5

1

2

1i j

ij

∑
=

+=
5

1

)2(
i

ii

∑
=

=
5

1

3
i

i

451512963 =++++=
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Double Summat ions

Table 2 in Sect ion 1.7 cont ains some ver y usef ul
f or mulas f or  calculat ing sums.

Exer cises 15 and 17 make a nice homewor k.
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Enough Mat hemat ical Appet izer s!

Let  us look at  somet hing mor e int er est ing:

Algor it hms



35

Fall 2002 CMSC 203 - Discrete Structures 103

Algor it hms

What  is an algor it hm?

An algor it hm is a f init e set  of  pr ecise inst r uct ions
f or  per f or ming a comput at ion or  f or  solving a
pr oblem.

This is a r at her  vague def init ion. You will get  t o
know a mor e pr ecise and mat hemat ically usef ul
def init ion when you at t end CS420.

But  t his one is good enough f or  now…
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Algor it hms

Pr oper t ies of  algor it hms:

• I nput  f r om a specif ied set ,

• Out put  f r om a specif ied set  (solut ion),

• Def init eness of  ever y st ep in t he comput at ion,

• Correct ness of  out put  f or  ever y possible input ,

• Finit eness of  t he number  of  calculat ion st eps,

• Ef f ect iveness of  each calculat ion st ep and

• Generalit y f or  a class of  pr oblems.
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Algor it hm Examples

We will use a pseudocode t o specif y algor it hms,
which slight ly r eminds us of  Basic and Pascal.

Example: an algor it hm t hat  f inds t he maximum
element  in a f init e sequence

procedure max(a1, a2, …, an: int eger s)
max := a1

f or  i := 2 t o n

if  max < ai t hen max := ai

{max is t he lar gest  element }
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Algor it hm Examples

Anot her  example: a linear  sear ch algor it hm, t hat
is, an algor it hm t hat  linear ly sear ches a sequence
f or  a par t icular  element .

procedure linear _sear ch(x: int eger ; a1, a2, …, an: 
     int eger s)

i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if  i ≤ n t hen locat ion := i
else locat ion := 0
{locat ion is t he subscr ipt  of  t he t er m t hat  equals
x, or  is zer o if  x is not  f ound}

Fall 2002 CMSC 203 - Discrete Structures 107

Algor it hm Examples

I f  t he t er ms in a sequence ar e or der ed, a binar y
sear ch algor it hm is mor e ef f icient  t han linear
sear ch.

The binar y sear ch algor it hm it er at ively r est r ict s
t he r elevant  sear ch int er val unt il it  closes in on
t he posit ion of  t he element  t o be locat ed.
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Algor it hm Examples

a  c  d  f   g  h  j   l  m  o  p  r   s  u  v  x  z

binar y sear ch f or  t he let t er  ‘j ’

cent er  element

sear ch int er val



37

Fall 2002 CMSC 203 - Discrete Structures 109

Algor it hm Examples

a  c  d  f   g  h  j   l  m  o  p  r   s  u  v  x  z

binar y sear ch f or  t he let t er  ‘j ’

cent er  element

sear ch int er val
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Algor it hm Examples

a  c  d  f   g  h  j   l  m  o  p  r   s  u  v  x  z

binar y sear ch f or  t he let t er  ‘j ’

cent er  element

sear ch int er val
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Algor it hm Examples

a  c  d  f   g  h  j   l  m  o  p  r   s  u  v  x  z

binar y sear ch f or  t he let t er  ‘j ’

cent er  element

sear ch int er val
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Algor it hm Examples

a  c  d  f   g  h  j   l  m  o  p  r   s  u  v  x  z

binar y sear ch f or  t he let t er  ‘j ’

cent er  element

sear ch int er val

f ound !
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Algor it hm Examples
procedure binar y_sear ch(x: int eger ; a1, a2, …, an: 

      int eger s)
i := 1   {i is lef t  endpoint  of  sear ch int er val}
j  := n  {j  is r ight  endpoint  of  sear ch int er val}
while (i < j )
begin

m := (i + j )/ 2
if  x > am then i := m + 1
else j  := m

end
if  x = ai then locat ion := i
else locat ion := 0
{locat ion is t he subscr ipt  of  t he t er m t hat  equals x,
or  is zer o if  x is not  f ound}
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Complexit y

I n gener al, we ar e not  so much int er est ed in t he
t ime and space complexit y f or  small input s.

For  example, while t he dif f er ence in t ime
complexit y bet ween linear  and binar y sear ch is
meaningless f or  a sequence wit h n = 10, it  is
gigant ic f or  n = 230.
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Complexit y

For  example, let  us assume t wo algor it hms A and
B t hat  solve t he same class of  pr oblems.

The t ime complexit y of  A is 5,000n, t he one f or
B is 1.1n f or  an input  wit h n element s.

For  n = 10, A r equir es 50,000 st eps, but  B only 3,

so B seems t o be super ior  t o A.

For  n = 1000, however , A r equir es 5,000,000
st eps, while B r equir es 2.5⋅1041 st eps.
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Complexit y

This means t hat  algor it hm B cannot  be used f or
lar ge input s, while algor it hm A is st ill f easible.

So what  is impor t ant  is t he growt h of  t he
complexit y f unct ions.

The gr owt h of  t ime and space complexit y wit h
incr easing input  size n is a suit able measur e f or
t he compar ison of  algor it hms.
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Complexit y

Compar ison: t ime complexit y of  algor it hms A and B

Algor it hm A Algor it hm BI nput  Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5⋅109

1.1n
3

2.5⋅1041

13,781

4.8⋅1041392
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Complexit y

This means t hat  algor it hm B cannot  be used f or
lar ge input s, while r unning algor it hm A is st ill
f easible.

So what  is impor t ant  is t he growt h of  t he
complexit y f unct ions.

The gr owt h of  t ime and space complexit y wit h
incr easing input  size n is a suit able measur e f or
t he compar ison of  algor it hms.
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The Gr owt h of  Funct ions

The gr owt h of  f unct ions is usually descr ibed
using t he big- O not at ion.

Def init ion:  Let  f  and g be f unct ions f r om t he
int eger s or  t he r eal number s t o t he r eal number s.
We say t hat  f (x) is O(g(x)) if  t her e ar e

const ant s C and k such t hat

| f (x)|  ≤ C| g(x)|

whenever  x > k.
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The Gr owt h of  Funct ions

When we analyze t he gr owt h of  complexit y

f unct ions, f (x) and g(x) ar e always posit ive.

Ther ef or e, we can simplif y t he big-O r equir ement
t o

f (x) ≤ C⋅g(x)  whenever  x > k.

I f  we want  t o show t hat  f (x) is O(g(x)), we only
need t o f ind one pair  (C, k) (which is never  unique).
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The Gr owt h of  Funct ions

The idea behind t he big-O not at ion is t o est ablish
an upper boundary f or  t he gr owt h of  a f unct ion
f (x) f or  lar ge x.

This boundar y is specif ied by a f unct ion g(x) t hat
is usually much simpler  t han f (x).

We accept  t he const ant  C in t he r equir ement

f (x) ≤ C⋅g(x)  whenever  x > k,

because C does not  grow wit h x.

We ar e only int er est ed in lar ge x, so it  is OK if
f (x) > C⋅g(x)  f or  x ≤ k.
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The Gr owt h of  Funct ions

Example:

Show t hat  f (x) = x2 + 2x + 1 is O(x2).

For  x > 1 we have:

x2 + 2x + 1 ≤ x2 + 2x2 + x2

⇒ x2 + 2x + 1 ≤ 4x2

Ther ef or e, f or  C = 4 and k = 1:

f (x) ≤ Cx2 whenever  x > k.

⇒ f (x) is O(x2).
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The Gr owt h of  Funct ions

Quest ion: I f  f (x) is O(x2), is it  also O(x3)?

Yes.  x 3 gr ows f ast er  t han x2, so x3 gr ows also
f ast er  t han f (x).

Ther ef or e, we always have t o f ind t he smallest

simple f unct ion g(x) f or  which f (x) is O(g(x)).
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The Gr owt h of  Funct ions

“Popular ” f unct ions g(n) ar e
n log n, 1, 2n, n2, n!, n, n3, log n

List ed f r om slowest  t o f ast est  gr owt h:

•  1
•  log n
•  n
•  n log n
•  n2

•  n3

•  2n

•  n!
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The Gr owt h of  Funct ions

A pr oblem t hat  can be solved wit h polynomial
wor st -case complexit y is called t ract able.

Pr oblems of  higher  complexit y ar e called
int ract able.

Pr oblems t hat  no algor it hm can solve ar e called
unsolvable.

You will f ind out  mor e about  t his in CS420.
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Usef ul Rules f or  Big-O

For  any polynomial f (x) = anx
n + an-1x

n-1 + … + a0,
wher e a0, a1, …, an ar e r eal number s,
f (x) is O(xn).

I f  f 1(x) is O(g1(x)) and f 2(x) is O(g2(x)), t hen
(f 1 + f 2)(x) is O(max(g1(x), g2(x)))

I f  f 1(x) is O(g(x)) and f 2(x) is O(g(x)), t hen
(f 1 + f 2)(x) is O(g(x)).

I f  f 1(x) is O(g1(x)) and f 2(x) is O(g2(x)), t hen

(f 1f 2)(x) is O(g1(x) g2(x)).
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Complexit y Examples

What  does t he f ollowing algor it hm comput e?

procedure who_knows(a1, a2, …, an: int eger s)
m := 0
f or  i := 1 t o n-1

f or  j  := i + 1 t o n
if  | ai – aj |  > m t hen m := | ai – aj |

{m is t he maximum dif f er ence bet ween any t wo
number s in t he input  sequence}

Compar isons: n-1 + n-2 + n-3 + … + 1

                     = (n – 1)n/ 2 = 0.5n2 – 0.5n

Time complexit y is O(n2).
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Complexit y Examples

Anot her  algor it hm solving t he same pr oblem:

procedure max_dif f (a1, a2, …, an: int eger s)

min := a1
max := a1
f or  i := 2 t o n

if  ai < min t hen min := ai

else if  ai > max t hen max := ai

m := max - min

Compar isons: 2n - 2

Time complexit y is O(n).
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Let  us get  int o…

Number  Theor y
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I nt r oduct ion t o Number  Theor y

Number  t heor y is about  int egers and t heir
pr oper t ies.

We will st ar t  wit h t he basic pr inciples of

•  divisibilit y,
•  gr eat est  common divisor s,
•  least  common mult iples, and
•  modular  ar it hmet ic

and look at  some r elevant  algor it hms.
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Division

I f  a and b ar e int eger s wit h a ≠ 0, we say t hat
a divides b if  t her e is an int eger  c so t hat  b = ac.

When a divides b we say t hat  a is a f act or  of  b
and t hat  b is a mult iple of  a.

The not at ion a |  b means t hat  a divides b.

We wr it e a X b when a does not  divide b
(see book f or  cor r ect  symbol).
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Divisibilit y Theor ems

For  int eger s a, b, and c it  is t r ue t hat

•  if  a |  b and a |  c, t hen a |  (b + c)
  Example:  3 |  6 and 3 |  9, so 3 |  15.

•  if  a |  b, t hen a |  bc f or  all int eger s c
  Example:  5 |  10, so 5 |  20, 5 |  30, 5 |  40, …

•  if  a |  b and b |  c, t hen a |  c
  Example:  4 |  8 and 8 |  24, so 4 |  24.
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Pr imes

A posit ive int eger  p gr eat er  t han 1 is called pr ime
if  t he only posit ive f act or s of  p ar e 1 and p.

A posit ive int eger  t hat  is gr eat er  t han 1 and is not
pr ime is called composit e.

The f undament al t heor em of  ar it hmet ic:

Ever y posit ive int eger  can be wr it t en uniquely as
t he product  of  primes, wher e t he pr ime f act or s
ar e wr it t en in or der  of  incr easing size.
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Pr imes

Examples:

3·5

48 =

17 =

100 =

512 =

515 =

28 =

15 =

2·2·2·2·3 = 24·3

17

2·2·5·5 = 22·52

2·2·2·2·2·2·2·2·2 = 29

5·103

2·2·7
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Pr imes

I f  n is a composit e int eger , t hen n has a pr ime
divisor  less t han or  equal      .

This is easy t o see: if  n is a composit e int eger , it
must  have t wo pr ime divisor s p1 and p2 such t hat
p1⋅p2 = n.

p1 and p2 cannot  bot h be gr eat er  t han
     , because t hen p1⋅p2 > n.

n

n
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The Division Algor it hm

Let  a be an int eger  and d a posit ive int eger .
Then t her e ar e unique int eger s q and r , wit h

0 ≤≤ r  < d, such t hat  a = dq + r .

I n t he above equat ion,
•  d is called t he divisor ,
•  a is called t he dividend,
•  q is called t he quot ient , and
•  r  is called t he r emainder .
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The Division Algor it hm

Example:

When we divide 17 by 5, we have

17 = 5⋅3 + 2.

•  17 is t he dividend,
•  5  is t he divisor ,
•  3  is called t he quot ient , and
•  2  is called t he r emainder .
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The Division Algor it hm

Anot her example:

What  happens when we divide -11 by 3 ?

Not e t hat  t he r emainder  cannot  be negat ive.

-11 = 3⋅(-4) + 1.

•  -11 is t he dividend,
•  3  is t he divisor ,
•  -4 is called t he quot ient , and
•  1  is called t he r emainder .
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Gr eat est  Common Divisor s

Let  a and b be int eger s, not  bot h zer o.
The lar gest  int eger  d such t hat  d |  a and d |  b is
called t he great est  common divisor  of  a and b.

The gr eat est  common divisor  of  a and b is denot ed
by gcd(a, b).

Example 1:  What  is gcd(48, 72) ?

The posit ive common divisor s of  48 and 72 ar e
1, 2, 3, 4, 6, 8, 12, 16, and 24, so gcd(48, 72) = 24.

Example 2:  What  is gcd(19, 72) ?

The only posit ive common divisor  of  19 and 72 is
1, so gcd(19, 72) = 1.
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Gr eat est  Common Divisor s

Using prime f act orizat ions:

a = p1
a

1  p2
a

2 … pn
a

n ,  b = p1
b

1  p2
b

2 … pn
b

n ,

wher e p1 < p2 < … < pn and ai, bi ∈ N  f or  1 ≤ i ≤ n

gcd(a, b) = p1
min(a

1
, b

1 
) p2

min(a
2
, b

2 
)
 … pn

min(a
n
, b

n 
)

Example:

a = 60 = 22 31 51

b = 54 = 21 33 50

gcd(a, b) = 21 31 50  = 6
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Relat ively Pr ime I nt eger s
Def init ion:

Two int eger s a and b ar e relat ively prime if

gcd(a, b) = 1.

Examples:

Ar e 15 and 28 r elat ively pr ime?

Yes, gcd(15, 28) = 1.

Ar e 55 and 28 r elat ively pr ime?

Yes, gcd(55, 28) = 1.

Ar e 35 and 28 r elat ively pr ime?

No, gcd(35, 28) = 7.
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Relat ively Pr ime I nt eger s

Def init ion:

The int eger s a1, a2, …, an ar e pairwise relat ively

prime if  gcd(ai, aj ) = 1 whenever  1 ≤ i < j  ≤ n.

Examples:

Ar e 15, 17, and 27 pair wise r elat ively pr ime?

No, because gcd(15, 27) = 3.

Ar e 15, 17, and 28 pair wise r elat ively pr ime?

Yes, because gcd(15, 17) = 1, gcd(15, 28) = 1 and

gcd(17, 28) = 1.
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Least  Common Mult iples
Def init ion:

The least  common mult iple of  t he posit ive

int eger s a and b is t he smallest  posit ive int eger

t hat  is divisible by bot h a and b.

We denot e t he least  common mult iple of  a and b

by lcm(a, b).

Examples:

lcm(3, 7) = 21

lcm(4, 6) = 12

lcm(5, 10) = 10
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Least  Common Mult iples

Using prime f act orizat ions:

a = p1
a

1  p2
a

2 … pn
a

n ,  b = p1
b

1  p2
b

2 … pn
b

n ,

wher e p1 < p2 < … < pn and ai, bi ∈ N  f or  1 ≤ i ≤ n

lcm(a, b) = p1
max(a

1
, b

1 
) p2

max(a
2
, b

2 
)
 … pn

max(a
n
, b

n 
)

Example:

a = 60 = 22 31 51

b = 54 = 21 33 50

lcm(a, b) = 22 33 51  = 4⋅27⋅5 = 540
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GCD and LCM

a = 60 = 22   31   51

b = 54 = 21   33   50

lcm(a, b) = 22 33 51      = 540

gcd(a, b) = 21 31 50      = 6

Theorem:  a⋅⋅b = gcd(a, b)⋅⋅lcm(a, b)
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Modular  Ar it hmet ic

Let  a be an int eger  and m be a posit ive int eger .
We denot e by a mod m t he r emainder  when a is
divided by m.

Examples:

9 mod 4 = 1

9 mod 3 = 0

9 mod 10 = 9

-13 mod 4 = 3
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Congr uences

Let  a and b be int eger s and m be a posit ive int eger .
We say t hat  a is congruent  t o b modulo m  if

m divides a – b.

We use t he not at ion a ≡≡ b (mod m) t o indicat e
t hat  a is congr uent  t o b modulo m.

I n ot her  wor ds:
a ≡ b (mod m) if  and only if  a mod m = b mod m.
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Congr uences

Examples:

I s it  t r ue t hat  46 ≡ 68 (mod 11) ?
Yes, because 11 |  (46 – 68).

I s it  t r ue t hat  46 ≡ 68 (mod 22)?
Yes, because 22 |  (46 – 68).

For  which int eger s z is it  t r ue t hat  z ≡ 12 (mod 10)?
I t  is t r ue f or  any z∈{…,-28, -18, -8, 2, 12, 22, 32, …}

Theorem:  Let  m be a posit ive int eger . The int eger s
a and b ar e congr uent  modulo m if  and only if  t her e
is an int eger  k such t hat  a = b + km.

Fall 2002 CMSC 203 - Discrete Structures 149

Congr uences

Theorem:  Let  m be a posit ive int eger .
I f  a ≡ b (mod m) and c ≡ d (mod m), t hen
a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

Proof :
We know t hat  a ≡ b (mod m) and c ≡ d (mod m)
implies t hat  t her e ar e int eger s s and t  wit h
b = a + sm and d = c + t m.

Ther ef or e,
b + d = (a + sm) + (c + t m) = (a + c) + m(s + t ) and
bd = (a + sm)(c + t m) = ac + m(at  + cs + st m).

Hence, a + c ≡ b + d (mod m) and ac ≡ bd (mod m).
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The Euclidean Algor it hm

The Euclidean Algorit hm f inds t he great est
common divisor  of  t wo int eger s a and b.

For  example, if  we want  t o f ind gcd(287, 91), we
divide 287 by 91:

287 = 91⋅3 + 14

We know t hat  f or  int eger s a, b and c,
if  a |  b and a |  c, t hen a |  (b + c).

Ther ef or e, any divisor  of  287 and 91 must  also be
a divisor  of  287 - 91⋅3 = 14.

Consequent ly, gcd(287, 91) = gcd(14, 91).
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The Euclidean Algor it hm

I n t he next  st ep, we divide 91 by 14:

91 = 14⋅6 + 7

This means t hat  gcd(14, 91) = gcd(14, 7).

So we divide 14 by 7:

14 = 7⋅2 + 0

We f ind t hat  7 |  14, and t hus gcd(14, 7) = 7.

Theref ore,  gcd(287,  91) = 7.
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The Euclidean Algor it hm

I n pseudocode, t he algor it hm can be implement ed
as f ollows:

procedure gcd(a, b: posit ive int eger s)
x := a
y := b
while y ≠ 0
begin

r  := x mod y
x := y
y := r

end {x is gcd(a, b)}
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Repr esent at ions of  I nt eger s

Let  b be a posit ive int eger  gr eat er  t han 1.
Then if  n is a posit ive int eger , it  can be expr essed
uniquely in t he f or m:

n = akb
k + ak-1b

k-1 + … + a1b + a0,

wher e k is a nonnegat ive int eger ,
a0, a1, …, ak ar e nonnegat ive int eger s less t han b,
and ak ≠ 0.

Example f or b=10:

859 = 8⋅102 + 5⋅101 + 9⋅100



52

Fall 2002 CMSC 203 - Discrete Structures 154

Repr esent at ions of  I nt eger s

Example f or b=2 (binary expansion):

(10110)2 = 1⋅24 + 1⋅22 + 1⋅21 = (22)10

Example f or b=16 (hexadecimal expansion):

(we use let t er s A t o F t o indicat e number s 10 t o 15)

(3A0F)16 = 3⋅163 + 10⋅162 + 15⋅160 = (14863)10
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Repr esent at ions of  I nt eger s

How can we const r uct  t he base b expansion of  an
int eger  n?

Fir st , divide n by b t o obt ain a quot ient  q0 and
r emainder  a0, t hat  is,

n = bq0 + a0, wher e 0 ≤ a0 < b.

The r emainder  a0 is t he r ight most  digit  in t he base
b expansion of  n.

Next , divide q0 by b t o obt ain:

q0 = bq1 + a1, wher e 0 ≤ a1 < b.

a1 is t he second digit  f r om t he r ight  in t he base b
expansion of  n. Cont inue t his pr ocess unt il you
obt ain a quot ient  equal t o zer o.
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Repr esent at ions of  I nt eger s

Example:

What  is t he base 8 expansion of  (12345)10  ?

Fir st , divide 12345 by 8:
12345 = 8⋅1543 + 1

1543 = 8⋅192 + 7
192 = 8⋅24 + 0
24 = 8⋅3 + 0
3 = 8⋅0 + 3

The r esult  is: (12345)10 = (30071)8.
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Repr esent at ions of  I nt eger s

procedure base_b_expansion(n, b: posit ive int eger s)
q := n
k := 0
while q ≠ 0
begin

ak := q mod b
q := q/ b
k := k + 1

end

{t he base b expansion of  n is (ak-1 … a1a0)b }
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Addit ion of  I nt eger s

Let  a = (an-1an-2…a1a0)2, b = (bn-1bn-2…b1b0)2.

How can we add t hese t wo binar y number s?

Fir st , add t heir  r ight most  bit s:

a0 + b0 = c0⋅2 + s0,

wher e s0 is t he right most  bit  in t he binar y
expansion of  a + b, and c0 is t he carry.

Then, add t he next  pair  of  bit s and t he car r y:

a1 + b1 + c0 = c1⋅2 + s1,

wher e s1 is t he next  bit  in t he binar y expansion of
a + b, and c1 is t he car r y.

Fall 2002 CMSC 203 - Discrete Structures 159

Addit ion of  I nt eger s

Cont inue t his pr ocess unt il you obt ain cn-1.

The leading bit  of  t he sum is sn = cn-1.

The r esult  is:

a + b = (snsn-1…s1s0)2
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Addit ion of  I nt eger s

Example:

Add a = (1110)2 and b = (1011)2.

a0 + b0 = 0 + 1 = 0⋅2 + 1, so t hat  c0 = 0 and s0 = 1.

a1 + b1 + c0 = 1 + 1 + 0 = 1⋅2 + 0, so c1 = 1 and s1 = 0.

a2 + b2 + c1 = 1 + 0 + 1 = 1⋅2 + 0, so c2 = 1 and s2 = 0.

a3 + b3 + c2 = 1 + 1 + 1 = 1⋅2 + 1, so c3 = 1 and s3 = 1.

s4 = c3 = 1.

Ther ef or e, s = a + b = (11001)2.
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Addit ion of  I nt eger s

How do we (humans) add t wo int eger s?

Example:        7583
      + 4932

51521

111 car r y

Binar y expansions:              (1011)2

                                       +  (1010)2

10

car r y1

10

1

1( )2
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Addit ion of  I nt eger s

Let  a = (an-1an-2…a1a0)2, b = (bn-1bn-2…b1b0)2.

How can we algorit hmically add t hese t wo binar y
number s?

Fir st , add t heir  r ight most  bit s:

a0 + b0 = c0⋅2 + s0,

wher e s0 is t he right most  bit  in t he binar y
expansion of  a + b, and c0 is t he carry.

Then, add t he next  pair  of  bit s and t he car r y:

a1 + b1 + c0 = c1⋅2 + s1,

wher e s1 is t he next  bit  in t he binar y expansion of
a + b, and c1 is t he car r y.
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Addit ion of  I nt eger s

Cont inue t his pr ocess unt il you obt ain cn-1.

The leading bit  of  t he sum is sn = cn-1.

The r esult  is:

a + b = (snsn-1…s1s0)2
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Addit ion of  I nt eger s

Example:

Add a = (1110)2 and b = (1011)2.

a0 + b0 = 0 + 1 = 0⋅2 + 1, so t hat  c0 = 0 and s0 = 1.

a1 + b1 + c0 = 1 + 1 + 0 = 1⋅2 + 0, so c1 = 1 and s1 = 0.

a2 + b2 + c1 = 1 + 0 + 1 = 1⋅2 + 0, so c2 = 1 and s2 = 0.

a3 + b3 + c2 = 1 + 1 + 1 = 1⋅2 + 1, so c3 = 1 and s3 = 1.

s4 = c3 = 1.

Ther ef or e, s = a + b = (11001)2.
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Addit ion of  I nt eger s

procedure add(a, b: posit ive int eger s)
c := 0

f or  j  := 0 t o n-1
begin

d := (aj  + bj  + c)/ 2
sj  := aj  + bj  + c – 2d
c := d

end
sn := c
{t he binar y expansion of  t he sum is (snsn-1…s1s0)2}
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Let ’s pr oceed t o…

Mat hemat ical
Reasoning
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Mat hemat ical Reasoning

We need mat hemat ical reasoning t o

• det er mine whet her  a mat hemat ical ar gument  is
   cor r ect  or  incor r ect  and
• const r uct  mat hemat ical ar gument s.

Mat hemat ical r easoning is not  only impor t ant  f or
conduct ing proof s and program verif icat ion, but
also f or  art if icial int elligence syst ems (dr awing

inf er ences).
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Ter minology

An axiom is a basic assumpt ion about
mat hemat ical st r uct ur ed t hat  needs no pr oof .

We can use a proof  t o demonst r at e t hat  a
par t icular  st at ement  is t r ue. A pr oof  consist s of  a
sequence of  st at ement s t hat  f or m an ar gument .

The st eps t hat  connect  t he st at ement s in such a
sequence ar e t he rules of  inf erence.

Cases of  incor r ect  r easoning ar e called f allacies.

A t heorem is a st at ement  t hat  can be shown t o be
t r ue.
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Ter minology

A lemma is a simple t heor em used as an
int er mediat e r esult  in t he pr oof  of  anot her
t heor em.

A corollary is a pr oposit ion t hat  f ollows dir ect ly
f r om a t heor em t hat  has been pr oved.

A conject ure is a st at ement  whose t r ut h value is
unknown. Once it  is pr oven, it  becomes a t heor em.
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Rules of  I nf er ence

Rules of  inf erence pr ovide t he j ust if icat ion of
t he st eps used in a pr oof .

One impor t ant  r ule is called modus ponens or  t he
law of  det achment . I t  is based on t he t aut ology
(p∧(p→q)) → q. We wr it e it  in t he f ollowing way:

p
p → q
____
∴ q

The t wo hypot heses p and p → q ar e
wr it t en in a column, and t he conclusion

below a bar , wher e ∴ means “t her ef or e”.
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Rules of  I nf er ence

The gener al f or m of  a r ule of  inf er ence is:

  p1

  p2
  .
  .
  .
  pn
____
∴ q

The r ule st at es t hat  if  p1 and p2 and …
and pn ar e all t r ue, t hen q is t r ue as well.

These r ules of  inf er ence can be used in
any mat hemat ical ar gument  and do not
r equir e any pr oof .
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Rules of  I nf er ence

 p
_____
∴ p∨q

Addit ion

 p∧q
_____
∴ p

Simplif icat ion

 p
 q
_____
∴ p∧q

Conj unct ion

 ¬q
 p→q
_____
∴ ¬p

Modus
t ollens

 p→q
 q→r
_____
∴ p→r

Hypot het ical
syllogism

 p∨q
 ¬p
_____
∴ q

Disj unct ive
syllogism
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Ar gument s

J ust  like a r ule of  inf er ence, an argument  consist s
of  one or  mor e hypot heses and a conclusion.

We say t hat  an ar gument  is valid, if  whenever  all
it s hypot heses ar e t r ue, it s conclusion is also t r ue.

However , if  any hypot hesis is f alse, even a valid
ar gument  can lead t o an incor r ect  conclusion.
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Ar gument s

Example:

“I f  101 is divisible by 3, t hen 1012 is divisible by 9.
101 is divisible by 3. Consequent ly, 1012 is divisible
by 9.”

Alt hough t he ar gument  is valid, it s conclusion is
incorrect , because one of  t he hypot heses is f alse
(“101 is divisible by 3.”).

I f  in t he above ar gument  we r eplace 101 wit h 102,
we could cor r ect ly conclude t hat  1022 is divisible
by 9.
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Ar gument s
Which r ule of  inf er ence was used in t he last
ar gument ?

p: “101 is divisible by 3.”

q: “1012 is divisible by 9.”

 p
 p→q
_____
∴ q

Modus
ponens

Unf or t unat ely, one of  t he hypot heses (p) is f alse.
Ther ef or e, t he conclusion q is incor r ect .
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Ar gument s

Anot her example:

“I f  it  r ains t oday, t hen we will not  have a
bar beque t oday. I f  we do not  have a bar beque
t oday, t hen we will have a bar beque t omor r ow.

Ther ef or e, if  it  r ains t oday, t hen we will have a
bar beque t omor r ow.”

This is a valid ar gument : I f  it s hypot heses ar e
t r ue, t hen it s conclusion is also t r ue.
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Ar gument s

Let  us f or malize t he pr evious ar gument :

p: “I t  is r aining t oday.”

q: “We will not  have a bar becue t oday.”

r : “We will have a bar becue t omor r ow.”

So t he ar gument  is of  t he f ollowing f or m:

 p→q
 q→r
_____
∴ p→r

Hypot het ical
syllogism
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Ar gument s

Anot her example:

Gar y is eit her  int elligent  or  a good act or .
I f  Gar y is int elligent , t hen he can count
f r om 1 t o 10.
Gar y can only count  f r om 1 t o 2.
Ther ef or e, Gar y is a good act or .

i: “Gar y is int elligent .”

a: “Gar y is a good act or .”
c: “Gar y can count  f r om 1 t o 10.”
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Ar gument s

i: “Gar y is int elligent .”
a: “Gar y is a good act or .”
c: “Gar y can count  f r om 1 t o 10.”

St ep 1:   ¬c Hypot hesis
St ep 2:   i → c            Hypot hesis

St ep 3:   ¬i    Modus t ollens St eps 1 & 2
St ep 4:   a ∨ i Hypot hesis
St ep 5:   a Disj unct ive Syllogism

St eps 3 & 4

Conclusion: a (“Gar y is a good act or .”)
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Ar gument s

Yet  anot her example:

I f  you list en t o me, you will pass CS 320.
You passed CS 320.
Ther ef or e, you have list ened t o me.

I s t his ar gument  valid?

No, it  assumes ((p→q) ∧ q) → p.

This st at ement  is not  a t aut ology. I t  is f alse if  p
is f alse and q is t r ue.
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Rules of  I nf er ence f or  Quant if ied St at ement s

 ∀x P(x)
__________

∴ P(c) if  c∈U

Univer sal
inst ant iat ion

P(c) f or  an ar bit r ar y c∈U
___________________

∴ ∀x P(x)

Univer sal
gener alizat ion

 ∃x P(x)
______________________

∴ P(c) f or  some element  c∈U

Exist ent ial
inst ant iat ion

P(c) f or  some element  c∈U
____________________

∴ ∃x P(x)

Exist ent ial
gener alizat ion
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Rules of  I nf er ence f or  Quant if ied St at ement s

Example:

Ever y UMB st udent  is a genius.
Geor ge is a UMB st udent .
Ther ef or e, Geor ge is a genius.

U(x): “x is a UMB st udent .”
G(x): “x is a genius.”
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Rules of  I nf er ence f or  Quant if ied St at ement s

The f ollowing st eps ar e used in t he ar gument :

St ep 1: ∀x (U(x) → G(x)) Hypot hesis
St ep 2: U(Geor ge) → G(Geor ge) Univ. inst ant iat ion

using St ep 1

 ∀x P(x)
__________

∴ P(c) if  c∈U

Univer sal
inst ant iat ion

St ep 3: U(Geor ge) Hypot hesis
St ep 4: G(Geor ge) Modus ponens

using St eps 2 & 3
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Pr oving Theor ems

Direct  proof :

An implicat ion p→q can be pr oved by showing t hat
if  p is t r ue, t hen q is also t r ue.

Example:  Give a dir ect  pr oof  of  t he t heor em
“I f  n is odd, t hen n2 is odd.”

I dea:  Assume t hat  t he hypot hesis of  t his
implicat ion is t r ue (n is odd). Then use r ules of
inf er ence and known t heor ems t o show t hat  q
must  also be t r ue (n2 is odd).
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Pr oving Theor ems

n is odd.

Then n = 2k + 1, wher e k is an int eger .

Consequent ly, n2 = (2k + 1)2.
 = 4k2 + 4k + 1
 = 2(2k2 + 2k) + 1

Since n2 can be wr it t en in t his f or m, it  is odd.
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Pr oving Theor ems

I ndirect  proof :

An implicat ion p→q is equivalent  t o it s cont ra-
posit ive ¬q → ¬p. Ther ef or e, we can pr ove p→q
by showing t hat  whenever  q is f alse, t hen p is also
f alse.

Example:  Give an indir ect  pr oof  of  t he t heor em
“I f  3n + 2 is odd, t hen n is odd.”

I dea:  Assume t hat  t he conclusion of  t his
implicat ion is f alse (n is even). Then use r ules of
inf er ence and known t heor ems t o show t hat  p
must  also be f alse (3n + 2 is even).
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Pr oving Theor ems

n is even.

Then n = 2k, wher e k is an int eger .

I t  f ollows t hat  3n + 2 = 3(2k) + 2
= 6k + 2
= 2(3k + 1)

Ther ef or e, 3n + 2 is even.

We have shown t hat  t he cont r aposit ive of  t he
implicat ion is t r ue, so t he implicat ion it self  is also
t r ue (I f  2n + 3 is odd, t hen n is odd).
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Follow me f or  a walk t hr ough...

Mat hemat ical

I nduct ion
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I nduct ion

The principle of  mat hemat ical induct ion is a
usef ul t ool f or  pr oving t hat  a cer t ain pr edicat e
is t r ue f or  all nat ural numbers.

I t  cannot  be used t o discover  t heor ems, but
only t o pr ove t hem.
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I nduct ion

I f  we have a pr oposit ional f unct ion P(n), and we
want  t o pr ove t hat  P(n) is t r ue f or  any nat ur al

number  n, we do t he f ollowing:

•  Show t hat  P(0) is t r ue.
    (basis st ep)

• Show t hat  if  P(n) t hen P(n + 1) f or  any n∈N.
    (induct ive st ep)

• Then P(n) must  be t r ue f or  any n∈N.
    (conclusion)
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I nduct ion

Example:

Show t hat  n < 2n f or  all posit ive int eger s n.

Let  P(n) be t he pr oposit ion “n < 2n.”

1.  Show t hat  P(1) is t r ue.
(basis st ep)

P(1) is t r ue, because 1 < 21 = 2.
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I nduct ion

2.  Show t hat  if  P(n) is t r ue, t hen P(n + 1) is
t r ue.
(induct ive st ep)

Assume t hat  n < 2n is t r ue.

We need t o show t hat  P(n + 1) is t r ue, i.e.

n + 1 < 2n+1

We st ar t  f r om n < 2n:

n + 1 < 2n + 1 ≤ 2n + 2n = 2n+1

Ther ef or e, if  n < 2n t hen n + 1 < 2n+1
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I nduct ion

• Then P(n) must  be t r ue f or  any posit ive
int eger .
(conclusion)

n < 2n is t r ue f or  any posit ive int eger .

End of  pr oof .
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I nduct ion

Anot her Example (“Gauss”):

1 + 2 + … + n = n (n + 1)/ 2

• Show t hat  P(0) is t r ue.
(basis st ep)

For  n = 0 we get  0 = 0. Tr ue.
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I nduct ion

• Show t hat  if  P(n) t hen P(n + 1) f or  any n∈N .

(induct ive st ep)

1 + 2 + … + n = n (n + 1)/ 2

1 + 2 + … + n + (n + 1) = n (n + 1)/ 2 + (n + 1)

= (2n + 2 + n (n + 1))/ 2

= (2n + 2 + n2 + n)/ 2

= (2 + 3n + n2 )/ 2

= (n + 1) (n + 2)/ 2

= (n + 1) ((n + 1) + 1)/ 2
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I nduct ion

• Then P(n) must  be t r ue f or  any n∈N.
(conclusion)

1 + 2 + … + n = n (n + 1)/ 2 is t r ue f or  all n∈N.

End of  pr oof .
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I nduct ion

Ther e is anot her  pr oof  t echnique t hat  is ver y
similar  t o t he pr inciple of  mat hemat ical induct ion.

I t  is called t he second principle of

mat hemat ical induct ion.

I t  can be used t o pr ove t hat  a pr oposit ional
f unct ion P(n) is t r ue f or  any nat ur al number  n.
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I nduct ion

The second pr inciple of  mat hemat ical induct ion:

• Show t hat  P(0) is t r ue.
(basis st ep)

• Show t hat  if  P(0) and P(1) and … and P(n),
t hen P(n + 1) f or  any n∈N.

(induct ive st ep)

• Then P(n) must  be t r ue f or  any n∈N.
(conclusion)
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I nduct ion

Example: Show t hat  ever y int eger  gr eat er  t han
1 can be wr it t en as t he pr oduct  of  pr imes.

•  Show t hat  P(2) is t r ue.
    (basis st ep)

2 is t he pr oduct  of  one pr ime: it self .
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I nduct ion

• Show t hat  if  P(2) and P(3) and … and P(n),
t hen P(n + 1) f or  any n∈N. (induct ive st ep)

Two possible cases:

• I f  (n + 1) is prime, t hen obviously P(n + 1) is t r ue.

• I f  (n + 1) is composit e, it  can be wr it t en as t he
pr oduct  of  t wo int eger s a and b such t hat
2 ≤ a ≤ b < n + 1.

   By t he induct ion hypot hesis, bot h a and b can be
wr it t en as t he pr oduct  of  pr imes.

   Ther ef or e, n + 1 = a⋅b can be wr it t en as t he
pr oduct  of  pr imes.
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I nduct ion

•  Then P(n) must  be t r ue f or  any n∈N.
    (conclusion)

End of  pr oof .

We have shown t hat  every int eger great er

than 1 can be wr it t en as t he pr oduct  of  pr imes.
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I f  I  t old you once, it  must  be...

Recur sion
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Recur sive Def init ions

Recursion is a pr inciple closely r elat ed t o
mat hemat ical induct ion.

I n a recursive def init ion, an obj ect  is def ined in
t er ms of  it self .

We can r ecur sively def ine sequences, f unct ions

and sets.

Fall 2002 CMSC 203 - Discrete Structures 204

Recur sively Def ined Sequences

Example:

The sequence {an} of  power s of  2 is given by
an = 2n f or  n = 0, 1, 2, … .

The same sequence can also be def ined
recursively:

a0 = 1

an+1 = 2an     f or  n = 0, 1, 2, …

Obviously, induct ion and r ecur sion ar e similar
pr inciples.
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Recur sively Def ined Funct ions

We can use t he f ollowing met hod t o def ine a
f unct ion wit h t he nat ural numbers as it s domain:

•  Specif y t he value of  t he f unct ion at  zer o.

•  Give a r ule f or  f inding it s value at  any int eger
     f r om it s values at  smaller  int eger s.

Such a def init ion is called recursive or  induct ive

def init ion.
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Recur sively Def ined Funct ions

Example:

f (0) = 3

f (n + 1) = 2f (n) + 3

f (0) = 3

f (1) = 2f (0) + 3 = 2⋅3 + 3 = 9

f (2) = 2f (1) + 3 = 2⋅9 + 3 = 21

f (3) = 2f (2) + 3 = 2⋅21 + 3 = 45

f (4) = 2f (3) + 3 = 2⋅45 + 3 = 93
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Recur sively Def ined Funct ions

How can we recursively def ine t he f act orial
f unct ion f (n) = n! ?

f (0) = 1

f (n + 1) = (n + 1)f (n)

f (0) = 1

f (1) = 1f (0) = 1⋅1 = 1

f (2) = 2f (1) = 2⋅1 = 2

f (3) = 3f (2) = 3⋅2 = 6

f (4) = 4f (3) = 4⋅6 = 24
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Recur sively Def ined Funct ions

A f amous example: The Fibonacci numbers

f (0) = 0, f (1) = 1

f (n) = f (n – 1) + f (n - 2)

f (0) = 0

f (1) = 1

f (2) = f (1) + f (0) = 1 + 0 = 1

f (3) = f (2) + f (1) = 1 + 1 = 2

f (4) = f (3) + f (2) = 2 + 1 = 3

f (5) = f (4) + f (3) = 3 + 2 = 5

f (6) = f (5) + f (4) = 5 + 3 = 8
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Recur sively Def ined Set s

I f  we want  t o r ecur sively def ine a set , we need
t o pr ovide t wo t hings:

•  an init ial set  of  element s,

•  rules f or  t he const r uct ion of  addit ional

   element s f r om element s in t he set .

Example:  Let  S be r ecur sively def ined by:

3 ∈ S

(x + y) ∈ S if  (x ∈ S) and (y ∈ S)

S is t he set  of  posit ive int eger s divisible by 3.
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Recur sively Def ined Set s

Proof :

Let  A be t he set  of  all posit ive int eger s divisible
by 3.

To show t hat  A = S, we must  show t hat
A ⊆ S and S ⊆ A.

Par t  I : To pr ove t hat  A ⊆ S, we must  show t hat
ever y posit ive int eger  divisible by 3 is in S.

We will use mat hemat ical induct ion t o show t his.
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Recur sively Def ined Set s

Let  P(n) be t he st at ement  “3n belongs t o S”.

Basis st ep:  P(1) is t r ue, because 3 is in S.

I nduct ive st ep:  To show:
I f  P(n) is t r ue, t hen P(n + 1) is t r ue.

Assume 3n is in S. Since 3n is in S and 3 is in S, it
f ollows f r om t he r ecur sive def init ion of  S t hat
3n + 3 = 3(n + 1) is also in S.

Conclusion of  Part  I :  A ⊆ S.
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Recur sively Def ined Set s

Par t  I I : To show: S ⊆ A.

Basis st ep:  To show:
All init ial element s of  S ar e in A. 3 is in A. Tr ue.

I nduct ive st ep:  To show:
(x + y) is in A whenever  x and y ar e in S.

I f  x and y ar e bot h in A, it  f ollows t hat  3 |  x and
3 |  y. Fr om Theor em I , Sect ion 2.3, it  f ollows
t hat  3 |  (x + y).

Conclusion of  Part  I I :  S ⊆ A.

Overall conclusion:  A = S.
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Recur sively Def ined Set s

Anot her example:

The well-f or med f or mulae of  var iables, numer als
and oper at or s f r om {+, -, * , / , ^ } ar e def ined by:

x is a well-f or med f or mula if  x is a numer al or
var iable.

(f  + g), (f  – g), (f  *  g), (f  /  g), (f  ^  g) ar e well-
f or med f or mulae if  f  and g ar e.
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Recur sively Def ined Set s

Wit h t his def init ion, we can const r uct  f or mulae
such as:

(x – y)

((z /  3) – y)

((z /  3) – (6 + 5))

((z /  (2 *  4)) – (6 + 5))
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Recur sive Algor it hms

An algor it hm is called recursive if  it  solves a
pr oblem by r educing it  t o an inst ance of  t he same

pr oblem wit h smaller  input .

Example I :  Recur sive Euclidean Algor it hm

procedure gcd(a, b: nonnegat ive int eger s wit h a < b)

if  a = 0 t hen gcd(a, b) := b

else gcd(a, b) := gcd(b mod a, a)
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Recur sive Algor it hms

Example I I :  Recur sive Fibonacci Algor it hm

procedure f ibo(n: nonnegat ive int eger )

if  n = 0 t hen f ibo(0) := 0

else if  n = 1 then f ibo(1) := 1

else f ibo(n) := f ibo(n – 1) + f ibo(n – 2)
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Recur sive Algor it hms

Recur sive Fibonacci Evaluat ion:

f (4)

f (3)

f (2)

f (1) f (0)

f (1)

f (2)

f (1) f (0)
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Recur sive Algor it hms

procedure it er at ive_f ibo(n: nonnegat ive int eger )
if  n = 0 t hen y := 0
else

begin

x := 0

y := 1
f or i := 1 t o n-1
begin

z := x + y
x : = y
y := z

end

end   {y is t he n-t h Fibonacci number }
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Recur sive Algor it hms

For  ever y r ecur sive algor it hm, t her e is an
equivalent  it er at ive algor it hm.

Recur sive algor it hms ar e of t en shor t er , mor e
elegant , and easier  t o under st and t han t heir
it er at ive count er par t s.

However , it er at ive algor it hms ar e usually mor e
ef f icient  in t heir  use of  space and t ime.
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One, t wo, t hr ee, we’r e…

Count ing
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Basic Count ing Pr inciples

Count ing problems ar e of  t he f ollowing kind:

“How many dif f er ent  8-let t er  passwor ds ar e
t her e?”

“How many possible ways ar e t her e t o pick 11
soccer  player s out  of  a 20-player  t eam?”

Most  impor t ant ly, count ing is t he basis f or

comput ing probabilit ies of  discret e event s.

(“What  is t he pr obabilit y of  winning t he lot t er y?”)
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Basic Count ing Pr inciples

The sum rule:
I f  a t ask can be done in n1 ways and a second t ask
in n2 ways, and if  t hese t wo t asks cannot  be done
at  t he same t ime, t hen t her e ar e n1 + n2 ways t o
do eit her  t ask.

Example:
The depar t ment  will awar d a f r ee comput er  t o
eit her  a CS st udent  or  a CS pr of essor .
How many dif f er ent  choices ar e t her e, if  t her e
ar e 530 st udent s and 15 pr of essor s?

Ther e ar e 530 + 15 = 545 choices.
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Basic Count ing Pr inciples

Generalized sum rule:

 I f  we have t asks T1, T2, …, Tm t hat  can be done in
n1, n2, …, nm ways, r espect ively, and no t wo of
t hese t asks can be done at  t he same t ime, t hen
t her e ar e n1 + n2 + … + nm ways t o do one of  t hese
t asks.
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Basic Count ing Pr inciples

The product  rule:

Suppose t hat  a pr ocedur e can be br oken down
int o t wo successive t asks. I f  t her e ar e n1 ways t o
do t he f ir st  t ask and n2 ways t o do t he second
t ask af t er  t he f ir st  t ask has been done, t hen
t her e ar e n1n2 ways t o do t he pr ocedur e.
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Basic Count ing Pr inciples

Example:

How many dif f er ent  license plat es ar e t her e t hat
cont aining exact ly t hr ee English let t er s ?

Solut ion:

Ther e ar e 26 possibilit ies t o pick t he f ir st  let t er ,
t hen 26 possibilit ies f or  t he second one, and 26
f or  t he last  one.

So t her e ar e 26⋅26⋅26 = 17576 dif f er ent  license
plat es.
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Basic Count ing Pr inciples

Generalized product  rule:

I f  we have a pr ocedur e consist ing of  sequent ial
t asks T1, T2, …, Tm t hat  can be done in n1, n2, …, nm

ways, r espect ively, t hen t her e ar e n1 ⋅ n2 ⋅ … ⋅ nm

ways t o car r y out  t he pr ocedur e.
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Basic Count ing Pr inciples

The sum and pr oduct  r ules can also be phr ased in
t er ms of  set  t heory.

Sum rule:  Let  A1, A2, …, Am be disj oint  set s. Then
t he number  of  ways t o choose any element  f r om
one of  t hese set s is | A1 ∪ A2 ∪ … ∪ Am |  =
| A1|  + | A2|  + … + | Am| .

Product  rule:  Let  A1, A2, …, Am be f init e set s.
Then t he number  of  ways t o choose one element
f r om each set  in t he or der  A1, A2, …, Am is
| A1 × A2 × … × Am |  = | A1|  ⋅ | A2|  ⋅ … ⋅ | Am| .
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I nclusion-Exclusion

How many bit  st r ings of  lengt h 8 eit her  st ar t  wit h a
1 or  end wit h 00?

Task 1:  Const r uct  a st r ing of  lengt h 8 t hat  st ar t s
wit h a 1.

Ther e is one way t o pick t he f ir st  bit  (1),
t wo ways t o pick t he second bit  (0 or  1),
t wo ways t o pick t he t hir d bit  (0 or  1),
.
.
.
t wo ways t o pick t he eight h bit  (0 or  1).

Product  rule:  Task 1 can be done in 1⋅27 = 128 ways.
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I nclusion-Exclusion

Task 2:  Const r uct  a st r ing of  lengt h 8 t hat  ends
wit h 00.

Ther e ar e t wo ways t o pick t he f ir st  bit  (0 or  1),
t wo ways t o pick t he second bit  (0 or  1),
.
.
.
t wo ways t o pick t he sixt h bit  (0 or  1),
one way t o pick t he sevent h bit  (0), and
one way t o pick t he eight h bit  (0).

Product  rule:  Task 2 can be done in 26 = 64 ways.
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I nclusion-Exclusion

Since t her e ar e 128 ways t o do Task 1 and 64 ways
t o do Task 2, does t his mean t hat  t her e ar e 192 bit
st r ings eit her  st ar t ing wit h 1 or  ending wit h 00 ?

No, because her e Task 1 and Task 2 can be done at

t he same t ime.

When we car r y out  Task 1 and cr eat e st r ings
st ar t ing wit h 1, some of  t hese st r ings end wit h 00.

Ther ef or e, we somet imes do Tasks 1 and 2 at  t he
same t ime, so t he sum rule does not  apply.
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I nclusion-Exclusion

I f  we want  t o use t he sum r ule in such a case, we
have t o subt r act  t he cases when Tasks 1 and 2 ar e
done at  t he same t ime.

How many cases ar e t her e, t hat  is, how many
st r ings st ar t  wit h 1 and end wit h 00?

Ther e is one way t o pick t he f ir st  bit  (1),
t wo ways f or  t he second, …, sixt h bit  (0 or  1),
one way f or  t he sevent h, eight h bit  (0).

Product  rule:  I n 25 = 32 cases, Tasks 1 and 2 ar e

car r ied out  at  t he same t ime.
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I nclusion-Exclusion
Since t her e ar e 128 ways t o complet e Task 1 and
64 ways t o complet e Task 2, and in 32 of  t hese
cases Tasks 1 and 2 ar e complet ed at  t he same
t ime, t her e ar e

128 + 64 – 32 = 160 ways t o do eit her  t ask.

I n set  t heor y, t his cor r esponds t o set s A1 and A2

t hat  ar e not  disj oint . Then we have:

| A1 ∪ A2|  = | A1|  + | A2|  - | A1 ∩ A2|

This is called t he principle of  inclusion- exclusion.
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Tr ee Diagr ams
How many bit  st r ings of  lengt h f our  do not  have
t wo consecut ive 1s?

Task 1 Task 2 Task 3 Task 4
(1st  bit ) (2nd bit ) (3r d bit ) (4t h bit )

0

0
0

0

1
1

0
1 0 0

1

1 0
0 0

1
1

0
Ther e ar e 8 st r ings.
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The Pigeonhole Pr inciple

The pigeonhole principle:  I f  (k + 1) or  mor e
obj ect s ar e placed int o k boxes, t hen t her e is at

least  one box cont aining t wo or  mor e of  t he
obj ect s.

Example 1:  I f  t her e ar e 11 player s in a soccer
t eam t hat  wins 12-0, t her e must  be at  least  one
player  in t he t eam who scor ed at  least  t wice.

Example 2:  I f  you have 6 classes f r om Monday t o
Fr iday, t her e must  be at  least  one day on which you
have at  least  t wo classes.
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The Pigeonhole Pr inciple

The generalized pigeonhole principle:  I f  N
obj ect s ar e placed int o k boxes, t hen t her e is at

least  one box cont aining at  least  N/ k of  t he
obj ect s.

Example 1:  I n our  60-st udent  class, at  least  12
st udent s will get  t he same let t er  gr ade (A, B, C, D,
or  F).
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The Pigeonhole Pr inciple

Example 2:  Assume you have a dr awer  cont aining a
r andom dist r ibut ion of  a dozen br own socks and a

dozen black socks. I t  is dar k, so how many socks do
you have t o pick t o be sur e t hat  among t hem t her e
is a mat ching pair ?

Ther e ar e t wo t ypes of  socks, so if  you pick at
least  3 socks, t her e must  be eit her  at  least  t wo
br own socks or  at  least  t wo black socks.

Gener alized pigeonhole pr inciple: 3/ 2 = 2.
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Per mut at ions and Combinat ions

How many ways ar e t her e t o pick a set  of  3 people
f r om a gr oup of  6?

Ther e ar e 6 choices f or  t he f ir st  per son, 5 f or  t he
second one, and 4 f or  t he t hir d one, so t her e ar e
6⋅5⋅4 = 120 ways t o do t his.

This is not  t he cor r ect  r esult !

For  example, picking per son C, t hen per son A, and
t hen per son E leads t o t he same group as f ir st
picking E, t hen C, and t hen A.

However , t hese cases ar e count ed separat ely in
t he above equat ion.
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Per mut at ions and Combinat ions

So how can we comput e how many dif f er ent
subset s of  people can be picked (t hat  is, we want
t o disr egar d t he or der  of  picking) ?

To f ind out  about  t his, we need t o look at
permut at ions.

A permut at ion of  a set  of  dist inct  obj ect s is an
or der ed ar r angement  of  t hese obj ect s.

An or der ed ar r angement  of  r  element s of  a set  is
called an r- permut at ion.
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Per mut at ions and Combinat ions

Example:  Let  S = {1, 2, 3}.
The ar r angement  3, 1, 2 is a per mut at ion of  S.

The ar r angement  3, 2 is a 2-per mut at ion of  S.

The number  of  r -per mut at ions of  a set  wit h n
dist inct  element s is denot ed by P(n,  r).

We can calculat e P(n, r ) wit h t he pr oduct  r ule:

P(n, r ) = n⋅(n – 1)⋅(n – 2) ⋅…⋅(n – r  + 1).

(n choices f or  t he f ir st  element , (n – 1) f or  t he
second one, (n – 2) f or  t he t hir d one…)
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Per mut at ions and Combinat ions

Example:

P(8, 3) = 8⋅7⋅6 = 336
   = (8⋅7⋅6⋅5⋅4⋅3⋅2⋅1)/ (5⋅4⋅3⋅2⋅1)

General f ormula:

P(n, r ) = n!/ (n – r )!

Knowing t his, we can r et ur n t o our  init ial quest ion:

How many ways ar e t her e t o pick a set  of  3 people
f r om a gr oup of  6 (disr egar ding t he or der  of
picking)?
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Per mut at ions and Combinat ions
An r- combinat ion of  element s of  a set  is an
unor der ed select ion of  r  element s f r om t he set .
Thus, an r -combinat ion is simply a subset  of  t he set
wit h r  element s.

Example:  Let  S = {1, 2, 3, 4}.
Then {1, 3, 4} is a 3-combinat ion f r om S.

The number  of  r -combinat ions of  a set  wit h n
dist inct  element s is denot ed by C(n, r ).

Example:  C(4, 2) = 6, since, f or  example, t he 2-
combinat ions of  a set  {1, 2, 3, 4} ar e {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {3, 4}.
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Per mut at ions and Combinat ions

How can we calculat e C(n, r )?

Consider  t hat  we can obt ain t he r -per mut at ion of  a
set  in t he f ollowing way:

First ,  we f or m all t he r -combinat ions of  t he set
(t her e ar e C(n, r ) such r -combinat ions).

Then,  we gener at e all possible or der ings in each of
t hese r -combinat ions (t her e ar e P(r , r ) such
or der ings in each case).

Ther ef or e, we have:

P(n, r ) = C(n, r )⋅P(r , r )
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Per mut at ions and Combinat ions

C(n, r ) = P(n, r )/ P(r , r )
  = n!/ (n – r )!/ (r !/ (r  – r )!)
  = n!/ (r !(n – r )!)

Now we can answer  our  init ial quest ion:

How many ways ar e t her e t o pick a set  of  3 people
f r om a gr oup of  6 (disr egar ding t he or der  of
picking)?

C(6, 3) = 6!/ (3!⋅3!) = 720/ (6⋅6) = 720/ 36 = 20

Ther e ar e 20 dif f er ent  ways, t hat  is, 20 dif f er ent
gr oups t o be picked.
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Per mut at ions and Combinat ions

Corollary:

Let  n and r  be nonnegat ive int eger s wit h r  ≤ n.

Then C(n, r ) = C(n, n – r ).

Not e t hat  “picking a group of  r people f rom a

group of  n people” is t he same as “split t ing a group

of  n people int o a group of  r people and anot her

group of  (n – r) people”.

Please also look at  pr oof  on page 252.
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Per mut at ions and Combinat ions

Example:

A soccer  club has 8 f emale and 7 male member s.
For  t oday’s mat ch, t he coach want s t o have 6
f emale and 5 male player s on t he gr ass. How many
possible conf igur at ions ar e t her e?

C(8, 6) ⋅ C(7, 5) = 8!/ (6!⋅2!) ⋅ 7!/ (5!⋅2!)
        = 28⋅21
        = 588
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Combinat ions

We also saw t he f ollowing:
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!)!(
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n
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−
=
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This symmet r y is int uit ively plausible. For  example,
let  us consider  a set  cont aining six element s (n = 6).

Picking t wo element s and leaving f our  is essent ially
t he same as picking f our  element s and leaving t wo.

I n eit her  case, our  number  of  choices is t he
number  of  possibilit ies t o divide t he set  int o one
set  cont aining t wo element s and anot her  set
cont aining f our  element s.
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Combinat ions

Pascal’s I dent it y:

Let  n and k be posit ive int eger s wit h n ≥ k.
Then C(n + 1, k) = C(n, k – 1) + C(n, k).

How can t his be explained?

What  is it  good f or ?
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Combinat ions
I magine a set  S cont aining n element s and a set  T
cont aining (n + 1) element s, namely all element s in

S plus a new element  a.

Calculat ing C(n + 1, k) is equivalent  t o answer ing
t he quest ion: How many subset s of  T cont aining k
it ems ar e t her e?

Case I : The subset  cont ains (k – 1) element s of  S
             plus t he element  a: C(n, k – 1) choices.

Case I I : The subset  cont ains k element s of  S and
             does not  cont ain a: C(n, k) choices.

Sum Rule:  C(n + 1, k) = C(n, k – 1) + C(n, k).

Fall 2002 CMSC 203 - Discrete Structures 249

Pascal’s Tr iangle

I n Pascal’s t r iangle, each number  is t he sum of
t he number s t o it s upper  lef t  and upper  r ight :

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

… … … … … …
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Pascal’s Tr iangle

Since we have C(n + 1, k) = C(n, k – 1) + C(n, k) and
C(0, 0) = 1, we can use Pascal’s t r iangle t o simplif y
t he comput at ion of  C(n, k):

C(0, 0) = 1

C(1, 0) = 1 C(1, 1) = 1

C(2, 0) = 1 C(2, 1) = 2 C(2, 2) = 1

C(3, 0) = 1 C(3, 1) = 3 C(3, 2) = 3 C(3, 3) = 1

C(4, 0) = 1 C(4, 1) = 4 C(4, 2) = 6 C(4, 3) = 4 C(4, 4) = 1

k

n
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Binomial Coef f icient s

Expr essions of  t he f or m C(n, k) ar e also called
binomial coef f icient s.

How come?

A binomial expression is t he sum of  t wo t er ms,
such as (a + b).

Now consider  (a + b)2 = (a + b)(a + b).

When expanding such expr essions, we have t o
f or m all possible pr oduct s of  a t er m in t he f ir st
f act or  and a t er m in t he second f act or :

(a + b)2 = a·a + a·b + b·a + b·b

Then we can sum ident ical t er ms:

(a + b)2 = a2 + 2ab + b2
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Binomial Coef f icient s

For  (a + b)3 = (a + b)(a + b)(a + b) we have

(a + b)3 = aaa + aab + aba + abb + baa + bab + bba + bbb

(a + b)3 = a3 + 3a2b + 3ab2 + b3

Ther e is only one t er m a3, because t her e is only
one possibilit y t o f or m it : Choose a f r om all t hr ee
f act or s: C(3, 3) = 1.

Ther e is t hr ee t imes t he t er m a2b, because t her e
ar e t hr ee possibilit ies t o choose a f r om t wo out  of
t he t hr ee f act or s: C(3, 2) = 3.

Similar ly, t her e is t hr ee t imes t he t er m ab2

(C(3, 1) = 3) and once t he t er m b3 (C(3, 0) = 1).
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Binomial Coef f icient s

This leads us t o t he f ollowing f or mula:

j
n

j

jnn bajnCba ∑
=

−⋅=+
0

),()(

Wit h t he help of  Pascal’s t r iangle, t his f or mula
can consider ably simplif y t he pr ocess of

expanding power s of  binomial expr essions.

For  example, t he f if t h r ow of  Pascal’s t r iangle
(1 – 4 – 6 – 4 – 1) helps us t o comput e (a + b)4:

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(Binomial Theor em)
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Now it ’s Time f or …

Recurrence

Relat ions
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Recur r ence Relat ions

A recurrence relat ion f or  t he sequence {an} is an
equat ion t hat  expr esses an is t er ms of  one or

mor e of  t he pr evious t er ms of  t he sequence,
namely, a0, a1, …, an-1, f or  all int eger s n wit h
n ≥ n0, wher e n0 is a nonnegat ive int eger .

A sequence is called a solut ion of  a r ecur r ence

r elat ion if  it  t er ms sat isf y t he r ecur r ence
r elat ion.
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Recur r ence Relat ions

I n ot her  wor ds, a r ecur r ence r elat ion is like a
r ecur sively def ined sequence, but  wit hout
specif ying any init ial values (init ial condit ions).

Ther ef or e, t he same r ecur r ence r elat ion can have
(and usually has) mult iple solut ions.

I f  bot h t he init ial condit ions and t he r ecur r ence
r elat ion ar e specif ied, t hen t he sequence is
uniquely det er mined.
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Recur r ence Relat ions

Example:

Consider  t he r ecur r ence r elat ion
an = 2an-1 – an-2 f or  n = 2, 3, 4, …

I s t he sequence {an} wit h an=3n a solut ion of  t his

r ecur r ence r elat ion?

For  n ≥ 2 we see t hat
2an-1 – an-2 = 2(3(n – 1)) – 3(n – 2) = 3n = an.

Ther ef or e, {an} wit h an=3n is a solut ion of  t he
r ecur r ence r elat ion.
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Recur r ence Relat ions

I s t he sequence {an} wit h an=5 a solut ion of  t he
same r ecur r ence r elat ion?

For  n ≥ 2 we see t hat

2an-1 – an-2 = 2⋅5 - 5 = 5 = an.

Ther ef or e, {an} wit h an=5 is also a solut ion of  t he
r ecur r ence r elat ion.
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Modeling wit h Recur r ence Relat ions

Example:

Someone deposit s $ 10,000 in a savings account  at
a bank yielding 5% per  year  wit h int er est

compounded annually. How much money will be in
t he account  af t er  30 year s?

Solut ion:

Let  Pn denot e t he amount  in t he account  af t er  n
year s.

How can we det er mine Pn on t he basis of  Pn-1?
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Modeling wit h Recur r ence Relat ions

We can der ive t he f ollowing recurrence relat ion:

Pn = Pn-1 + 0.05Pn-1 = 1.05Pn-1.

The init ial condit ion is P0 = 10,000.

Then we have:

P1 = 1.05P0

P2 = 1.05P1 = (1.05)2P0

P3 = 1.05P2 = (1.05)3P0

…

Pn = 1.05Pn-1 = (1.05)nP0

We now have a f ormula t o calculat e Pn f or  any
nat ur al number  n and can avoid t he it er at ion.
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Modeling wit h Recur r ence Relat ions

Let  us use t his f or mula t o f ind P30 under  t he

init ial condit ion P0 = 10,000:

P30 = (1.05)30⋅10,000 = 43,219.42

Af t er  30 year s, t he account  cont ains $ 43,219.42.
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Modeling wit h Recur r ence Relat ions

Anot her example:

Let  an denot e t he number  of  bit  st r ings of  lengt h
n t hat  do not  have t wo consecut ive 0s (“valid
st r ings”). Find a r ecur r ence r elat ion and give
init ial condit ions f or  t he sequence {an}.

Solut ion:

I dea: The number  of  valid st r ings equals t he
number  of  valid st r ings ending wit h a 0 plus t he
number  of  valid st r ings ending wit h a 1.
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Modeling wit h Recur r ence Relat ions

Let  us assume t hat  n ≥ 3, so t hat  t he st r ing
cont ains at  least  3 bit s.

Let  us f ur t her  assume t hat  we know t he number

an-1 of  valid st r ings of  lengt h (n – 1).

Then how many valid st r ings of  lengt h n ar e t her e,
if  t he st r ing ends wit h a 1?

Ther e ar e an-1 such st r ings, namely t he set  of
valid st r ings of  lengt h (n – 1) wit h a 1 appended t o

t hem.

Not e:  Whenever  we append a 1 t o a valid st r ing,
t hat  st r ing r emains valid.
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Modeling wit h Recur r ence Relat ions

Now we need t o know: How many valid st r ings of
lengt h n ar e t her e, if  t he st r ing ends wit h a 0?

Valid st r ings of  lengt h n ending wit h a 0 must

have a 1 as t heir (n – 1)st  bit  (ot her wise t hey
would end wit h 00 and would not  be valid).

And what  is t he number  of  valid st r ings of  lengt h
(n – 1) t hat  end wit h a 1?

We alr eady know t hat  t her e ar e an-1 st r ings of
lengt h n t hat  end wit h a 1.

Ther ef or e, t her e ar e an-2 st r ings of  lengt h (n – 1)
t hat  end wit h a 1.
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Modeling wit h Recur r ence Relat ions

So t her e ar e an-2 valid st r ings of  lengt h n t hat
end wit h a 0 (all valid st r ings of  lengt h (n – 2)

wit h 10 appended t o t hem).

As we said bef or e, t he number  of  valid st r ings is
t he number  of  valid st r ings ending wit h a 0 plus
t he number  of  valid st r ings ending wit h a 1.

That  gives us t he f ollowing recurrence relat ion:

an = an-1 + an-2
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Modeling wit h Recur r ence Relat ions

What  ar e t he init ial condit ions?

a1 = 2 (0 and 1)

a2 = 3 (01, 10, and 11)

a3 = a2 + a1 = 3 + 2 = 5

a4 = a3 + a2 = 5 + 3 = 8

a5 = a4 + a3 = 8 + 5 = 13

…

This sequence sat isf ies t he same r ecur r ence
r elat ion as  t he Fibonacci sequence.

Since a1 = f 3 and a2 = f 4, we have an = f n+2.
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Solving Recur r ence Relat ions

I n gener al, we would pr ef er  t o have an explicit

f ormula t o comput e t he value of  an r at her  t han

conduct ing n it er at ions.

For  one class of  r ecur r ence r elat ions, we can
obt ain such f or mulas in a syst emat ic way.

Those ar e t he r ecur r ence r elat ions t hat  expr ess

t he t er ms of  a sequence as linear combinat ions of
pr evious t er ms.
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Solving Recur r ence Relat ions

Def init ion:  A linear  homogeneous r ecur r ence
r elat ion of  degr ee k wit h const ant  coef f icient s is
a r ecur r ence r elat ion of  t he f or m:

an = c1an-1 + c2an-2 + … + ckan-k,

Wher e c1, c2, …, ck ar e r eal number s, and ck ≠ 0.

A sequence sat isf ying such a r ecur r ence r elat ion
is uniquely det er mined by t he r ecur r ence r elat ion
and t he k init ial condit ions

a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1.
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Solving Recur r ence Relat ions

Examples:

The r ecur r ence r elat ion Pn = (1.05)Pn-1
is a linear  homogeneous r ecur r ence r elat ion of
degree one.

The r ecur r ence r elat ion f n = f n-1 + f n-2
is a linear  homogeneous r ecur r ence r elat ion of
degree t wo.

The r ecur r ence r elat ion an = an-5
is a linear  homogeneous r ecur r ence r elat ion of
degree f ive.
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Solving Recur r ence Relat ions

Basically, when solving such r ecur r ence r elat ions,
we t r y t o f ind solut ions of  t he f or m an = rn,
wher e r  is a const ant .

an = r n is a solut ion of  t he r ecur r ence r elat ion
an = c1an-1 + c2an-2 + … + ckan-k if  and only if

r n = c1r
n-1 + c2r n-2 + … + ckr

n-k.

Divide t his equat ion by r n-k and subt r act  t he
r ight -hand side f r om t he lef t :

r k - c1r
k-1 - c2r k-2 -  … - ck-1r  - ck = 0

This is called t he charact erist ic equat ion of  t he
r ecur r ence r elat ion.
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Solving Recur r ence Relat ions

The solut ions of  t his equat ion ar e called t he
charact erist ic root s of  t he r ecur r ence r elat ion.

Let  us consider  linear  homogeneous r ecur r ence
r elat ions of  degree t wo.

Theorem:  Let  c1 and c2 be r eal number s. Suppose
t hat  r 2 – c1r  – c2 = 0 has t wo dist inct  r oot s r 1 and r 2.

Then t he sequence {an} is a solut ion of  t he
r ecur r ence r elat ion an = c1an-1 + c2an-2 if  and only if
an = α1r 1

n + α2r 2
n f or  n = 0, 1, 2, …, wher e α1 and α2

ar e const ant s.

See pp. 321 and 322 f or  t he pr oof .
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Solving Recur r ence Relat ions

Example:  What  is t he solut ion of  t he r ecur r ence
r elat ion an = an-1 + 2an-2 wit h a0 = 2 and a1 = 7 ?

Solut ion:  The char act er ist ic equat ion of  t he
r ecur r ence r elat ion is r 2 – r  – 2 = 0.

I t s r oot s ar e r  = 2 and r  = -1.

Hence, t he sequence {an} is a solut ion t o t he
r ecur r ence r elat ion if  and only if :

an = α12
n + α2(-1)n   f or  some const ant s α1 and α2.
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Solving Recur r ence Relat ions

Given t he equat ion an = α12
n + α2(-1)n and t he init ial

condit ions a0 = 2 and a1 = 7, it  f ollows t hat

a0 = 2 = α1 + α2

a1 = 7 = α1⋅2 + α2 ⋅(-1)

Solving t hese t wo equat ions gives us
α1 = 3 and α2 = -1.

Ther ef or e, t he solut ion t o t he r ecur r ence r elat ion

and init ial condit ions is t he sequence {an} wit h

an = 3⋅2n – (-1)n.
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Solving Recur r ence Relat ions

an = r n is a solut ion of  t he linear  homogeneous
r ecur r ence r elat ion
an = c1an-1 + c2an-2 + … + ckan-k

if  and only if

r n = c1r
n-1 + c2r n-2 + … + ckr

n-k.

Divide t his equat ion by r n-k and subt r act  t he
r ight -hand side f r om t he lef t :

r k - c1r
k-1 - c2r k-2 -  … - ck-1r  - ck = 0

This is called t he charact erist ic equat ion of  t he
r ecur r ence r elat ion.

Fall 2002 CMSC 203 - Discrete Structures 275

Solving Recur r ence Relat ions

The solut ions of  t his equat ion ar e called t he
charact erist ic root s of  t he r ecur r ence r elat ion.

Let  us consider  linear  homogeneous r ecur r ence
r elat ions of  degree t wo.

Theorem:  Let  c1 and c2 be r eal number s. Suppose
t hat  r 2 – c1r  – c2 = 0 has t wo dist inct  r oot s r 1 and r 2.

Then t he sequence {an} is a solut ion of  t he
r ecur r ence r elat ion an = c1an-1 + c2an-2 if  and only if
an = α1r 1

n + α2r 2
n f or  n = 0, 1, 2, …, wher e α1 and α2

ar e const ant s.

See pp. 321 and 322 f or  t he pr oof .
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Solving Recur r ence Relat ions

Example:  Give an explicit  f or mula f or  t he Fibonacci
number s.

Solut ion:  The Fibonacci number s sat isf y t he
r ecur r ence r elat ion f n = f n-1 + f n-2 wit h init ial
condit ions f 0 = 0 and f 1 = 1.

The char act er ist ic equat ion is r 2 – r  – 1 = 0.

I t s r oot s ar e

2

51
,

2

51
21

−=+= rr
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Solving Recur r ence Relat ions
Ther ef or e, t he Fibonacci number s ar e given by

nn

nf 




 −+




 +=
2

51

2

51
21 αα

f or  some const ant s α1 and α2.

We can det er mine values f or  t hese const ant s so
t hat  t he sequence meet s t he condit ions f 0 = 0
and f 1 = 1:

0
210

=+= ααf

1
2

51

2

51
211 =







 −+






 += αf
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Solving Recur r ence Relat ions

The unique solut ion t o t his syst em of  t wo
equat ions and t wo var iables is

5

1
,

5

1
2

== αα

Fibonacci number s:

nn

nf 




 −−




 +=
2

5

5

1511
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Solving Recur r ence Relat ions

But  what  happens if  t he char act er ist ic equat ion
has only one r oot ?

How can we t hen mat ch our  equat ion wit h t he init ial
condit ions a0 and a1 ?

Theorem:  Let  c1 and c2 be r eal number s wit h c2 ≠ 0.
Suppose t hat  r 2 – c1r  – c2 = 0 has only one r oot  r 0.
A sequence {an} is a solut ion of  t he r ecur r ence

r elat ion an = c1an-1 + c2an-2 if  and only if
an = α1r 0

n + α2nr 0
n, f or  n = 0, 1, 2, …, wher e α1 and α2

ar e const ant s.
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Solving Recur r ence Relat ions

Example:  What  is t he solut ion of  t he r ecur r ence
r elat ion an = 6an-1 – 9an-2 wit h a0 = 1 and a1 = 6?

Solut ion:  The only r oot  of  r 2 – 6r  + 9 = 0 is r 0 = 3.
Hence, t he solut ion t o t he r ecur r ence r elat ion is

an = α13
n + α2n3n  f or  some const ant s α1 and α2.

To mat ch t he init ial condit ion, we need

a0 = 1 = α1

a1 = 6 = α1⋅3 + α2⋅3
Solving t hese equat ions yields α1 = 1 and α2 = 1.

Consequent ly, t he over all solut ion is given by

an = 3n + n3n.
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You Never  Escape Your …

Relat ions
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Relat ions

I f  we want  t o descr ibe a r elat ionship bet ween
element s of  t wo set s A and B, we can use ordered

pairs wit h t heir  f ir st  element  t aken f r om A and
t heir  second element  t aken f r om B.

Since t his is a r elat ion bet ween t wo set s, it  is
called a binary relat ion.

Def init ion:  Let  A and B be set s. A binar y r elat ion
f r om A t o B is a subset  of  A×B.

I n ot her  wor ds, f or  a binar y r elat ion R we have
R ⊆ A×B. We use t he not at ion aRb t o denot e t hat

(a, b)∈R and aRb t o denot e t hat  (a, b)∉R.
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Relat ions
When (a, b) belongs t o R, a is said t o be relat ed t o
b by R.

Example:  Let  P be a set  of  people, C be a set  of
car s, and D be t he r elat ion descr ibing which per son
dr ives which car (s).

P = {Car l, Suzanne, Pet er , Car la},

C = {Mer cedes, BMW, t r icycle}

D = {(Car l, Mer cedes), (Suzanne, Mer cedes),
        (Suzanne, BMW), (Pet er , t r icycle)}

This means t hat  Car l dr ives a Mer cedes, Suzanne
dr ives a Mer cedes and a BMW, Pet er  dr ives a
t r icycle, and Car la does not  dr ive any of  t hese
vehicles.
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Funct ions as Relat ions

You might  r emember  t hat  a f unct ion f  f r om a set  A
t o a set  B assigns a unique element  of  B t o each
element  of  A.

The graph of  f  is t he set  of  or der ed pair s (a, b)
such t hat  b = f (a).

Since t he gr aph of  f  is a subset  of  A×B, it  is a
relat ion f r om A t o B.

Mor eover , f or  each element  a of  A, t her e is
exact ly one or der ed pair  in t he gr aph t hat  has a as
it s f ir st  element .
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Funct ions as Relat ions

Conver sely, if  R is a r elat ion f r om A t o B such t hat
ever y element  in A is t he f ir st  element  of  exact ly
one or der ed pair  of  R, t hen a f unct ion can be
def ined wit h R as it s gr aph.

This is done by assigning t o an element  a∈A t he
unique element  b∈B such t hat  (a, b)∈R.
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Relat ions on a Set

Def init ion:  A r elat ion on t he set  A is a r elat ion
f r om A t o A.

I n ot her  wor ds, a r elat ion on t he set  A is a subset

of  A×A.

Example:  Let  A = {1, 2, 3, 4}. Which or der ed pair s
ar e in t he r elat ion R = {(a, b) |  a < b} ?
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Relat ions on a Set

Solut ion:    R = {(1, 2), (1, 3), (1, 4), (2, 3),(2, 4),(3, 4)}

4

3

2

1

4321R1 1

2

3

4

2

3

4

X X X

X X

X

Fall 2002 CMSC 203 - Discrete Structures 288

Relat ions on a Set
How many dif f erent  relat ions can we def ine on
a set  A wit h n element s?

A r elat ion on a set  A is a subset  of  A×A.

How many element s ar e in A×A ?

Ther e ar e n2 element s in A×A, so how many
subset s (= r elat ions on A) does A×A have?

The number  of  subset s t hat  we can f or m out  of  a
set  wit h m element s is 2m. Ther ef or e, 2n2

 subset s
can be f or med out  of  A×A.

Answer:  We can def ine 2n2
 dif f er ent  r elat ions

on A.
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Pr oper t ies of  Relat ions
We will now look at  some usef ul ways t o classif y
r elat ions.

Def init ion:  A r elat ion R on a set  A is called

ref lexive if  (a, a)∈R f or  ever y element  a∈A.

Ar e t he f ollowing r elat ions on {1, 2, 3, 4} r ef lexive?

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No.

R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes.

R = {(1, 1), (2, 2), (3, 3)} No.

Def init ion:  A r elat ion on a set  A is called
irref lexive if  (a, a)∉R f or  ever y element  a∈A.
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Pr oper t ies of  Relat ions

Def init ions:

A r elat ion R on a set  A is called symmet ric if  (b,
a)∈R whenever  (a, b)∈R f or  all a, b∈A.

A r elat ion R on a set  A is called ant isymmet ric if
a = b whenever  (a, b)∈R and (b, a)∈R.

A r elat ion R on a set  A is called asymmet ric if

(a, b)∈R implies t hat  (b, a)∉R f or  all a, b∈A.
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Pr oper t ies of  Relat ions

Ar e t he f ollowing r elat ions on {1, 2, 3, 4}
symmet r ic, ant isymmet r ic, or  asymmet r ic?

R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmet r ic

R = {(1, 1)} sym. and
ant isym.

R = {(1, 3), (3, 2), (2, 1)} ant isym.
and asym.

R = {(4, 4), (3, 3), (1, 4)} ant isym.
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Pr oper t ies of  Relat ions

Def init ion:  A r elat ion R on a set  A is called
t ransit ive if  whenever  (a, b)∈R and (b, c)∈R, t hen
(a, c)∈R f or  a, b, c∈A.

Ar e t he f ollowing r elat ions on {1, 2, 3, 4}
t r ansit ive?

R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes.

R = {(1, 3), (3, 2), (2, 1)} No.

R = {(2, 4), (4, 3), (2, 3), (4, 1)} No.
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Count ing Relat ions

Example:  How many dif f er ent  r ef lexive r elat ions
can be def ined on a set  A cont aining n element s?

Solut ion:  Relat ions on R ar e subset s of  A×A, which
cont ains n2 element s.

Ther ef or e, dif f er ent  r elat ions on A can be
gener at ed by choosing dif f er ent  subset s out  of
t hese n2 element s, so t her e ar e 2n2

 r elat ions.

A ref lexive r elat ion, however , must  cont ain t he n
element s (a, a) f or  ever y a∈A.

Consequent ly, we can only choose among n2 – n =
n(n – 1) element s t o gener at e r ef lexive r elat ions, so
t her e ar e 2n(n – 1) of  t hem.
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Combining Relat ions

Relat ions ar e set s, and t her ef or e, we can apply t he
usual set  operat ions t o t hem.

I f  we have t wo r elat ions R1 and R2, and bot h of

t hem ar e f r om a set  A t o a set  B, t hen we can
combine t hem t o R1 ∪ R2, R1 ∩ R2, or  R1 – R2.

I n each case, t he r esult  will be anot her relat ion

f rom A t o B.
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Combining Relat ions

… and t her e is anot her  impor t ant  way t o combine
r elat ions.

Def init ion:  Let  R be a r elat ion f r om a set  A t o a
set  B and S a r elat ion f r om B t o a set  C. The
composit e of  R and S is t he r elat ion consist ing of
or der ed pair s (a, c), wher e a∈A, c∈C, and f or  which
t her e exist s an element  b∈B such t hat  (a, b)∈R and
(b, c)∈S. We denot e t he composit e of  R and S by
S°°R.

I n ot her  wor ds, if  r elat ion R cont ains a pair  (a, b)
and r elat ion S cont ains a pair  (b, c), t hen S°°R
cont ains a pair  (a, c).
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Combining Relat ions

Example:  Let  D and S be r elat ions on A = {1, 2, 3, 4}.

D = {(a, b) |  b = 5 - a}     “b equals (5 – a)”

S = {(a, b) |  a < b}        “a is smaller  t han b”

D = {(1, 4), (2, 3), (3, 2), (4, 1)}

S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

S°°D = { (2, 4), (3, 3), (3, 4), (4, 2), (4, 3),

D maps an element  a t o t he element  (5 – a), and
af t er war ds S maps (5 – a) t o all element s lar ger
t han (5 – a), r esult ing in S°°D = {(a, b) |  b > 5 – a}

or  S°°D = {(a, b) |  a + b > 5}.

(4, 4)}
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Combining Relat ions

We alr eady know t hat  f unct ions ar e j ust  special

cases of  relat ions (namely t hose t hat  map each
element  in t he domain ont o exact ly one element  in
t he codomain).

I f  we f or mally conver t  t wo f unct ions int o r elat ions,
t hat  is, wr it e t hem down as set s of  or der ed pair s,
t he composit e of  t hese r elat ions will be exact ly t he
same as t he composit e of  t he f unct ions (as def ined
ear lier ).
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Combining Relat ions

Def init ion:  Let  R be a r elat ion on t he set  A. The
power s Rn, n = 1, 2, 3, …, ar e def ined induct ively by

R1 = R

Rn+1 = Rn°°R

I n ot her  wor ds:

Rn = R°°R°° … °°R  (n t imes t he let t er  R)
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Combining Relat ions

Theorem:  The r elat ion R on a set  A is t r ansit ive if
and only if  Rn ⊆ R f or  all posit ive int eger s n.

Remember  t he def init ion of  t r ansit ivit y:

Def init ion:  A r elat ion R on a set  A is called
t r ansit ive if  whenever  (a, b)∈R and (b, c)∈R, t hen
(a, c)∈R f or  a, b, c∈A.

The composit e of  R wit h it self  cont ains exact ly
t hese pair s (a, c).

Ther ef or e, f or  a t r ansit ive r elat ion R, R°°R does not
cont ain any pair s t hat  ar e not  in R, so R°°R ⊆ R.

Since R°°R does not  int r oduce any pair s t hat  ar e not
alr eady in R, it  must  also be t r ue t hat  (R°°R)°°R ⊆ R,
and so on, so t hat  Rn ⊆ R.
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n-ar y Relat ions

I n or der  t o st udy an int er est ing applicat ion of
r elat ions, namely dat abases, we f ir st  need t o

gener alize t he concept  of  binar y r elat ions t o n- ary

relat ions.

Def init ion:  Let  A1, A2, …, An be set s. An n- ary

relat ion on t hese set s is a subset  of  A1×A2×…×An.

The set s A1, A2, …, An ar e called t he domains of  t he
r elat ion, and n is called it s degree.
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n-ar y Relat ions

Example:

Let  R = {(a, b, c) |  a = 2b ∧ b = 2c wit h a, b, c∈N}

What  is t he degr ee of  R?

The degr ee of  R is 3, so it s element s ar e t r iples.

What  ar e it s domains?

I t s domains ar e all equal t o t he set  of  int eger s.

I s (2, 4, 8) in R?

No.

I s (4, 2, 1) in R?

Yes.
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Dat abases and Relat ions

Let  us t ake a look at  a t ype of  dat abase
r epr esent at ion t hat  is based on r elat ions, namely
t he relat ional dat a model.

A dat abase consist s of  n-t uples called records,

which ar e made up of  f ields.

These f ields ar e t he ent ries of  t he n-t uples.

The r elat ional dat a model r epr esent s a dat abase as
an n-ar y r elat ion, t hat  is, a set  of  r ecor ds.
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Dat abases and Relat ions

Example:  Consider  a dat abase of  st udent s, whose
r ecor ds ar e r epr esent ed as 4-t uples wit h t he f ields

St udent  Name, I D Number , Major , and GPA:

R = {(Acker mann, 231455, CS, 3.88),
       (Adams, 888323, Physics, 3.45),
       (Chou, 102147, CS, 3.79),
       (Goodf r iend, 453876, Mat h, 3.45),
       (Rao, 678543, Mat h, 3.90),
       (St evens, 786576, Psych, 2.99)}

Relat ions t hat  r epr esent  dat abases ar e also called
t ables, since t hey ar e of t en displayed as t ables.
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Dat abases and Relat ions
A domain of  an n-ar y r elat ion is called a primary
key if  t he n-t uples ar e uniquely det er mined by
t heir  values f r om t his domain.

This means t hat  no t wo r ecor ds have t he same
value f r om t he same pr imar y key.

I n our  example, which of  t he f ields St udent  Name,
I D Number , Major , and GPA ar e pr imar y keys?

St udent  Name and I D Number  ar e pr imar y keys,
because no t wo st udent s have ident ical values in
t hese f ields.

I n a r eal st udent  dat abase, only I D Number  would
be a pr imar y key.
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Dat abases and Relat ions

I n a dat abase, a pr imar y key should r emain one
even if  new r ecor ds ar e added.

Ther ef or e, we should use a pr imar y key of  t he
int ension of  t he dat abase, cont aining all t he n-
t uples t hat  can ever  be included in our  dat abase.

Combinat ions of  domains can also uniquely ident if y
n-t uples in an n-ar y r elat ion.

When t he values of  a set  of  domains det er mine an

n-t uple in a r elat ion, t he Cart esian product  of
t hese domains is called a composit e key.
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Dat abases and Relat ions
We can apply a var iet y of  operat ions on n-ar y
r elat ions t o f or m new r elat ions.

Def init ion:  The project ion Pi1, i2, …, im
 maps t he n-

t uple (a1, a2, …, an) t o t he m-t uple (ai1
, ai2

, …, aim
),

wher e m ≤ n.

I n ot her  wor ds, a pr oj ect ion Pi1, i2, …, im
 keeps t he m

component s ai1
, ai2

, …, aim 
of  an n-t uple and delet es

it s (n – m) ot her  component s.

Example:  What  is t he r esult  when we apply t he
pr oj ect ion P2,4 t o t he st udent  r ecor d (St evens,
786576, Psych, 2.99) ?

Solut ion:  I t  is t he pair  (786576, 2.99).
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Dat abases and Relat ions

I n some cases, applying a pr oj ect ion t o an ent ir e
t able may not  only r esult  in f ewer  columns, but  also

in f ewer rows.

Why is t hat ?

Some r ecor ds may only have dif f er ed in t hose
f ields t hat  wer e delet ed, so t hey become ident ical,
and t her e is no need t o list  ident ical r ecor ds mor e
t han once.
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Dat abases and Relat ions

We can use t he join oper at ion t o combine t wo
t ables int o one if  t hey shar e some ident ical f ields.

Def init ion:  Let  R be a r elat ion of  degr ee m and S a
r elat ion of  degr ee n. The join J p(R, S), wher e p ≤ m
and p ≤ n, is a r elat ion of  degr ee m + n – p t hat
consist s of  all (m + n – p)-t uples
(a1, a2, …, am-p, c1, c2, …, cp, b1, b2, …, bn-p),
wher e t he m-t uple (a1, a2, …, am-p, c1, c2, …, cp)
belongs t o R and t he n-t uple (c1, c2, …, cp, b1, b2, …,
bn-p) belongs t o S.
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Dat abases and Relat ions

I n ot her  wor ds, t o gener at e J p(R, S), we have t o
f ind all t he element s in R whose p last  component s
mat ch t he p f ir st  component s of  an element  in S.

The new r elat ion cont ains exact ly t hese mat ches,
which ar e combined t o t uples t hat  cont ain each
mat ching f ield only once.
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Dat abases and Relat ions

Example:  What  is J 1(Y, R), wher e Y cont ains t he
f ields St udent  Name and Year of  Birt h,

Y = {(1978, Acker mann),

       (1972, Adams),
       (1917, Chou),
       (1984, Goodf r iend),
       (1982, Rao),
       (1970, St evens)},

and R cont ains t he st udent  r ecor ds as def ined
bef or e ?
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Dat abases and Relat ions

Solut ion:  The r esult ing r elat ion is:

      {(1978, Acker mann, 231455, CS, 3.88),
       (1972, Adams, 888323, Physics, 3.45),

       (1917, Chou, 102147, CS, 3.79),
       (1984, Goodf r iend, 453876, Mat h, 3.45),
       (1982, Rao, 678543, Mat h, 3.90),
       (1970, St evens, 786576, Psych, 2.99)}

Since Y has t wo f ields and R has f our , t he r elat ion
J 1(Y, R) has 2 + 4 – 1 = 5 f ields.
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Repr esent ing Relat ions

We alr eady know dif f er ent  ways of  r epr esent ing
r elat ions. We will now t ake a closer  look at  t wo
ways of  r epr esent at ion: Zero- one mat rices and
direct ed graphs.

I f  R is a r elat ion f r om A = {a1, a2, …, am} t o B =
{b1, b2, …, bn}, t hen R can be r epr esent ed by t he
zer o-one mat r ix MR = [mij ]  wit h

mij  = 1,   if  (ai, bj )∈R, and

mij  = 0,  if  (ai, bj )∉R.

Not e t hat  f or  cr eat ing t his mat r ix we f ir st  need t o
list  t he element s in A and B in a part icular,  but
arbit rary order .
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Repr esent ing Relat ions

Example:  How can we r epr esent  t he r elat ion
R = {(2, 1), (3, 1), (3, 2)} as a zer o-one mat r ix?

Solut ion:  The mat r ix MR is given by
















=

11

01

00

R
M
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Repr esent ing Relat ions
What  do we know about  t he mat r ices r epr esent ing
a relat ion on a set  (a r elat ion f r om A t o A) ?

They ar e square mat r ices.

What  do we know about  mat r ices r epr esent ing
ref lexive r elat ions?

All t he element s on t he diagonal of  such mat r ices
Mr ef  must  be 1s.



























=

1

.

.

.

1

1

refM
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Repr esent ing Relat ions
What  do we know about  t he mat r ices r epr esent ing
symmet ric relat ions?

These mat r ices ar e symmet r ic, t hat  is, MR = (MR)t .



















=

1101

1001

0010

1101

RM

symmet r ic mat r ix,
symmet r ic r elat ion.



















=

0011

0011

0011

0011

RM

non-symmet r ic mat r ix,
non-symmet r ic r elat ion.
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Repr esent ing Relat ions

The Boolean oper at ions join and meet  (you
r emember ?) can be used t o det er mine t he mat r ices
r epr esent ing t he union and t he int ersect ion of  t wo
r elat ions, r espect ively.

To obt ain t he join of  t wo zer o-one mat r ices, we
apply t he Boolean “or ” f unct ion t o all cor r esponding
element s in t he mat r ices.

To obt ain t he meet  of  t wo zer o-one mat r ices, we
apply t he Boolean “and” f unct ion t o all cor r esponding
element s in t he mat r ices.
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Repr esent ing Relat ions

Example:  Let  t he r elat ions R and S be r epr esent ed
by t he mat r ices
















=∨=∪

011

111

101

SRSR
MMM
















=

001

110

101

SM

What  ar e t he mat r ices r epr esent ing R∪S and R∩S?

Solut ion:  These mat r ices ar e given by
















=∧=∩

000

000

101

SRSR
MMM
















=

010

001

101

RM
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Repr esent ing Relat ions Using Mat r ices

Example:  How can we r epr esent  t he r elat ion
R = {(2, 1), (3, 1), (3, 2)} as a zer o-one mat r ix?

Solut ion:  The mat r ix MR is given by
















=

11

01

00

R
M
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Repr esent ing Relat ions Using Mat r ices

Example:  Let  t he r elat ions R and S be r epr esent ed
by t he mat r ices
















=∨=∪

011

111

101

SRSR
MMM
















=

001

110

101

SM

What  ar e t he mat r ices r epr esent ing R∪S and R∩S?

Solut ion:  These mat r ices ar e given by
















=∧=∩

000

000

101

SRSR
MMM
















=

010

001

101

RM
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Repr esent ing Relat ions Using Mat r ices

Do you r emember  t he Boolean product  of  t wo
zer o-one mat r ices?

Let  A = [aij ]  be an m×k zer o-one mat r ix and
B = [b ij ]  be a k×n zer o-one mat r ix.

Then t he Boolean product  of  A and B, denot ed by
AοB, is t he m×n mat r ix wit h (i, j )t h ent r y [cij ] ,
wher e

cij  = (ai1 ∧ b1j ) ∨ (ai2 ∧ b2i) ∨ … ∨ (aik ∧ bkj ).

cij  = 1 if  and only if  at  least  one of  t he t er ms
(ain ∧ bnj ) = 1 f or  some n; ot her wise cij  = 0.
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Repr esent ing Relat ions Using Mat r ices

Let  us now assume t hat  t he zer o-one mat r ices
MA = [aij ] , MB = [bij ]  and MC = [cij ]  r epr esent
r elat ions A, B, and C, r espect ively.

Remember:  For  MC = MAοMB we have:

cij  = 1 if  and only if  at  least  one of  t he t er ms
(ain ∧ bnj ) = 1 f or  some n; ot her wise cij  = 0.

I n t er ms of  t he relat ions, t his means t hat  C
cont ains a pair  (x i, zj ) if  and only if  t her e is an
element  yn such t hat  (x i, yn) is in r elat ion A and
(yn, zj ) is in r elat ion B.

Ther ef or e, C = B°A  (composit e of  A and B).
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Repr esent ing Relat ions Using Mat r ices

This gives us t he f ollowing r ule:

MB°A = MAοMB

I n ot her  wor ds, t he mat r ix r epr esent ing t he
composit e of  r elat ions A and B is t he Boolean

product  of  t he mat r ices r epr esent ing A and B.

Analogously, we can f ind mat r ices r epr esent ing t he
powers of  relat ions:

MRn = MR
[n]    (n-t h Boolean power).
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Repr esent ing Relat ions Using Mat r ices

Example:  Find t he mat r ix r epr esent ing R2, wher e
t he mat r ix r epr esent ing R is given by
















=

001

110

010

RM

Solut ion:  The mat r ix f or  R2 is given by
















==

010

111

110
]2[

2 RR
MM
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Repr esent ing Relat ions Using Digr aphs

Def init ion:  A direct ed graph, or  digraph, consist s
of  a set  V of  vert ices (or  nodes) t oget her  wit h a

set  E of  or der ed pair s of  element s of  V called
edges (or  arcs).

The ver t ex a is called t he init ial vert ex of  t he
edge (a, b), and t he ver t ex b is called t he t erminal

vert ex of  t his edge.

We can use ar r ows t o display gr aphs.
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Repr esent ing Relat ions Using Digr aphs

Example:  Display t he digr aph wit h V = {a, b, c, d},
E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

a
b

cd

An edge of  t he f or m (b, b) is called a loop.
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Repr esent ing Relat ions Using Digr aphs

Obviously, we can r epr esent  any r elat ion R on a set
A by t he digr aph wit h A as it s ver t ices and all pair s
(a, b)∈R as it s edges.

Vice ver sa, any digr aph wit h ver t ices V and edges E
can be r epr esent ed by a r elat ion on V cont aining all
t he pair s in E.

This one- t o- one correspondence bet ween
r elat ions and digr aphs means t hat  any st at ement
about  r elat ions also applies t o digr aphs, and vice
ver sa.
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Equivalence Relat ions

Equivalence relat ions ar e used t o r elat e obj ect s
t hat  ar e similar  in some way.

Def init ion:  A r elat ion on a set  A is called an
equivalence r elat ion if  it  is r ef lexive, symmet r ic,
and t r ansit ive.

Two element s t hat  ar e r elat ed by an equivalence
r elat ion R ar e called equivalent .
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Equivalence Relat ions

Since R is symmet ric, a is equivalent  t o b whenever
b is equivalent  t o a.

Since R is ref lexive, ever y element  is equivalent  t o

it self .

Since R is t ransit ive, if  a and b ar e equivalent  and b
and c ar e equivalent , t hen a and c ar e equivalent .

Obviously, t hese t hr ee pr oper t ies ar e necessar y
f or  a r easonable def init ion of  equivalence.
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Equivalence Relat ions
Example:  Suppose t hat  R is t he r elat ion on t he set
of  st r ings t hat  consist  of  English let t er s such t hat
aRb if  and only if  l(a) = l(b), wher e l(x) is t he lengt h
of  t he st r ing x. I s R an equivalence r elat ion?

Solut ion:

• R is r ef lexive, because l(a) = l(a) and t her ef or e
  aRa f or  any st r ing a.

• R is symmet r ic, because if  l(a) = l(b) t hen l(b) =
  l(a), so if  aRb t hen bRa.

• R is t r ansit ive, because if  l(a) = l(b) and l(b) = l(c),
  t hen l(a) = l(c), so aRb and bRc implies aRc.

R is an equivalence r elat ion.
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Equivalence Classes

Def init ion: Let  R be an equivalence r elat ion on a
set  A. The set  of  all element s t hat  ar e r elat ed t o
an element  a of  A is called t he equivalence class

of  a.

The equivalence class of  a wit h r espect  t o R is
denot ed by [a]R.

When only one r elat ion is under  consider at ion, we
will delet e t he subscr ipt  R and wr it e [a] f or  t his
equivalence class.

I f  b∈[a]R, b is called a represent at ive of  t his
equivalence class.
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Equivalence Classes

Example:  I n t he pr evious example (st r ings of
ident ical lengt h), what  is t he equivalence class of
t he wor d mouse, denot ed by [mouse] ?

Solut ion:  [mouse] is t he set  of  all English wor ds
cont aining f ive let t er s.

For  example, ‘hor se’ would be a r epr esent at ive of
t his equivalence class.
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Equivalence Classes
Theorem: Let  R be an equivalence r elat ion on a set
A. The f ollowing st at ement s ar e equivalent :

•   aRb

•   [a]  = [b]

• [a]  ∩ [b]  ≠ ∅
Def init ion:  A part it ion of  a set  S is a collect ion of
disj oint  nonempt y subset s of  S t hat  have S as t heir
union. I n ot her  wor ds, t he collect ion of  subset s A i,
i∈I , f or ms a par t it ion of  S if  and only if

(i)   A i ≠ ∅ f or  i∈I

•  A i ∩ A j  = ∅, if  i ≠ j

• ∪i∈I  A i = S
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Equivalence Classes
Examples: Let  S be t he set  {u, m, b, r , o, c, k, s}.
Do t he f ollowing collect ions of  set s par t it ion S ?

{{m, o, c, k}, {r , u, b, s}} yes.

{{c, o, m, b}, {u, s}, {r }} no (k is missing).

{{b, r , o, c, k}, {m, u, s, t }} no (t  is not  in S).

{{u, m, b, r , o, c, k, s}} yes.

{{b, o, o, k}, {r , u, m}, {c, s}} yes ({b,o,o,k} = {b,o,k}).

{{u, m, b}, {r , o, c, k, s}, ∅} no (∅ not  allowed).
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Equivalence Classes

Theorem: Let  R be an equivalence r elat ion on a
set  S. Then t he equivalence classes of  R f or m a
part it ion of  S. Conver sely, given a par t it ion
{A i |  i∈I } of  t he set  S, t her e is an equivalence
r elat ion R t hat  has t he set s A i, i∈I , as it s
equivalence classes.
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Equivalence Classes

Example:  Let  us assume t hat  Fr ank, Suzanne and
Geor ge live in Bost on, St ephanie and Max live in
Lübeck, and J ennif er  lives in Sydney.

Let  R be t he equivalence relat ion {(a, b) |  a and b
live in t he same cit y} on t he set  P = {Fr ank, Suzanne,
Geor ge, St ephanie, Max, J ennif er }.

Then R = {(Fr ank, Fr ank), (Fr ank, Suzanne),
(Fr ank, Geor ge), (Suzanne, Fr ank), (Suzanne,
Suzanne), (Suzanne, Geor ge), (Geor ge, Fr ank),
(Geor ge, Suzanne), (Geor ge, Geor ge), (St ephanie,
St ephanie), (St ephanie, Max), (Max, St ephanie),
(Max, Max), (J ennif er , J ennif er )}.

Fall 2002 CMSC 203 - Discrete Structures 336

Equivalence Classes

Then t he equivalence classes of  R ar e:

{{Fr ank, Suzanne, Geor ge}, {St ephanie, Max},
{J ennif er }}.

This is a part it ion of  P.

The equivalence classes of  any equivalence r elat ion
R def ined on a set  S const it ut e a par t it ion of  S,
because ever y element  in S is assigned t o exact ly

one of  t he equivalence classes.
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Equivalence Classes

Anot her example:  Let  R be t he r elat ion
{(a, b) |  a ≡ b (mod 3)} on t he set  of  int eger s.

I s R an equivalence r elat ion?

Yes, R is r ef lexive, symmet r ic, and t r ansit ive.

What  ar e t he equivalence classes of  R ?

{{…, -6, -3, 0, 3, 6, …},
 {…, -5, -2, 1, 4, 7, …},
 {…, -4, -1, 2, 5, 8, …}}
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Yes, No, Maybe...

Boolean
Algebr a
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Boolean Algebr a

Boolean algebr a pr ovides t he oper at ions and t he
r ules f or  wor king wit h t he set  {0,  1}.

These ar e t he r ules t hat  under lie elect ronic

circuit s, and t he met hods we will discuss ar e

f undament al t o VLSI  design.

We ar e going t o f ocus on t hr ee oper at ions:

•  Boolean complement at ion,

•  Boolean sum, and

•  Boolean pr oduct
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Boolean Oper at ions

The complement  is denot ed by a bar  (on t he slides,
we will use a minus sign). I t  is def ined by

-0 = 1   and   -1 = 0.

The Boolean sum, denot ed by + or  by OR, has t he
f ollowing values:

1 + 1 = 1,    1 + 0 = 1,    0 + 1 = 1,    0 + 0 = 0

The Boolean product , denot ed by ⋅ or  by AND, has
t he f ollowing values:

1 ⋅ 1 = 1,    1 ⋅ 0 = 0,    0 ⋅ 1 = 0,    0 ⋅ 0 = 0
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Boolean Funct ions and Expr essions

Def init ion:  Let  B = {0, 1}. The var iable x is called a
Boolean variable if  it  assumes values only f r om B.

A f unct ion f r om Bn, t he set  {(x1, x2, …, xn) | x i∈B,
1 ≤ i ≤ n}, t o B is called a Boolean f unct ion of

degree n.

Boolean f unct ions can be r epr esent ed using
expr essions made up f r om t he var iables and
Boolean oper at ions.
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Boolean Funct ions and Expr essions

The Boolean expressions in t he var iables x1, x2, …,
xn ar e def ined r ecur sively as f ollows:

•  0, 1, x1, x2, …, xn ar e Boolean expr essions.

•  I f  E1 and E2 ar e Boolean expr essions, t hen (-E1),
   (E1E2), and (E1 + E2) ar e Boolean expr essions.

Each Boolean expr ession r epr esent s a Boolean
f unct ion. The values of  t his f unct ion ar e obt ained
by subst it ut ing 0 and 1 f or  t he var iables in t he
expr ession.
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Boolean Funct ions and Expr essions

For  example, we can cr eat e Boolean expr ession in
t he var iables x, y, and z using t he “building blocks”
0, 1, x, y, and z, and t he const r uct ion r ules:

Since x and y ar e Boolean expr essions, so is xy.

Since z is a Boolean expr ession, so is (-z).

Since xy and (-z) ar e expr essions, so is xy + (-z).

… and so on…

Fall 2002 CMSC 203 - Discrete Structures 344

Boolean Funct ions and Expr essions

Example:  Give a Boolean expr ession f or  t he
Boolean f unct ion F(x, y) as def ined by t he f ollowing
t able:

110

001

011

000

F(x, y)yx

Possible solut ion:  F(x, y) = (-x)⋅y
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Boolean Funct ions and Expr essions
Anot her Example: Possible solut ion I :

F(x, y, z) = -(xz + y)

0

0

1

1

F(x, y, z)

1

0

1

0

z

00

10

10

00

yx

0

0

0

1

1

0

1

0

11

11

01

01

Possible solut ion I I :

F(x, y, z) = (-(xz))(-y)



116

Fall 2002 CMSC 203 - Discrete Structures 346

Boolean Funct ions and Expr essions

Ther e is a simple met hod f or  der iving a Boolean
expr ession f or  a f unct ion t hat  is def ined by a t able.

This met hod is based on mint erms.

Def init ion:  A lit eral is a Boolean var iable or  it s
complement . A mint erm of  t he Boolean var iables x1,
x2, …, xn is a Boolean pr oduct  y1y2…yn, wher e yi = x i

or  yi = -x i.

Hence, a mint er m is a pr oduct  of  n lit er als, wit h
one lit er al f or  each var iable.
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Boolean Funct ions and Expr essions
Consider  F(x,y,z) again: F(x, y, z) = 1 if  and

only if :

x = y = z = 0  or

x = y = 0, z = 1 or

x = 1, y = z = 0

Ther ef or e,

F(x, y, z) =

(-x)(-y)(-z) +

(-x)(-y)z +

x(-y)(-z)

0

0

1

1

F(x, y, z)

1

0

1

0

z

00

10

10

00

yx

0

0

0

1

1

0

1

0

11

11

01

01
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Boolean Funct ions and Expr essions

Def init ion:  The Boolean f unct ions F and G of  n
var iables ar e equal if  and only if  F(b1, b2, …, bn) =
G(b1, b2, …, bn) whenever  b1, b2, …, bn belong t o B.

Two dif f er ent  Boolean expr essions t hat  r epr esent

t he same f unct ion ar e called equivalent .

For  example, t he Boolean expr essions xy, xy + 0,
and xy⋅1 ar e equivalent .
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Boolean Funct ions and Expr essions

The complement  of  t he Boolean f unct ion F is t he
f unct ion –F, wher e –F(b1, b2, …, bn) =
-(F(b1, b2, …, bn)).

Let  F and G be Boolean f unct ions of  degr ee n. The

Boolean sum F+G and Boolean product  FG ar e t hen
def ined by

(F + G)(b1, b2, …, bn) = F(b1, b2, …, bn) + G(b1, b2, …, bn)

(FG)(b1, b2, …, bn) = F(b1, b2, …, bn) G(b1, b2, …, bn)
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Boolean Funct ions and Expr essions

Quest ion:  How many dif f er ent  Boolean f unct ions
of  degr ee 1 ar e t her e?

Solut ion:  Ther e ar e f our  of  t hem, F1, F2, F3, and F4:

0

1

F3

1

0

F2

101

100

F4F1x
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Boolean Funct ions and Expr essions

Quest ion:  How many dif f er ent  Boolean f unct ions
of  degr ee 2 ar e t her e?

Solut ion:  Ther e ar e 16 of  t hem, F1, F2, …, F16:

1

0

0

0

F2

0

0

0

0

F1

010

101

011

000

F3yx

1

1

1

0

F8

0

1

1

0

F7

0

0

0

1

F9

0

0

1

0

F5

1

1

0

0

F4

1

0

1

0

F6

0

1

0

1

F11

1

0

0

1

F10

0

1

1

1

F12

1

0

1

1

F14

0

0

1

1

F13

1

1

0

1

F15

1

1

1

1

F16
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Boolean Funct ions and Expr essions

Quest ion:  How many dif f er ent  Boolean f unct ions
of  degr ee n ar e t her e?

Solut ion:

Ther e ar e 2n dif f er ent  n-t uples of  0s and 1s.

A Boolean f unct ion is an assignment  of  0 or  1 t o
each of  t hese 2n dif f er ent  n-t uples.

Ther ef or e, t her e ar e 22n
 dif f er ent  Boolean

f unct ions.
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Dualit y

Ther e ar e usef ul ident it ies of  Boolean expr essions
t hat  can help us t o t r ansf or m an expr ession A int o
an equivalent  expr ession B (see Table 5 on page
597 in t he t ext book).

We can der ive addit ional ident it ies wit h t he help
of  t he dual of  a Boolean expr ession.

The dual of  a Boolean expr ession is obt ained by
int er changing Boolean sums and Boolean pr oduct s
and int er changing 0s and 1s.
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Dualit y

Examples:

The dual of  x(y + z) is x + yz.

The dual of  -x ⋅1 + (-y + z) is (-x + 0)((-y)z).

The dual of  a Boolean f unct ion F r epr esent ed by
a Boolean expr ession is t he f unct ion r epr esent ed
by t he dual of  t his expr ession.

This dual f unct ion, denot ed by Fd, does not

depend on t he par t icular  Boolean expr ession used
t o r epr esent  F.
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Dualit y

Ther ef or e, an ident it y bet ween f unct ions
r epr esent ed by Boolean expr essions remains valid
when t he duals of  bot h sides of  t he ident it y ar e

We can use t his f act , called t he 
t o der ive new ident it ies.

For  example, consider  t he absor pt ion law
.

By t aking t he duals of  bot h sides of  t his ident it y,
x + xy , which is also an

ident it y (and also called an absor pt ion law).

Fall 2002 CMSC 203 - Discrete Structures

All t he pr oper t ies of  Boolean f unct ions and
expr essions t hat  we have discover ed also apply t o

ot her mat hemat ical st ruct ures

pr oposit ions and set s and t he oper at ions def ined
on t hem.

Boolean algebr a, t hen we know t hat  all r esult s

est ablished about  Boolean algebr as apply t o t his

For  t his pur pose, we need an abst ract  def init ion

of  a Boolean algebr a.
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 A Boolean algebr a is a set  B wit h t wo
binar y oper at ions ∨ , element s 0 and 1, and a
unar y oper at ion – such t hat  t he f ollowing
pr oper t ies hold f or  all x, y, and z in B:

x ∨  1 = x            (ident it y laws)

x ∨  (-x) = 0    (dominat ion laws)

(x ∨  z = x ∨  z)   and
(x ∧  z = x ∧  z)   and      (associat ive laws)

x ∨  x   and x ∧  x  (commut at ive laws)

x ∨  z) = (x ∨  (x ∨
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)      
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Logic Gat es

Elect r onic cir cuit s consist  of  so-called gat es.
Ther e ar e t hr ee basic t ypes of  gat es:

x

y

x+y
OR gat e

AND gat e

x

y

xy

x -x
inver t er
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Logic Gat es

Example:  How can we build a cir cuit  t hat  comput es
t he f unct ion xy + (-x)y ?

xy + (-x)y

x

y

xy

x -x

y

(-x)y
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The
End


