Let’s get started with...

Logic!
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Logic

+ Crucial for mathematical reasoning
» Used f or designing electronic circuitry

* Logic is a system based on propositions.
* A propositionis a statement that is either
true or false (not both).

* We say that the truth value of a proposition
is either true (T) or false (F).

» Corresponds to 1and 0 in digital circuits
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The Statement/ Proposition Game
“Elephant s are bigger than mice.”
I sthis astatement? yes
I s this a proposition? yes

What is the truth value
of the proposition? true
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The Statement/ Proposition Game

“520 <111
I sthisastatement? yes
| s this a proposition? yes

What is the truth value
of the proposition? false
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The Statement/ Proposition Game

“y 55
I sthisastatement? yes
I s this a proposition? no

I'ts truth value depends on the value of vy,
but this value is not specified.

We call this type of statement a
propositional function or open sentence.
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The Statement/ Proposition Game

“Today is January 1 and 99 <5.”

I sthisastatement? yes
I s this a proposition? yes

What is the truth value
of the proposition? false
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The Statement/ Proposition Game

“Please do not fall asleep.”

I s this a statement ? no

It’s arequest.

I s this a proposition? no

Only statement s can be propositions.
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The Statement/ Proposition Game

“If elephants were red,
they could hide in cherry trees.”

I sthis astatement? yes
I s this a proposition? yes

What is the truth value
of the proposition? probably false
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The Statement/ Proposition Game
“x <y if and only if y >x.”
I sthis astatement? yes
I s this a proposition? yes
...because its truth value
does not depend on
specific values of x and y.
What is the truth value
of the proposition? true

Fall 2002 CMSC 203 - Discrete Structures. 9




Combining Propositions

As we have seen in t he previous examples,
one or mor e propositions can be combined
to form a single compound proposition.

We formalize t his by denoting propositions
with letters such as p, q, r, s, and
introducing several logical operators.
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Logical Operat ors (Connectives)
We will examine the f ollowing logical operat ors:

* Negation (NOT)

» Conjunction  (AND)

* Disjunction  (OR)

» Exclusive or  (XOR)

* I mplication  (if —then)

* Biconditional (if and only if)

Truth tables can be used to show how these

oper ators can combine propositions to
compound proposit ions.
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Negation (NOT)

Unary Operator, Symbol: -

P -P
true (T) | false (F)
false (F) | true (T)
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Conjunction (AND)
Binary Operator, Symbol: O

P Q PoQ
T T T
T F F
F T F
F F F

Disjunction (OR)
Binary Operator, Symbol: O

P Q | P
T T T
T F T
F T T
F F F

Exclusive Or (XOR)
Binary Operator, Symbol: O

P Q | PoQ
T T F
T F T
F T T
F F F
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I mplication (if - then)

Binary Operator, Symbol: -

P Q |P-Q
T T T
T F F
F T T
F F T

Biconditional (if and only if)

Binary Operator, Symbol: o

P Q |P.Q
T T T
T F F
F T F
F F T

Statements and Operators

Statements and operators can be combined in any
way to form new statements.

P|al-rP|-al-Pa-q)
T|T|F|F F
T|F|F|T T
FlT|T]|F T
FIlF|T|T T
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Stat ement s and Operations

Statements and operators can be combined in any
way to form new statements.

P | Q [Poa|- (POQ)|(-PO-Q)
T|T T F F
T|F[F T T
FlT]|F T T
FlF|F T T

Equivalent Statements

P Q |-(PEQ)|(-PI-Q)|-~(PIQ) - (-P)O(-Q)
T T F F T
T F T T T
F T T T T
F F T T T

The statements = (POQ) and (-P) O(-Q) are logically
equivalent, since = (PQ)  (=P) O(-Q) is always true.
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Taut ologies and Contradictions

A tautology is a statement that is always true.

Examples:
* RO-R)
+ ~(POQ) - (-PO-Q)

If S-Tisatautology, we write SO T.
If ST isatautology, we write S=T.
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Taut ologies and Contradictions

A contradiction is a statement that is always
false.

Examples:

* RO-R)

+ =(=(PQ) « (=P)O(-Q))

The negation of any tautology is a contra-
diction, and the negation of any contradiction is
a tautology.
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Exercises
We already know t he following t aut ology:
-(PQ) = (=PO-Q)
Nice home exercise:
Showthat -(POQ) = (-P)O-Q).

These two tautologies are known as De
Morgan’s laws.

Table 5 in Section 1.2 shows many usef ul laws.

Exercises 1and 7 in Section 1.2 may help you
get used to propositions and operators.
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Let’s Talk About Logic

* Logic is a system based on propositions.

* A propositionis a statement that is either
true or false (not both).

* We say that the truth value of a proposition
is either true (T) or false (F).

+ Corresponds to 1and 0 in digital circuits
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Logical Operators (Connectives)

* Negation (NOT)

» Conjunction  (AND)

* Disjunction  (OR)

» Exclusive or  (XOR)

* I mplication  (if —then)

* Biconditional (if and only if)

Truth tables can be used to show how these

oper ators can combine propositions to
compound proposit ions.
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Taut ologies and Contradictions

A tautology is a statement that is always true.

Examples:
* RO-R
+ ~(POQ) - (-PO-Q)

I1f S-Tisatautology, we write SO T.
If ST isatautology, we write S=T.
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Taut ologies and Contradictions

A contradiction is a statement that is always
false.

Examples:
*RO-R
* = (=(PEIQ) - (-PO(-Q))

The negation of any tautology is a contradiction,
and the negation of any contradictionis a
taut ology.
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Propositional Functions

Propositional f unction (open sentence):

stat ement involving one or more variables,
e.g.: x-3 >5.

Let us call this propositional function P(x),
where Pis the predicate and x is the variable.
What isthe truth value of P(2) ? false
What isthe truth value of P(8) ? false
What isthe truth value of P(9) ? true
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Propositional Functions

Let us consider the propositional function
Q(x,y, z) defined as:
X +y=2.

Here, Q isthe predicate and x, y, and z are the
variables.

What isthe truth value of Q(2,3,5) ? true
What isthe truth value of Q(0, 1,2) ? false
What isthe truth value of Q(9,-9,0) ? true
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Universal Quantification

Let P(x) be a propositional function.

Universally quantified sentence:

For all x in the universe of discourse P(x) is true.

Using the universal quantifier O:
Ox P(x) “for all x P(x)” or “for every x P(x)”

(Note: Ox P(x) is either true or false, soit isa
proposition, not a propositional function.)
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Universal Quantification

Example:
S(x): x is a UMBC st udent.
G(x): x is a genius.

What does Ox (S(x) — G(x)) mean ?

“I'f x isa UMBC student, then x is a genius.”
or
“All UMBC students are geniuses.”
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Existential Quantification

Existentially quantified sentence:

There exists an x in the universe of discourse
for which P(x) is true.

Using the existential quantifier [
x P(x) “Thereisanx such that P(x).”

“There is at least one x such that P(x).”

(Note: [x P(x) is either true or false, soit is a
proposition, but no propositional function.)
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Existential Quantification

Example:
P(x): x is a UMBC prof essor .
G(x): x is a genius.

What does [x (P(x) OG(x)) mean ?

“There is an x such that x is a UMBC prof essor
and x is a genius.”

or
“At least one UMBC prof essor is a genius.”
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Quantification

Anot her example:
Let the universe of discourse be the real numbers.

What does Ox[y (x +y =320) mean ?
“For every x there existsay sothat x +y =320."
I'sit true? yes

I'sit true for the natural numbers? no
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Disproof by Count erexample

A counterexample to Ox P(x) is an object ¢ so
that P(c) is false.

Statements such as Ox (P(x) - Q(x)) can be
disproved by simply providing a count erexample.

Statement: “All birds can fly.”
Disproved by count erexample: Penguin.
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Negation

= (Ox P(x)) is logically equivalent to [x (=P(x)).
= (x P(x)) is logically equivalent to Ox (=P(x)).
See Table 3 in Section 1.3.

| recommend exercises 5 and 9 in Section 1.3.
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...and now for somet hing
completely different...

Set Theory

Actually, you will see that logic and
set theory are very closely relat ed.
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Set Theory

» Set: Collection of objects (“elements”)

« allA “ais an element of A”
“ais a member of A”

« alA “ais not an element of A”
+ A={a a, ..,a} “Acontains..
» Order of elements is meaningless

* |t does not matter how of ten the same
element is listed.
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Set Equality
Sets A and B are equal if and only if they
contain exactly the same elements.
Examples:
*A={9,2,7,-3},B={7,9,-3,2}: A=B
» A ={dog, cat, horse},

B ={cat, horse, squirrel, dog} : A#B
* A ={dog, cat, horse},
B ={cat, horse, dog, dog} : A=B
Fall 2002 CMSC 203 - Discrete Structures. 39
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Examples for Sets

“Standard” Sets:

* Natural numbers N ={0, 1, 2, 3, ..}
* IntegersZ ={..,-2,-1,0,1,2, .}

» Positive I ntegers Z+ ={1, 2, 3, 4, ..}
* Real Numbers R={47.3,-12, m, ..}

Rational Numbers Q ={1.5, 2.6, -3.8, 15, ..}
(correct definition will f ollow)
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Examples for Sets

« A=0 “empty set/ null set”
« A={z} Note: zOA, but z # {z}
« A={{b,c},{c, x, d}}
- A={{x,y}}
Note: {x, y} OA, but {x, y} #{{x, y}}
* A={x| Px)}

“set of all x such that P(x)”

« A={x| xON Ox >7} ={8, 9,10, ..}
“set builder notation”
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Examples for Sets

We are now able to define the set of rational

numbers Q:

Q ={a/b| a0z ObOZ+}

or

Q ={a/b| a0z ObOZ O b=0}

And how about the set of real numbers R?

R={r | r is areal number}
That is the best we can do.
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Subset s

AOB “A is a subset of B”

A OB if and only if every element of A is also
an element of B.

We can complet ely f ormalize this:
A OB = Ox (xOA - xOB)

Examples:

A={3,9},B={5,9,1,3}, AOB? true
A={3,3,3,9},B={5,9,1,3}, AOB? true
A={1,2,3},B={2, 3, 4}, AOB? false
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Subset s

Usef ul rules:
«A=B - (AOB)O(BOA)
«+ (AOB)OMBOC O AOC (see Venn Diagram)

(@) o
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Subset s

Usef ul rules:
« O OAfor any set A
« AOAfor any set A

Proper subsets:

A OB “Aisaproper subset of B’

A 0B = Ox (xUOA - xOB) Ok (xOB OxOA)
or

A OB = Ox (xOA - xOB) O-0x (xOB - xOA)
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Cardinality of Sets

I f aset S contains ndistinct elements, nON,
we call S afinite set with cardinality n.

Examples:

A ={Mercedes, BMW, Porsche}, |A| =3

B={1,{2, 3}, {4, 5}, 6} |Bl =4

C=0 |C =0

D={xON | x <7000} |D| =7001

E={xON | x 27000} Eisinfinite!
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The Power Set

P(A) “power set of A”

P(A) ={B| BOA} (contains all subsets of A)

Examples:

A={xy,z}

PA) = {0, {x}, {y}, {z}, {x, v}, {x, 2}, {y, 2}, {x, y, 2}

A=0

PA) ={0O}

Note: |A| =0, |P(A)| =1
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The Power Set
Cardinality of power sets:
| P(A) | =217
* I magine each element in A has an “on/ of f” switch

+ Each possible switch configurationin A
corresponds to one element in 24

Al1|2|3|4|5|6]|7]|8
X X X X X X X X X
YIY Y[y |lYlYy|lYlYy]lYy
z z z z z z z z z
» For 3 elementsin A, there are
2x2x2 =8 elements in P(A)
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Cartesian Product
The ordered n-tuple (a, a, &, .., a,) is an
ordered collection of objects.
Two ordered n-tuples (ay, a,, a3, .., a,) and
(by, by, bg, .., b,) are equal if and only if they
contain exactly the same elements in the same
order,i.e.a =b;for 1<i<n.

The Cartesian product of two sets is defined as:
AxB ={(a, b) | alA Ob0OB}

Example: A ={x, y}, B={a, b, c}
AxB ={(x, a), (x, b), (x, ¢), (y, a), (y, b), (y, c)}
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Cartesian Product

The Cartesian product of two sets is defined as:
AxB ={(a, b) | alA Ob0OB}

Example:
A ={good, bad}, B = {student, prof}

AxB = {(good, student), (good, prof), (bad, student), (bad, prof)}

BxA = {(st udent, good), (prof, good), (student, bad), (prof, bad)}
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Cartesian Product

Note that:
« Ax( =0
« OxA =0

+ For non-empty sets A and B: AZB = AxB # BxA
* |[AxB| =|A|[B]

The Cartesian product of two or more sets is
defined as:

AxAx. xA ={(ay, &, .., a,) | adA for 1<i<n}
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Set Operations

Union: AOB ={x | xOA Ox0OB}

Example: A ={a, b}, B={b, c, d}
AOB={a, b, c, d}

I ntersection: AnB ={x | xOA OxOB}

Example: A ={a, b}, B={b, c, d}
AnB ={b}
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Set Operations

Two sets are called disjoint if their intersection
is empty, that is, they share no elements:
AnB=0

The dif f erence between two sets A and B
contains exactly those elements of A that are
not in B:

A-B={x | xOA OxOB}

Example: A ={a, b}, B={b, c, d}, A-B ={a}
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Set Operations

The complement of aset A contains exactly
those elements under consideration that are not
inA:

Ac =U-A

Example: U =N, B ={250, 251, 252, ..}
Bec ={0, 1, 2, .., 248, 249}
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Set Operations

Table 1in Section 1.5 shows many usef ul equations.
How can we prove AO(BnC) = (AOB)n(AOQ)?

Method | :
xOAO(BnC)

= xOA OxO(BnC)

= xOA O(xOB Ox0OQ)

= (xOA Ox0OB) O(xOA Ox0OCQ)
(distributive law f or logical expressions)

- xO(AOB) OxO(AOQ)

- xO(AOB)n(AOC)
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Set Operations

Method | | : Member ship table

1 means “x is an element of this set”

0 means “x is not an element of this set”
B AO(BnC) AOC [(AOB)
0

>
[¢]
@
=)
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>
[m]
@

(AOC)

ala|a|=|o|lolo|e
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alalala|la|lo|o]o]o

~lo|lalola]lolalo
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Set Operations

Every logical expression can be transformed into an
equivalent expression in set theory and vice versa.

You could work on Exercises 9 and 19 in Section 1.5
to get some practice.
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...and the f ollowing mat hematical
appetizer is about...

Functions
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Functions

A functionf fromaset Atoaset Bisan
assignment of exactly one element of Bto each
element of A.

We write

f(a)=b

if b isthe unique element of B assigned by the
functionf tothe element aof A.

If f isafunctionfromA to B, we write

f:A-B

(note: Here, “ " has nothing to do with if ...t hen)
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Functions

If f:A-B,wesaythat Aisthedomainof f and B
is the codomain of f.

If f(a) =b, we say that b isthe image of aand ais
the pre-image of b.

The range of f:A-Bisthe set of all images of
elements of A.

We say that f:A- B maps A to B.
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Functions

Let us take alook at the function f:P-Cwith
P ={Linda, Max, Kat hy, Peter}
C ={Bost on, New York, Hong Kong, Moscow}

f (Linda) = Moscow
f(Max) = Boston

f (Kat hy) = Hong Kong
f (Peter) = New York

Here, the range of f is C.
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Functions

Let us re-specify f as f ollows:

Linda) = Moscow
Max) = Boston
Kat hy) = Hong Kong

f(
f(
f(
f (Peter) = Boston

Isf still afunction? yes

What isitsrange? {Moscow, Boston, Hong Kong}
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Functions

Other ways torepresent f:

X f (x) Linda Boston
Linda | Moscow | . New York
Max Bost on
Kat hy Hong Kathy Flong Kong
Kong
Pet er Bost on Peter Moscow
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Functions

I f the domain of our functionf islarge, it is
convenient to specify f with aformula, e.g.:
f:R-R

f(x) =2x

This leads to:
f(1)
f(3)=6
f(-3) =-6
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Functions

Let f,and f, be functionsfromA to R

Then the sum and the product of f,and f, are
also functions from A to Rdefined by:

(f1+12)(x) = F4(x) +f,(x)

(f4f ) (x) = f4(x) fo(x)

Example:

fi(x) =3x, fo(x) =x+5

(fy+fo)(x) = fy(x) +f,(x) =3x +x +5=4x +5
(f4f o) (x) = f4(x) fo(x) =3x (x +5) =3x2 + 15x
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Functions

We already know that the range of afunction
f:A-Bisthe set of all images of elements allA.

I f we only regard a subset SUA, the set of all
images of elements sOS is called the image of S.

We denote the image of S by f(S):

f(S) ={f(s) | sOS}
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Functions

Let us look at the f ollowing well-known f unction:
f (Linda) = Moscow

f (Max) = Boston

f (Kat hy) = Hong Kong

f (Peter) = Boston

What is the image of S ={Linda, Max} ?

f(S) ={Moscow, Bost on}

What is the image of S ={Max, Peter} ?

f(S) = {Boston}
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Properties of Functions

A function f:A - B is said to be one-to-one (or
injective), if and only if

Ox, yOA (f(x) =f(y) - x =vy)
I nother words: f is one-to-one if and only if it

does not map two distinct elements of A ontothe
same element of B.
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Properties of Functions

And again...

f (Linda) = Moscow

f (Max) = Boston

f (Kat hy) = Hong Kong
f (Peter) = Boston

|s f one-to-one?

No, Max and Peter are
mapped onto the same
element of the image.

Fall 2002

g(Linda) = Moscow
g(Max) = Boston
g(Kat hy) = Hong Kong
g(Peter) = New York

|I's g one-to-one?
Yes, each element is

assigned a unique
element of the image.
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Properties of Functions

How can we prove that afunctionf is one-to-one?

Whenever you want to prove somet hing, first
take alook at the relevant definition(s):

Ox, yOA (f(x) =f(y) - x =vy)

Example:

f:R-R

f(x) =x2

Disproof by counterexample:

f(38) =f(-3), but 3 #-3, sof is not one-to-one.
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Properties of Functions

...and yet another example:

f:R-R

f(x) =3x

One-to-one: Ox, yOA (f(x) =f(y) - x =y)
To show: f (x) # f (y) whenever x Zy

XZYy

= 3Xx £ 3y

= f(x) #f(y),
soif x 2y, thenf(x) #f(y), that is, f is one-to-one.
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Properties of Functions

A function f:A-Bwith A.B O Ris called strictly
increasing, if

Ox,yOA (x <y - f(x) <f(y)),

and strictly decreasing, if

Ox,yOA (x <y > f(x) >f(y)).

Obviously, afunction that is either strictly
increasing or strictly decreasing is one-to-one.

Fall 2002 CMSC 203 - Discrete Structures. 72

24



Properties of Functions

A functionf:A - Bis called onto, or surjective, if
and only if for every element bOB there is an
element alJA with f(a) =b.

I nother words, f isonto if and only if its rangeis
its entire codomain.

A function f: A-Bis a one-to-one correspondence,
or a bijection, if and only if it is both one-to-one
and ont o.

Obviously, if f is abijectionand A and B are finite
sets, then |A] =|B].
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Properties of Functions

Examples:

I nthe following examples, we use the arrow
representationtoillustrate functions f:A - B.

I n each example, the complete sets A and B are
shown.
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Properties of Functions

Linda Boston I'sf injective?
Max New York No.

I'sf surjective?
Kat hy Hong Kong  No.

I's f bijective?
Pet er Moscow No.
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Properties of Functions

Linda Boston I'sf injective?
Max New York No.

I'sf surjective?
Kat hy Hong Kong  Yes.

I's f bijective?
Pet er Moscow No.
Paul
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Properties of Functions

Linda Boston I'sf injective?
Max New York Yes.

I'sf surjective?
Kat hy Hong Kong  No.

I's f bijective?
Pet er Moscow No.

Libeck
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Properties of Functions

Hnda Boston I'sf injective?
Max New York No! f i? not even
afunction!
Kat hy Hong Kong
Pet er \ Moscow
Libeck
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Properties of Functions

Linda Boston I'sf injective?
Max New York Yes.

I'sf surjective?
Kat hy Hong Kong  Yes.

I's f bijective?
Pet er Moscow Yes.
Helena Libeck
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| nversion

Aninteresting property of bijections isthat
they have an inverse function.

The inverse function of the bijectionf:A-B
isthe functionf-:B- A with

f-1(b) = a whenever f(a) =b.
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| nversion
Example: The inverse function
f-1is given by:
f (Linda) = Moscow f-(Moscow) = Linda
f (Max) = Boston f-1(Bost on) = Max
f (Kat hy) = Hong Kong f-1(Hong Kong) = Kat hy
f (Peter) = Libeck f-1(LUbeck) = Peter
f (Helena) = New York f-(New York) = Helena

Clearly, f is bijective.

Fall 2002

I nversion is only
possible f or bijections
(=invertible functions)
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| nversion
Boston f —

New York f1 - >

f-:C-Pisno
function, because
it is not defined
for all elements of
A C and assigns two
Helena ™ Libeck images to the pre-
image New York.

Kathy *= o Hong Kong

Pet er Moscow
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Composition

The composition of two functions g:A - B and
f:B- C, denoted by f°g, is defined by

(feg)(a) =f(g(a))

This means t hat

» first, function g is applied to element allA,
mapping it onto an element of B,

+ then, function f is applied to t his element of
B, mapping it onto an element of C.

» Therefore, the composit e f unction maps
fromAtoC

Fall 2002 CMSC 203 - Discrete Structures. 83

Composition
Example:

f(x) =7x —4, g(x) = 3x,
f:R-R,gR-R

(f°g)(5) =1(g(5)) = (15) = 105 —4 = 101

(fe@)(x) =f(g(x)) =f(3x) =21x - 4

Fall 2002 CMSC 203 - Discrete Structures. 84




Composition

Composition of afunction and its inverse:
(1) (x) =1-1(f (x)) =x

The composition of afunction and its inverse
is the identity functioni(x) =x.
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Graphs

The graph of afunctionf:A-Bisthe set of
ordered pairs {(a, b) | aA and f (a) = b}.

The graph is a subset of AxBthat can be used
tovisualize f in atwo-dimensional coordinate
system.
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Floor and Ceiling Functions

The floor and ceiling f unctions map the real
numbers onto the integers (R-Z).

The floor function assigns to rJRthe largest
zZ with z <r, denoted by &[]

Examples: [2.300=2, [2[(0=2, (0.50=0, 33.50=-4

The ceiling f unction assigns to rCR t he smallest
zZ with z > r, denoted by &[]

Examples: [(2.30=3, 20=2, [0.50=1, 33.50=-3
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Exercises

| recommend Exercises 1and 15 in Section 1.6.

I't may also be usef ul to study the graph displays
inthat section.

Anot her question: What do all graph displays f or
any function f :R- R have in common?
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...and now for...

Sequences
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Sequences

Sequences represent ordered lists of elements.

A sequence is defined as a f unction f rom a subset
of Ntoaset S. We use the notation a, to denote
the image of theinteger n. We call a, aterm of
the sequence.

Example:

subset of N: 12 3 45
P

S: 2 4 6 8 10 ...
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Sequences
We use the notation {a,} to describe a sequence.

I mportant : Do not conf use this with the {} used
in set notation.

It is convenient to describe a sequence with a
formula.

For example, the sequence on t he previous slide
can be specified as {a,}, where a, = 2n.
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The For mula Game

What are the formulas that describe the
f ollowing sequences ay, a,, ag, ...?

1,3,5,7,9, ... a,=2n-1
A,1,-1,1, -1, a,=(-1"
2,5,10, 17, 26, ... a,=n+1

0.25,0.5,0.75,1,1.25 ... a,=0.25n

3,9,27,81,243, ... a,=3"
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Strings

Finit e sequences are also called strings, denot ed
by aa,a;..a,.

The length of astring S is the number of terms
that it consists of .

The empty string contains noterms at all. It has
length zero.
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Summations
What does stand for?
I't representsthe suma, +a,,4+apn, + ...+ &,

The variable j is called the index of summation,
running from its lower limit mtoits upper limit n.
We could as well have used any ot her letter to
denot e this index.
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Summat ions

How can we express the sum of the first 1000
terms of the sequence {a,} with a,=n?for
n=12,3,..7

We write it as
What is the value of ?
Itis1+2+3+4 +5+6=21.

What is the value of ?

It is so much work to calculate this...
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Summat ions

It is said that Friedrich Gauss came up with the
f ollowing f ormula:

When you have such a formula, the result of any
summat ion can be calculat ed much more easily,
for example:
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Arithemetic Series

How does: 27??

Observe that:
1+2+3 +.+n/2+(n/2+1)+.4(n-2)+(n-1) +n

=[14n] +[2+(n- )] +[3 +(n-2)] +.+[V2 + (V2 +1)]

=(n+N)+(n+N)+(n+1) +...+(n+1) (withn/2terms)

=n(n+1)/2.
Fall 2002 CMSC 203 - Discrete Structures 97
Geometric Series
How does: 27??
Observe that:
S=1+a+a2+ad+..+a"
aS = a+a2+ad+..+a +am)

so, (aS-S)=(a- 1)S=am™ -1

Therefore, 1+a+a2+..+a"=(a™-1)/ (a- 1.
For example: 1+2 +4 +8 +...+ 1024 =2047.
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Usef ul Series
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Double Summations

Corresponding to nested loops in Cor Java, there is
also double (or triple etc.) summation:

Example:
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Double Summations
Table 2 in Section 1.7 cont ains some very usef ul

formulas f or calculating sums.

Exercises 15 and 17 make a nice homework.
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Enough Mat hematical Appetizers!

Let us look at something more interesting:

Algorithms
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Algorithms

What is an algorithm?

An algorithmis afinite set of precise instructions
for performing a computation or for solving a
problem.

This is arather vague definition. You will get to

know a more precise and mat hematically usef ul
def inition when you attend CS420.

But this one is good enough for now...
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Algorithms
Properties of algorithms:

* I nput from a specified set,

» Output from a specified set (solution),

» Definiteness of every stepinthe computation,
» Correctness of output for every possible input,
+ Finiteness of the number of calculation steps,
» Effectiveness of each calculation step and

» Generality for aclass of problems.
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Algorithm Examples

We will use a pseudocode to specify algorithms,
which slightly reminds us of Basic and Pascal.

Example: an algorithm that finds the maximum
element in afinite sequence

procedure max(a,, a,, .., a,: integers)
max = a,
fori:=2ton
if max <g thenmax := 3
{max is the largest element}
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Algorithm Examples

Anot her example: a linear search algorithm, that
is, an algorithmthat linearly searches a sequence
for aparticular element.

procedure linear_search(x: integer; a;, a,, .., a,:
integers)
i=1
while (i<nand x # q)
i=i+1
if i <nthenlocation :=i
else location :=0
{location is the subscript of the termthat equals
X, or is zero if x is not found}
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Algorithm Examples

If the terms in a sequence are ordered, a binary
search algorithmis more ef ficient than linear
search.

The binary search algorithmiteratively restricts
the relevant search interval until it closes in on
the position of the element to be locat ed.
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Algorithm Examples
binary search for the letter j’

search interval

l l

acdfghjlmoprsuvxz

[

center element
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Algorithm Examples
binary search for the letter §’
search interval
acdfghjlmoprsuvxz

[

center element
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Algorithm Examples

binary search for the letter j’

search interval

I

acdfghjlmoprsuvxz

[

center element
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Algorithm Examples

binary search for the letter j’

search interval

| ]

acdfghjlmoprsuvxz

[

center element
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Algorithm Examples

binary search for the letter j’

search interval

|

acdfghjlmoprsuvxz

[

center element

found !
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Algorithm Examples

procedure binary_search(x: integer; a,, a,, .., a,:
integers)
i:=1 {iisleft endpoint of search interval}
j :==n {j isright endpoint of search interval}
while (i <j)
begin
m:=[i+j)/ 20
if x >a,theni:=m+1
elsej :=m
end
if x =g, thenlocation :=i
else location :=0
{location is the subscript of the termthat equals x,
or is zero if x is not found}
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Complexity

I n general, we are not so much interested inthe
time and space complexity for small inputs.

For example, while the dif f erence in time
complexity bet ween linear and binary search is
meaningless for a sequence with n =10, it is
gigantic for n =230,
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Complexity

For example, let us assume two algorithms A and
B that solve the same class of problems.

The time complexity of A is 5,000n, the one for
Bis O.1"Of or an input with n elements.

For n =10, A requires 50,000 steps, but B only 3,
so B seems t o be superior to A.

For n =1000, however, A requires 5,000,000
steps, while B requires 2.5004" st eps.

Fall 2002
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Complexity

This means that algorithm B cannot be used for
large input s, while algorithm A is still f easible.

So what is important is the growth of the
complexity functions.

The growth of time and space complexity with
increasing input size nis a suitable measure for
the comparison of algorithms.

Fall 2002
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Complexity

Comparison: time complexity of algorithms A and B

I nput Size Algorithm A Algorithm B
n 5,000n a.1gd
10 50,000 3
100 500,000 13,781
1,000 5,000,000 2.5004
1,000,000 500° 4.8[0041392
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Complexity

This means that algorithm B cannot be used for
large inputs, while running algorithm A is still
f easible.

So what is important is the growth of the
complexity functions.

The growth of time and space complexity with

increasing input size nis a suitable measure for
the comparison of algorithms.
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The Growt h of Functions

The growth of functions is usually described
using the big- O notation.

Definition: Let f and g be functions fromthe
integers or the real numbers to the real numbers.
We say that f(x) is O(g(x)) if there are
constants Cand k such t hat

[ (x)I = Gg(x)|

whenever x >k.
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The Growth of Functions
When we analyze the growth of complexity
functions, f (x) and g(x) are always positive.

Theref ore, we can simplify t he big-O requirement
to

f(x) < Cg(x) whenever x >k.

If we want to show that f(x) is O(g(x)), we only
need to find one pair (C, k) (which is never unique).
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The Growt h of Functions

The idea behind the big-O notation is to est ablish
an upper boundary for the growth of afunction
f(x) for large x.

This boundary is specified by a f unction g(x) t hat
is usually much simpler than f (x).

We accept the constant Cinthe requirement
f(x) < Cg(x) whenever x >k,
because C does not grow with x.

We are only interested in large x, so it is OKif
f(x) >Clg(x) for x <k.
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The Growt h of Functions

Example:
Show that f(x) =x2 +2x +1is O(x?).

For x >1 we have:

X2 +2X +1< X2 +$2x2 +x2
0 x2 +2x +1<4x2

Therefore,for C=4 and k = 1:
f (x) < Cx? whenever x >k.

O f(x) is O(x?3).
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The Growt h of Functions

Question: | f f(x) is O(x?), is it also O(x3)?

Yes. x3 grows faster than x2, so x3 grows also
faster thanf(x).

Theref ore, we always have to find t he smallest
simple function g(x) for which f (x) is O(g(x)).
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The Growt h of Functions

“Popular” functions g(n) are
nlogn, 1,2 n2, nl, n,n3 logn

Listed from slowest to fastest growt h:
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The Growt h of Functions

A problem that can be solved wit h polynomial
wor st -case complexity is called tractable.

Problems of higher complexity are called
intractable.

Problems that no algorithm can solve are called
unsolvable.

You will find out more about this in CS420.
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Usef ul Rules for Big-O

For any polynomial f (x) = a x"+a, x™" + ...+ a,
where a,, a,, .., a, are real numbers,
f(x) is O(xM).

If f,(x) is O(g4(x)) and f 5(x) is O(g,(x)), then
(f4 +15)(x) is O(max(gy(x), 9a(x)))

If f,(x)is O(g(x)) and f ,(x) is O(g(x)), then
(f4 +15)(x) is O(g(x)).

If f,(x)is O(g4(x)) and f 5(x) is O(g,(x)), then
(f4f 2)(x) is O(gy(x) ga(x)).
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Complexity Examples

What does the f ollowing algorit hm comput e?
procedure who_knows(a,, a,, .., a,: integers)
m:=0
fori:=1ton-1
forj:=i+1ton
if |a —g| >mthenm:=|a -3
{mis the maximum dif f erence bet ween any two
numbers in the input sequence}
Comparisons: n-1+n-2 +n-3 +...+1
=(n=1)n/2 =0.5n2-0.5n

Time complexity is O(n?).
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Complexity Examples

Anot her algorithm solving t he same problem:

procedure max_diff (a,, a,, .., a,: integers)
min := afl
max :=ail
fori:=2ton
if a, <min thenmin := 3
else if a >max then max := g
m :=max - min
Comparisons: 2n - 2

Time complexity is O(n).
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Let us get into...

Number Theory
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I ntroduction to Number Theory

Number theory is about integers and t heir
properties.

We will start with the basic principles of
« divisibility,

+ greatest common divisors,

* least common multiples, and

» modular arithmetic

and look at some relevant algorithms.
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Division

If aand b are integers with a # 0, we say that
adivides b if thereisaninteger csothat b =ac.

When a divides b we say that ais afactor of b
and that b is a multiple of a.

The notationa | b means that adivides b.

We write a X b when a does not divide b
(see book for correct symbol).
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Divisibility Theorems
For integers a, b, and c it is true that

«ifalbanda] c,thenal (b +c)
Example: 3 | 6 and 3 | 9, s03 | 15.

« if a| b,thena] bcfor all integers c
Example: 5| 10,s05| 20,5| 30,5 | 40, ...

«ifalbandb| c,thenal c
Example: 4 | 8 and 8 | 24, s0 4 | 24.
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Primes

A positive integer p greater than 1is called prime
if the only positive factors of pare 1and p.

A positive integer that is greater than 1 and is not
prime is called composite.

The fundament al theorem of arithmetic:

Every positive integer can be written uniquely as
the product of primes, where the prime factors
are writtenin order of increasing size.
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Primes
Examples:
5= 35
48 = 2:2:2:2:3 =243
17 = 17

100 = 2-2:5:5=22:52
512= 2-2:2:2:2:2:2:2:2=2°

515=5-103
28=2-2'7
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Primes

If nis acomposite integer, thennhas aprime
divisor less than or equal

This is easy to see: if nis a composite integer, it
must have two prime divisors p, and p, such that
PP, =n.

p, and p, cannot both be greater than
, because then p,[p, >n.
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The Division Algorithm

Let a be aninteger and d a positive integer.
Thenthere are unique integers gand r, with
0<r<d suchthata=dq+r.

I nthe above equation,

» dis called the divisor,

» ais called the dividend,

» qis called the quotient, and
* r is called the remainder.
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The Division Algorithm
Example:
When we divide 17 by 5, we have
17 =503 +2.
+ 17 is the dividend,
+ 5 isthe divisor,

+ 3 iscalled the quotient, and
» 2 iscalled the remainder.
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The Division Algorithm

Another example:

What happens when we divide -11 by 3 ?
Note that the remainder cannot be negative.
-11=30+4) +1.

* -11is the dividend,

* 3 isthedivisor,

* -4 iscalled the quotient, and
* 1 is called the remainder.
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Great est Common Divisors

Let aand b be integers, not both zero.
The largest integer d suchthat d| aandd | b is
called the greatest common divisor of a and b.

The greatest common divisor of aand b is denoted
by gcd(a, b).

Example 1: What is gcd(48, 72) ?

The positive common divisors of 48 and 72 are
1,2,3, 4,6, 8,12, 16, and 24, so gcd(48, 72) = 24.
Example 2: What is gcd(19, 72) ?

The only positive common divisor of 19 and 72 is
1, so gcd(19, 72) =1.

Fall 2002 CMSC 203 - Discrete Structures 139

Great est Common Divisors

Using prime factorizations:

a=p@ po2...pcn, b=pPipyLe..pPbn,
where p, <p, <...<p,and g, b; DN for 1<i<n

gcd(a, b) - p1min(a1, by) pzmin(az, b, ) ._.pnmin(an, b.)
Example:

a=60=223"5"

b=54=213350

gcd(a, b) = 213150 =6
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Relatively Prime | ntegers
Definition:
Two integers a and b are relatively prime if
gcd(a, b) =1.

Examples:

Are 15 and 28 relatively prime?
Yes, gcd(15, 28) =1.
Are 55 and 28 relatively prime?
Yes, gcd(55, 28) =1.
Are 35 and 28 relatively prime?
No, gcd(35, 28) =7.
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Relatively Prime | ntegers
Def inition:
The integers a,, a,, .., a, are pairwise relatively
prime if gcd(a;, g) =1 whenever 1<i <j <n.
Examples:

Are 15, 17, and 27 pairwise relatively prime?
No, because gcd(15, 27) = 3.

Are 15, 17, and 28 pairwise relatively prime?
Yes, because gcd(15, 17) =1, ged(15, 28) =1 and
gcd(17, 28) =1.
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Least Common Multiples
Definition:
The least common multiple of the positive

integers aand b is the smallest positive integer
that is divisible by both a and b.

We denote the least common multiple of aand b
by lcm(a, b).

Examples:

lem(3, 7) =21

lcm(4, 6) =12

lcm(5, 10) =10
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Least Common Multiples

Using prime factorizations:

a=p Py ...p, b =p,Pr pla...pPn,

where p; <p, <...<p,and g, b; DN for 1<i<n
lcm(a, b) = p,max(@p. b)) p,max(ay by) | .p max(ay b,)
Example:

a=60=223"5"

b=54=213350

lcm(a, b) = 22 335" =475 =540
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GCD and LCM
a=60 =22 (3){51
b=54-(2)3% ()

ged(a, b) = -6

Theorem: alb = gcd(a,b)lItm(a,b)
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Modular Arithmetic

Let abe aninteger and m be a positive integer.
We denote by a mod mthe remainder when ais
divided by m.

Examples:
9mod 4 =1
9mod3 =0
9mod 10 = 9
-13mod 4 = 3
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Congruences

Let aand b be integers and m be a positive integer.
We say that a is congruent to b modulo m if
m divides a —b.

We use the notationa = b (mod m) to indicate
that ais congruent to b modulo m.

I n other words:
a=b (mod m) if and only if a mod m = b mod m.
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Congruences

Examples:

Isit truethat 46 =68 (mod 11) ?

Yes, because 11| (46 —68).

Isit truethat 46 =68 (mod 22)?

Yes, because 22 | (46 —68).

For which integers z is it true that z =12 (mod 10)?
It istruefor any z[}{..,-28, -18, -8, 2, 12, 22, 32, ..}

Theorem: Let m be a positive integer. The integers

aand b are congruent modulo mif and only if there
is aninteger k such that a=b +km.
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Congruences

Theorem: Let m be a positive integer.

If a=b (mod m)and ¢c =d (mod m), then
a+c=b +d (mod m) and ac = bd (mod m).
Proof :

We know that a=b (mod m) and ¢ =d (mod m)
implies that there are integers s and t with
b=a+smandd=c+tm.

Therefore,
b+d=(a+sm)+(c+tm)=(a+c)+m(s+t) and
bd =(a+sm)(c +tm) =ac + m(at +cs +stm).
Hence,a+c =b +d (mod m) and ac = bd (mod m).
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The Euclidean Algorithm

The Euclidean Algorithm finds the greatest
common divisor of two integers a and b.

For example, if we want to find gcd(287, 91), we
divide 287 by 91:

287 =913 + 14

We know that for integers a, b and c,
if al]banda| c,thenal (b +c).

Therefore, any divisor of 287 and 91 must also be
adivisor of 287 - 913 = 14.

Consequent ly, gcd(287, 91) = gcd(14, 91).
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The Euclidean Algorithm
I nthe next step, we divide 91 by 14:
91=148 +7
This means that gcd(14, 91) =gcd(14, 7).

So we divide 14 by 7:
14 =72 +0
We find that 7 | 14, and thus gcd(14,7) =7.

Therefore, gcd(287, 91) = 7.
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The Euclidean Algorithm

I n pseudocode, t he algorit hm can be implement ed
as f ollows:

procedure gcd(a, b: positive integers)
X :=a

y:=b

whiley #0

begin

mod y

< X

X< x =

IS cd(a, b)}

Q —

end {

Fall 2002 CMSC 203 - Discrete Structures. 152

Representations of | ntegers

Let b be a positive integer greater than 1.
Thenif nis apositive integer, it can be expressed
uniquely in the form:

n=abk+a b +...+ab +a,

where k is a nonnegative integer,

a,, a;, .., @ are nonnegative integers less than b,
and g % 0.

Example for b=10:
859 =802 + 500" +900°
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Representations of | ntegers

Example for b=2 (binary expansion):
(10110), = 124 + 122 + 121 = (22),,

Example for b=16 (hexadecimal expansion):
(we use letters A to Ftoindicate numbers 10 to 15)
(3A0F),c =3063 + 10062 + 1506° = (14863),,
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Representations of | ntegers
How can we construct the base b expansion of an
integer n?
First, divide n by b to obtain a quotient q, and
remainder ay, that is,
n=bq, +a,, where 0 < g, <b.
The remainder a, is the right most digit in the base
b expansion of n.
Next, divide g, by b to obtain:
g, =ba, +a;, where 0 < a, <b.

a, is the second digit fromthe right inthe base b
expansion of n. Continue this process until you
obtain a quotient equal to zero.
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Representations of | ntegers

Example:
What is the base 8 expansion of (12345),, ?

First, divide 12345 by 8:
12345 =8[1543 +1

1543 =8092 +7
192 =824 +0
24 =803 +0
3=80+3

The result is: (12345),, = (30071);.
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Representations of | ntegers

procedure base_b_expansion(n, b: positive int egers)

g:=n
k:=0
while q# 0
begin
a :=qmod b
q:=lybO
ki=k +1
end

{the base b expansion of nis (a_; ...a;3,),}
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Addition of I ntegers

Let a=(a, 1@,5.-2)2, b = (b0, 5..bibg)5.

How can we add these two binary numbers?

First, add their right most bits:

a, +bg =¢y2 +5,

where s, is the rightmost bit in the binary
expansion of a+b, and ¢, is the carry.

Then, add the next pair of bits and the carry:
a;+by+cy=c2 +5,,

where s, is the next bit inthe binary expansion of
a+b, and c,isthecarry.
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Addition of I ntegers

Continue this process until you obtain ¢, 4.
The leading bit of the sumiss, =c, ;.

The result is:
a+b =(8.8,4.-515))»
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Addition of I ntegers

Example:
Add a =(1110), and b = (1011),.

a8, +by=0+1=02 +1,sothat ¢, =0 and s, =1.
a,+by+cp=1+1+0=12+0,s0c,=1and s, =0.
a,+b,+c;=1+0+1=12+0,s0c,=1and s, =0.
a3 +bg+c,=1+1+1=12 +1,s0cg=1and s; =1.
S,=C3=1

Therefore, s=a+b =(11001),.
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Addition of I ntegers

How do we (humans) add two int egers?

111 carry
Example: 7583
+4932
12515
11 carry
Binary expansions: (1011),
+ (1010),
(10101),
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Addition of I ntegers

Let a=(a,18.2--8:8)2, b = (b Dy 5..D100),,

How can we algorithmically add these two binary
number s?

First, add their right most bits:

a, +bg =¢y2 +5,

where s, is the rightmost bit in the binary
expansion of a+b, and ¢, is the carry.

Then, add the next pair of bits and the carry:
a;+by+cy=c2 +5,,

where s, is the next bit inthe binary expansion of
a+b,and c,isthecarry.
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Addition of I ntegers

Continue this process until you obtain ¢, 4.
The leading bit of the sumiss, =c, ;.

The result is:
a+b =(8.8,4.-515)»
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Addition of I ntegers

Example:
Add a =(1110), and b = (1011),.

a8, +by=0+1=02 +1,sothat ¢, =0 and s, =1.
a,+by+cp=1+1+0=12+0,s0c,=1and s, =0.
a,+b,+c;=1+0+1=12+0,s0c,=1and s, =0.
a +bg+c,=1+1+1=12 +1,s0cg=1and s; =1.
S,=C3=1

Therefore, s=a+b =(11001),.
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Addition of I ntegers

procedure add(a, b: positive integers)
c:=0
forj:=0ton-1
begin
d:=Ug +b; +c)/20
s =g +b; +c-2d
c:=d
end
S, =C
{the binary expansion of the sumis (s;S,.1..8:S¢)>}
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Let’s proceed to...

Mat hemat ical
Reasoning
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Mat hemat ical Reasoning

We need mathematical reasoningto

+ determine whether a mathematical argument is
correct or incorrect and
« construct mathematical arguments.

Mat hematical reasoning is not only important for
conducting proof s and program verification, but

also for artificial intelligence systems (drawing

inf erences).

Fall 2002 CMSC 203 - Discrete Structures. 167

Terminology

An axiom s a basic assumption about
mat hematical structured that needs no proof .

We can use a proof to demonstrate that a
particular statement is true. A proof consists of a
sequence of statementsthat form an argument.

The steps that connect the statements in such a
sequence are the rules of inference.
Cases of incorrect reasoning are called fallacies.

A theoremis a statement that can be shownto be
true.
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Terminology

A lemma is a simple theorem used as an
intermediat e result inthe proof of another
theorem.

A corollary is a proposition that follows directly
fromatheoremthat has been proved.

A conjecture is a statement whose truth value is
unknown. Once it is proven, it becomes a theorem.
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Rules of | nf erence

Rules of inference provide the justification of
the steps used in a proof .

One important rule is called modus ponens or the
law of detachment. |t is based onthe tautology
(Pdp-q)) - g. We write it inthe following way:

p The two hypothesesp and p - gare
P - Q writteninacolumn, and t he conclusion

Oq below a bar, where 0 means “therefore”.
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Rules of | nf erence

The general form of arule of inference is:

P4 The rule states that if p, and p, and ...
_p2 and p, are all true, then qistrue as well.

'p These rules of inference can be used in
n

____ any mathematical argument and do not
Uq require any proof .
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Rules of | nf erence

-

p
A . p-q Modus
O pih Addition __ " tollens
O -p
P P9 i
——— Simplification ~ 9-r  Hypothetical
Op ———— syllogism
Op-r
p
. . Pty
q Conjunction -p Disjunctive
T o ———— syllogism
O pm 0 q yllog
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Argument s

Just like arule of inference, an argument consists
of one or more hypot heses and a conclusion.

We say that an argument is valid, if whenever all
its hypotheses are true, its conclusion is also true.

However, if any hypot hesis is f alse, even a valid
argument can lead to an incorrect conclusion.
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Argument s
Example:

“I'f 101 is divisible by 3, then 1012 is divisible by 9.
101 is divisible by 3. Consequently, 1012 is divisible
by 9.”

Although the argument is valid, its conclusion is
incorrect, because one of the hypotheses is f alse
(“101 is divisible by 3.").

I f inthe above argument we replace 101 with 102,
we could correctly conclude that 1022 is divisible
by 9.
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Argument s

Which rule of inf erence was used in the last
argument ?

p: “101 is divisible by 3.”
g: “1012 is divisible by 9.”

p

p-q Modus

———— ponens
q

Unf ortunat ely, one of the hypot heses (p) is f alse.
Therefore, the conclusion g is incorrect.
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Argument s

Another example:

“If it rains today, then we will not have a
barbeque today. | f we do not have a barbeque
today, then we will have a barbeque t omorrow.
Therefore, if it rains today, then we will have a
barbeque t omorrow.”

This is a valid argument : | f its hypot heses are
true, thenits conclusion is also true.
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Argument s

Let us formalize the previous argument :

p: “I't is raining today.”
q: “We will not have a barbecue today.”
r: “We will have a barbecue t omorrow.”

So the argument is of the following f orm:

p-q )
g-r Hypot hetical
—— syllogism
Op-r
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Argument s

Another example:

Gary is either intelligent or a good actor.
If Gary isintelligent, then he can count
from1to 10.

Gary can only count from1to2.
Therefore, Gary is a good actor.

i: “Gary isintelligent.”
a: “Gary is agood actor.”
c: “Gary can count from1to 10.”
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Argument s

i: “Gary isintelligent.”
a: “Gary is agood actor.”
c: “Gary can count from1to 10.”

Step 1: -c Hypot hesis

Step2: i - ¢ Hypot hesis

Step 3: i Modus tollens Steps 1& 2

Step4: aUi Hypot hesis

Step5: a Disjunctive Syllogism
Steps 3 & 4

Conclusion: a (“Gary is a good actor.”)
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Argument s
Yet another example:
I f you listen to me, you will pass CS 320.
You passed CS 320.
Therefore, you have listened to me.

| s this argument valid?

No, it assumes ((p—q) 0q) - p.

This statement is not atautology. It is false if p
isfalse and qistrue.
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Rules of | nference for Quantified Statements

Ox Px) Universal

0 Pe) if cOU instantiation
P(c) for an arbitrary cOU Universal

0 Dx P(x) generalization
X RAX) Existential

0 P(c) for some element cOU  Instantiation

P(c) for some element cOU Existential
0 x P(x) generalization
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Rules of | nference for Quantified Statements

Example:

Every UMB student is a genius.
George is a UMB st udent .
Theref ore, George is a genius.

U(x): “x is a UMB student .”
G(x): “x is a genius.”
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Rules of | nference for Quantified Statements

The following steps are used in the argument :

Step 1: Ox (U(x) - G(x)) Hypot hesis

Step 2: U(George) — G(George) Univ. instantiation
using Step 1

Step 3: U(George) Hypot hesis

Step 4: G(Geor ge) Modus ponens

using Steps 2 & 3

Ox P(x) Univer sal

0 P(c) if cOU instantiation
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Proving Theorems

Direct proof:

An implication p-q can be proved by showing t hat
if pistrue,thenqisalsotrue.

Example: Give a direct proof of the theorem
“I'f nis odd, then n?is odd.”

I dea: Assume that the hypot hesis of this
implication is true (nis odd). Then use rules of
inf erence and known theorems to show that g
must also be true (n? is odd).
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Proving Theorems

nis odd.
Thenn =2k + 1, where k is an integer.
Consequent ly, n? = (2k + 1)2.
=4k2 + 4k +1
=2(2k? + 2k) +1

Since n? can be writteninthis form, it is odd.
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Proving Theorems

I ndirect proof :

An implication p—qis equivalent toits contra-
positive -q - —p. Therefore, we can prove p-q
by showing that whenever qis false, then p is also
false.

Example: Give an indirect proof of the theorem
“I'f 3n+2isodd,thennis odd.”

| dea: Assume that the conclusion of this
implication is false (n is even). Then use rules of
inf erence and known theorems to show that p
must also be false (3n +2 is even).
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Proving Theorems

nis even.
Then n = 2k, where k is an integer.
It followsthat 3n+2 =3(2k) +2

=6k +2

=2(3k +1)
Therefore, 3n +2 is even.
We have shown that the contrapositive of the

implication is true, so the implication it self is also
true (If 2n +3 is odd, then nis odd).
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Follow me for awalk through...

Mat hematical
| nduction
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| nduction

The principle of mathematical inductionis a
usef ul tool for proving that a certain predicate
is true for all natural numbers.

It cannot be used to discover theorems, but
only to prove them.
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| nduction

I f we have a propositional function P(n), and we
want to prove that P(n) is true for any natural
number n, we do t he f ollowing:

» Show that P(0) is true.
(basis step)

» Show that if P(n) then P(n + 1) for any nON.
(inductive step)

» Then P(n) must be true for any nON.
(conclusion)
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| nduction

Example:

Show that n<2"for all positive integers n.
Let P(n) be the proposition “n <2n.”

1. Show that P(1) is true.
(basis st ep)

P(1) is true, because 1<2' =2.
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| nduction

2. Show that if P(n)istrue, then P(n +1)is
true.
(inductive step)

Assume that n <2"is true.
We need to showthat P(n +1)istrue,i.e.
n+1<2n

We start fromn <2
n+1<2"4+1<2n 420 =20+
Therefore, if n<2"thenn +1 <2
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| nduction

+ Then P(n) must be true for any positive
integer.
(conclusion)

n<2"istrue for any positive integer.

End of proof.
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| nduction

Another Example (“Gauss”):

1+2+..+n=n(n+1)/2

+ Showthat P(0) is true.
(basis st ep)

For n=0 we get 0 =0. True.
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| nduction

+ Showthat if P(n) then P(n +1) for any nON.
(inductive step)

1+2+..+n=n(n+1)/2
1+2+.+n+(n+1)=n(n+1)/2+(n+1)
=(2n+2+n(n+1)/2
=(2n+2 +n? +n)/ 2
=(2+3n+n?)/2
=(n+1)(n+2)/2
=(n+1) ((n+1) +1)/2
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| nduction

* Then P(n) must be true for any nON.
(conclusion)

1+2+...+n=n(n+1)/2istruefor all nON.

End of proof.
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| nduction

There is another proof technique that is very
similar to the principle of mathematical induction.

It is called the second principle of
mat hematical induction.

It can be used to prove that a propositional
function P(n) is true f or any natural number n.
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| nduction

The second principle of mathematical induction:

+ Show that P(0) istrue.
(basis st ep)

+ Show that if P(0) and P(1) and ...and P(n),
then P(n + 1) for any nON.
(inductive step)

» Then P(n) must be true for any nON.
(conclusion)
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| nduction

Example: Show that every integer greater than
1can be written as the product of primes.

+ Showthat P(2) istrue.
(basis step)

2 is the product of one prime: itself.
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| nduction

+ Show that if P(2) and P(3) and ...and P(n),
then P(n + 1) for any nON. (inductive step)

Two possible cases:

* If (n+1)is prime, then obviously P(n + 1) is true.

« If (n+1)is composite, it can be written as the
product of two integers a and b such that
2<as<b<n+1.
By t he induction hypot hesis, both a and b can be
written as the product of primes.
Therefore, n+1=alb can be written as the
product of primes.
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| nduction

» Then P(n) must be true for any nON.
(conclusion)

End of proof.
We have shown that every integer greater

than 1 can be written as the product of primes.
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If | told you once, it must be...

Recursion
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Recur sive Def initions

Recursion is a principle closely related to
mat hematical induction.

I n arecursive definition, an object is defined in
terms of itself.

We can recursively def ine sequences, functions
and sets.
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Recursively Defined Sequences
Example:

The sequence {a,} of powers of 2 is given by
a,=2"forn=0,1,2, ...

The same sequence can also be def ined
recursively:

forn=0,1,2,...

n

Obviously, induction and recursion are similar
principles.
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Recursively Defined Functions

We can use the f ollowing method to define a
function with the natural numbers as its domain:

» Specify the value of the function at zero.
» Give arulefor finding its value at any integer

fromits values at smaller integers.

Such a definition is called recursive or inductive
definition.
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Recursively Defined Functions

f(1) +3 =20 +3 =21
3) =2f(2) +3 =221+3 =45
f(3) +3 =245 +3 =93
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Recursively Defined Functions

How can we recursively define the factorial
function f(n) = n! ?
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Recursively Defined Functions

A famous example: The Fibonacci numbers
f(0)=0,f(1) =1

f(n)=f(n=1) +f(n- 2)
f(0) =0

f(1) =1

f(2) =f(1) +(0) =1+0 =1

f(3) =f(2) +f() =1+1=2

f(4) =f(3) +1(2) =2 +1=3
f(5)=f(4) +1(3) =3+2=5

f(6) =f(5) +f(4) =5+3 =8

Recursively Defined Sets

I f we want to recursively def ine a set, we need

to provide two t hings:

* aninitial set of elements,

 rulesfor the construction of additional
elements from elements inthe set.

Example: Let S be recursively defined by:

308

(x+y)OSif (xOS)and (y OS)

S isthe set of positive integers divisible by 3.
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Recursively Defined Sets
Proof :

Let A be the set of all positive integers divisible
by 3.

Toshowthat A =S, we must show t hat
AOSand SOA.

Part | : Toprove that A O S, we must show t hat
every positive integer divisible by 3 isin S.

We will use mat hematical induction to show t his.
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Recursively Defined Sets
Let P(n) be the statement “3n belongsto S”.
Basis step: P(1) is true, because 3 isin S.

I nductive step: To show:
If P(n) istrue, then P(n + 1) is true.

Assume 3nisin S. Since 3nisinS and 3isin S, it
follows from the recursive definition of S that
3n+3=3(n+1)isalsoinS.

Conclusion of Part |: AOS.
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Recursively Defined Sets
Part I'1: To show: S OA.

Basis step: To show:
All initial elements of SareinA.3 isinA. True.

I nductive step: To show:
(x +y) isin A whenever x and y are in S.

If xandy arebothinA, it follows that 3 | x and
3| y.FromTheorem |, Section 2.3, it follows
that 3| (x +y).

Conclusion of Part 11: SOA.
Overall conclusion: A =S.
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Recursively Defined Sets

Another example:

The well-f ormed f ormulae of variables, numerals
and operators from{+ -, *,/, "} are defined by:

x is awell-formed formula if x is a numeral or
variable.

(f+9), (f—9), (f ), (f/ g), (f * g) are well-
formed formulae if f and g are.
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Recursively Defined Sets

Wit h this def inition, we can construct formulae
such as:

(x=y)

((z/ 3)-y)

((z/ 3)=(6 +5))

((z/ (2* 4))-(6 +5))
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Recursive Algorithms

An algorithm is called recursive if it solves a
problem by reducing it to an instance of the same
problem with smaller input.

Example | : Recursive Euclidean Algorithm

procedure gcd(a, b: nonnegative integers with a <b)
if a=0 then gcd(a, b) :=b
else gcd(a, b) :=gecd(b mod a, a)
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Recursive Algorithms

Example 11 : Recursive Fibonacci Algorithm

procedure fibo(n: nonnegative integer)
if n=0 then fibo(0) :=0

else if n=1then fibo(1) :=1

else fibo(n) :=fibo(n —1) +fibo(n—-2)
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Recursive Algorithms

Recur sive Fibonacci Evaluation:
o f(@)
3 N\ e
/ \ / \
/ \
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Recursive Algorithms

procedure iterative_fibo(n: nonnegative integer)
if n=0theny:=0

else
begin
x:=0
y =1
for i :=1ton-1
begin
Z:=X+Yy
Xi=y
y:=2z
end

end {yisthe n-th Fibonacci number}
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Recursive Algorithms

For every recursive algorithm, there is an
equivalent iterative algorithm.

Recur sive algorithms are of ten shorter, more
elegant, and easier to understand than t heir
iterative counterparts.

However, iterative algorithms are usually more
efficient in their use of space and time.
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One, two, three, we're...

Count ing
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Basic Counting Principles

Counting problems are of the f ollowing kind:

“How many dif ferent 8-letter passwords are
there?”

“How many possible ways are there to pick 11
soccer players out of a20-player team?”

Most importantly, counting is the basis for
computing probabilities of discrete events.

(“What is the probability of winning the lottery?”)
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Basic Counting Principles

The sum rule:

I f atask can be done in n, ways and a second t ask
in n, ways, and if these two tasks cannot be done
at the same time, then there are n; + n, ways to
do either task.

Example:

The department will award a free computer to
either a CS student or a CS prof essor.

How many dif f erent choices are there, if there
are 530 students and 15 prof essors?

There are 530 + 15 =545 choices.
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Basic Counting Principles

Generalized sum rule:

I f we have tasks T,, T,, .., T, that can be done in
n,, n,, .., N, ways, respectively, and no t wo of
these tasks can be done at the same time, then
therearen,; +n, +...+n, ways to do one of these
tasks.
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Basic Counting Principles

The product rule:

Suppose that a procedure can be broken down
into two successive tasks. | f there are n, ways to
dothe first task and n, ways to do the second
task after the first task has been done, then
there are n;n, ways to do the procedure.
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Basic Counting Principles

Example:

How many dif ferent license plates are there that
containing exactly three English letters ?

Solution:

There are 26 possibilities to pick the first letter,
then 26 possibilities f or the second one, and 26
for the last one.

Sothere are 26[26[26 = 17576 dif f erent license
plates.
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Basic Counting Principles

Generalized product rule:

I f we have a procedure consisting of sequential
tasks T,, T,, .., T, that canbe doneinn,, n,, .., n,
ways, respectively, thenthere are n, [h, 00...[h,,
ways to carry out the procedure.
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Basic Counting Principles

The sum and product rules can also be phrased in
terms of set theory.

Sum rule: Let A, A,, .., A, be disjoint sets. Then
the number of ways to choose any element from
one of these setsis|A;0A, O ...0A
[Al +1A] +.t [ A

Product rule: Let A, A,, .., A, be finite sets.
Then the number of ways to choose one element
fromeach set inthe order A, A,, .., A, is
|A;x Ay x x Ay | =|A | DA, O..0OA,.

m|=
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| nclusion-Exclusion

How many bit strings of length 8 either start with a

1or end with 00?

Task 1: Construct astring of length 8 that starts
with a 1.

There is one way to pick the first bit (1),
two ways t o pick the second bit (0 or 1),
two ways to pick the third bit (0 or 1),

two ways to pick the eighth bit (0 or 1).

Product rule: Task 1can be done in 127 = 128 ways.
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| nclusion-Exclusion
Task 2: Construct astring of length 8 that ends
with 00.

There are two ways to pick the first bit (0 or 1),
two ways t o pick the second bit (0 or 1),

iwo ways to pick the sixth bit (0 or 1),
one way to pick the seventh bit (0), and
one way to pick the eighth bit (0).

Product rule: Task 2 can be done in 26 = 64 ways.
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| nclusion-Exclusion

Since there are 128 ways to do Task 1 and 64 ways
todo Task 2, does this meanthat there are 192 bit
strings either starting with 1 or ending with 00 ?

No, because here Task 1 and Task 2 can be done at
the same time.

When we carry out Task 1and create strings
starting with 1, some of these strings end with 00.

Theref ore, we sometimes do Tasks 1and 2 at the
same time, so the sum rule does not apply.
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| nclusion-Exclusion

I f we want to use the sum rule in such a case, we
have to subtract the cases when Tasks 1and 2 are
done at the same time.

How many cases are there, that is, how many
strings start with 1and end with 00?

There is one way to pick the first bit (1),

two ways for the second, .., sixth bit (0 or 1),
one way for the seventh, eighth bit (0).

Product rule: I n 25 =32 cases, Tasks 1and 2 are
carried out at the same time.
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| nclusion-Exclusion

Since there are 128 ways t o complete Task 1 and
64 ways to complete Task 2, and in 32 of these
cases Tasks 1and 2 are completed at the same
time, there are

128 +64 —32 =160 ways to do either task.

Inset theory, this corresponds to sets A;and A,
that are not disjoint. Then we have:

[A O Ayl = Al +1Az] - A0 Ay

This is called the principle of inclusion- exclusion.
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Tree Diagrams
How many bit strings of length four do not have
two consecutive 1s?

Task 1 Task 2 Task 3 Task 4
(1st bit) (2 bit) (3rd bit) (4N bit)

There are 8 strings.
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The Pigeonhole Principle

The pigeonhole principle: | f (k +1) or more
objects are placed into k boxes, then there is at
least one box containing two or more of the
objects.

Example 1: | f there are 11 players in a soccer
teamthat wins 12-0, there must be at least one
player in the team who scored at least twice.

Example 2: | f you have 6 classes from Monday to
Friday, there must be at least one day on which you
have at least two classes.
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The Pigeonhole Principle

The generalized pigeonhole principle: | f N
objects are placed into k boxes, then there is at
least one box containing at least [N/ kOof the
objects.

Example 1: I n our 60-student class, at least 12
students will get the same letter grade (A, B, C, D,
or F).
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The Pigeonhole Principle

Example 2: Assume you have a drawer containing a
random distribution of a dozen brown socks and a
dozen black socks. It is dark, so how many socks do
you have to pick to be sure that among themthere
is a mat ching pair ?

There are two types of socks, so if you pick at
least 3 socks, there must be either at least two
brown socks or at least two black socks.
Generalized pigeonhole principle: [B/20= 2.
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Per mut ations and Combinat ions

How many ways are there to pick a set of 3 people
fromagroup of 6?

There are 6 choices for the first person, 5 for the
second one, and 4 for the third one, sothere are
684 =120 ways to do this.

This is not the correct result!

For example, picking person C, then person A, and
then person E leads to the same group as first
picking E, then C, and then A.

However, these cases are count ed separately in
the above equation.
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Per mut at ions and Combinat ions

So how can we comput e how many dif f erent
subset s of people can be picked (that is, we want
todisregard the order of picking) ?

Tofind out about this, we need to look at
permut ations.

A permutation of a set of distinct objectsis an
ordered arrangement of these objects.

An ordered arrangement of r elements of a set is
called an r- permutation.
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Per mut at ions and Combinat ions

Example: Let S ={1, 2, 3}.
The arrangement 3, 1, 2 is a permut ation of S.
The arrangement 3, 2 is a 2-permutation of S.

The number of r-permutations of aset withn
distinct elements is denoted by P(n, r).

We can calculate P(n, r) with the product rule:
P(n, r) =nlin —=1)[n —2) O.0n—r +1).

(nchoices for the first element, (n—1) for the
second one, (n—2) for the third one..)
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Per mut ations and Combinat ions

Example:

P8, 3) =818 =336
- (8ZBBZBRA)/ (52B20)

General formula:
P(n,r) =n/(n—r)!

Knowing this, we can returnto our initial question:

How many ways are there to pick a set of 3 people
froma group of 6 (disregarding the order of
picking)?
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Per mut at ions and Combinat ions

An r- combination of elements of aset is an
unordered selection of r elements fromthe set.
Thus, an r-combination is simply a subset of the set
with r elements.

Example: Let S ={1, 2, 3, 4}.

Then {1, 3, 4} is a 3-combination from S.

The number of r-combinations of a set with n
distinct elements is denoted by C(n, r).

Example: C(4, 2) =6, since, f or example, the 2-
combinations of aset {1, 2, 3, 4} are {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {8, 4}.
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Per mut at ions and Combinat ions

How can we calculate C(n, r)?

Consider that we can obtain the r-permutation of a
set in the following way:

First, we form all the r-combinations of the set
(there are C(n, r) such r-combinations).

Then, we generat e all possible orderings in each of
these r-combinations (there are P(r, r) such
orderings in each case).

Theref ore, we have:

P(n, r) =C(n, r)[r, r)
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Per mut ations and Combinat ions

C(n, r) =P(n, r)/Fr, r)
=nl/ (n=r)Y/ (rV/(r-r)
=n/(ri(n-r)))

Now we can answer our initial question:

How many ways are there to pick a set of 3 people
froma group of 6 (disregarding the order of
picking)?

C(6,3) =6/ (3!3!) =720/ (6B) =720/36 =20

There are 20 dif f erent ways, that is, 20 dif f erent
groups to be picked.
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Per mut at ions and Combinat ions

Corollary:

Let nand r be nonnegative integers with r <n.

Then C(n, r) =C(n,n—r).

Note that “picking a group of r people from a
group of n people”is the same as “splitting a group
of n people into a group of r people and another
group of (n —r) people”.

Please also look at proof on page 252.
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Per mut at ions and Combinat ions

Example:

A soccer club has 8 female and 7 male members.
For today’s match, the coach wants to have 6
female and 5 male players on the grass. How many
possible configurations are there?

C(8, 6) OC(7, 5) = 8Y (612)) 7V (5!2))

=28[21
=588
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Combinations
We also saw t he following:

This symmetry is intuitively plausible. For example,
let us consider a set containing six elements (n =6).

Picking two element s and leaving four is essentially
the same as picking four elements and leaving two.

I n either case, our number of choices isthe
number of possibilities to divide the set into one
set containing two elements and anot her set
containing f our elements.
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Combinations

Pascal’s | dentity:

Let nand k be positive integers with n = k.
Then C(n + 1, k) =C(n, k —1) + C(n, k).

How can t his be explained?

What is it good for?
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Combinations
I magine a set S containing n elements and aset T
containing (n + 1) elements, namely all elements in
S plus a new element a.
Calculating C(n + 1, k) is equivalent to answering
the question: How many subsets of T containing k
items are there?
Case | : The subset contains (k —1) elements of S
plus the element a: C(n, k —1) choices.
Case I | : The subset contains k elements of S and
does not contain a: C(n, k) choices.
Sum Rule: C(n +1, k) =C(n, k —1) + C(n, k).
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Pascal’s Triangle

I n Pascal’s triangle, each number is the sum of
the numberstoits upper left and upper right:
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Pascal’s Triangle

Since we have C(n + 1, k) = C(n, k — 1) + C(n, k) and
C(0, 0) =1, we can use Pascal’s triangle to simplify
the computation of C(n, k):

k

c(0,0) =1
o(1,0)=1 C(1,1) =1
0(2,0)=1 C2,1)=2 C2,2)=1
C(3,0)=1 C(3,1)=3 C(3,2)=3 C(3,3) =1
O(4,0)=1 C4,1)=4 C(4,2)=6 C4,3)=4 C4,4)=1
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Binomial Coefficients
Expressions of the form C(n, k) are also called
binomial coefficients.

How come?

A binomial expression is the sum of two terms,
such as (a +b).

Now consider (a +b)2=(a+b)(a+b).

When expanding such expressions, we have to
form all possible products of aterminthe first
factor and aterminthe second factor:

(a+b)2=aa+ab+ba+bb
Then we can sum identical terms:
(a+b)2=a%+2ab +b?
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Binomial Coefficients

For (a +b)3=(a+b)(a+b)(a+b) we have

(a +b)3 = aaa +aab + aba + abb +baa + bab +bba + bbb
(a+b)3=a®+3a2b +3ab? + b3

There is only one term a3, because there is only
one possibility to formit: Choose a fromall three
factors: C(3, 3) =1.

Thereisthree times the term a2b, because there
are three possibilities to choose a f rom two out of
the three factors: C(3, 2) =3.

Similarly, there is three times the term ab?
(C(3, 1) =3) and once the term b3 (C(3, 0) = 1).
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Binomial Coefficients
This leads us to t he f ollowing f or mula:

(Binomial Theorem)

With the help of Pascal’s triangle, this f ormula
can consider ably simplify the process of
expanding powers of binomial expressions.

For example, the fifth row of Pascal’s triangle
(1—4 -6 —4 —1) helps us to compute (a +b)*:

(a+b)*=a* +4a%b +6a%b? + 4abs + b*
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Now it’s Time for...

Recurrence
Relations
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Recurrence Relations

A recurrence relation for the sequence {a,} is an
equation that expresses a, is terms of one or
mor e of the previous terms of the sequence,
namely, a,, ay, .., a,.4, for all integers n with

n = n,, where n, is a nonnegative integer.

A sequence is called a solution of arecurrence
relation if it terms satisfy the recurrence
relation.

Fall 2002 CMSC 203 - Discrete Structures. 255




Recurrence Relations

I nother words, arecurrence relationis like a
recursively def ined sequence, but wit hout
specifying any initial values (initial conditions).

Therefore, the same recurrence relation can have
(and usually has) multiple solutions.

I f both the initial conditions and the recurrence
relation are specif ied, then the sequence is
uniquely det er mined.

Fall 2002 CMSC 203 - Discrete Structures 256

Recurrence Relations

Example:
Consider the recurrence relation
a,=2a,,—-a,,forn=2,3,4, ...

I's the sequence {a,} with a,=3n a solution of this
recurrence relation?

For n>2 we see that
2a,,-a,,=2(3(n=1))-3(n-2)=3n=a,.
Therefore, {a,} with a,=3nis a solution of the
recurrence relation.

Fall 2002 CMSC 203 - Discrete Structures. 257

Recurrence Relations

I s the sequence {a,} with a,=5 a solution of the
same recurrence relation?

For n>2 we see that
2a,1—3,,=2B-5=5=a,

Therefore, {a,} with a,=5 is also a solution of the
recurrence relation.
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Modeling wit h Recurrence Relations

Example:

Someone deposits $10,000 in a savings account at
a bank yielding 5% per year with interest
compounded annually. How much money will be in
the account after 30 years?

Solution:

Let P, denote the amount inthe account after n
years.

How can we determine P, on the basis of P, _,?
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Modeling wit h Recurrence Relations

We can derive the following recurrence relation:
P,=P_,+0.05P , =1.05P, ..

The initial condition is P, = 10,000.

Then we have:

P, =1.05PR,

P, = 1.05P, = (1.05)2P,

P, = 1.05P, = (1.05)3P,

P, =1.05P, , = (1.05)"P,

We now have a formula to calculate P, for any
nat ural number n and can avoid the iteration.
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Modeling wit h Recurrence Relations

Let us use this formulato find Py, under the
initial condition P, = 10,000:

P, = (1.05)30110,000 = 43,219.42

After 30 years, the account contains $43,219.42.
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Modeling wit h Recurrence Relations

Another example:

Let a, denote the number of bit strings of length
nthat do not have two consecutive Os (“valid
strings”). Find a recurrence relation and give
initial conditions for the sequence {a }.

Solution:

| dea: The number of valid strings equals the
number of valid strings ending with a 0 plus t he
number of valid strings ending with a 1.
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Modeling wit h Recurrence Relations

Let us assume that n=3, sothat the string
contains at least 3 bits.

Let us further assume that we know t he number
a,., of valid strings of length (n—1).

Then how many valid strings of length nare there,
if the string ends with a 1?

There are a, 4 such strings, namely the set of
valid strings of length (n—1) with a 1 appended to
them.

Note: Whenever we append a 1to avalid string,
that string remains valid.
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Modeling wit h Recurrence Relations

Now we need to know: How many valid strings of
length narethere, if the string ends with a0?
Valid strings of length n ending with a 0 must
have a 1 as their (n —1)st bit (otherwise they
would end with 00 and would not be valid).

And what is the number of valid strings of length
(n—1) that end with a 1?

We already know that there are a,_, strings of
length nthat end with a 1.

Therefore, there are a,, strings of length (n—1)
that end with a 1.
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Modeling wit h Recurrence Relations

Sothereare a,., valid strings of length nthat
end with a0 (all valid strings of length (n—2)
with 10 appended to t hem).

As we said before, the number of valid strings is
the number of valid strings ending with a 0 plus

the number of valid strings ending with a 1.

That gives us the following recurrence relation:

a,=a,¢+a5
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Modeling wit h Recurrence Relations
What are the initial conditions?
a,=2 (0 and 1)
a, =3 (01, 10, and 11)
Pp=a+a8,=3+2=5
a=a;+a8,=5+3=8
a;=a,+a;=8+5=13

This sequence satisfies the same recurrence
relation as the Fibonacci sequence.

Since a;=fzand a, =f,, we have a, =1 ,,.

Fall 2002 CMSC 203 - Discrete Structures. 266

Solving Recurrence Relations

I n general, we would pref er to have an explicit
formula to comput e the value of a,rather than
conducting niterations.

For one class of recurrence relations, we can
obtain such formulas in a systematic way.

Those are the recurrence relations that express
the terms of a sequence as linear combinations of
previous terms.
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Solving Recurrence Relations

Definition: A linear homogeneous recurrence
relation of degree k with constant coefficients is
arecurrence relation of the form:

8y =C48n.1 +Colnp + ...+ Gy,

Where c;, C,, .., ¢, are real numbers, and ¢, # 0.

A sequence satisf ying such arecurrence relation
is uniquely det ermined by the recurrence relation
and the k initial conditions

2y =Gy a=C,a,=0, .., a,=C..
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Solving Recurrence Relations

Examples:

The recurrence relation P, = (1.05)P, 4
is a linear homogeneous recurrence relation of
degree one.

The recurrence relationf =f ,+f ,
is a linear homogeneous recurrence relation of
degree two.

The recurrence relationa, =a, 5
is a linear homogeneous recurrence relation of
degree five.
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Solving Recurrence Relations

Basically, when solving such recurrence relations,
we try tofind solutions of the forma, = rn,
where r is a constant.

a,=r"is asolution of the recurrence relation
a,=Ca,.1+Coa,, +...+Ca,, if and only if

I =cyr™ 14 Crm2 + .+ g rmk.

Divide this equation by r™k and subtract the
right-hand side fromthe left:

rk-cyrkt-cork2- - or-c.=0

This is called the characteristic equation of the
recurrence relation.
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Solving Recurrence Relations

The solutions of this equation are called the
characteristic roots of the recurrence relation.

Let us consider linear homogeneous recurrence
relations of degree two.

Theorem: Let c, and ¢, be real numbers. Suppose
that r2 —cyr —c, =0 has two distinct rootsr,and r,.

Then the sequence {a,} is a solution of the
recurrence relation a, = c,a, ¢ +C,a,., if and only if
a,=04r"+0,r,"forn=0,1,2, .., whereayand a,
are constants.

See pp. 321 and 322 for the proof.
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Solving Recurrence Relations

Example: What is the solution of the recurrence
relationa, =a,+2a,, witha;=2and a,; =7 ?

Solution: The characteristic equation of the
recurrence relationisr2—r —2 =0.

Itsrootsarer =2 and r =-1.

Hence, the sequence {a,} is a solutionto the
recurrence relation if and only if :

a,=0,2"+a,(-1)" for some constants ayand a,.
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Solving Recurrence Relations

Giventhe equation a, =a,2"+a,(-1)" and the initial
conditions a, =2 and a, =7, it follows that
a,=2=0,+0,

a, =7 =042 +0a, [+1)

Solving these two equations gives us
a;=3 and 0, =-1.

Therefore, the solutionto the recurrence relation
and initial conditions is t he sequence {a} with

a,=32"—(-1)n
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Solving Recurrence Relations
a,=r"is asolution of the linear homogeneous
recurrence relation
8y =Cy8n.1 +Colnp + ...+ Gy
if and only if
I =cyr™ 14 Crm2 4 .+ g rmk.

Divide t his equation by r™k and subtract the
right-hand side fromthe left:

rk-cyrkt-crk2- - or-c.=0

This is called the characteristic equation of the
recurrence relation.
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Solving Recurrence Relations

The solutions of this equation are called the
characteristic roots of the recurrence relation.

Let us consider linear homogeneous recurrence
relations of degree two.

Theorem: Let c, and ¢, be real numbers. Suppose
that r2 —c,r —c, =0 has two distinct rootsr,and r,.

Then the sequence {a,} is a solution of the
recurrence relation a, = c,a, ¢ +C,a,., if and only if
a,=04r"+0,r,"forn=0,1,2, .., whereayand a,
are constants.

See pp. 321 and 322 for the proof.
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Solving Recurrence Relations

Example: Give an explicit formula for the Fibonacci
numbers.

Solution: The Fibonacci numbers satisfy the
recurrence relationf =f_;+f , withinitial
conditionsf,=0and f,=1.

The characteristic equationisr2 —r —1=0.
Itsroots are
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Solving Recurrence Relations
Theref ore, the Fibonacci numbers are given by

for some constants a, and a,.

We can det ermine values f or these constants so
that the sequence meets the conditions f, =0
and f,=1:
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Solving Recurrence Relations

The unique solution to this system of two
equations and two variables is

Fibonacci numbers:
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Solving Recurrence Relations

But what happens if the characteristic equation
has only one root ?

How can we then match our equation with the initial
conditions a, and a; ?

Theorem: Let c, and ¢, be real numbers with ¢, # 0.
Suppose that r2 —c,r —c, =0 has only one root r.
A sequence {a,} is a solution of the recurrence
relation a, =c,a,.; + C,a,., if and only if

a,=04r" +o,nr", for n=0, 1,2, .., where a, and a,
are constants.
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Solving Recurrence Relations
Example: What is the solution of the recurrence
relation a, =6a,,—-9a,, witha; =1and a, =67
Solution: The only root of r2—6r +9 =0isr,=3.
Hence, the solution to the recurrence relation is
a, =a,3" +a,n3" for some constants a, and a,.
To match the initial condition, we need
a=1=q
a,=6 =43 +0a,3
Solving these equations yields a, =1and a, = 1.
Consequently, the overall solution is given by
a,=3"+n3"
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You Never Escape Your...

Relations
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Relations

I f we want to describe a relationship between
elements of two sets A and B, we can use ordered
pairs with their first element takenfrom A and
their second element taken from B.

Since this is arelation between two sets, it is
called a binary relation.

Definition: Let A and B be sets. A binary relation
fromA toBis asubset of AxB.

I nother words, for abinary relation R we have
R O AxB. We use the notation aRb to denote that
(a, b)OR and aRb to denote that (a, b)OR.
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Relations

When (a, b) belongsto R, ais said to be related to

b by R.

Example: Let Pbe a set of people, Cbe a set of

cars, and D be the relation describing which person

drives which car(s).

P ={Carl, Suzanne, Peter, Carla},

C ={Mercedes, BMW, tricycle}

D ={(Carl, Mercedes), (Suzanne, Mercedes),
(Suzanne, BMW), (Peter, tricycle)}

This means that Carl drives a Mercedes, Suzanne

drives a Mercedes and a BMW, Peter drives a

tricycle, and Carla does not drive any of these

vehicles.
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Functions as Relations

You might remember that a functionf fromaset A
to aset B assigns a unique element of Bto each
element of A.

The graph of f isthe set of ordered pairs (a, b)
such that b =f(a).

Since the graph of f is a subset of AxB, it isa
relationfrom A to B.

Mor eover, for each element a of A, thereis
exactly one ordered pair inthe graph that has a as
its first element.
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Functions as Relations

Conversely, if Risarelationfrom A to B such that
every element in A isthe first element of exactly
one ordered pair of R, then afunction can be
defined with Ras its graph.

This is done by assigning to an element alJA the
unique element bOB such that (a, b)OR.
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Relations on a Set

Definition: A relationonthe set A isarelation
fromAtoA.

I nother words, arelationonthe set A is a subset
of AxA.

Example: Let A ={1, 2, 3, 4}. Which ordered pairs
areintherelation R={(a,b) | a<b} ?
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Relations on a Set
Solution: R={(1, 2),(1, 3),(1, 4),(2, 3),(2, 4),(3, 4)}

1 o1 R| 1 4
1 X X| X
2 o2
2 X | X
3 3 3 X
40 4 4
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Relations on a Set
How many different relations can we define on
a set A with n elements?
A relationon aset A is asubset of AxA.
How many elements are in AxA ?

There are n? elements in AxA, so how many
subsets (=relations on A) does AxA have?

The number of subsets that we can forrr120ut of a
set with melements is 2™. Theref ore, 2" subsets
can be formed out of AxA.

Answer: We can define 2" dif ferent relations
onA.
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Properties of Relations

We will now look at some usef ul ways to classify
relations.

Definition: A relation Ron a set A is called
reflexive if (a, a)00Rfor every element alJA.

Are the following relations on {1, 2, 3, 4} reflexive?

R={(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No.
R={(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes.
R={(1, 1), (2, 2), (3, 3)} No.

Definition: A relation on a set A is called
irreflexive if (a, a)JRfor every element alA.
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Properties of Relations

Def initions:

A relation Ron aset A is called symmetric if (b,
a)OR whenever (a, b)ORfor all a, bOA.

A relation Ron aset A is called antisymmetric if
a =b whenever (a, b)ORand (b, a)0R.

A relation Ron aset A is called asymmetric if
(a, b)OR implies that (b, a)00Rfor all a, bOA.
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Properties of Relations

Are the following relations on {1, 2, 3, 4}
symmetric, antisymmetric, or asymmetric?

R={(1, 1), (1,2), (2, 1), (3, 3), (4, 4)} symmetric

R={(1, 1)} sym. and

antisym.

R={(1,3),(3,2), (2, 1)} antisym.
and asym.

R={(4,4),(3,3), (1,4)} antisym.

Fall 2002 CMSC 203 - Discrete Structures 291

97



Properties of Relations

Definition: A relation Ron a set A is called
transitive if whenever (a, b)OR and (b, c)OR, then
(a, c)ORfor a, b, cOA.

Are the following relations on {1, 2, 3, 4}
transitive?

R={(1, 1), (1, 2),(2,2), (2, 1), (3, 3)} Yes.
R={(1, 3), (3, 2), (2, 1)} No.
R={(2, 4), (4, 3), (2, 3), (4, 1)} No.
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Counting Relations

Example: How many dif f erent reflexive relations
can be defined on a set A containing n elements?

Solution: Relations on R are subsets of AxA, which
contains n? elements.

Therefore, dif ferent relations on A can be

gener at ed by choosing dif f erent subsets out of
these n2 elements, so there are 2" relations.

A reflexive relation, however, must containthe n
elements (a, a) for every allA.

Consequent ly, we can only choose among n2 —n =

n(n —1) elements to generat e ref lexive relations, so
there are 2" of them.
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Combining Relations
Relations are sets, and theref ore, we can apply the
usual set operationstothem.

I f we have two relations R, and R,, and bot h of
themarefromaset Atoaset B, then we can
combinethemto R, O R,, Ry n R,, or Ry —R,.

| n each case, the result will be another relation
from A to B.
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Combining Relations

...and there is anot her important way to combine
relations.

Definition: Let Rbe arelationfromaset Atoa
set Band S arelationfromBtoaset C. The
composite of Rand S is the relation consisting of
ordered pairs (a, c), where alJA, cC, and f or which
there exists an element bOB such that (a, b)OR and
(b, c)OS. We denot e the composite of Rand S by
S-R.

I nother words, if relation R contains a pair (a, b)
and relation S contains a pair (b, c), then S-R
contains a pair (a, c).
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Combining Relations

Example: Let D and S berelationson A ={1, 2, 3, 4}.
D={(a,b)| b=5-a “bequals(5-a)”
S ={(a, b) | a<b} “ais smaller than b”

)

D={(1,4),(2,3),(3,2), (4, 1)}
S={(1,2),(1,3),(1,4),(2,3), (2,4), (3,4)}
SD={(2,4),(3,3),(3,4),(4,2), (4,3), (4,4)}

D maps an element ato the element (5 —a), and
afterwards S maps (5 —a) to all elements larger
than (5 —a), resulting in S°D = {(a,b) | b > 5 — a}
or S°D = {(a,b) | a + b > 5}.
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Combining Relations

We already know that functions are just special
cases of relations (namely those that map each
element in the domain onto exactly one element in
the codomain).

I f we formally convert two functions into relations,
that is, write them down as sets of ordered pairs,
the composite of these relations will be exactly the
same as the composite of the functions (as def ined
earlier).
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Combining Relations

Definition: Let Rbe arelation onthe set A. The
powers R, n=1, 2, 3, .., are defined inductively by
R'=R

R+ = ReR

I n other words:
R"=RR-...°R (ntimes the letter R)
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Combining Relations

Theorem: The relation Ron aset A is transitive if
and only if R" O Rfor all positive integers n.
Remember the definition of transitivity:
Definition: A relation Ron a set A is called
transitive if whenever (a, b)ORand (b, ¢)OR, then
(a, c)ORfor a, b, cOA.

The composite of Rwith itself contains exactly
these pairs (a, c).

Therefore, for atransitive relation R, R°R does not
contain any pairs that are not in R, so RRR O R.
Since R°R does not introduce any pairs that are not
already in R, it must also be true that (R°R°*RO R,
and soon, sothat R"OR.
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n-ary Relations

I norder to study an interesting application of
relations, namely databases, we first need to
generalize the concept of binary relations to n-ary
relations.

Definition: Let A, A,, .., A, be sets. An n- ary
relation on these sets is a subset of AxA,x..xA .

The sets Ay, A,, .., A, are called the domains of the
relation, and nis called its degree.
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n-ary Relations

Example:

Let R={(a,b,c) | a=2b Ob =2c with a, b, cON}
What is the degree of R?

The degree of Ris 3, soits elements are triples.
What are its domains?

I'ts domains are all equal to the set of integers.

Is (2, 4,8)inR?

No.

Is(4,2,1)inR?

Yes.
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Dat abases and Relations

Let us take alook at atype of database
representation that is based on relations, namely
the relational data model.

A dat abase consists of n-tuples called records,
which are made up of fields.

These fields are the entries of the n-tuples.

The relational data model represents a dat abase as
an n-ary relation, that is, a set of records.
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Dat abases and Relations

Example: Consider a database of students, whose
records are represented as 4-tuples with the fields
Student Name, | D Number, Major, and GPA:

R = {(Ackermann, 231455, CS, 3.88),
(Adams, 888323, Physics, 3.45),
(Chou, 102147, CS, 3.79),
(Goodfriend, 453876, Mat h, 3.45),
(Rao, 678543, Math, 3.90),
(Stevens, 786576, Psych, 2.99)}

Relations that represent databases are also called
tables, since they are of ten displayed as t ables.
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Dat abases and Relations
A domain of an n-ary relationis called a primary
key if the n-tuples are uniquely det ermined by
their values from t his domain.
This means that no two records have t he same
value from the same primary key.

I n our example, which of the fields Student Name,

| D Number, Major, and GPA are primary keys?

Student Name and | D Number are primary keys,
because no two students have identical values in
these fields.

I nareal student database, only | D Number would
be a primary key.
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Dat abases and Relations

I n adatabase, a primary key should remain one
even if new records are added.

Theref ore, we should use a primary key of the
intension of the database, containing all the n-
tuples that can ever be included in our dat abase.

Combinations of domains can also uniquely identify
n-tuples in an n-ary relation.

When the values of a set of domains determine an
n-tuple in arelation, the Cartesian product of
these domains is called a composite key.
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Dat abases and Relations

We can apply a variety of operations on n-ary
relations to f orm new relations.

Definition: The projectionF_;  ; maps the n-

tuple (a;, &, .., 4 )tothemtuple(a, a,, ,a,m)
where m<n.

I n other words, a projection P, . _keepsthem

components &, &, .., &_of an h- %uple and deletes
its (n—m) other components

Example What is the result when we apply the
projection P, , to the student record (Stevens,
786576, Psych, 2.99) ?

Solution: It is the pair (786576, 2.99).
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Dat abases and Relations

| n some cases, applying a projectionto an entire
table may not only result in f ewer columns, but also
in fewer rows.

Why is that ?

Some records may only have dif fered in those
fields that were deleted, so they become identical,
and there is no need to list identical records more
than once.
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Dat abases and Relations

We can use t he join operation t o combine two
tables into one if they share some identical fields.

Definition: Let Rbe arelation of degree mand S a
relation of degree n. The joinJ (R, S), wherep<m
and p<n,isarelation of degree m+n—-pthat
consists of all (m+n—p)-tuples

(@ @z, -+s 8.y C1s Coy wos Cp Dy, gy oy D),

where the m-tuple (a;, &, .., 8yp, Cy, Cay -+ Cp)
belongs to Rand the n-tuple (cy, C,, .., Cp, by, by, -,
bn.p) belongs to S.
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Dat abases and Relations

I nother words, to generate Jp(R, S), we have to
find all the elements in R whose p last component s
match the p first components of an element in S.

The new relation cont ains exact ly these mat ches,
which are combined to tuples that contain each
mat ching field only once.
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Dat abases and Relations

Example: What is J (Y, R), where Y contains the
fields Student Name and Year of Birth,
Y ={(1978, Ackermann),

(1972, Adams),

(1917, Chou),

(1984, Goodf riend),

(1982, Rao),

(1970, Stevens)},
and R contains the student records as defined
before ?
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Dat abases and Relations

Solution: The resulting relation is:

{(1978, Ackermann, 231455, CS, 3.88),
(1972, Adams, 888323, Physics, 3.45),
(1917, Chou, 102147, CS, 3.79),

(1984, Goodf riend, 453876, Math, 3.45),
(1982, Rao, 678543, Math, 3.90),

(1970, Stevens, 786576, Psych, 2.99)}

Since Y has two fields and R has four, the relation
J«(Y,R) has2 +4 —1=5 fields.
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Representing Relations

We already know dif f erent ways of representing
relations. We will now take a closer look at two
ways of representation: Zero- one matrices and
directed graphs.

If RisarelationfromA ={a;, a,, .., a,} toB=

{by, by, .., b}, then Rcan be represented by the
zero-one matrix Mg =[m;] with

m; =1, if (&, b;)0R, and

m; =0, if (&, b))0OR.

Note that for creating this matrix we first need to

list the elements in A and B in a particular, but
arbitrary order.
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Representing Relations

Example: How can we represent the relation
R={(2,1), (3, 1), (3, 2)} as a zero-one matrix?

Solution: The matrix Mg is given by
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Representing Relations

What do we know about the matrices representing
arelation on a set (arelationfromAtoA) ?

They are square matrices.

What do we know about matrices representing
reflexive relations?

All the element s on t he diagonal of such matrices
M, must be 1s.
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Representing Relations

What do we know about the matrices representing
symmetric relations?

These matrices are symmetric, that is, Mg = (Mg)'.

symmetric matrix, non-symmetric matrix,
symmetric relation. non-symmetric relation.
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Representing Relations

The Boolean oper ations join and meet (you
remember ?) can be used to determine the matrices
representing the union and t he intersection of two
relations, respectively.

To obtainthe join of two zero-one matrices, we
apply the Boolean “or” f unction to all corresponding
elements inthe matrices.

To obtainthe meet of two zero-one matrices, we

apply the Boolean “and” f unction to all corresponding
elements inthe matrices.
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Representing Relations

Example: Let the relations Rand S be represented
by the matrices

What are the matrices representing ROS and RnS?
Solution: These matrices are given by
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Representing Relations Using Matrices

Example: How can we represent the relation
R={(2,1), (3, 1), (3, 2)} as a zero-one matrix?

Solution: The matrix Mg is given by
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Representing Relations Using Matrices

Example: Let the relations Rand S be represented
by the matrices

What are the matrices representing ROS and RnS?
Solution: These matrices are given by
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Representing Relations Using Matrices

Do you remember the Boolean product of two
zero-one matrices?

Let A =[g;] be an mxk zero-one matrix and

B =[b;] be a kxn zero-one matrix.

Then the Boolean product of A and B, denoted by
AoB, is the mxn matrix with (i, j)th entry [c;],
where

C;j = (ay; Oby) O(ap Obyy) O...0(ay Oby).

¢c; =1if and only if at least one of the terms

(&, Oby) =1for some n; otherwise ¢; =0.
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Representing Relations Using Matrices

Let us now assume that the zero-one matrices
M, =[], Mg =[b;] and M =[c;] represent
relations A, B, and C, respectively.

Remember: For M; = M,0My we have:

¢c; =1if and only if at least one of the terms
(&, Oby) =1for some n; otherwise ¢; =0.
Interms of the relations, this means that C
contains a pair (x;, ;) if and only if there is an
element y, such that (x;, y,) isinrelation A and
(Yn 2) isinrelation B.

Therefore, C=B-A (composite of A and B).
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Representing Relations Using Matrices

This gives us the following rule:
Mg.a = Mpj0Mg

I nother words, the matrix representing t he
composite of relations A and B is t he Boolean
product of the matrices representing A and B.

Analogously, we can find matrices representing the
powers of relations:

Mgn = Mg (n-th Boolean power).
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Representing Relations Using Matrices

Example: Find the matrix representing R2, where
the matrix representing Ris given by

Solution: The matrix for R? is given by

Fall 2002 CMSC 203 - Discrete Structures. 323

Representing Relations Using Digraphs

Definition: A directed graph, or digraph, consists
of aset Vof vertices (or nodes) toget her with a
set E of ordered pairs of elements of V called
edges (or arcs).

The vertex ais called the initial vertex of the
edge (a, b), and the vertex b is called the terminal
vertex of this edge.

We can use arrows to display graphs.
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Representing Relations Using Digraphs

Example: Display t he digraph with V ={a, b, c, d},
E ={(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

a

d c
An edge of the form (b, b) is called a loop.
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Representing Relations Using Digraphs

Obviously, we can represent any relation R on a set
A by the digraph with A asits vertices and all pairs
(a, b)OR as its edges.

Vice versa, any digraph with vertices V and edges E
can be represented by arelation on V containing all
the pairsin E.

This one- to- one correspondence bet ween
relations and digraphs means that any statement
about relations also applies to digraphs, and vice
versa.
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Equivalence Relations

Equivalence relations are used torelate objects
that are similar in some way.

Definition: A relation on aset A is called an
equivalence relation if it is reflexive, symmetric,
and transitive.

Two elements that are related by an equivalence
relation Rare called equivalent.
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Equivalence Relations
Since Ris symmetric, a is equivalent to b whenever
b is equivalent to a.

Since Ris reflexive, every element is equivalent to
itself.

Since Ris transitive, if aand b are equivalent and b
and c are equivalent, then a and ¢ are equivalent .

Obviously, these three properties are necessary
for areasonable definition of equivalence.
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Equivalence Relations
Example: Suppose that Ris the relation on the set
of strings that consist of English letters such that
aRb if and only if I(a) =1(b), where I(x) is the length
of the string x. | s Ran equivalence relation?
Solution:
* Risreflexive, because I(a) =1(a) and therefore
aRafor any string a.
* Ris symmetric, because if I(a) =1(b) then I(b) =
I(a), so if aRb then bRa.
* Ris transitive, because if I(a) =1(b) and I(b) =I(c),
thenl(a) =1(c), so aRb and bRc implies aRc.
Ris an equivalence relation.
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Equivalence Classes

Definition: Let Rbe an equivalence relation on a
set A. The set of all elementsthat arerelated to
an element a of A is called the equivalence class
of a.

The equivalence class of awith respect to Ris
denot ed by [a]g.

When only one relation is under consideration, we
will delete the subscript Rand write [a] for this
equivalence class.

If bO[a]g, b is called a representative of this
equivalence class.
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Equivalence Classes

Example: | nthe previous example (strings of
identical lengt h), what is the equivalence class of
the word mouse, denot ed by [mouse] ?

Solution: [mouse] is the set of all English words
containing five letters.

For example, ‘horse’ would be a represent ative of
this equivalence class.
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Equivalence Classes
Theorem: Let Rbe an equivalence relation on a set
A. The following statements are equivalent :
+ aRb
* [a] =[b]
«[a] n[b]l#0O
Definition: A partition of aset S is a collection of
disjoint nonempty subsets of S that have S as their
union. | n ot her words, the collection of subsets A,
idl, forms apartitionof Sif and only if
(i) A,z0forill
s Ain A =0, if i #]
*Um Ai=S
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Equivalence Classes

Examples: Let S bethe set {u,m, b, r,0,c,k, s}.
Do the following collections of sets partition S ?

{{m, o, c, k}, {r, u, b, s}} yes.

{{c, o, m, b}, {u, s}, {r}} no (k is missing).
{{b,r,0,c,k},{m,u,s,t}} no(tisnotinS).
{{u,m, b, r,0,c,k,s}} yes.

{{b, 0,0, k}, {r,u, m}, {c, s}} yes ({b,0,0,k} ={b,0k}).

{{u, m, b}, {r, 0, ¢, k, s}, 0} no (O not allowed).
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Equivalence Classes

Theorem: Let Rbe an equivalence relation on a
set S. Then the equivalence classes of Rforma
partition of S. Conversely, given a partition

{A;] 01} of the set S, there is an equivalence
relation Rthat has the sets A,, il , asits
equivalence classes.
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Equivalence Classes

Example: Let us assume that Frank, Suzanne and
George live in Bost on, Stephanie and Max live in
Libeck, and Jennif er lives in Sydney.

Let Rbe the equivalence relation{(a, b) | aand b
live in the same city} on the set P={Frank, Suzanne,
Geor ge, Stephanie, Max, J ennif er}.

Then R = {(Frank, Frank), (Frank, Suzanne),
(Frank, George), (Suzanne, Frank), (Suzanne,
Suzanne), (Suzanne, Geor ge), (George, Frank),
(Geor ge, Suzanne), (Geor ge, George), (Stephanie,
St ephanie), (Stephanie, Max), (Max, St ephanie),
(Max, Max), (J ennif er, J ennif er)}.

Fall 2002 CMSC 203 - Discrete Structures. 335

Equivalence Classes

Then the equivalence classes of Rare:

{{Frank, Suzanne, Geor ge}, {St ephanie, Max},
{Jennifer}}.

This is a partition of P.

The equivalence classes of any equivalence relation
Rdefined on aset S constitute a partition of S,
because every element in S is assigned to exactly
one of the equivalence classes.
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Equivalence Classes
Another example: Let Rbetherelation
{(a, b) | a=b (mod 3)} on the set of integers.
I's R an equivalence relation?

Yes, Ris ref lexive, symmetric, and transitive.

What are the equivalence classes of R ?

{{...-6,-3,0,3,6, ..},
{-.-5,-2,1,4,7, .},
{.-4,-1,2,5,8, .}
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Yes, No, Maybe...

Boolean
Algebra
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Boolean Algebra

Boolean algebra provides the operations and t he
rules for working with the set {0, 1}.

These are the rules that underlie electronic
circuits, and t he met hods we will discuss are
fundamental to VLSI design.

We are going to f ocus on t hree operations:
» Boolean complement ation,
» Boolean sum, and

» Boolean product
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Boolean Operations

The complement is denoted by a bar (onthe slides,
we will use a minus sign). I t is defined by

-0=1 and -1=0.

The Boolean sum, denoted by +or by OR, has the
f ollowing values:

1+41=1 1+0=1 0+1=1, 0+0=0

The Boolean product, denoted by [or by AND, has
the following values:

101=1, 10M=0, 0M=0, 0mM=0
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Boolean Functions and Expressions

Definition: Let B ={0, 1}. The variable x is called a
Boolean variable if it assumes values only from B.

A function from B", the set {(x;, X5, .., X,)) | x;0B,
1<i<n},toBis called a Boolean function of
degree n.

Boolean f unctions can be represent ed using
expressions made up from the variables and
Boolean oper ations.
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Boolean Functions and Expressions

The Boolean expressions in the variables x4, x,, ..,
X, are defined recursively as f ollows:

+ 0, 1, X4, Xy, .., X, are Boolean expressions.

+ | f Eyand E, are Boolean expressions, then (-E,),
(E{E,), and (E, +E,) are Boolean expressions.

Each Boolean expression represent s a Boolean
function. The values of this function are obtained
by substituting 0 and 1for the variables inthe
expression.
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Boolean Functions and Expressions

For example, we can creat e Boolean expression in
the variables x, y, and z using t he “building blocks”
0,1, x,y,and z, and the construction rules:

Since x and y are Boolean expressions, so is xy.
Since z is a Boolean expression, so is (-z).

Since xy and (-z) are expressions, so is Xy + (-z).
...and so on...
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Boolean Functions and Expressions

Example: Give a Boolean expressionfor the
Boolean f unction F(x, y) as defined by the f ollowing
table:

X y F(x,y)
0 0 0
0 1 1
1 0 0
1 1 0

Possible solution: F(x, y) = (-x)y
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Boolean Functions and Expressions

Another Example: Possible solution I :
x|y |z ]|Fxy,2) F(x,y,2) =-(xz +y)
olofo 1
8 f1’ (1) (1) Possible solution 11 :
AEEE 0 F(x,y,2) = (-(x2))(-y)
1{o]o 1
1101 0
1]11]o0 0
1111 0
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Boolean Functions and Expressions

There is a simple method f or deriving a Boolean
expression for afunction that is defined by atable.
This method is based on minterms.

Definition: A literal is a Boolean variable or its
complement. A minterm of the Boolean variables x,,
X,, .., X, IS @ Boolean product y,y,..y,, wherey, =x;
or y; =-X;.

Hence, a mintermis a product of nliterals, with
one literal for each variable.
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Boolean Functions and Expressions
Consider F(x,y,z) again: F(x,y,z) =1if and

x|ylz|Fxy,2) only if

01010 1 Xx=y=z=0 or

0]0]1 1 x=y=0,z=10r

0]1(0 0 x=1y=z2=0

oj1]1 0 Therefore,

1{0]0 1

110 9 0 F(X’ Y, Z) =

T 0T o (X)(-y)(-2) +

AEIE 0 (-x)(-y)z +
x(-y)(-2)
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Boolean Functions and Expressions

Def inition: The Boolean functions F and G of n
variables are equal if and only if F(b,, b,, .., b,) =
G(b4, by, .., b,) whenever by, b,, .., b, belong to B.

Two dif f erent Boolean expressions that represent
the same function are called equivalent.

For example, the Boolean expressions xy, xy +0,
and xy[ are equivalent .
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Boolean Functions and Expressions

The complement of the Boolean function Fis the
function -+, where —F(b;, b,, .., b,) =
-(F(by, by, .., by)).

Let F and G be Boolean functions of degree n. The
Boolean sum F+G and Boolean product FGare then
defined by

(F +G)(by, by, ... b,) =F(by, by, .., b,) +G(by, by, .., by)
(FG)(by, by, .., b) = F(by, by, .., b,) G(b,, by, .., b,)
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Boolean Functions and Expressions

Question: How many dif f erent Boolean f unctions
of degree 1arethere?

Solution: There are four of them, Fy, F,, F3, and F:

X F, Fa Fs Fy
0 0 0 1 1
1 0 1 0 1
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Boolean Functions and Expressions

Question: How many dif f erent Boolean f unctions
of degree 2 are there?

Solution: There are 16 of them, F,, F,, .., Fy4:

_n
-
-
-
-
=

E

-
-
-

©

=
-

1 Fe)FiaFiu

—
>

2 3|4l s 67| s

1

ala|lolo]x
alo|=|O|<
ola]l=|="

ol|lo|o|o
ajlOo|o|o
o|la|Oo|o
alajo|o
alo|~|o
Olalalo
alala]o
ajlo|o|=
(o) I Ko N
alala]=

111
111
0]0
01

olo|-a|o
ol|lo|o|-

0
1
1
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Boolean Functions and Expressions

Question: How many dif f erent Boolean f unctions
of degree nare there?

Solution:
There are 2" dif ferent n-tuples of 0s and 1s.

A Boolean function is an assignment of 0 or 1to
each of these 2"different n-tuples.

Therefore, there are 22" dif f erent Boolean
functions.
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Duality

There are usef ul identities of Boolean expressions
that can help us to transform an expression A into
an equivalent expression B (see Table 5 on page
597 inthe textbook).

We can derive additional identities with the help
of the dual of a Boolean expression.

The dual of a Boolean expression is obtained by
int erchanging Boolean sums and Boolean product s
and interchanging Os and 1s.
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Duality
Examples:

The dual of x(y +2z) is x +yz.
The dual of -xA + (-y +2) is (-x +0)((-y)z).
The dual of a Boolean function F represented by

a Boolean expression is the function represent ed
by the dual of this expression.

This dual function, denot ed by Fd, does not
depend on t he particular Boolean expression used
torepresent F.

Fall 2002 CMSC 203 - Discrete Structures. 354

18



Duality

Therefore, anidentity between functions
represent ed by Boolean expr essions remains valid
when the duals of both sides of the identity are

We can use this fact, called the
to derive new identities.

For example, consider the absorption law

By taking the duals of both sides of this identity,
X +Xy , whichis alsoan
identity (and also called an absorption law).
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All the properties of Boolean f unctions and
expressions that we have discovered also apply to
other mathematical structures

propositions and sets and t he operations def ined
onthem.

Boolean algebra, then we know that all results
est ablished about Boolean algebras apply tothis

For this purpose, we need an abstract definition
of a Boolean algebra.
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A Boolean algebrais a set B with two
binary operations O ,elements 0 and 1, and a
unary operation —such that the f ollowing
properties hold for all x, y, and z in B:

x O 1=x (identity laws)

x O (-x) =0 (domination laws)
(x O z=x0 z) and

(x O z=x0 z) and  (associative laws)
x O x and x O X (commut ative laws)
x O z)=(x0O (x O

x O(y Oz)
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Logic Gates

Electronic circuits consist of so-called gates.
There are three basic types of gates:

X -X ,
—>[>o—> inverter

:D:)ﬂ> ORgate
y
X Xy

_ > AND gate
y

Fall 2002 CMSC 203 - Discrete Structures

Logic Gates

Example: How can we build a circuit that computes
the function xy +(-x)y ?

X

,l t Xy
»D Xy +(-x)y

Do ey |
y
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The
End
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