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ABSTRACT

Summary: Comparing gene content between species can

be a useful approach for reconstructing phylogenetic trees.

In this paper, we derive a maximum-likelihood estimation of

evolutionary distance between species under a simple model

of gene genesis and gene loss. Using simulated data on

a biological tree with 107 taxa (and on a number of ran-

domly generated trees), we compare the accuracy of tree

reconstruction using this ML distance measure to an earlier

ad hoc distance. We then compare these distance-based

approaches to a character-based tree reconstruction method

(Dollo parsimony) which seems well suited to the analysis of

gene content data. To simplify simulations, we give a formal

proof of the well-known ‘fact’ that the Dollo parsimony score

is independent of the choice of root. Our results show a

consistent trend, with the character-based method and ML

distance measure outperforming the earlier ad hoc distance

method.

Availability: www-ab.informatik.uni-tuebingen.de/software/

genecontent/welcome_en.html

Contact: huson@informatik.uni-tuebingen.de

1 INTRODUCTION

As more and more whole genome sequences become avail-

able, there is growing interest in new methods that infer phylo-

genies from whole genome data (Wolf et al., 2002), either

directly from DNA comparisons (Henz et al., 2003), from

comparisons of gene content (Snel et al., 1999; Fitz-Gibbon

and House, 1999), from conserved gene synteny (Sankoff and

Nadeau, 1996) or from other genomic features (Rokas and

Holland, 2000).

Snel et al. (1999) present a phylogenetic tree for 13 genomes

based on a simple measure of shared gene content that corres-

ponds quite well to other phylogenies based on the comparison

of 16S rRNA sequence data. The accuracy of their method

was subsequently investigated by Kunin and Ouzounis (2003).

Simultaneously, a tree was published based on a parsimony

analysis of the gene content of 11 genomes (Fitz-Gibbon and

House, 1999).

∗To whom correspondence should be addressed.

The aims of our paper are 3-fold. First, we investigate a

simple model of gene content evolution involving gene genesis

and gene loss, but not gene transfer, and derive from it a new

distance measure that is the maximum-likelihood estimator

under the given model.

Second, we discuss a specific flavor of maximum parsimony

tree construction, Dollo parsimony, which is an appropriate

approach under this model (Wolf et al., 2001). In this context,

we prove that the Dollo parsimony score is independent of the

choice of root, a result that is useful beyond the context of

gene content evolution.

Third, based on this simple model of gene content evolution,

we have undertaken an experimental study to compare the

performance of all three tree construction methods mentioned

above.

The result of this study is that Dollo parsimony is generally

the most accurate method, but it is often very closely matched

by the maximum-likelihood distance estimator, which con-

sistently outperforms the simple gene content distance.

Implementations of our simulator and tree construc-

tion software are freely available from www-ab.informatik.

uni-tuebingen.de/software/genecontent/welcome_en.html

2 METHODS

2.1 A simple model of gene content evolution

Consider the following model. A genome G will consist

of a set of genes, which we will regard as formal labels

(gene identifiers). We assume that genomes evolve accord-

ing to a constant-birth, proportional-death Markov process.

That is, at each instant each gene in G can be inde-

pendently deleted, at intensity rate µ, or G can acquire

a new gene (gene genesis) independently, at intensity rate

λ > 0. This model has some similar features to the

model described in Kunin and Ouzounis (2003). How-

ever, we do not model horizontal gene transfer or selec-

tion pressure. As our goal is mathematical tractability, the

model that we discuss is less sophisticated than, e.g. a

Birth, Death and Innovation Model that explicity models

domain duplication, deletion and innovation (Karev et al.,

2003).
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Gene content phylogeny

Under the constant-birth, proportional-death model, let

G(t) denote the random genome that results from this process

after duration t , and let l(t) = |G(t)|. Let m := λ/µ. From

the theory of Markov processes (Feller, 1950, p. 414) we have

that:

(i) Independent of G(0), the genome size l(t) converges

to a Poisson distribution with mean m as t grows.

(ii) If l(0) is chosen according to this equilibrium Poisson

distribution, then the process G(t) is a time-reversible

Markov process.

As usual, a phylogenetic tree T on a set X of taxa is a tree,

with vertex set V (T ) and edge set E(T ), whose internal ver-

tices all have degree at least 3, leaves are bijectively labeled

by elements of X and each edge e is labeled by a posit-

ive number τ(e). Such a tree T is called rooted, if there is

a specified root ρ for T , which can be any internal vertex

of T or the midpoint of some edge of T . If the edges of

T are assigned lengths we obtain a additive distance on X

by setting the distance between any pair x and y to be the

sum of the lengths of the edges on the path in T connect-

ing x and y [for further background, see (Semple and Steel,

2003)].

We assume that the genomes assigned to each vertex of T

are the result of the Markov process (in equilibrium) described

above. This model can be described by just three parameters

(T , τ , m), where T is a rooted (or unrooted) phylogenetic tree,

τ is a set of edge lengths for T and m(= λ/µ) is the expected

number of genes at any vertex of T .

Such a model M = (T , τ , m) assigns a set G(v) of genes to

every vertex v of T as follows: first G(ρ) is some set of chosen

genes whose size is taken from the equilibrium distribution for

the model—namely a Poisson distribution with mean m.

In a depth-first traverse of the tree, let v denote a parent

vertex, w a child vertex and e the edge connecting the two.

Assume that G(v) has already been assigned and we want

to assign G(w). Then G(w) is chosen according to the above

model asG(t) conditional onG(0) = G(v). That is, each gene

g ∈ G(v) survives along e and is present in G(w) with probab-

ility e−µτ(e). Furthermore, new genes (not present anywhere

else in the tree) are born along e at rate λ and for duration τ(e).

Note that, in particular, we thereby assign a set of genes to

each taxon x ∈ X and define G(x) = G(ν(x)), where ν(x) is

the leaf with label x.

2.2 Maximum-likelihood distance estimation

Now suppose we have two genomes G1 and G2 which have

evolved from an ancestral genome, G(0) according to this

process, which acted for duration t1 to form G1 and t2 to form

G2. We assume that the process is in equilibrium (and thus

a reversible Markov process). We wish to calculate tML :=
t1 + t2 to maximize the joint probability of observing G1 and

G2 under this model. Since the genes are essentially abstract

markers in this model, all that is relevant in any probability

calculations for estimating tML are the number of genes in G1

and G2 and the number of genes common to both G1 and G2.

Thus, for i = 1, 2, let li = |Gi |, and let l12 = |G1 ∩ G2|.

Theorem 1.

tML = −
1

µ
log

(

β +
√

β2 + 4α12

2

)

,

where αi := li/m, α12 = l12/m, and β := 1 +α12 −α1 −α2.

Proof. Recalling that l(t) = |G(t)|, let

pij (t) = P(l(t + s) = j | l(s) = i).

By the Markov assumption this quantity does not depend on s.

Also, let pj (t) = p0j (t), which is the probability that j

new genes will arise in a genome over duration t . The fol-

lowing expression for p0j (t) is given by standard Markov

process theory [see, e.g. Feller (1950), Equation 11.10 as

described on pp. 434–435], which shows that pj (t) has a

Poisson distribution with mean m(1 − e−µt ), i.e.

pj (t) =
mj

j !
(1 − e−µt )j exp[−m(1 − e−µt )]. (1)

Let us write P(G1, G2|T = t) to denote the joint probability of

generating genomes of length l1 and l2, that share l12 genes, if

the genomes have been separated by duration t . Similarly, we

write P(G2|G1, T = t) to denote the associated conditional

probability, and P(G1) to denote the probability of a genome

of length l1. Then, by elementary probability theory,

P(G1, G2|T = t) = P(G2|G1, T = t) · P(G1|T = t).

Now, P(G1|T = t) = P(G1) = (ml1/l1!)e−m and so

P(G1, G2|T = t) = P(G2|G1, T = t) ·
ml1

l1!
e−m. (2)

To calculate P(G2|G1, T = t) we use the fact that the model

is a reversible Markov process and so we can consider G2

as evolving from G1. To obtain G2 from G1 over duration

t requires that (i) precisely l1−l12 of the l1 genes in G1 must be

eliminated and (ii) one must have precisely l2 − l12 additional

genes created. Since the genes are treated independently and

according to an identical process, the probability of event (i) is

given by a binomial distribution with l1 independent trials, and

for which the probability of success on each trial is 1 − e−µt .

Furthermore, the probability of event (ii) is, by definition,

pl2−l12
(t). Consequently,

P(G2|G1, T = t) =
l1!

l12!(l1 − l12)!
(e−µt )l12(1 − e−µt )l1−l12

· pl2−l12
(t). (3)

Thus, if we let

L(t) := e−µtl12 · (1 − e−µt )l1+l2−2l12 exp[−m(1 − e−µt )]
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D.H.Huson and M.Steel

then, combining (1), (2) and (3), we have:

P(G1, G2|T = t) = c · L(t)

for a positive constant c = (ml1+l2+l12 e−m)/[l12!(l1−l12)!(l2−
l12)!] that is independent of t . Maximizing P(G1, G2|T = t)

corresponds to maximizing L(t). Solving the equation

dL(t)/dt = 0 for t = TML by routine techniques from

differential calculus gives the claimed solution.

Theorem 1 allows us to define an additive evolutionary

distance between genomes by setting:

dG1,G2
= − log

(

β +
√

β2 + 4α12

2

)

. (4)

Note that this distance estimate does not require knowledge

of λ or µ separately, and although it does involve m (the

expected number of genes in a genome) in practice this may

be estimated by averaging the number of genes across the

genomes of the taxa being compared.

2.3 Dollo parsimony

Dollo parsimony is a method for reconstructing phylogenetic

trees from binary sequences. Named after Louis Dollo, who

argued that it is harder to evolve a complex feature than to lose

it, the approach was suggested in Le Quesne (1974) and further

analyzed in Farris (1977). Although the method has tradition-

ally been applied to more classical types of evolutionary data

(such as morphological characters), it has been applied to

molecular studies involving restriction site data (DeBry and

Slade, 1985).

The method assumes that the transition event 0 → 1 (which

in our setting corresponds to gene genesis) can occur at most

once in the rooted phylogenetic tree T that describes the

evolution of the genomes. Gene losses—represented by the

transition 1 → 0—can occur multiple times. The rooted tree

T is scored by the total number of transitions that occur (0

to 1 and 1 to 0) in the tree, across all the genes. The ances-

tral gene compositions (at the interior vertices and root of T )

are chosen so as to minimize this score. Finally, the tree that

minimizes this Dollo score is selected (we define this more

precisely shortly).

We pause to describe the binary sequences that are naturally

associated with gene content data. Suppose we have a set

of taxa X and a set G(x) of genes for each taxon x ∈ X,

let G = ∪x∈XG(x) be the set of all mentioned genes and

assume that G = {g1, . . . , gk}. To each taxon x ∈ X, we

assign a {0, 1}-sequence Sx of length k by setting Sx[i] = 1

if and only if i ∈ G(x). Thus, each gene gi ∈ G can be

regarded as a binary character, which is a function χ : X →
{0, 1} defined by setting χ(x) = 1 if gi ∈ G(x), otherwise

χ(x) = 0.

Returning to the general setting of binary characters, given

χ : X → {0, 1} together with a rooted phylogenetic X–

tree, consider extensions χ : V (T ) → {0, 1} for which

(i) there is at most one edge (u, v) in T with χ(u) = 0

and χ(v) = 1, and (ii) which minimizes the number m of

edges (u, v) for which χ(u) �= χ(v)—this value of m we

call the DP-score of χ on T , and any such extension χ we

call a minimal DP-extension of χ on T . Given a sequence of

characters a DP-tree is any rooted phylogenetic X-tree that

minimizes the sum of the DP-scores of the characters in the

sequence.

It might be expected that the Dollo scoring criterion would

favor certain placements of the root in a tree. However,

it is part of ‘folklore’ (see e.g. Swofford et al., 1996)

that this is not so. Thus, the method effectively constructs

an unrooted phylogenetic X-tree which makes it compar-

able with the distance-based tree reconstruction methods in

our study. We now provide a formal proof of this result,

which also shows that the DP-score of a character on a

rooted phylogenetic tree can be very easily described and

computed.

Given an unrooted phylogenetic X-tree T and x, y ∈ X, let

p(x, y) := pT (x, y) denote the set of vertices on the path in

T connecting x and y. For a character χ : X → {0, 1}, and a

phylogenetic X-tree T , let

V (χ , T ) = {v ∈ V (T ) : ∃x, y ∈ X : χ(x)

= χ(y) = 1, v ∈ p(x, y)},

and let

�(χ , T ) = |{{u, v} ∈ E(T ) : |{u, v} ∩ V (χ , T )| = 1}|.

Given a rooted phylogenetic X-tree, T , let T −ρ denote the

phylogenetic X-tree obtained from T by suppressing the root

vertex ρ, that is, if ρ has degree two, then we delete it from the

tree and join the two adjacent vertices by a new edge, whereas,

if ρ has degree more than two, then we simply stop regarding

ρ as the root.

Let lDP(χ , T ) be the DP-score of χ on T .

Theorem 2. For a rooted phylogenetic X-tree T and a

character χ : X → {0, 1}, we have

lDP(χ , T ) = �(χ , T −ρ).

Thus, lDP(χ , T ) is independent of the placement of a root.

Furthermore, there are at most two minimal DP-extensions

of χ and these differ only on the assignment of states to the

root vertex. For every other vertex v of T , the optimal Dollo

assignment to v is 1 if and only if v ∈ V (χ , T −ρ) and 0

otherwise.

Proof. Suppose χ is a minimal DP-extension of χ on T .

We may regard V (T −ρ) and V (χ , T −ρ) as subsets of V (T ).

Let v be a vertex of V (T ). Then there are three possibilities,
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either:

(i) v ∈ V (χ , T −ρ), in which case we will show that

χ(v) = 1, or

(ii) v ∈ V (T −ρ) − V (χ , T −ρ), in which case we will

show that χ(v) = 0, or else

(iii) v �∈ V (T −ρ).

The claim accompanying case (i) follows from the require-

ment that the transition 0 → 1 can occur at most once in T

under the Dollo requirement.

Regarding case (ii), to establish the accompanying claim,

we apply induction on the edge distance d from v to its most

distant descendant leaf. If d = 0 then v is a leaf, and so

χ(v) = χ(v) = 0. For the induction step consider the ver-

tices v1, v2, . . . , vk (k ≥ 2) that are adjacent to, but descended

from v. Note that all but at most one of these vertices must lie

inV (T −ρ)−V (χ , T −ρ), otherwisev would lie inV (χ , T −ρ).

If {v1, v2, . . . , vk} ⊆ V (T −ρ)−V (χ , T −ρ) then by the induc-

tion hypothesis χ(vi) = 0 for all i ∈ {1, . . . , k} and so, since

k ≥ 2, χ(v) = 0 is the only possible assignment (as χ is a

minimal DP-extension of χ ). On the other hand, suppose one

of the elements—say v1—lies in V (χ , T −ρ). In that case, if

v = ρ, the root vertex of T , then k ≥ 3 [if v had degree

2 then v �∈ V (T −ρ)] and once again applying the induc-

tion hypothesis to v1, . . . , vk we have that χ(v) = 0. If v

is not the root vertex, then there exists an adjacent vertex w

that is an immediate ancestor of v. Consider the other sub-

tree of T that descends from w. None of the leaves of this

tree can have a χ value of 1 for otherwise this would force

v ∈ V (χ , T −ρ). Thus, the assignment χ(w) = χ(v) = 0

is the only possible assignment since χ is a minimal DP-

extension of χ . In all these cases then the induction step

holds.

Finally, consider case (iii). In this case v = ρ and v has

degree 2. Let v1, v2 denote the two vertices of T adjacent to

ρ. If (a) v1 and v2 are both in V (χ , T −ρ) then χ(ρ) = 1.

If (b) neither of v1, v2 is in V (χ , T −ρ) then by part (ii),

χ(v1) = χ(v2) = 0 and so χ(ρ) = 0. If (c) exactly one of

v1, v2 is in V (χ , T −ρ) then by cases (i) and (ii) χ assigns

state 0 to one vertex and 1 to the other, and so there are

two equally parsimonious assignments to ρ-either 0 or 1.

Note that in all three cases (a)–(c) the total number of edges

between ρ, v1 and v2 on which there is a transition under

χ is 1, when |{v1, v2} ∩ V (χ , T −ρ)| = 1, otherwise the

total is 0.

Summarizing, the value of χ is determined on all

the vertices of T , except perhaps the root, for which

there are two possible assignments precisely when the

root has exactly two adjacent vertices that receive dif-

ferent states by χ . Also, it is clear from considering

the various cases above that the total number of edges

that receive different states by χ is precisely �(χ , T ) as

claimed.

3 RESULTS

Given two genomes G1 and G2. Snel et al. (1999) sugges-

ted using the following simple distance measure between

genomes, based on the shared gene content for phylogenetic

reconstruction

dG1,G2
= 1 −

|G1 ∩ G2|
min{|G1|, |G2|}

,

which we will refer to as the shared genes distance. Applying

this idea to the genomes of 13 different unicellular species,

they obtained a neighbor-joining tree (Saitou and Nei, 1987)

which they argued is biologically reasonable and correlates

with other published phylogenies.

Similarly, using the ML distance estimation described in

Section 2.2, we can obtain a phylogenetic tree by applying a

method such as neighbor-joining to the distance matrix.

Thus, we have described three different ways of obtaining

a phylogeny from gene content data:

• by the shared genes distance approach due to Snel et al.

(1999)

• using our new ML distance estimator method [given by

Equation (4)] or

• applying Dollo parsimony.

Given the model of evolution described in Section 2.1, how

well do these three different approaches perform? To address

this question we have undertaken a simulation study in which

we evolved sets of genes along a given tree and then applied

the three methods on the sets of genes observed at the leaves

of the tree, in an attempt to recover the original tree.

We ran simulations on 15 different trees, ranging in size

from 50 to 107 taxa. All simulations produced similar results.

In the following, we exemplify these simulations by describ-

ing the study done on a binary tree T0 on n = 107 taxa that

comes from the biological literature (Cole et al., 2003).

The edge lengths on the tree ranged from 1 to 189, with a

median of 21, and were interpreted as time. A discrete approx-

imation of the continuous time Markov process was used.

For this, the probability pgenesis of gene genesis in one unit

of time was varied from 0.05 to 0.80, whereas the probab-

ility ploss for any given gene to be lost in one unit of time

was set to pgenesis/m, where m is the average size of the

(root) genome; this ensures that the the process is in equi-

librium and the expected genome size remains constant with

time. We performed 50 runs from each choice of pgenesis. In

each run, the genome size at the root of the tree was chosen

from its equilibrium (Poisson) distribution with mean = 1000

and stddev =
√

1000 (in practice, a Gaussian distribution

was used since the Poisson converges to this distribution for

large m).

For each of the three phylogenetic methods and for each of

the values of pgain, we computed the average accuracy score
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Fig. 1. Here we exemplify the performance of the three gene content-

based phylogenetic methods on data simulated on a binary tree with

107 taxa. For all three methods ‘Dollo parsimony’ (Dollo-P), ‘ML

distance estimator method’ (MLE-Dist) and ‘shared genes distance’

approach (Dist) we plot the accuracy as a function of pgain. Each data

point represents the performance averaged over 50 independent runs

and the error bars span 1SD below and above the mean.

over N = 50 runs as:

score =
(n − 3) − (FP/N)

n − 3
,

where FP denotes the total number of false positive ‘splits’

observed in all N runs, where a split is bipartition of the set of

taxa corresponding to an edge of a tree. Note that this score is 1

if the tree topology is completely correct, and 0, if completely

wrong.

To perform this study, we developed our own simulator

software and implementations of both distance methods, and

we used the PHYLIP (Felsenstein, 1989) implementations

of neighbor-joining (the neighbor program) and Dollo

parsimony (the dollop program), in both cases using the

programs’ default settings.

As reported in Figure 1, our simulations on a 107 taxon

tree indicated that Dollo parsimony and the ML distance

estimator consistently shows higher accuracy than the shared

genes distance approach of Snel et al. (1999). Although in

Figure 1, Dollo parsimony is clearly performing better than

the maximum-likelihood distance estimator, this trend was

less evident in the simulations on the other 14 trees (Fig. 2).

In summary, while the work in Snel et al. (1999) and

Fitz-Gibbon and House (1999) has established that shared

gene content is useful for inferring phylogenies, our study

indicates that using more sophisticated techniques such as

Dollo parsimony or the ML distance estimator should provide

more accurate trees. In a forthcoming paper, we intend to

Fig. 2. More simulation results comparing the performance of

Dollo-P, MLE-Dist and Dist as a function of pgain. We report the

mean accuracy and SD on seven randomly generated tree topolo-

gies. (a) on 50 taxa and (b) on 75 taxa, using 10 independent runs

per tree.

demonstrate the utility of these new techniques when applied

to a range of real data sets.
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