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Chapter 1

Introduction

Scala smoothly integrates object-oriented and functional programming. It is de-

signed to express common programming patterns in a consise, elegant, and type-

safe way. Scala introduces several innovative language constructs. For instance:

• Abstract types and mixin composition unify concepts from object and module

systems.

• Pattern matching over class hierarchies unifies functional and object-

oriented data access. It greatly simplifies the processing of XML trees.

• A flexible syntax and type system enables the construction of advanced li-

braries and new domain specific languages.

At the same time, Scala is compatible with Java. Java libraries and frameworks can

be used without glue code or additional declarations.

This document introduces Scala in an informal way, through a sequence of exam-

ples.

Chapters 2 and 3 highlight some of the features that make Scala interesting. The fol-

lowing chapters introduce the language constructs of Scala in a more thorough way,

starting with simple expressions and functions, and working up through objects and

classes, lists and streams, mutable state, pattern matching to more complete exam-

ples that show interesting programming techniques. The present informal exposi-

tion is meant to be complemented by the Scala Language Reference Manual which

specifies Scala in a more detailed and precise way.

Acknowledgment. We owe a great debt to Abelson’s and Sussman’s wonderful

book “Structure and Interpretation of Computer Programs”[ASS96]. Many of their

examples and exercises are also present here. Of course, the working language has

in each case been changed from Scheme to Scala. Furthermore, the examples make

use of Scala’s object-oriented constructs where appropriate.





Chapter 2

A First Example

As a first example, here is an implementation of Quicksort in Scala.

def sort(xs: Array[Int]) {

def swap(i: Int, j: Int) {

val t = xs(i); xs(i) = xs(j); xs(j) = t

}

def sort1(l: Int, r: Int) {

val pivot = xs((l + r) / 2)

var i = l; var j = r

while (i <= j) {

while (xs(i) < pivot) i += 1

while (xs(j) > pivot) j ­= 1

if (i <= j) {

swap(i, j)

i += 1

j ­= 1

}

}

if (l < j) sort1(l, j)

if (j < r) sort1(i, r)

}

sort1(0, xs.length ­ 1)

}

The implementation looks quite similar to what one would write in Java or C. We

use the same operators and similar control structures. There are also some minor

syntactical differences. In particular:

• Definitions start with a reserved word. Function definitions start with def,

variable definitions start with var and definitions of values (i.e. read only vari-

ables) start with val.
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• The declared type of a symbol is given after the symbol and a colon. The de-

clared type can often be omitted, because the compiler can infer it from the

context.

• Array types are written Array[T] rather than T[], and array selections are writ-

ten a(i) rather than a[i].

• Functions can be nested inside other functions. Nested functions can access

parameters and local variables of enclosing functions. For instance, the name

of the array xs is visible in functions swap and sort1, and therefore need not

be passed as a parameter to them.

So far, Scala looks like a fairly conventional language with some syntactic peculiar-

ities. In fact it is possible to write programs in a conventional imperative or object-

oriented style. This is important because it is one of the things that makes it easy

to combine Scala components with components written in mainstream languages

such as Java, C# or Visual Basic.

However, it is also possible to write programs in a style which looks completely dif-

ferent. Here is Quicksort again, this time written in functional style.

def sort(xs: Array[Int]): Array[Int] =

if (xs.length <= 1) xs

else {

val pivot = xs(xs.length / 2)

Array.concat(

sort(xs filter (pivot >)),

xs filter (pivot ==),

sort(xs filter (pivot <)))

}

The functional program captures the essence of the quicksort algorithm in a concise

way:

• If the array is empty or consists of a single element, it is already sorted, so

return it immediately.

• If the array is not empty, pick an an element in the middle of it as a pivot.

• Partition the array into two sub-arrays containing elements that are less than,

respectively greater than the pivot element, and a third array which contains

elements equal to pivot.

• Sort the first two sub-arrays by a recursive invocation of the sort function.1

• The result is obtained by appending the three sub-arrays together.

1This is not quite what the imperative algorithm does; the latter partitions the array into two

sub-arrays containing elements less than or greater or equal to pivot.
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Both the imperative and the functional implementation have the same asymptotic

complexity – O(N l og (N )) in the average case and O(N 2) in the worst case. But

where the imperative implementation operates in place by modifying the argument

array, the functional implementation returns a new sorted array and leaves the ar-

gument array unchanged. The functional implementation thus requires more tran-

sient memory than the imperative one.

The functional implementation makes it look like Scala is a language that’s special-

ized for functional operations on arrays. In fact, it is not; all of the operations used in

the example are simple library methods of a sequence class Seq[T] which is part of

the standard Scala library, and which itself is implemented in Scala. Because arrays

are instances of Seq all sequence methods are available for them.

In particular, there is the method filter which takes as argument a predicate func-

tion. This predicate function must map array elements to boolean values. The result

of filter is an array consisting of all the elements of the original array for which the

given predicate function is true. The filter method of an object of type Array[T]

thus has the signature

def filter(p: T => Boolean): Array[T]

Here, T => Boolean is the type of functions that take an element of type t and return

a Boolean. Functions like filter that take another function as argument or return

one as result are called higher-order functions.

Scala does not distinguish between identifiers and operator names. An identifier

can be either a sequence of letters and digits which begins with a letter, or it can be

a sequence of special characters, such as “+”, “*”, or “:”. Any identifier can be used

as an infix operator in Scala. The binary operation E op E ′ is always interpreted as

the method call E .op(E ′). This holds also for binary infix operators which start with

a letter. Hence, the expression xs filter (pivot >) is equivalent to the method

call xs.filter(pivot >).

In the quicksort program, filter is applied three times to an anonymous function

argument. The first argument, pivot >, represents a function that takes an argu-

ment x and returns the value pivot > x. This is an example of a partially applied

function. Another, equivalent way to write this function which makes the missing

argument explicit is x => pivot > x. The function is anonymous, i.e. it is not de-

fined with a name. The type of the x parameter is omitted because a Scala compiler

can infer it automatically from the context where the function is used. To summa-

rize, xs.filter(pivot >) returns a list consisting of all elements of the list xs that

are smaller than pivot.

Looking again in detail at the first, imperative implementation of Quicksort, we find

that many of the language constructs used in the second solution are also present,

albeit in a disguised form.
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For instance, “standard” binary operators such as +, ­, or < are not treated in any

special way. Like append, they are methods of their left operand. Consequently, the

expression i + 1 is regarded as the invocation i.+(1) of the + method of the integer

value x. Of course, a compiler is free (if it is moderately smart, even expected) to

recognize the special case of calling the + method over integer arguments and to

generate efficient inline code for it.

For efficiency and better error diagnostics the while loop is a primitive construct in

Scala. But in principle, it could have just as well been a predefined function. Here is

a possible implementation of it:

def While (p: => Boolean) (s: => Unit) {

if (p) { s ; While(p)(s) }

}

The While function takes as first parameter a test function, which takes no parame-

ters and yields a boolean value. As second parameter it takes a command function

which also takes no parameters and yields a result of type Unit. While invokes the

command function as long as the test function yields true.

Scala’s Unit type roughly corresponds to void in Java; it is used whenever a func-

tion does not return an interesting result. In fact, because Scala is an expression-

oriented language, every function returns some result. If no explicit return expres-

sion is given, the value (), which is pronounced “unit”, is assumed. This value is

of type Unit. Unit-returning functions are also called procedures. Here’s a more

“expression-oriented” formulation of the swap function in the first implementation

of quicksort, which makes this explicit:

def swap(i: Int, j: Int) {

val t = xs(i); xs(i) = xs(j); xs(j) = t

()

}

The result value of this function is simply its last expression – a return keyword is

not necessary. Note that functions returning an explicit value always need an “=”

before their body or defining expression.



Chapter 3

Programming with Actors and Mes-

sages

Here’s an example that shows an application area for which Scala is particularly well

suited. Consider the task of implementing an electronic auction service. We use

an Erlang-style actor process model to implement the participants of the auction.

Actors are objects to which messages are sent. Every actor has a “mailbox” of its in-

coming messages which is represented as a queue. It can work sequentially through

the messages in its mailbox, or search for messages matching some pattern.

For every traded item there is an auctioneer actor that publishes information about

the traded item, that accepts offers from clients and that communicates with the

seller and winning bidder to close the transaction. We present an overview of a

simple implementation here.

As a first step, we define the messages that are exchanged during an auction. There

are two abstract base classes AuctionMessage for messages from clients to the auc-

tion service, and AuctionReply for replies from the service to the clients. For both

base classes there exists a number of cases, which are defined in Figure 3.1.

For each base class, there are a number of case classes which define the format of

particular messages in the class. These messages might well be ultimately mapped

to small XML documents. We expect automatic tools to exist that convert between

XML documents and internal data structures like the ones defined above.

Figure 3.2 presents a Scala implementation of a class Auction for auction actors that

coordinate the bidding on one item. Objects of this class are created by indicating

• a seller actor which needs to be notified when the auction is over,

• a minimal bid,

• the date when the auction is to be closed.

The behavior of the actor is defined by its act method. That method repeatedly
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import scala.actors.Actor

abstract class AuctionMessage

case class Offer(bid: Int, client: Actor) extends AuctionMessage

case class Inquire(client: Actor) extends AuctionMessage

abstract class AuctionReply

case class Status(asked: Int, expire: Date) extends AuctionReply

case object BestOffer extends AuctionReply

case class BeatenOffer(maxBid: Int) extends AuctionReply

case class AuctionConcluded(seller: Actor, client: Actor)

extends AuctionReply

case object AuctionFailed extends AuctionReply

case object AuctionOver extends AuctionReply

Listing 3.1: Message Classes for an Auction Service

selects (using receiveWithin) a message and reacts to it, until the auction is closed,

which is signaled by a TIMEOUT message. Before finally stopping, it stays active for

another period determined by the timeToShutdown constant and replies to further

offers that the auction is closed.

Here are some further explanations of the constructs used in this program:

• The receiveWithin method of class Actor takes as parameters a time span

given in milliseconds and a function that processes messages in the mailbox.

The function is given by a sequence of cases that each specify a pattern and

an action to perform for messages matching the pattern. The receiveWithin

method selects the first message in the mailbox which matches one of these

patterns and applies the corresponding action to it.

• The last case of receiveWithin is guarded by a TIMEOUT pattern. If no other

messages are received in the meantime, this pattern is triggered after the time

span which is passed as argument to the enclosing receiveWithin method.

TIMEOUT is a special message, which is triggered by the Actor implementation

itself.

• Reply messages are sent using syntax of the form

destination ! SomeMessage. ! is used here as a binary operator with

an actor and a message as arguments. This is equivalent in Scala to the

method call destination.!(SomeMessage), i.e. the invocation of the !

method of the destination actor with the given message as parameter.

The preceding discussion gave a flavor of distributed programming in Scala. It

might seem that Scala has a rich set of language constructs that support actor pro-

cesses, message sending and receiving, programming with timeouts, etc. In fact, the
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class Auction(seller: Actor, minBid: Int, closing: Date) extends Actor {

val timeToShutdown = 36000000 // msec

val bidIncrement = 10

def act() {

var maxBid = minBid ­ bidIncrement

var maxBidder: Actor = null

var running = true

while (running) {

receiveWithin ((closing.getTime() ­ new Date().getTime())) {

case Offer(bid, client) =>

if (bid >= maxBid + bidIncrement) {

if (maxBid >= minBid) maxBidder ! BeatenOffer(bid)

maxBid = bid; maxBidder = client; client ! BestOffer

} else {

client ! BeatenOffer(maxBid)

}

case Inquire(client) =>

client ! Status(maxBid, closing)

case TIMEOUT =>

if (maxBid >= minBid) {

val reply = AuctionConcluded(seller, maxBidder)

maxBidder ! reply; seller ! reply

} else {

seller ! AuctionFailed

}

receiveWithin(timeToShutdown) {

case Offer(_, client) => client ! AuctionOver

case TIMEOUT => running = false

}

}

}

}

}

Listing 3.2: Implementation of an Auction Service
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opposite is true. All the constructs discussed above are offered as methods in the li-

brary class Actor. That class is itself implemented in Scala, based on the underlying

thread model of the host language (e.g. Java, or .NET). The implementation of all

features of class Actor used here is given in Section 17.11.

The advantages of the library-based approach are relative simplicity of the core lan-

guage and flexibility for library designers. Because the core language need not spec-

ify details of high-level process communication, it can be kept simpler and more

general. Because the particular model of messages in a mailbox is a library module,

it can be freely modified if a different model is needed in some applications. The

approach requires however that the core language is expressive enough to provide

the necessary language abstractions in a convenient way. Scala has been designed

with this in mind; one of its major design goals was that it should be flexible enough

to act as a convenient host language for domain specific languages implemented

by library modules. For instance, the actor communication constructs presented

above can be regarded as one such domain specific language, which conceptually

extends the Scala core.



Chapter 4

Expressions and Simple Functions

The previous examples gave an impression of what can be done with Scala. We now

introduce its constructs one by one in a more systematic fashion. We start with the

smallest level, expressions and functions.

4.1 Expressions And Simple Functions

A Scala system comes with an interpreter which can be seen as a fancy calculator.

A user interacts with the calculator by typing in expressions. The calculator returns

the evaluation results and their types. For example:

scala> 87 + 145

unnamed0: Int = 232

scala> 5 + 2 * 3

unnamed1: Int = 11

scala> "hello" + " world!"

unnamed2: java.lang.String = hello world!

It is also possible to name a sub-expression and use the name instead of the expres-

sion afterwards:

scala> def scale = 5

scale: Int

scala> 7 * scale

unnamed3: Int = 35

scala> def pi = 3.141592653589793

pi: Double
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scala> def radius = 10

radius: Int

scala> 2 * pi * radius

unnamed4: Double = 62.83185307179586

Definitions start with the reserved word def; they introduce a name which stands

for the expression following the = sign. The interpreter will answer with the intro-

duced name and its type.

Executing a definition such as def x = e will not evaluate the expression e. In-

stead e is evaluated whenever x is used. Alternatively, Scala offers a value defini-

tion val x = e, which does evaluate the right-hand-side e as part of the evaluation

of the definition. If x is then used subsequently, it is immediately replaced by the

pre-computed value of e, so that the expression need not be evaluated again.

How are expressions evaluated? An expression consisting of operators and

operands is evaluated by repeatedly applying the following simplification steps.

• pick the left-most operation

• evaluate its operands

• apply the operator to the operand values.

A name defined by def is evaluated by replacing the name by the (unevaluated)

definition’s right hand side. A name defined by val is evaluated by replacing the

name by the value of the definitions’s right-hand side. The evaluation process stops

once we have reached a value. A value is some data item such as a string, a number,

an array, or a list.

Example 4.1.1 Here is an evaluation of an arithmetic expression.

(2 * pi) * radius

→ (2 * 3.141592653589793) * radius

→ 6.283185307179586 * radius

→ 6.283185307179586 * 10

→ 62.83185307179586

The process of stepwise simplification of expressions to values is called reduction.

4.2 Parameters

Using def, one can also define functions with parameters. For example:
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scala> def square(x: Double) = x * x

square: (Double)Double

scala> square(2)

unnamed0: Double = 4.0

scala> square(5 + 3)

unnamed1: Double = 64.0

scala> square(square(4))

unnamed2: Double = 256.0

scala> def sumOfSquares(x: Double, y: Double) = square(x) + square(y)

sumOfSquares: (Double,Double)Double

scala> sumOfSquares(3, 2 + 2)

unnamed3: Double = 25.0

Function parameters follow the function name and are always enclosed in paren-

theses. Every parameter comes with a type, which is indicated following the param-

eter name and a colon. At the present time, we only need basic numeric types such

as the type scala.Double of double precision numbers. Scala defines type aliases for

some standard types, so we can write numeric types as in Java. For instance double

is a type alias of scala.Double and int is a type alias for scala.Int.

Functions with parameters are evaluated analogously to operators in expressions.

First, the arguments of the function are evaluated (in left-to-right order). Then, the

function application is replaced by the function’s right hand side, and at the same

time all formal parameters of the function are replaced by their corresponding ac-

tual arguments.

Example 4.2.1

sumOfSquares(3, 2+2)

→ sumOfSquares(3, 4)

→ square(3) + square(4)

→ 3 * 3 + square(4)

→ 9 + square(4)

→ 9 + 4 * 4

→ 9 + 16

→ 25

The example shows that the interpreter reduces function arguments to values be-

fore rewriting the function application. One could instead have chosen to apply the

function to unreduced arguments. This would have yielded the following reduction

sequence:
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sumOfSquares(3, 2+2)

→ square(3) + square(2+2)

→ 3 * 3 + square(2+2)

→ 9 + square(2+2)

→ 9 + (2+2) * (2+2)

→ 9 + 4 * (2+2)

→ 9 + 4 * 4

→ 9 + 16

→ 25

The second evaluation order is known as call-by-name, whereas the first one is

known as call-by-value. For expressions that use only pure functions and that there-

fore can be reduced with the substitution model, both schemes yield the same final

values.

Call-by-value has the advantage that it avoids repeated evaluation of arguments.

Call-by-name has the advantage that it avoids evaluation of arguments when the

parameter is not used at all by the function. Call-by-value is usually more efficient

than call-by-name, but a call-by-value evaluation might loop where a call-by-name

evaluation would terminate. Consider:

scala> def loop: Int = loop

loop: Int

scala> def first(x: Int, y: Int) = x

first: (Int,Int)Int

Then first(1, loop) reduces with call-by-name to 1, whereas the same term re-

duces with call-by-value repeatedly to itself, hence evaluation does not terminate.

first(1, loop)

→ first(1, loop)

→ first(1, loop)

→ ...

Scala uses call-by-value by default, but it switches to call-by-name evaluation if the

parameter type is preceded by =>.

Example 4.2.2

scala> def constOne(x: Int, y: => Int) = 1

constOne: (Int,=> Int)Int

scala> constOne(1, loop)

unnamed0: Int = 1

scala> constOne(loop, 2) // gives an infinite loop.
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^C // stops execution with Ctrl­C

4.3 Conditional Expressions

Scala’s if­else lets one choose between two alternatives. Its syntax is like Java’s

if­else. But where Java’s if­else can be used only as an alternative of state-

ments, Scala allows the same syntax to choose between two expressions. That’s

why Scala’s if­else serves also as a substitute for Java’s conditional expression

... ? ... : ....

Example 4.3.1

scala> def abs(x: Double) = if (x >= 0) x else ­x

abs: (Double)Double

Scala’s boolean expressions are similar to Java’s; they are formed from the constants

true and false, comparison operators, boolean negation ! and the boolean opera-

tors && and ||.

4.4 Example: Square Roots by Newton’s Method

We now illustrate the language elements introduced so far in the construction of a

more interesting program. The task is to write a function

def sqrt(x: Double): Double = ...

which computes the square root of x.

A common way to compute square roots is by Newton’s method of successive ap-

proximations. One starts with an initial guess y (say: y = 1). One then repeatedly

improves the current guess y by taking the average of y and x/y. As an example, the

next three columns indicate the guess y, the quotient x/y, and their average for the

first approximations of
p

2.

1 2/1 = 2 1.5

1.5 2/1.5 = 1.3333 1.4167

1.4167 2/1.4167 = 1.4118 1.4142

1.4142 ... ...

y x/y (y +x/y)/2

One can implement this algorithm in Scala by a set of small functions, which each

represent one of the elements of the algorithm.

We first define a function for iterating from a guess to the result:
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def sqrtIter(guess: Double, x: Double): Double =

if (isGoodEnough(guess, x)) guess

else sqrtIter(improve(guess, x), x)

Note that sqrtIter calls itself recursively. Loops in imperative programs can always

be modeled by recursion in functional programs.

Note also that the definition of sqrtIter contains a return type, which follows the

parameter section. Such return types are mandatory for recursive functions. For a

non-recursive function, the return type is optional; if it is missing the type checker

will compute it from the type of the function’s right-hand side. However, even for

non-recursive functions it is often a good idea to include a return type for better

documentation.

As a second step, we define the two functions called by sqrtIter: a function to

improve the guess and a termination test isGoodEnough. Here is their definition.

def improve(guess: Double, x: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =

abs(square(guess) ­ x) < 0.001

Finally, the sqrt function itself is defined by an application of sqrtIter.

def sqrt(x: Double) = sqrtIter(1.0, x)

Exercise 4.4.1 The isGoodEnough test is not very precise for small numbers and

might lead to non-termination for very large ones (why?). Design a different ver-

sion of isGoodEnough which does not have these problems.

Exercise 4.4.2 Trace the execution of the sqrt(4) expression.

4.5 Nested Functions

The functional programming style encourages the construction of many small

helper functions. In the last example, the implementation of sqrt made use of the

helper functions sqrtIter, improve and isGoodEnough. The names of these func-

tions are relevant only for the implementation of sqrt. We normally do not want

users of sqrt to access these functions directly.

We can enforce this (and avoid name-space pollution) by including the helper func-

tions within the calling function itself:

def sqrt(x: Double) = {

def sqrtIter(guess: Double, x: Double): Double =
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if (isGoodEnough(guess, x)) guess

else sqrtIter(improve(guess, x), x)

def improve(guess: Double, x: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =

abs(square(guess) ­ x) < 0.001

sqrtIter(1.0, x)

}

In this program, the braces { ... } enclose a block. Blocks in Scala are themselves

expressions. Every block ends in a result expression which defines its value. The

result expression may be preceded by auxiliary definitions, which are visible only in

the block itself.

Every definition in a block must be followed by a semicolon, which separates this

definition from subsequent definitions or the result expression. However, a semi-

colon is inserted implicitly at the end of each line, unless one of the following con-

ditions is true.

1. Either the line in question ends in a word such as a period or an infix-operator

which would not be legal as the end of an expression.

2. Or the next line begins with a word that cannot start a expression.

3. Or we are inside parentheses (...) or brackets , because these cannot contain

multiple statements anyway.

Therefore, the following are all legal:

def f(x: Int) = x + 1;

f(1) + f(2)

def g1(x: Int) = x + 1

g(1) + g(2)

def g2(x: Int) = {x + 1}; /* ‘;’ mandatory */ g2(1) + g2(2)

def h1(x) =

x +

y

h1(1) * h1(2)

def h2(x: Int) = (

x // parentheses mandatory, otherwise a semicolon

+ y // would be inserted after the ‘x’.

)

h2(1) / h2(2)
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Scala uses the usual block-structured scoping rules. A name defined in some outer

block is visible also in some inner block, provided it is not redefined there. This rule

permits us to simplify our sqrt example. We need not pass x around as an additional

parameter of the nested functions, since it is always visible in them as a parameter

of the outer function sqrt. Here is the simplified code:

def sqrt(x: Double) = {

def sqrtIter(guess: Double): Double =

if (isGoodEnough(guess)) guess

else sqrtIter(improve(guess))

def improve(guess: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double) =

abs(square(guess) ­ x) < 0.001

sqrtIter(1.0)

}

4.6 Tail Recursion

Consider the following function to compute the greatest common divisor of two

given numbers.

def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)

Using our substitution model of function evaluation, gcd(14, 21) evaluates as fol-

lows:

gcd(14, 21)

→ if (21 == 0) 14 else gcd(21, 14 % 21)

→ if (false) 14 else gcd(21, 14 % 21)

→ gcd(21, 14 % 21)

→ gcd(21, 14)

→ if (14 == 0) 21 else gcd(14, 21 % 14)

→ → gcd(14, 21 % 14)

→ gcd(14, 7)

→ if (7 == 0) 14 else gcd(7, 14 % 7)

→ → gcd(7, 14 % 7)

→ gcd(7, 0)

→ if (0 == 0) 7 else gcd(0, 7 % 0)

→ → 7

Contrast this with the evaluation of another recursive function, factorial:

def factorial(n: Int): Int = if (n == 0) 1 else n * factorial(n ­ 1)
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The application factorial(5) rewrites as follows:

factorial(5)

→ if (5 == 0) 1 else 5 * factorial(5 ­ 1)

→ 5 * factorial(5 ­ 1)

→ 5 * factorial(4)

→ . . . → 5 * (4 * factorial(3))

→ . . . → 5 * (4 * (3 * factorial(2)))

→ . . . → 5 * (4 * (3 * (2 * factorial(1))))

→ . . . → 5 * (4 * (3 * (2 * (1 * factorial(0))))

→ . . . → 5 * (4 * (3 * (2 * (1 * 1))))

→ . . . → 120

There is an important difference between the two rewrite sequences: The terms in

the rewrite sequence of gcd have again and again the same form. As evaluation pro-

ceeds, their size is bounded by a constant. By contrast, in the evaluation of factorial

we get longer and longer chains of operands which are then multiplied in the last

part of the evaluation sequence.

Even though actual implementations of Scala do not work by rewriting terms, they

nevertheless should have the same space behavior as in the rewrite sequences. In

the implementation of gcd, one notes that the recursive call to gcd is the last action

performed in the evaluation of its body. One also says that gcd is “tail-recursive”.

The final call in a tail-recursive function can be implemented by a jump back to the

beginning of that function. The arguments of that call can overwrite the parameters

of the current instantiation of gcd, so that no new stack space is needed. Hence,

tail recursive functions are iterative processes, which can be executed in constant

space.

By contrast, the recursive call in factorial is followed by a multiplication. Hence,

a new stack frame is allocated for the recursive instance of factorial, and is deallo-

cated after that instance has finished. The given formulation of the factorial func-

tion is not tail-recursive; it needs space proportional to its input parameter for its

execution.

More generally, if the last action of a function is a call to another (possibly the same)

function, only a single stack frame is needed for both functions. Such calls are called

“tail calls”. In principle, tail calls can always re-use the stack frame of the calling

function. However, some run-time environments (such as the Java VM) lack the

primitives to make stack frame re-use for tail calls efficient. A production quality

Scala implementation is therefore only required to re-use the stack frame of a di-

rectly tail-recursive function whose last action is a call to itself. Other tail calls might

be optimized also, but one should not rely on this across implementations.

Exercise 4.6.1 Design a tail-recursive version of factorial.
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First-Class Functions

A function in Scala is a “first-class value”. Like any other value, it may be passed as

a parameter or returned as a result. Functions which take other functions as pa-

rameters or return them as results are called higher-order functions. This chapter

introduces higher-order functions and shows how they provide a flexible mecha-

nism for program composition.

As a motivating example, consider the following three related tasks:

1. Write a function to sum all integers between two given numbers a and b:

def sumInts(a: Int, b: Int): Int =

if (a > b) 0 else a + sumInts(a + 1, b)

2. Write a function to sum the squares of all integers between two given numbers

a and b:

def square(x: Int): Int = x * x

def sumSquares(a: Int, b: Int): Int =

if (a > b) 0 else square(a) + sumSquares(a + 1, b)

3. Write a function to sum the powers 2n of all integers n between two given

numbers a and b:

def powerOfTwo(x: Int): Int = if (x == 0) 1 else 2 * powerOfTwo(x ­ 1)

def sumPowersOfTwo(a: Int, b: Int): Int =

if (a > b) 0 else powerOfTwo(a) + sumPowersOfTwo(a + 1, b)

These functions are all instances of
∑b

a f (n) for different values of f . We can factor

out the common pattern by defining a function sum:

def sum(f: Int => Int, a: Int, b: Int): Int =

if (a > b) 0 else f(a) + sum(f, a + 1, b)
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The type Int => Int is the type of functions that take arguments of type Int and

return results of type Int. So sum is a function which takes another function as a

parameter. In other words, sum is a higher-order function.

Using sum, we can formulate the three summing functions as follows.

def sumInts(a: Int, b: Int): Int = sum(id, a, b)

def sumSquares(a: Int, b: Int): Int = sum(square, a, b)

def sumPowersOfTwo(a: Int, b: Int): Int = sum(powerOfTwo, a, b)

where

def id(x: Int): Int = x

def square(x: Int): Int = x * x

def powerOfTwo(x: Int): Int = if (x == 0) 1 else 2 * powerOfTwo(x ­ 1)

5.1 Anonymous Functions

Parameterization by functions tends to create many small functions. In the previous

example, we defined id, square and power as separate functions, so that they could

be passed as arguments to sum.

Instead of using named function definitions for these small argument functions, we

can formulate them in a shorter way as anonymous functions. An anonymous func-

tion is an expression that evaluates to a function; the function is defined without

giving it a name. As an example consider the anonymous square function:

(x: Int) => x * x

The part before the arrow ‘=>’ are the parameters of the function, whereas the part

following the ‘=>’ is its body. For instance, here is an anonymous function which

multiples its two arguments.

(x: Int, y: Int) => x * y

Using anonymous functions, we can reformulate the first two summation functions

without named auxiliary functions:

def sumInts(a: Int, b: Int): Int = sum((x: Int) => x, a, b)

def sumSquares(a: Int, b: Int): Int = sum((x: Int) => x * x, a, b)

Often, the Scala compiler can deduce the parameter type(s) from the context of the

anonymous function in which case they can be omitted. For instance, in the case

of sumInts or sumSquares, one knows from the type of sum that the first parameter

must be a function of type Int => Int. Hence, the parameter type Int is redundant

and may be omitted. If there is a single parameter without a type, we may also omit
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the parentheses around it:

def sumInts(a: Int, b: Int): Int = sum(x => x, a, b)

def sumSquares(a: Int, b: Int): Int = sum(x => x * x, a, b)

Generally, the Scala term (x1: T1, ..., xn: Tn) => E defines a function which

maps its parameters x1, ..., xn to the result of the expression E (where E may

refer to x1, ..., xn). Anonymous functions are not essential language elements

of Scala, as they can always be expressed in terms of named functions. Indeed, the

anonymous function

(x1: T1, ..., xn: Tn) => E

is equivalent to the block

{ def f (x1: T1, ..., xn: Tn) = E ; f _ }

where f is fresh name which is used nowhere else in the program. We also say,

anonymous functions are “syntactic sugar”.

5.2 Currying

The latest formulation of the summing functions is already quite compact. But we

can do even better. Note that a and b appear as parameters and arguments of every

function but they do not seem to take part in interesting combinations. Is there a

way to get rid of them?

Let’s try to rewrite sum so that it does not take the bounds a and b as parameters:

def sum(f: Int => Int): (Int, Int) => Int = {

def sumF(a: Int, b: Int): Int =

if (a > b) 0 else f(a) + sumF(a + 1, b)

sumF

}

In this formulation, sum is a function which returns another function, namely the

specialized summing function sumF. This latter function does all the work; it takes

the bounds a and b as parameters, applies sum’s function parameter f to all integers

between them, and sums up the results.

Using this new formulation of sum, we can now define:

def sumInts = sum(x => x) _

def sumSquares = sum(x => x * x) _

def sumPowersOfTwo = sum(powerOfTwo) _

Or, equivalently, with value definitions:
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val sumInts = sum(x => x) _

val sumSquares = sum(x => x * x) _

val sumPowersOfTwo = sum(powerOfTwo) _

Note the underbar trailing the functional applications in the right-hand sides of the

definitions above. This is Scala’s way of declaring that the partial applications of

sum should be treated as function values. If it is omitted, the Scala compiler would

complain that the applications of sum lack some of their arguments. The _ suffix

can however be omitted if the expected type of an expression is a function type (for

instance, this was the case in for sumF expression in the last example).

sumInts, sumSquares, and sumPowersOfTwo can be applied like any other function.

For instance,

scala> sumSquares(1, 10) + sumPowersOfTwo(10, 20)

unnamed0: Int = 267632001

How are function-returning functions applied? As an example, in the expression

sum(x => x * x)(1, 10) ,

the function sum is applied to the squaring function (x => x * x). The resulting

function is then applied to the second argument list, (1, 10).

This notation is possible because function application associates to the left. That is,

if args1 and args2 are argument lists, then

f (args1)(args2) is equivalent to ( f (args1))(args2)

In our example, sum(x => x * x)(1, 10) is equivalent to the following expression:

(sum(x => x * x))(1, 10).

The style of function-returning functions is so useful that Scala has special syntax

for it. For instance, the next definition of sum is equivalent to the previous one, but

is shorter:

def sum(f: Int => Int)(a: Int, b: Int): Int =

if (a > b) 0 else f(a) + sum(f)(a + 1, b)

Generally, a curried function definition

def f (args1) ... (argsn) = E

where n > 1 expands to

def f (args1) ... (argsn−1) = { def g (argsn) = E ; g }

where g is a fresh identifier. Or, shorter, using an anonymous function:

def f (args1) ... (argsn−1) = ( argsn ) => E .
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Performing this step n times yields that

def f (args1) ... (argsn) = E

is equivalent to

def f = (args1) => ... => (argsn) => E .

Or, equivalently, using a value definition:

val f = (args1) => ... => (argsn) => E .

This style of function definition and application is called currying after its promoter,

Haskell B. Curry, a logician of the 20th century, even though the idea goes back fur-

ther to Moses Schönfinkel and Gottlob Frege.

The type of a function-returning function is expressed analogously to its param-

eter list. Taking the last formulation of sum as an example, the type of sum is

(Int => Int) => (Int, Int) => Int. This is possible because function types as-

sociate to the right. I.e.

T1 => T2 => T3 is equivalent to T1 => (T2 => T3)

Exercise 5.2.1 1. The sum function uses a linear recursion. Can you write a tail-

recursive one by filling in the ??’s?

def sum(f: Int => Double)(a: Int, b: Int): Double = {

def iter(a, result) = {

if (??) ??

else iter(??, ??)

}

iter(??, ??)

}

Exercise 5.2.2 Write a function product that computes the product of the values of

functions at points over a given range.

Exercise 5.2.3 Write factorial in terms of product.

Exercise 5.2.4 Can you write an even more general function which generalizes both

sum and product?

5.3 Example: Finding Fixed Points of Functions

A number x is called a fixed point of a function f if
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f(x) = x .

For some functions fwe can locate the fixed point by beginning with an initial guess

and then applying f repeatedly, until the value does not change anymore (or the

change is within a small tolerance). This is possible if the sequence

x, f(x), f(f(x)), f(f(f(x))), ...

converges to fixed point of f . This idea is captured in the following “fixed-point

finding function”:

val tolerance = 0.0001

def isCloseEnough(x: Double, y: Double) = abs((x ­ y) / x) < tolerance

def fixedPoint(f: Double => Double)(firstGuess: Double) = {

def iterate(guess: Double): Double = {

val next = f(guess)

if (isCloseEnough(guess, next)) next

else iterate(next)

}

iterate(firstGuess)

}

We now apply this idea in a reformulation of the square root function. Let’s start

with a specification of sqrt:

sqrt(x) = the y such that y * y = x

= the y such that y = x / y

Hence, sqrt(x) is a fixed point of the function y => x / y. This suggests that

sqrt(x) can be computed by fixed point iteration:

def sqrt(x: double) = fixedPoint(y => x / y)(1.0)

But if we try this, we find that the computation does not converge. Let’s instrument

the fixed point function with a print statement which keeps track of the current

guess value:

def fixedPoint(f: Double => Double)(firstGuess: Double) = {

def iterate(guess: Double): Double = {

val next = f(guess)

println(next)

if (isCloseEnough(guess, next)) next

else iterate(next)

}

iterate(firstGuess)

}
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Then, sqrt(2) yields:

2.0

1.0

2.0

1.0

2.0

...

One way to control such oscillations is to prevent the guess from changing too

much. This can be achieved by averaging successive values of the original sequence:

scala> def sqrt(x: Double) = fixedPoint(y => (y + x/y) / 2)(1.0)

sqrt: (Double)Double

scala> sqrt(2.0)

1.5

1.4166666666666665

1.4142156862745097

1.4142135623746899

1.4142135623746899

In fact, expanding the fixedPoint function yields exactly our previous definition of

fixed point from Section 4.4.

The previous examples showed that the expressive power of a language is consid-

erably enhanced if functions can be passed as arguments. The next example shows

that functions which return functions can also be very useful.

Consider again fixed point iterations. We started with the observation that
p

(x) is

a fixed point of the function y => x / y. Then we made the iteration converge by

averaging successive values. This technique of average damping is so general that it

can be wrapped in another function.

def averageDamp(f: Double => Double)(x: Double) = (x + f(x)) / 2

Using averageDamp, we can reformulate the square root function as follows.

def sqrt(x: Double) = fixedPoint(averageDamp(y => x/y))(1.0)

This expresses the elements of the algorithm as clearly as possible.

Exercise 5.3.1 Write a function for cube roots using fixedPoint and averageDamp.
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5.4 Summary

We have seen in the previous chapter that functions are essential abstractions, be-

cause they permit us to introduce general methods of computing as explicit, named

elements in our programming language. The present chapter has shown that these

abstractions can be combined by higher-order functions to create further abstrac-

tions. As programmers, we should look out for opportunities to abstract and to

reuse. The highest possible level of abstraction is not always the best, but it is im-

portant to know abstraction techniques, so that one can use abstractions where ap-

propriate.

5.5 Language Elements Seen So Far

Chapters 4 and 5 have covered Scala’s language elements to express expressions and

types comprising of primitive data and functions. The context-free syntax of these

language elements is given below in extended Backus-Naur form, where ‘|’ denotes

alternatives, [...] denotes option (0 or 1 occurrence), and {...} denotes repetition

(0 or more occurrences).

Characters

Scala programs are sequences of (Unicode) characters. We distinguish the following

character sets:

• whitespace, such as ‘’, tabulator, or newline characters,

• letters ‘a’ to ‘z’, ‘A’ to ‘Z’,

• digits ‘0’ to ‘9’,

• the delimiter characters

. , ; ( ) { } [ ] \ " ’

• operator characters, such as ‘#’ ‘+’, ‘:’. Essentially, these are printable charac-

ters which are in none of the character sets above.

Lexemes:

ident = letter {letter | digit}

| operator { operator }

| ident ’_’ ident

literal = “as in Java”

Literals are as in Java. They define numbers, characters, strings, or boolean values.

Examples of literals as 0, 1.0e10, ’x’, "he said "hi!"", or true.
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Identifiers can be of two forms. They either start with a letter, which is followed by a

(possibly empty) sequence of letters or symbols, or they start with an operator char-

acter, which is followed by a (possibly empty) sequence of operator characters. Both

forms of identifiers may contain underscore characters ‘_’. Furthermore, an under-

score character may be followed by either sort of identifier. Hence, the following are

all legal identifiers:

x Room10a + ­­ foldl_: +_vector

It follows from this rule that subsequent operator-identifiers need to be separated

by whitespace. For instance, the input x+­y is parsed as the three token sequence x,

+­, y. If we want to express the sum of x with the negated value of y, we need to add

at least one space, e.g. x+ ­y.

The $ character is reserved for compiler-generated identifiers; it should not be used

in source programs.

The following are reserved words, they may not be used as identifiers:

abstract case catch class def

do else extends false final

finally for if implicit import

match new null object override

package private protected requires return

sealed super this throw trait

try true type val var

while with yield

_ : = => <­ <: <% >: # @

Types:

Type = SimpleType | FunctionType

FunctionType = SimpleType ’=>’ Type | ’(’ [Types] ’)’ ’=>’ Type

SimpleType = Byte | Short | Char | Int | Long | Float | Double |

Boolean | Unit | String

Types = Type {‘,’ Type}

Types can be:

• number types Byte, Short, Char, Int, Long, Float and Double (these are as in

Java),

• the type Boolean with values true and false,

• the type Unit with the only value (),

• the type String,

• function types such as (Int, Int) => Int or String => Int => String.
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Expressions:

Expr = InfixExpr | FunctionExpr | if ’(’ Expr ’)’ Expr else Expr

InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr

Operator = ident

PrefixExpr = [’+’ | ’­’ | ’!’ | ’~’ ] SimpleExpr

SimpleExpr = ident | literal | SimpleExpr ’.’ ident | Block

FunctionExpr = (Bindings | Id) ’=>’ Expr

Bindings = ‘(’ Binding {‘,’ Binding} ‘)’

Binding = ident [’:’ Type]

Block = ’{’ {Def ’;’} Expr ’}’

Expressions can be:

• identifiers such as x, isGoodEnough, *, or +­,

• literals, such as 0, 1.0, or "abc",

• field and method selections, such as System.out.println,

• function applications, such as sqrt(x),

• operator applications, such as ­x or y + x,

• conditionals, such as if (x < 0) ­x else x,

• blocks, such as { val x = abs(y) ; x * 2 },

• anonymous functions, such as x => x + 1 or (x: Int, y: Int) => x + y.

Definitions:

Def = FunDef | ValDef

FunDef = ’def’ ident {’(’ [Parameters] ’)’} [’:’ Type] ’=’ Expr

ValDef = ’val’ ident [’:’ Type] ’=’ Expr

Parameters = Parameter {’,’ Parameter}

Parameter = ident ’:’ [’=>’] Type

Definitions can be:

• function definitions such as def square(x: Int): Int = x * x,

• value definitions such as val y = square(2).
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Classes and Objects

Scala does not have a built-in type of rational numbers, but it is easy to define one,

using a class. Here’s a possible implementation.

class Rational(n: Int, d: Int) {

private def gcd(x: Int, y: Int): Int = {

if (x == 0) y

else if (x < 0) gcd(­x, y)

else if (y < 0) ­gcd(x, ­y)

else gcd(y % x, x)

}

private val g = gcd(n, d)

val numer: Int = n/g

val denom: Int = d/g

def +(that: Rational) =

new Rational(numer * that.denom + that.numer * denom,

denom * that.denom)

def ­(that: Rational) =

new Rational(numer * that.denom ­ that.numer * denom,

denom * that.denom)

def *(that: Rational) =

new Rational(numer * that.numer, denom * that.denom)

def /(that: Rational) =

new Rational(numer * that.denom, denom * that.numer)

}

This defines Rational as a class which takes two constructor arguments n and d,

containing the number’s numerator and denominator parts. The class provides

fields which return these parts as well as methods for arithmetic over rational num-

bers. Each arithmetic method takes as parameter the right operand of the opera-

tion. The left operand of the operation is always the rational number of which the
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method is a member.

Private members. The implementation of rational numbers defines a private

method gcd which computes the greatest common denominator of two integers, as

well as a private field g which contains the gcd of the constructor arguments. These

members are inaccessible outside class Rational. They are used in the implementa-

tion of the class to eliminate common factors in the constructor arguments in order

to ensure that numerator and denominator are always in normalized form.

Creating and Accessing Objects. As an example of how rational numbers can be

used, here’s a program that prints the sum of all numbers 1/i where i ranges from 1

to 10.

var i = 1

var x = new Rational(0, 1)

while (i <= 10) {

x += new Rational(1, i)

i += 1

}

println("" + x.numer + "/" + x.denom)

The + takes as left operand a string and as right operand a value of arbitrary type. It

returns the result of converting its right operand to a string and appending it to its

left operand.

Inheritance and Overriding. Every class in Scala has a superclass which it ex-

tends. If a class does not mention a superclass in its definition, the root type

scala.AnyRef is implicitly assumed (for Java implementations, this type is an alias

for java.lang.Object. For instance, class Rational could equivalently be defined

as

class Rational(n: Int, d: Int) extends AnyRef {

... // as before

}

A class inherits all members from its superclass. It may also redefine (or: override)

some inherited members. For instance, class java.lang.Object defines a method

toString which returns a representation of the object as a string:

class Object {

...

def toString: String = ...

}
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The implementation of toString in Object forms a string consisting of the object’s

class name and a number. It makes sense to redefine this method for objects that

are rational numbers:

class Rational(n: Int, d: Int) extends AnyRef {

... // as before

override def toString = "" + numer + "/" + denom

}

Note that, unlike in Java, redefining definitions need to be preceded by an override

modifier.

If class A extends class B , then objects of type A may be used wherever objects of

type B are expected. We say in this case that type A conforms to type B . For instance,

Rational conforms to AnyRef, so it is legal to assign a Rational value to a variable

of type AnyRef:

var x: AnyRef = new Rational(1, 2)

Parameterless Methods. Unlike in Java, methods in Scala do not necessarily take

a parameter list. An example is the square method below. This method is invoked

by simply mentioning its name.

class Rational(n: Int, d: Int) extends AnyRef {

... // as before

def square = new Rational(numer*numer, denom*denom)

}

val r = new Rational(3, 4)

println(r.square) // prints‘‘9/16’’*

That is, parameterless methods are accessed just as value fields such as numer are.

The difference between values and parameterless methods lies in their definition.

The right-hand side of a value is evaluated when the object is created, and the value

does not change afterwards. A right-hand side of a parameterless method, on the

other hand, is evaluated each time the method is called. The uniform access of

fields and parameterless methods gives increased flexibility for the implementer of

a class. Often, a field in one version of a class becomes a computed value in the next

version. Uniform access ensures that clients do not have to be rewritten because of

that change.

Abstract Classes. Consider the task of writing a class for sets of integer numbers

with two operations, incl and contains. (s incl x) should return a new set which

contains the element x together with all the elements of set s. (s contains x)

should return true if the set s contains the element x, and should return false oth-

erwise. The interface of such sets is given by:



34 Classes and Objects

abstract class IntSet {

def incl(x: Int): IntSet

def contains(x: Int): Boolean

}

IntSet is labeled as an abstract class. This has two consequences. First, abstract

classes may have deferred members which are declared but which do not have an

implementation. In our case, both incl and contains are such members. Second,

because an abstract class might have unimplemented members, no objects of that

class may be created using new. By contrast, an abstract class may be used as a base

class of some other class, which implements the deferred members.

Traits. Instead of abstract class one also often uses the keyword trait in Scala.

Traits are abstract classes that are meant to be added to some other class. This

might be because a trait adds some methods or fields to an unknown parent class.

For instance, a trait Bordered might be used to add a border to a various graphical

components. Another usage scenario is where the trait collects signatures of some

functionality provided by different classes, much in the way a Java interface would

work.

Since IntSet falls in this category, one can alternatively define it as a trait:

trait IntSet {

def incl(x: Int): IntSet

def contains(x: Int): Boolean

}

Implementing Abstract Classes. Let’s say, we plan to implement sets as binary

trees. There are two possible forms of trees. A tree for the empty set, and a tree

consisting of an integer and two subtrees. Here are their implementations.

class EmptySet extends IntSet {

def contains(x: Int): Boolean = false

def incl(x: Int): IntSet = new NonEmptySet(x, new EmptySet, new EmptySet)

}

class NonEmptySet(elem: Int, left: IntSet, right: IntSet) extends IntSet {

def contains(x: Int): Boolean =

if (x < elem) left contains x

else if (x > elem) right contains x

else true

def incl(x: Int): IntSet =

if (x < elem) new NonEmptySet(elem, left incl x, right)

else if (x > elem) new NonEmptySet(elem, left, right incl x)

else this
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}

Both EmptySet and NonEmptySet extend class IntSet. This implies that types

EmptySet and NonEmptySet conform to type IntSet – a value of type EmptySet or

NonEmptySet may be used wherever a value of type IntSet is required.

Exercise 6.0.1 Write methods union and intersection to form the union and in-

tersection between two sets.

Exercise 6.0.2 Add a method

def excl(x: Int)

to return the given set without the element x. To accomplish this, it is useful to also

implement a test method

def isEmpty: Boolean

for sets.

Dynamic Binding. Object-oriented languages (Scala included) use dynamic dis-

patch for method invocations. That is, the code invoked for a method call depends

on the run-time type of the object which contains the method. For example, con-

sider the expression s contains 7 where s is a value of declared type s: IntSet.

Which code for contains is executed depends on the type of value of s at run-time.

If it is an EmptySet value, it is the implementation of contains in class EmptySet

that is executed, and analogously for NonEmptySet values. This behavior is a direct

consequence of our substitution model of evaluation. For instance,

(new EmptySet).contains(7)

­> (by replacing contains by its body in class EmptySet)

false

Or,

new NonEmptySet(7, new EmptySet, new EmptySet).contains(1)

­> (by replacing contains by its body in class NonEmptySet)

if (1 < 7) new EmptySet contains 1

else if (1 > 7) new EmptySet contains 1

else true

­> (by rewriting the conditional)
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new EmptySet contains 1

­> (by replacing contains by its body in class EmptySet)

false .

Dynamic method dispatch is analogous to higher-order function calls. In both

cases, the identity of code to be executed is known only at run-time. This similarity

is not just superficial. Indeed, Scala represents every function value as an object

(see Section 8.6).

Objects. In the previous implementation of integer sets, empty sets were ex-

pressed with new EmptySet; so a new object was created every time an empty set

value was required. We could have avoided unnecessary object creations by defin-

ing a value empty once and then using this value instead of every occurrence of

new EmptySet. For example:

val EmptySetVal = new EmptySet

One problem with this approach is that a value definition such as the one above is

not a legal top-level definition in Scala; it has to be part of another class or object.

Also, the definition of class EmptySet now seems a bit of an overkill – why define

a class of objects, if we are only interested in a single object of this class? A more

direct approach is to use an object definition. Here is a more streamlined alternative

definition of the empty set:

object EmptySet extends IntSet {

def contains(x: Int): Boolean = false

def incl(x: Int): IntSet = new NonEmptySet(x, EmptySet, EmptySet)

}

The syntax of an object definition follows the syntax of a class definition; it has

an optional extends clause as well as an optional body. As is the case for classes,

the extends clause defines inherited members of the object whereas the body de-

fines overriding or new members. However, an object definition defines a single

object only it is not possible to create other objects with the same structure using

new. Therefore, object definitions also lack constructor parameters, which might be

present in class definitions.

Object definitions can appear anywhere in a Scala program; including at top-level.

Since there is no fixed execution order of top-level entities in Scala, one might ask

exactly when the object defined by an object definition is created and initialized.

The answer is that the object is created the first time one of its members is accessed.

This strategy is called lazy evaluation.
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Standard Classes. Scala is a pure object-oriented language. This means that every

value in Scala can be regarded as an object. In fact, even primitive types such as int

or boolean are not treated specially. They are defined as type aliases of Scala classes

in module Predef:

type boolean = scala.Boolean

type int = scala.Int

type long = scala.Long

...

For efficiency, the compiler usually represents values of type scala.Int by 32 bit

integers, values of type scala.Boolean by Java’s booleans, etc. But it converts these

specialized representations to objects when required, for instance when a primitive

Int value is passed to a function with a parameter of type AnyRef. Hence, the special

representation of primitive values is just an optimization, it does not change the

meaning of a program.

Here is a specification of class Boolean.

package scala

abstract class Boolean {

def && (x: => Boolean): Boolean

def || (x: => Boolean): Boolean

def ! : Boolean

def == (x: Boolean) : Boolean

def != (x: Boolean) : Boolean

def < (x: Boolean) : Boolean

def > (x: Boolean) : Boolean

def <= (x: Boolean) : Boolean

def >= (x: Boolean) : Boolean

}

Booleans can be defined using only classes and objects, without reference to a built-

in type of booleans or numbers. A possible implementation of class Boolean is given

below. This is not the actual implementation in the standard Scala library. For effi-

ciency reasons the standard implementation uses built-in booleans.

package scala

abstract class Boolean {

def ifThenElse(thenpart: => Boolean, elsepart: => Boolean)

def && (x: => Boolean): Boolean = ifThenElse(x, false)

def || (x: => Boolean): Boolean = ifThenElse(true, x)

def ! : Boolean = ifThenElse(false, true)

def == (x: Boolean) : Boolean = ifThenElse(x, x.!)
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def != (x: Boolean) : Boolean = ifThenElse(x.!, x)

def < (x: Boolean) : Boolean = ifThenElse(false, x)

def > (x: Boolean) : Boolean = ifThenElse(x.!, false)

def <= (x: Boolean) : Boolean = ifThenElse(x, true)

def >= (x: Boolean) : Boolean = ifThenElse(true, x.!)

}

case object True extends Boolean {

def ifThenElse(t: => Boolean, e: => Boolean) = t

}

case object False extends Boolean {

def ifThenElse(t: => Boolean, e: => Boolean) = e

}

Here is a partial specification of class Int.

package scala

abstract class Int extends AnyVal {

def toLong: Long

def toFloat: Float

def toDouble: Double

def + (that: Double): Double

def + (that: Float): Float

def + (that: Long): Long

def + (that: Int): Int // analogous for ­, *, /, %

def << (cnt: Int): Int // analogous for >>, >>>

def & (that: Long): Long

def & (that: Int): Int // analogous for |, ^

def == (that: Double): Boolean

def == (that: Float): Boolean

def == (that: Long): Boolean // analogous for !=, <, >, <=, >=

}

Class Int can in principle also be implemented using just objects and classes, with-

out reference to a built in type of integers. To see how, we consider a slightly simpler

problem, namely how to implement a type Nat of natural (i.e. non-negative) num-

bers. Here is the definition of an abstract class Nat:

abstract class Nat {

def isZero: Boolean

def predecessor: Nat

def successor: Nat

def + (that: Nat): Nat

def ­ (that: Nat): Nat
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}

To implement the operations of class Nat, we define a sub-object Zero and a sub-

class Succ (for successor). Each number N is represented as N applications of the

Succ constructor to Zero:

new Succ( ... new Succ
︸ ︷︷ ︸

N times

(Zero) ... )

The implementation of the Zero object is straightforward:

object Zero extends Nat {

def isZero: Boolean = true

def predecessor: Nat = error("negative number")

def successor: Nat = new Succ(Zero)

def + (that: Nat): Nat = that

def ­ (that: Nat): Nat = if (that.isZero) Zero

else error("negative number")

}

The implementation of the predecessor and subtraction functions on Zero throws

an Error exception, which aborts the program with the given error message.

Here is the implementation of the successor class:

class Succ(x: Nat) extends Nat {

def isZero: Boolean = false

def predecessor: Nat = x

def successor: Nat = new Succ(this)

def + (that: Nat): Nat = x + that.successor

def ­ (that: Nat): Nat = if (that.isZero) this

else x ­ that.predecessor

}

Note the implementation of method successor. To create the successor of a num-

ber, we need to pass the object itself as an argument to the Succ constructor. The

object itself is referenced by the reserved name this.

The implementations of + and ­ each contain a recursive call with the constructor

argument as receiver. The recursion will terminate once the receiver is the Zero

object (which is guaranteed to happen eventually because of the way numbers are

formed).

Exercise 6.0.3 Write an implementation Integer of integer numbers The imple-

mentation should support all operations of class Nat while adding two methods

def isPositive: Boolean

def negate: Integer
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The first method should return true if the number is positive. The second method

should negate the number. Do not use any of Scala’s standard numeric classes in

your implementation. (Hint: There are two possible ways to implement Integer.

One can either make use the existing implementation of Nat, representing an inte-

ger as a natural number and a sign. Or one can generalize the given implementation

of Nat to Integer, using the three subclasses Zero for 0, Succ for positive numbers

and Pred for negative numbers.)

Language Elements Introduced In This Chapter

Types:

Type = ... | ident

Types can now be arbitrary identifiers which represent classes.

Expressions:

Expr = ... | Expr ’.’ ident | ’new’ Expr | ’this’

An expression can now be an object creation, or a selection E.m of a member m from

an object-valued expression E, or it can be the reserved name this.

Definitions and Declarations:

Def = FunDef | ValDef | ClassDef | TraitDef | ObjectDef

ClassDef = [’abstract’] ’class’ ident [’(’ [Parameters] ’)’]

[’extends’ Expr] [‘{’ {TemplateDef} ‘}’]

TraitDef = ’trait’ ident [’extends’ Expr] [’{’ {TemplateDef} ’}’]

ObjectDef = ’object’ ident [’extends’ Expr] [’{’ {ObjectDef} ’}’]

TemplateDef = [Modifier] (Def | Dcl)

ObjectDef = [Modifier] Def

Modifier = ’private’ | ’override’

Dcl = FunDcl | ValDcl

FunDcl = ’def’ ident {’(’ [Parameters] ’)’} ’:’ Type

ValDcl = ’val’ ident ’:’ Type

A definition can now be a class, trait or object definition such as

class C(params) extends B { defs }

trait T extends B { defs }

object O extends B { defs }

The definitions defs in a class, trait or object may be preceded by modifiers private

or override.

Abstract classes and traits may also contain declarations. These introduce deferred

functions or values with their types, but do not give an implementation. Deferred

members have to be implemented in subclasses before objects of an abstract class
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or trait can be created.





Chapter 7

Case Classes and Pattern Match-

ing

Say, we want to write an interpreter for arithmetic expressions. To keep things sim-

ple initially, we restrict ourselves to just numbers and + operations. Such expres-

sions can be represented as a class hierarchy, with an abstract base class Expr as the

root, and two subclasses Number and Sum. Then, an expression 1 + (3 + 7) would

be represented as

new Sum(new Number(1), new Sum(new Number(3), new Number(7)))

Now, an evaluator of an expression like this needs to know of what form it is (either

Sum or Number) and also needs to access the components of the expression. The

following implementation provides all necessary methods.

abstract class Expr {

def isNumber: Boolean

def isSum: Boolean

def numValue: Int

def leftOp: Expr

def rightOp: Expr

}

class Number(n: Int) extends Expr {

def isNumber: Boolean = true

def isSum: Boolean = false

def numValue: Int = n

def leftOp: Expr = error("Number.leftOp")

def rightOp: Expr = error("Number.rightOp")

}

class Sum(e1: Expr, e2: Expr) extends Expr {

def isNumber: Boolean = false

def isSum: Boolean = true
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def numValue: Int = error("Sum.numValue")

def leftOp: Expr = e1

def rightOp: Expr = e2

}

With these classification and access methods, writing an evaluator function is sim-

ple:

def eval(e: Expr): Int = {

if (e.isNumber) e.numValue

else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)

else error("unrecognized expression kind")

}

However, defining all these methods in classes Sum and Number is rather tedious.

Furthermore, the problem becomes worse when we want to add new forms of ex-

pressions. For instance, consider adding a new expression form Prod for products.

Not only do we have to implement a new class Prod, with all previous classification

and access methods; we also have to introduce a new abstract method isProduct in

class Expr and implement that method in subclasses Number, Sum, and Prod. Having

to modify existing code when a system grows is always problematic, since it intro-

duces versioning and maintenance problems.

The promise of object-oriented programming is that such modifications should be

unnecessary, because they can be avoided by re-using existing, unmodified code

through inheritance. Indeed, a more object-oriented decomposition of our prob-

lem solves the problem. The idea is to make the “high-level” operation eval a

method of each expression class, instead of implementing it as a function outside

the expression class hierarchy, as we have done before. Because eval is now a mem-

ber of all expression nodes, all classification and access methods become superflu-

ous, and the implementation is simplified considerably:

abstract class Expr {

def eval: Int

}

class Number(n: Int) extends Expr {

def eval: Int = n

}

class Sum(e1: Expr, e2: Expr) extends Expr {

def eval: Int = e1.eval + e2.eval

}

Furthermore, adding a new Prod class does not entail any changes to existing code:

class Prod(e1: Expr, e2: Expr) extends Expr {

def eval: Int = e1.eval * e2.eval

}
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The conclusion we can draw from this example is that object-oriented decomposi-

tion is the technique of choice for constructing systems that should be extensible

with new types of data. But there is also another possible way we might want to ex-

tend the expression example. We might want to add new operations on expressions.

For instance, we might want to add an operation that pretty-prints an expression

tree to standard output.

If we have defined all classification and access methods, such an operation can eas-

ily be written as an external function. Here is an example:

def print(e: Expr) {

if (e.isNumber) Console.print(e.numValue)

else if (e.isSum) {

Console.print("(")

print(e.leftOp)

Console.print("+")

print(e.rightOp)

Console.print(")")

} else error("unrecognized expression kind")

}

However, if we had opted for an object-oriented decomposition of expressions, we

would need to add a new print procedure to each class:

abstract class Expr {

def eval: Int

def print

}

class Number(n: Int) extends Expr {

def eval: Int = n

def print { Console.print(n) }

}

class Sum(e1: Expr, e2: Expr) extends Expr {

def eval: Int = e1.eval + e2.eval

def print {

Console.print("(")

print(e1)

Console.print("+")

print(e2)

Console.print(")")

}

}

Hence, classical object-oriented decomposition requires modification of all existing

classes when a system is extended with new operations.



46 Case Classes and Pattern Matching

As yet another way we might want to extend the interpreter, consider expression

simplification. For instance, we might want to write a function which rewrites ex-

pressions of the form a * b + a * c to a * (b + c). This operation requires in-

spection of more than a single node of the expression tree at the same time. Hence,

it cannot be implemented by a method in each expression kind, unless that method

can also inspect other nodes. So we are forced to have classification and access

methods in this case. This seems to bring us back to square one, with all the prob-

lems of verbosity and extensibility.

Taking a closer look, one observes that the only purpose of the classification and

access functions is to reverse the data construction process. They let us determine,

first, which sub-class of an abstract base class was used and, second, what were the

constructor arguments. Since this situation is quite common, Scala has a way to

automate it with case classes.

7.1 Case Classes and Case Objects

Case classes and case objects are defined like a normal classes or objects, except that

the definition is prefixed with the modifier case. For instance, the definitions

abstract class Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr, e2: Expr) extends Expr

introduce Number and Sum as case classes. The case modifier in front of a class or

object definition has the following effects.

1. Case classes implicitly come with a constructor function, with the same name

as the class. In our example, the two functions

def Number(n: Int) = new Number(n)

def Sum(e1: Expr, e2: Expr) = new Sum(e1, e2)

would be added. Hence, one can now construct expression trees a bit more

concisely, as in

Sum(Sum(Number(1), Number(2)), Number(3))

2. Case classes and case objects implicitly come with implementations of meth-

ods toString, equals and hashCode, which override the methods with the

same name in class AnyRef. The implementation of these methods takes

in each case the structure of a member of a case class into account. The

toString method represents an expression tree the way it was constructed.

So,

Sum(Sum(Number(1), Number(2)), Number(3))
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would be converted to exactly that string, whereas the default implementa-

tion in class AnyRef would return a string consisting of the outermost con-

structor name Sum and a number. The equals methods treats two case mem-

bers of a case class as equal if they have been constructed with the same con-

structor and with arguments which are themselves pairwise equal. This also

affects the implementation of == and !=, which are implemented in terms of

equals in Scala. So,

Sum(Number(1), Number(2)) == Sum(Number(1), Number(2))

will yield true. If Sum or Number were not case classes, the same expression

would be false, since the standard implementation of equals in class AnyRef

always treats objects created by different constructor calls as being differ-

ent. The hashCode method follows the same principle as other two meth-

ods. It computes a hash code from the case class constructor name and the

hash codes of the constructor arguments, instead of from the object’s address,

which is what the as the default implementation of hashCode does.

3. Case classes implicitly come with nullary accessor methods which retrieve

the constructor arguments. In our example, Number would obtain an acces-

sor method

def n: Int

which returns the constructor parameter n, whereas Sum would obtain two

accessor methods

def e1: Expr, e2: Expr

Hence, if for a value s of type Sum, say, one can now write s.e1, to access the

left operand. However, for a value e of type Expr, the term e.e1 would be

illegal since e1 is defined in Sum; it is not a member of the base class Expr. So,

how do we determine the constructor and access constructor arguments for

values whose static type is the base class Expr? This is solved by the fourth

and final particularity of case classes.

4. Case classes allow the constructions of patterns which refer to the case class

constructor.

7.2 Pattern Matching

Pattern matching is a generalization of C or Java’s switch statement to class hier-

archies. Instead of a switch statement, there is a standard method match, which is

defined in Scala’s root class Any, and therefore is available for all objects. The match

method takes as argument a number of cases. For instance, here is an implementa-

tion of eval using pattern matching.
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def eval(e: Expr): Int = e match {

case Number(x) => x

case Sum(l, r) => eval(l) + eval(r)

}

In this example, there are two cases. Each case associates a pattern with an expres-

sion. Patterns are matched against the selector values e. The first pattern in our

example, Number(n), matches all values of the form Number(v), where v is an arbi-

trary value. In that case, the pattern variable n is bound to the value v. Similarly, the

pattern Sum(l, r) matches all selector values of form Sum(v1, v2) and binds the

pattern variables l and r to v1 and v2, respectively.

In general, patterns are built from

• Case class constructors, e.g. Number, Sum, whose arguments are again patterns,

• pattern variables, e.g. n, e1, e2,

• the “wildcard” pattern _,

• literals, e.g. 1, true, "abc",

• constant identifiers, e.g. MAXINT, EmptySet.

Pattern variables always start with a lower-case letter, so that they can be distin-

guished from constant identifiers, which start with an upper case letter. Each vari-

able name may occur only once in a pattern. For instance, Sum(x, x) would be

illegal as a pattern, since the pattern variable x occurs twice in it.

Meaning of Pattern Matching. A pattern matching expression

e match { case p1 => e1 ... case pn => en }

matches the patterns p1, . . . , pn in the order they are written against the selector

value e.

• A constructor pattern C (p1, . . . , pn) matches all values that are of type C (or a

subtype thereof) and that have been constructed with C-arguments matching

patterns p1, . . . , pn .

• A variable pattern x matches any value and binds the variable name to that

value.

• The wildcard pattern ‘_’ matches any value but does not bind a name to that

value.

• A constant pattern C matches a value which is equal (in terms of ==) to C.
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The pattern matching expression rewrites to the right-hand-side of the first case

whose pattern matches the selector value. References to pattern variables are re-

placed by corresponding constructor arguments. If none of the patterns matches,

the pattern matching expression is aborted with a MatchError exception.

Example 7.2.1 Our substitution model of program evaluation extends quite natu-

rally to pattern matching, For instance, here is how eval applied to a simple expres-

sion is re-written:

eval(Sum(Number(1), Number(2)))

­> (by rewriting the application)

Sum(Number(1), Number(2)) match {

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)

}

­> (by rewriting the pattern match)

eval(Number(1)) + eval(Number(2))

­> (by rewriting the first application)

Number(1) match {

case Number(n) => n

case Sum(e1, e2) => eval(e1) + eval(e2)

} + eval(Number(2))

­> (by rewriting the pattern match)

1 + eval(Number(2))

­>∗ 1 + 2 ­> 3

Pattern Matching and Methods. In the previous example, we have used pattern

matching in a function which was defined outside the class hierarchy over which it

matches. Of course, it is also possible to define a pattern matching function in that

class hierarchy itself. For instance, we could have defined eval is a method of the

base class Expr, and still have used pattern matching in its implementation:

abstract class Expr {

def eval: Int = this match {

case Number(n) => n

case Sum(e1, e2) => e1.eval + e2.eval
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}

}

Exercise 7.2.2 Consider the following definitions representing trees of integers.

These definitions can be seen as an alternative representation of IntSet:

abstract class IntTree

case object EmptyTree extends IntTree

case class Node(elem: Int, left: IntTree, right: IntTree) extends IntTree

Complete the following implementations of function contains and insert for

IntTree’s.

def contains(t: IntTree, v: Int): Boolean = t match { ...

...

}

def insert(t: IntTree, v: Int): IntTree = t match { ...

...

}

Pattern Matching Anonymous Functions. So far, case-expressions always ap-

peared in conjunction with a match operation. But it is also possible to use case-

expressions by themselves. A block of case-expressions such as

{ case P1 => E1 ... case Pn => En }

is seen by itself as a function which matches its arguments against the patterns

P1, . . . , Pn , and produces the result of one of E1, . . . , En . (If no pattern matches, the

function would throw a MatchError exception instead). In other words, the expres-

sion above is seen as a shorthand for the anonymous function

(x => x match { case P1 => E1 ... case Pn => En })

where x is a fresh variable which is not used otherwise in the expression.
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Generic Types and Methods

Classes in Scala can have type parameters. We demonstrate the use of type parame-

ters with functional stacks as an example. Say, we want to write a data type of stacks

of integers, with methods push, top, pop, and isEmpty. This is achieved by the fol-

lowing class hierarchy:

abstract class IntStack {

def push(x: Int): IntStack = new IntNonEmptyStack(x, this)

def isEmpty: Boolean

def top: Int

def pop: IntStack

}

class IntEmptyStack extends IntStack {

def isEmpty = true

def top = error("EmptyStack.top")

def pop = error("EmptyStack.pop")

}

class IntNonEmptyStack(elem: Int, rest: IntStack) extends IntStack {

def isEmpty = false

def top = elem

def pop = rest

}

Of course, it would also make sense to define an abstraction for a stack of Strings.

To do that, one could take the existing abstraction for IntStack, rename it to

StringStack and at the same time rename all occurrences of type Int to String.

A better way, which does not entail code duplication, is to parameterize the stack

definitions with the element type. Parameterization lets us generalize from a spe-

cific instance of a problem to a more general one. So far, we have used parameteri-

zation only for values, but it is available also for types. To arrive at a generic version

of Stack, we equip it with a type parameter.
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abstract class Stack[A] {

def push(x: A): Stack[A] = new NonEmptyStack[A](x, this)

def isEmpty: Boolean

def top: A

def pop: Stack[A]

}

class EmptyStack[A] extends Stack[A] {

def isEmpty = true

def top = error("EmptyStack.top")

def pop = error("EmptyStack.pop")

}

class NonEmptyStack[A](elem: A, rest: Stack[A]) extends Stack[A] {

def isEmpty = false

def top = elem

def pop = rest

}

In the definitions above, ‘A’ is a type parameter of class Stack and its subclasses.

Type parameters are arbitrary names; they are enclosed in brackets instead of

parentheses, so that they can be easily distinguished from value parameters. Here

is an example how the generic classes are used:

val x = new EmptyStack[Int]

val y = x.push(1).push(2)

println(y.pop.top)

The first line creates a new empty stack of Int’s. Note the actual type argument

[Int] which replaces the formal type parameter A.

It is also possible to parameterize methods with types. As an example, here is a

generic method which determines whether one stack is a prefix of another.

def isPrefix[A](p: Stack[A], s: Stack[A]): Boolean = {

p.isEmpty ||

p.top == s.top && isPrefix[A](p.pop, s.pop)

}

The method parameters are called polymorphic. Generic methods are also called

polymorphic. The term comes from the Greek, where it means “having many forms”.

To apply a polymorphic method such as isPrefix, we pass type parameters as well

as value parameters to it. For instance,

val s1 = new EmptyStack[String].push("abc")

val s2 = new EmptyStack[String].push("abx").push(s1.top)

println(isPrefix[String](s1, s2))
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Local Type Inference. Passing type parameters such as [Int] or [String] all the

time can become tedious in applications where generic functions are used a lot.

Quite often, the information in a type parameter is redundant, because the correct

parameter type can also be determined by inspecting the function’s value parame-

ters or expected result type. Taking the expression isPrefix[String](s1, s2) as an

example, we know that its value parameters are both of type Stack[String], so we

can deduce that the type parameter must be String. Scala has a fairly powerful type

inferencer which allows one to omit type parameters to polymorphic functions and

constructors in situations like these. In the example above, one could have writ-

ten isPrefix(s1, s2) and the missing type argument [String] would have been

inserted by the type inferencer.

8.1 Type Parameter Bounds

Now that we know how to make classes generic it is natural to generalize some of

the earlier classes we have written. For instance class IntSet could be generalized

to sets with arbitrary element types. Let’s try. The abstract class for generic sets is

easily written.

abstract class Set[A] {

def incl(x: A): Set[A]

def contains(x: A): Boolean

}

However, if we still want to implement sets as binary search trees, we encounter a

problem. The contains and incl methods both compare elements using methods

< and >. For IntSet this was OK, since type Int has these two methods. But for

an arbitrary type parameter a, we cannot guarantee this. Therefore, the previous

implementation of, say, contains would generate a compiler error.

def contains(x: Int): Boolean =

if (x < elem) left contains x

^ < not a member of type A.

One way to solve the problem is to restrict the legal types that can be substituted for

type A to only those types that contain methods < and > of the correct types. There is

a trait Ordered[A] in the standard class library Scala which represents values which

are comparable (via < and >) to values of type A. This trait is defined as follows:

/** A class for totally ordered data. */

trait Ordered[A] {

/** Result of comparing ‘this’ with operand ‘that’.

* returns ‘x’ where

* x < 0 iff this < that



54 Generic Types and Methods

* x == 0 iff this == that

* x > 0 iff this > that

*/

def compare(that: A): Int

def < (that: A): Boolean = (this compare that) < 0

def > (that: A): Boolean = (this compare that) > 0

def <= (that: A): Boolean = (this compare that) <= 0

def >= (that: A): Boolean = (this compare that) >= 0

def compareTo(that: A): Int = compare(that)

}

We can enforce the comparability of a type by demanding that the type is a subtype

of Ordered. This is done by giving an upper bound to the type parameter of Set:

trait Set[A <: Ordered[A]] {

def incl(x: A): Set[A]

def contains(x: A): Boolean

}

The parameter declaration A <: Ordered[A] introduces A as a type parameter

which must be a subtype of Ordered[A], i.e. its values must be comparable to values

of the same type.

With this restriction, we can now implement the rest of the generic set abstraction

as we did in the case of IntSets before.

class EmptySet[A <: Ordered[A]] extends Set[A] {

def contains(x: A): Boolean = false

def incl(x: A): Set[A] = new NonEmptySet(x, new EmptySet[A], new EmptySet[A])

}

class NonEmptySet[A <: Ordered[A]]

(elem: A, left: Set[A], right: Set[A]) extends Set[A] {

def contains(x: A): Boolean =

if (x < elem) left contains x

else if (x > elem) right contains x

else true

def incl(x: A): Set[A] =

if (x < elem) new NonEmptySet(elem, left incl x, right)

else if (x > elem) new NonEmptySet(elem, left, right incl x)

else this

}

Note that we have left out the type argument in the object creations

new NonEmptySet(...). In the same way as for polymorphic methods, missing type

arguments in constructor calls are inferred from value arguments and/or the ex-
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pected result type.

Here is an example that uses the generic set abstraction. Let’s first create a subclass

of Ordered, like this:

case class Num(value: Double) extends Ordered[Num] {

def compare(that: Num): Int =

if (this.value < that.value) ­1

else if (this.value > that.value) 1

else 0

}

Then:

val s = new EmptySet[Num].incl(Num(1.0)).incl(Num(2.0))

s.contains(Num(1.5))

This is OK, as type Num implements the trait Ordered[Num]. However, the following

example is in error.

val s = new EmptySet[java.io.File]

^ java.io.File does not conform to type

parameter bound Ordered[java.io.File].

One probem with type parameter bounds is that they require forethought: if we had

not declared Num a subclass of Ordered, we would not have been able to use Num

elements in sets. By the same token, types inherited from Java, such as Int, Double,

or String are not subclasses of Ordered, so values of these types cannot be used as

set elements.

A more flexible design, which admits elements of these types, uses view bounds in-

stead of the plain type bounds we have seen so far. The only change this entails in

the example above is in the type parameters:

trait Set[A <% Ordered[A]] ...

class EmptySet[A <% Ordered[A]] ...

class NonEmptySet[A <% Ordered[A]] ...

View bounds <% are weaker than plain bounds <:: A view bounded type parameter

clause [A <% T] only specifies that the bounded type A must be convertible to the

bound type T, using an implicit conversion.

The Scala library predefines implicit conversions for a number of types, including

the primitive types and String. Therefore, the redesign set abstraction can be in-

stantiated with these types as well. More explanations on implicit conversions and

view bounds are given in Section 15.
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8.2 Variance Annotations

The combination of type parameters and subtyping poses some interesting ques-

tions. For instance, should Stack[String] be a subtype of Stack[AnyRef]? Intu-

itively, this seems OK, since a stack of Strings is a special case of a stack of AnyRefs.

More generally, if T is a subtype of type S then Stack[T] should be a subtype of

Stack[S]. This property is called co-variant subtyping.

In Scala, generic types have by default non-variant subtyping. That is, with Stack

defined as above, stacks with different element types would never be in a subtype

relation. However, we can enforce co-variant subtyping of stacks by changing the

first line of the definition of class Stack as follows.

class Stack[+A] {

Prefixing a formal type parameter with a + indicates that subtyping is covariant in

that parameter. Besides +, there is also a prefix ­ which indicates contra-variant

subtyping. If Stack was defined class Stack[­A] ..., then T a subtype of type S

would imply that Stack[S] is a subtype of Stack[T] (which in the case of stacks

would be rather surprising!).

In a purely functional world, all types could be co-variant. However, the situation

changes once we introduce mutable data. Consider the case of arrays in Java or

.NET. Such arrays are represented in Scala by a generic class Array. Here is a partial

definition of this class.

class Array[A] {

def apply(index: Int): A

def update(index: Int, elem: A)

}

The class above defines the way Scala arrays are seen from Scala user programs. The

Scala compiler will map this abstraction to the underlying arrays of the host system

in most cases where this possible.

In Java, arrays are indeed covariant; that is, for reference types T and S, if T is a sub-

type of S, then also Array[T] is a subtype of Array[S]. This might seem natural but

leads to safety problems that require special runtime checks. Here is an example:

val x = new Array[String](1)

val y: Array[Any] = x

y(0) = new Rational(1, 2) // this is syntactic sugar for

// y.update(0, new Rational(1, 2))

In the first line, a new array of strings is created. In the second line, this array is

bound to a variable y, of type Array[Any]. Assuming arrays are covariant, this is OK,

since Array[String] is a subtype of Array[Any]. Finally, in the last line a rational

number is stored in the array. This is also OK, since type Rational is a subtype of
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the element type Any of the array y. We thus end up storing a rational number in an

array of strings, which clearly violates type soundness.

Java solves this problem by introducing a run-time check in the third line which

tests whether the stored element is compatible with the element type with which

the array was created. We have seen in the example that this element type is not

necessarily the static element type of the array being updated. If the test fails, an

ArrayStoreException is raised.

Scala solves this problem instead statically, by disallowing the second line at

compile-time, because arrays in Scala have non-variant subtyping. This raises the

question how a Scala compiler verifies that variance annotations are correct. If we

had simply declared arrays co-variant, how would the potential problem have been

detected?

Scala uses a conservative approximation to verify soundness of variance annota-

tions. A covariant type parameter of a class may only appear in co-variant posi-

tions inside the class. Among the co-variant positions are the types of values in the

class, the result types of methods in the class, and type arguments to other covariant

types. Not co-variant are types of formal method parameters. Hence, the following

class definition would have been rejected

class Array[+A] {

def apply(index: Int): A

def update(index: Int, elem: A)

^ covariant type parameter A

appears in contravariant position.

}

So far, so good. Intuitively, the compiler was correct in rejecting the update proce-

dure in a co-variant class because update potentially changes state, and therefore

undermines the soundness of co-variant subtyping.

However, there are also methods which do not mutate state, but where a type pa-

rameter still appears contra-variantly. An example is push in type Stack. Again the

Scala compiler will reject the definition of this method for co-variant stacks.

class Stack[+A] {

def push(x: A): Stack[A] =

^ covariant type parameter A

appears in contravariant position.

This is a pity, because, unlike arrays, stacks are purely functional data structures and

therefore should enable co-variant subtyping. However, there is a a way to solve the

problem by using a polymorphic method with a lower type parameter bound.
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8.3 Lower Bounds

We have seen upper bounds for type parameters. In a type parameter declaration

such as T <: U, the type parameter T is restricted to range only over subtypes of type

U. Symmetrical to this are lower bounds in Scala. In a type parameter declaration

T >: S, the type parameter T is restricted to range only over supertypes of type S.

(One can also combine lower and upper bounds, as in T >: S <: U.)

Using lower bounds, we can generalize the push method in Stack as follows.

class Stack[+A] {

def push[B >: A](x: B): Stack[B] = new NonEmptyStack(x, this)

Technically, this solves our variance problem since now the type parameter A ap-

pears no longer as a parameter type of method push. Instead, it appears as lower

bound for another type parameter of a method, which is classified as a co-variant

position. Hence, the Scala compiler accepts the new definition of push.

In fact, we have not only solved the technical variance problem but also have gen-

eralized the definition of push. Before, we were required to push only elements with

types that conform to the declared element type of the stack. Now, we can push also

elements of a supertype of this type, but the type of the returned stack will change

accordingly. For instance, we can now push an AnyRef onto a stack of Strings, but

the resulting stack will be a stack of AnyRefs instead of a stack of Strings!

In summary, one should not hesitate to add variance annotations to your data struc-

tures, as this yields rich natural subtyping relationships. The compiler will detect

potential soundness problems. Even if the compiler’s approximation is too conser-

vative, as in the case of method push of class Stack, this will often suggest a useful

generalization of the contested method.

8.4 Least Types

Scala does not allow one to parameterize objects with types. That’s why we orig-

inally defined a generic class EmptyStack[A], even though a single value denoting

empty stacks of arbitrary type would do. For co-variant stacks, however, one can

use the following idiom:

object EmptyStack extends Stack[Nothing] { ... }

The bottom type Nothing contains no value, so the type Stack[Nothing] expresses

the fact that an EmptyStack contains no elements. Furthermore, Nothing is a sub-

type of all other types. Hence, for co-variant stacks, Stack[Nothing] is a subtype of

Stack[T], for any other type T. This makes it possible to use a single empty stack

object in user code. For instance:
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val s = EmptyStack.push("abc").push(new AnyRef())

Let’s analyze the type assignment for this expression in detail. The EmptyStack ob-

ject is of type Stack[Nothing], which has a method

push[B >: Nothing](elem: B): Stack[B] .

Local type inference will determine that the type parameter B should be instanti-

ated to String in the application EmptyStack.push("abc"). The result type of that

application is hence Stack[String], which in turn has a method

push[B >: String](elem: B): Stack[B] .

The final part of the value definition above is the application of this method to

new AnyRef(). Local type inference will determine that the type parameter b should

this time be instantiated to AnyRef, with result type Stack[AnyRef]. Hence, the type

assigned to value s is Stack[AnyRef].

Besides Nothing, which is a subtype of every other type, there is also the type Null,

which is a subtype of scala.AnyRef, and every class derived from it. The null lit-

eral in Scala is the only value of that type. This makes null compatible with every

reference type, but not with a value type such as Int.

We conclude this section with the complete improved definition of stacks. Stacks

have now co-variant subtyping, the push method has been generalized, and the

empty stack is represented by a single object.

abstract class Stack[+A] {

def push[B >: A](x: B): Stack[B] = new NonEmptyStack(x, this)

def isEmpty: Boolean

def top: A

def pop: Stack[A]

}

object EmptyStack extends Stack[Nothing] {

def isEmpty = true

def top = error("EmptyStack.top")

def pop = error("EmptyStack.pop")

}

class NonEmptyStack[+A](elem: A, rest: Stack[A]) extends Stack[A] {

def isEmpty = false

def top = elem

def pop = rest

}

Many classes in the Scala library are generic. We now present two commonly used

families of generic classes, tuples and functions. The discussion of another com-

mon class, lists, is deferred to the next chapter.
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8.5 Tuples

Sometimes, a function needs to return more than one result. For instance, take the

function divmod which returns the integer quotient and rest of two given integer

arguments. Of course, one can define a class to hold the two results of divmod, as in:

case class TwoInts(first: Int, second: Int)

def divmod(x: Int, y: Int): TwoInts = new TwoInts(x / y, x % y)

However, having to define a new class for every possible pair of result types is very

tedious. In Scala one can use instead a generic class Tuple2, which is defined as

follows:

package scala

case class Tuple2[A, B](_1: A, _2: B)

With Tuple2, the divmod method can be written as follows.

def divmod(x: Int, y: Int) = new Tuple2[Int, Int](x / y, x % y)

As usual, type parameters to constructors can be omitted if they are deducible from

value arguments. There exist also tuple classes for every other number of elements

(the current Scala implementation limits this to tuples of some reasonable number

of elements).

How are elements of tuples accessed? Since tuples are case classes, there are two

possibilities. One can either access a tuple’s fields using the names of the construc-

tor parameters _i , as in the following example:

val xy = divmod(x, y)

println("quotient: " + xy._1 + ", rest: " + xy._2)

Or one uses pattern matching on tuples, as in the following example:

divmod(x, y) match {

case Tuple2(n, d) =>

println("quotient: " + n + ", rest: " + d)

}

Note that type parameters are never used in patterns; it would have been illegal to

write case Tuple2[Int, Int](n, d).

Tuples are so convenient that Scala defines special syntax for them. To form a

tuple with n elements x1, . . . , xn one can write (x1, . . . , xn). This is equivalent to

Tuplen(x1, . . . , xn). The (...) syntax works equivalently for types and for patterns.

With that tuple syntax, the divmod example is written as follows:

def divmod(x: Int, y: Int): (Int, Int) = (x / y, x % y)
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divmod(x, y) match {

case (n, d) => println("quotient: " + n + ", rest: " + d)

}

8.6 Functions

Scala is a functional language in that functions are first-class values. Scala is also an

object-oriented language in that every value is an object. It follows that functions

are objects in Scala. For instance, a function from type String to type Int is repre-

sented as an instance of the trait Function1[String, Int]. The Function1 trait is

defined as follows.

package scala

trait Function1[­A, +B] {

def apply(x: A): B

}

Besides Function1, there are also definitions of for functions of all other arities (the

current implementation implements this only up to a reasonable limit). That is,

there is one definition for each possible number of function parameters. Scala’s

function type syntax (T1, . . . , Tn) => S is simply an abbreviation for the parame-

terized type Functionn[T1, . . . , Tn ,S] .

Scala uses the same syntax f (x) for function application, no matter whether f is a

method or a function object. This is made possible by the following convention: A

function application f (x) where f is an object (as opposed to a method) is taken

to be a shorthand for f .apply(x). Hence, the apply method of a function type is

inserted automatically where this is necessary.

That’s also why we defined array subscripting in Section 8.2 by an apply method.

For any array a, the subscript operation a(i) is taken to be a shorthand for

a.apply(i).

Functions are an example where a contra-variant type parameter declaration is use-

ful. For example, consider the following code:

val f: (AnyRef => Int) = x => x.hashCode()

val g: (String => Int) = f

g("abc")

It’s sound to bind the value g of type String => Int to f, which is of type

AnyRef => Int. Indeed, all one can do with function of type String => Int is pass

it a string in order to obtain an integer. Clearly, the same works for function f: If we

pass it a string (or any other object), we obtain an integer. This demonstrates that

function subtyping is contra-variant in its argument type whereas it is covariant in

its result type. In short, S ⇒ T is a subtype of S′ ⇒ T ′, provided S′ is a subtype of S
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and T is a subtype of T ′.

Example 8.6.1 Consider the Scala code

val plus1: (Int => Int) = (x: Int) => x + 1

plus1(2)

This is expanded into the following object code.

val plus1: Function1[Int, Int] = new Function1[Int, Int] {

def apply(x: Int): Int = x + 1

}

plus1.apply(2)

Here, the object creation new Function1[Int, Int]{ ... } represents an instance

of an anonymous class. It combines the creation of a new Function1 object with an

implementation of the applymethod (which is abstract in Function1). Equivalently,

but more verbosely, one could have used a local class:

val plus1: Function1[Int, Int] = {

class Local extends Function1[Int, Int] {

def apply(x: Int): Int = x + 1

}

new Local: Function1[Int, Int]

}

plus1.apply(2)
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Lists

Lists are an important data structure in many Scala programs. A list containing the

elements x1, . . . , xn is written List(x1, ..., xn). Examples are:

val fruit = List("apples", "oranges", "pears")

val nums = List(1, 2, 3, 4)

val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))

val empty = List()

Lists are similar to arrays in languages such as C or Java, but there are also three

important differences. First, lists are immutable. That is, elements of a list cannot

be changed by assignment. Second, lists have a recursive structure, whereas arrays

are flat. Third, lists support a much richer set of operations than arrays usually do.

9.1 Using Lists

The List type. Like arrays, lists are homogeneous. That is, the elements of a list all

have the same type. The type of a list with elements of type T is written List[T]

(compare to T[] in Java).

val fruit: List[String] = List("apples", "oranges", "pears")

val nums : List[Int] = List(1, 2, 3, 4)

val diag3: List[List[Int]] = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))

val empty: List[Int] = List()

List constructors. All lists are built from two more fundamental constructors, Nil

and :: (pronounced “cons”). Nil represents an empty list. The infix operator ::

expresses list extension. That is, x :: xs represents a list whose first element is x,

which is followed by (the elements of) list xs. Hence, the list values above could also
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have been defined as follows (in fact their previous definition is simply syntactic

sugar for the definitions below).

val fruit = "apples" :: ("oranges" :: ("pears" :: Nil))

val nums = 1 :: (2 :: (3 :: (4 :: Nil)))

val diag3 = (1 :: (0 :: (0 :: Nil))) ::

(0 :: (1 :: (0 :: Nil))) ::

(0 :: (0 :: (1 :: Nil))) :: Nil

val empty = Nil

The ‘::’ operation associates to the right: A :: B :: C is interpreted as

A :: (B :: C). Therefore, we can drop the parentheses in the definitions above.

For instance, we can write shorter

val nums = 1 :: 2 :: 3 :: 4 :: Nil

Basic operations on lists. All operations on lists can be expressed in terms of the

following three:

head returns the first element of a list,

tail returns the list consisting of all elements except the

first element,

isEmpty returns true iff the list is empty

These operations are defined as methods of list objects. So we invoke them by se-

lecting from the list that’s operated on. Examples:

empty.isEmpty = true

fruit.isEmpty = false

fruit.head = "apples"

fruit.tail.head = "oranges"

diag3.head = List(1, 0, 0)

The head and tail methods are defined only for non-empty lists. When selected

from an empty list, they throw an exception.

As an example of how lists can be processed, consider sorting the elements of a list

of numbers into ascending order. One simple way to do so is insertion sort, which

works as follows: To sort a non-empty list with first element x and rest xs, sort the

remainder xs and insert the element x at the right position in the result. Sorting an

empty list will yield the empty list. Expressed as Scala code:

def isort(xs: List[Int]): List[Int] =

if (xs.isEmpty) Nil

else insert(xs.head, isort(xs.tail))

Exercise 9.1.1 Provide an implementation of the missing function insert.
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List patterns. In fact, :: is defined as a case class in Scala’s standard library.

Hence, it is possible to decompose lists by pattern matching, using patterns com-

posed from the Nil and :: constructors. For instance, isort can be written alterna-

tively as follows.

def isort(xs: List[Int]): List[Int] = xs match {

case List() => List()

case x :: xs1 => insert(x, isort(xs1))

}

where

def insert(x: Int, xs: List[Int]): List[Int] = xs match {

case List() => List(x)

case y :: ys => if (x <= y) x :: xs else y :: insert(x, ys)

}

9.2 Definition of class List I: First Order Methods

Lists are not built in in Scala; they are defined by an abstract class List, which comes

with two subclasses for :: and Nil. In the following we present a tour through class

List.

package scala

abstract class List[+A] {

List is an abstract class, so one cannot define elements by calling the empty List

constructor (e.g. by new List). The class has a type parameter a. It is co-variant

in this parameter, which means that List[S] <: List[T] for all types S and T such

that S <: T. The class is situated in the package scala. This is a package containing

the most important standard classes of Scala. List defines a number of methods,

which are explained in the following.

Decomposing lists. First, there are the three basic methods isEmpty, head, tail.

Their implementation in terms of pattern matching is straightforward:

def isEmpty: Boolean = this match {

case Nil => true

case x :: xs => false

}

def head: A = this match {

case Nil => error("Nil.head")

case x :: xs => x

}

def tail: List[A] = this match {
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case Nil => error("Nil.tail")

case x :: xs => xs

}

The next function computes the length of a list.

def length: Int = this match {

case Nil => 0

case x :: xs => 1 + xs.length

}

Exercise 9.2.1 Design a tail-recursive version of length.

The next two functions are the complements of head and tail.

def last: A

def init: List[A]

xs.last returns the last element of list xs, whereas xs.init returns all elements of

xs except the last. Both functions have to traverse the entire list, and are thus less

efficient than their head and tail analogues. Here is the implementation of last.

def last: A = this match {

case Nil => error("Nil.last")

case x :: Nil => x

case x :: xs => xs.last

}

The implementation of init is analogous.

The next three functions return a prefix of the list, or a suffix, or both.

def take(n: Int): List[A] =

if (n == 0 || isEmpty) Nil else head :: tail.take(n­1)

def drop(n: Int): List[A] =

if (n == 0 || isEmpty) this else tail.drop(n­1)

def split(n: Int): (List[A], List[A]) = (take(n), drop(n))

(xs take n) returns the first n elements of list xs, or the whole list, if its length is

smaller than n. (xs drop n) returns all elements of xs except the n first ones. Fi-

nally, (xs split n) returns a pair consisting of the lists resulting from xs take n

and xs drop n.

The next function returns an element at a given index in a list. It is thus analogous

to array subscripting. Indices start at 0.
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def apply(n: Int): A = drop(n).head

The apply method has a special meaning in Scala. An object with an apply method

can be applied to arguments as if it was a function. For instance, to pick the 3’rd

element of a list xs, one can write either xs.apply(3) or xs(3) – the latter expression

expands into the first.

With take and drop, we can extract sublists consisting of consecutive elements of

the original list. To extract the sublist xsm , . . . , xsn−1 of a list xs, use:

xs.drop(m).take(n ­ m)

Zipping lists. The next function combines two lists into a list of pairs. Given two

lists

xs = List(x1, ..., xn) , and

ys = List(y1, ..., yn) ,

xs zip ys constructs the list List((x1, y1), ..., (xn, yn)). If the two lists have

different lengths, the longer one of the two is truncated. Here is the definition of zip

– note that it is a polymorphic method.

def zip[B](that: List[B]): List[(a,b)] =

if (this.isEmpty || that.isEmpty) Nil

else (this.head, that.head) :: (this.tail zip that.tail)

Consing lists.. Like any infix operator, :: is also implemented as a method of an

object. In this case, the object is the list that is extended. This is possible, because

operators ending with a ‘:’ character are treated specially in Scala. All such opera-

tors are treated as methods of their right operand. E.g.,

x :: y = y.::(x) whereas x + y = x.+(y)

Note, however, that operands of a binary operation are in each case evaluated from

left to right. So, if D and E are expressions with possible side-effects, D :: E is

translated to {val x = D; E.::(x)} in order to maintain the left-to-right order of

operand evaluation.

Another difference between operators ending in a ‘:’ and other operators concerns

their associativity. Operators ending in ‘:’ are right-associative, whereas other op-

erators are left-associative. E.g.,

x :: y :: z = x :: (y :: z) whereas x + y + z = (x + y) + z

The definition of :: as a method in class List is as follows:
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def ::[B >: A](x: B): List[B] = new scala.::(x, this)

Note that :: is defined for all elements x of type B and lists of type List[A] such that

the type B of x is a supertype of the list’s element type A. The result is in this case a list

of B’s. This is expressed by the type parameter B with lower bound A in the signature

of ::.

Concatenating lists. An operation similar to :: is list concatenation, written ‘:::’.

The result of (xs ::: ys) is a list consisting of all elements of xs, followed by all

elements of ys. Because it ends in a colon, ::: is right-associative and is considered

as a method of its right-hand operand. Therefore,

xs ::: ys ::: zs = xs ::: (ys ::: zs)

= zs.:::(ys).:::(xs)

Here is the implementation of the ::: method:

def :::[B >: A](prefix: List[B]): List[B] = prefix match {

case Nil => this

case p :: ps => this.:::(ps).::(p)

}

Reversing lists. Another useful operation is list reversal. There is a method

reverse in List to that effect. Let’s try to give its implementation:

def reverse[A](xs: List[A]): List[A] = xs match {

case Nil => Nil

case x :: xs => reverse(xs) ::: List(x)

}

This implementation has the advantage of being simple, but it is not very efficient.

Indeed, one concatenation is executed for every element in the list. List concatena-

tion takes time proportional to the length of its first operand. Therefore, the com-

plexity of reverse(xs) is

n + (n −1)+ ...+1 = n(n +1)/2

where n is the length of xs. Can reverse be implemented more efficiently? We will

see later that there exists another implementation which has only linear complexity.

9.3 Example: Merge sort

The insertion sort presented earlier in this chapter is simple to formulate, but also

not very efficient. It’s average complexity is proportional to the square of the length
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of the input list. We now design a program to sort the elements of a list which is

more efficient than insertion sort. A good algorithm for this is merge sort, which

works as follows.

First, if the list has zero or one elements, it is already sorted, so one returns the

list unchanged. Longer lists are split into two sub-lists, each containing about half

the elements of the original list. Each sub-list is sorted by a recursive call to the sort

function, and the resulting two sorted lists are then combined in a merge operation.

For a general implementation of merge sort, we still have to specify the type of list

elements to be sorted, as well as the function to be used for the comparison of el-

ements. We obtain a function of maximal generality by passing these two items as

parameters. This leads to the following implementation.

def msort[A](less: (A, A) => Boolean)(xs: List[A]): List[A] = {

def merge(xs1: List[A], xs2: List[A]): List[A] =

if (xs1.isEmpty) xs2

else if (xs2.isEmpty) xs1

else if (less(xs1.head, xs2.head)) xs1.head :: merge(xs1.tail, xs2)

else xs2.head :: merge(xs1, xs2.tail)

val n = xs.length/2

if (n == 0) xs

else merge(msort(less)(xs take n), msort(less)(xs drop n))

}

The complexity of msort is O(N log (N )), where N is the length of the input list. To

see why, note that splitting a list in two and merging two sorted lists each take time

proportional to the length of the argument list(s). Each recursive call of msorthalves

the number of elements in its input, so there are O(log (N )) consecutive recursive

calls until the base case of lists of length 1 is reached. However, for longer lists each

call spawns off two further calls. Adding everything up we obtain that at each of

the O(log (N )) call levels, every element of the original lists takes part in one split

operation and in one merge operation. Hence, every call level has a total cost pro-

portional to O(N ). Since there are O(log (N )) call levels, we obtain an overall cost

of O(N log (N )). That cost does not depend on the initial distribution of elements

in the list, so the worst case cost is the same as the average case cost. This makes

merge sort an attractive algorithm for sorting lists.

Here is an example how msort is used.

msort((x: Int, y: Int) => x < y)(List(5, 7, 1, 3))

The definition of msort is curried, to make it easy to specialize it with particular

comparison functions. For instance,

val intSort = msort((x: Int, y: Int) => x < y)

val reverseSort = msort((x: Int, y: Int) => x > y)
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9.4 Definition of class List II: Higher-Order Methods

The examples encountered so far show that functions over lists often have similar

structures. We can identify several patterns of computation over lists, like:

• transforming every element of a list in some way.

• extracting from a list all elements satisfying a criterion.

• combine the elements of a list using some operator.

Functional programming languages enable programmers to write general functions

which implement patterns like this by means of higher order functions. We now

discuss a set of commonly used higher-order functions, which are implemented as

methods in class List.

Mapping over lists. A common operation is to transform each element of a list

and then return the lists of results. For instance, to scale each element of a list by a

given factor.

def scaleList(xs: List[Double], factor: Double): List[Double] = xs match {

case Nil => xs

case x :: xs1 => x * factor :: scaleList(xs1, factor)

}

This pattern can be generalized to the map method of class List:

abstract class List[A] { ...

def map[B](f: A => B): List[B] = this match {

case Nil => this

case x :: xs => f(x) :: xs.map(f)

}

Using map, scaleList can be more concisely written as follows.

def scaleList(xs: List[Double], factor: Double) =

xs map (x => x * factor)

As another example, consider the problem of returning a given column of a matrix

which is represented as a list of rows, where each row is again a list. This is done by

the following function column.

def column[A](xs: List[List[A]], index: Int): List[A] =

xs map (row => row(index))

Closely related to map is the foreach method, which applies a given function to all

elements of a list, but does not construct a list of results. The function is thus applied

only for its side effect. foreach is defined as follows.
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def foreach(f: A => Unit) {

this match {

case Nil => ()

case x :: xs => f(x); xs.foreach(f)

}

}

This function can be used for printing all elements of a list, for instance:

xs foreach (x => println(x))

Exercise 9.4.1 Consider a function which squares all elements of a list and re-

turns a list with the results. Complete the following two equivalent definitions of

squareList.

def squareList(xs: List[Int]): List[Int] = xs match {

case List() => ??

case y :: ys => ??

}

def squareList(xs: List[Int]): List[Int] =

xs map ??

Filtering Lists. Another common operation selects from a list all elements fulfill-

ing a given criterion. For instance, to return a list of all positive elements in some

given lists of integers:

def posElems(xs: List[Int]): List[Int] = xs match {

case Nil => xs

case x :: xs1 => if (x > 0) x :: posElems(xs1) else posElems(xs1)

}

This pattern is generalized to the filter method of class List:

def filter(p: A => Boolean): List[A] = this match {

case Nil => this

case x :: xs => if (p(x)) x :: xs.filter(p) else xs.filter(p)

}

Using filter, posElems can be more concisely written as follows.

def posElems(xs: List[Int]): List[Int] =

xs filter (x => x > 0)

An operation related to filtering is testing whether all elements of a list satisfy a cer-

tain condition. Dually, one might also be interested in the question whether there
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exists an element in a list that satisfies a certain condition. These operations are

embodied in the higher-order functions forall and exists of class List.

def forall(p: A => Boolean): Boolean =

isEmpty || (p(head) && (tail forall p))

def exists(p: A => Boolean): Boolean =

!isEmpty && (p(head) || (tail exists p))

To illustrate the use of forall, consider the question of whether a number if prime.

Remember that a number n is prime of it can be divided without remainder only

by one and itself. The most direct translation of this definition would test that n

divided by all numbers from 2 up to and excluding itself gives a non-zero remainder.

This list of numbers can be generated using a function List.range which is defined

in object List as follows.

package scala

object List { ...

def range(from: Int, end: Int): List[Int] =

if (from >= end) Nil else from :: range(from + 1, end)

For example, List.range(2, n) generates the list of all integers from 2 up to and

excluding n. The function isPrime can now simply be defined as follows.

def isPrime(n: Int) =

List.range(2, n) forall (x => n % x != 0)

We see that the mathematical definition of prime-ness has been translated directly

into Scala code.

Exercise: Define forall and exists in terms of filter.

Folding and Reducing Lists. Another common operation is to combine the ele-

ments of a list with some operator. For instance:

sum(List(x1, ..., xn)) = 0 + x1 + ... + xn

product(List(x1, ..., xn)) = 1 * x1 * ... * xn

Of course, we can implement both functions with a recursive scheme:

def sum(xs: List[Int]): Int = xs match {

case Nil => 0

case y :: ys => y + sum(ys)

}

def product(xs: List[Int]): Int = xs match {

case Nil => 1

case y :: ys => y * product(ys)

}



9.4 Definition of class List II: Higher-Order Methods 73

But we can also use the generalization of this program scheme embodied in the

reduceLeft method of class List. This method inserts a given binary operator be-

tween adjacent elements of a given list. E.g.

List(x1, ..., xn).reduceLeft(op) = (...(x1 op x2) op ... ) op xn

Using reduceLeft, we can make the common pattern in sum and product apparent:

def sum(xs: List[Int]) = (0 :: xs) reduceLeft {(x, y) => x + y}

def product(xs: List[Int]) = (1 :: xs) reduceLeft {(x, y) => x * y}

Here is the implementation of reduceLeft.

def reduceLeft(op: (A, A) => A): A = this match {

case Nil => error("Nil.reduceLeft")

case x :: xs => (xs foldLeft x)(op)

}

def foldLeft[B](z: B)(op: (B, A) => B): B = this match {

case Nil => z

case x :: xs => (xs foldLeft op(z, x))(op)

}

}

We see that the reduceLeft method is defined in terms of another generally use-

ful method, foldLeft. The latter takes as additional parameter an accumulator z,

which is returned when foldLeft is applied on an empty list. That is,

(List(x1, ..., xn) foldLeft z)(op) = (...(z op x1) op ... ) op xn

The sum and product methods can be defined alternatively using foldLeft:

def sum(xs: List[Int]) = (xs foldLeft 0) {(x, y) => x + y}

def product(xs: List[Int]) = (xs foldLeft 1) {(x, y) => x * y}

FoldRight and ReduceRight. Applications of foldLeft and reduceLeft expand to

left-leaning trees. . They have duals foldRight and reduceRight, which produce

right-leaning trees.

List(x1, ..., xn).reduceRight(op) = x1 op ( ... (xn−1 op xn)...)

(List(x1, ..., xn) foldRight acc)(op) = x1 op ( ... (xn op acc)...)

These are defined as follows.

def reduceRight(op: (A, A) => A): A = this match {

case Nil => error("Nil.reduceRight")

case x :: Nil => x

case x :: xs => op(x, xs.reduceRight(op))
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}

def foldRight[B](z: B)(op: (A, B) => B): B = this match {

case Nil => z

case x :: xs => op(x, (xs foldRight z)(op))

}

Class List defines also two symbolic abbreviations for foldLeft and foldRight:

def /:[B](z: B)(f: (B, A) => B): B = foldLeft(z)(f)

def :\[B](z: B)(f: (A, B) => B): B = foldRight(z)(f)

The method names picture the left/right leaning trees of the fold operations by for-

ward or backward slashes. The : points in each case to the list argument whereas

the end of the slash points to the accumulator (or: zero) argument z. That is,

(z /: List(x1, ..., xn))(op) = (...(z op x1) op ... ) op xn

(List(x1, ..., xn) :\ z)(op) = x1 op ( ... (xn op acc)...)

For associative and commutative operators, /: and :\ are equivalent (even though

there may be a difference in efficiency).

Exercise 9.4.2 Consider the problem of writing a function flatten, which takes a

list of element lists as arguments. The result of flatten should be the concatenation

of all element lists into a single list. Here is the an implementation of this method

in terms of :\.

def flatten[A](xs: List[List[A]]): List[A] =

(xs :\ (Nil: List[A])) {(x, xs) => x ::: xs}

Consider replacing the body of flatten by

((Nil: List[A]) /: xs) ((xs, x) => xs ::: x)

What would be the difference in asymptotic complexity between the two versions

of flatten?

In fact flatten is predefined together with a set of other userful function in an ob-

ject called List in the standatd Scala library. It can be accessed from user program

by calling List.flatten. Note that flatten is not a method of class List – it would

not make sense there, since it applies only to lists of lists, not to all lists in general.

List Reversal Again. We have seen in Section 9.2 an implementation of method

reverse whose run-time was quadratic in the length of the list to be reversed. We

now develop a new implementation of reverse, which has linear cost. The idea is

to use a foldLeft operation based on the following program scheme.

class List[+A] { ...
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def reverse: List[A] = (z? /: this)(op?)

It only remains to fill in the z? and op?parts. Let’s try to deduce them from examples.

Nil

= Nil.reverse // by specification

= (z /: Nil)(op) // by the template for reverse

= (Nil foldLeft z)(op) // by the definition of /:

= z // by definition of foldLeft

Hence, z? must be Nil. To deduce the second operand, let’s study reversal of a list

of length one.

List(x)

= List(x).reverse // by specification

= (Nil /: List(x))(op) // by the template for reverse, with z = Nil

= (List(x) foldLeft Nil)(op) // by the definition of /:

= op(Nil, x) // by definition of foldLeft

Hence, op(Nil, x) equals List(x), which is the same as x :: Nil. This suggests

to take as op the :: operator with its operands exchanged. Hence, we arrive at the

following implementation for reverse, which has linear complexity.

def reverse: List[A] =

((Nil: List[A]) /: this) {(xs, x) => x :: xs}

(Remark: The type annotation of Nil is necessary to make the type inferencer work.)

Exercise 9.4.3 Fill in the missing expressions to complete the following definitions

of some basic list-manipulation operations as fold operations.

def mapFun[A, B](xs: List[A], f: A => B): List[B] =

(xs :\ List[B]()){ ?? }

def lengthFun[A](xs: List[A]): int =

(0 /: xs){ ?? }

Nested Mappings. We can employ higher-order list processing functions to ex-

press many computations that are normally expressed as nested loops in imperative

languages.

As an example, consider the following problem: Given a positive integer n, find all

pairs of positive integers i and j , where 1 ≤ j < i < n such that i + j is prime. For
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instance, if n = 7, the pairs are

i 2 3 4 4 5 6 6

j 1 2 1 3 2 1 5

i + j 3 5 5 7 7 7 11

A natural way to solve this problem consists of two steps. In a first step, one gener-

ates the sequence of all pairs (i , j ) of integers such that 1 ≤ j < i < n. In a second

step one then filters from this sequence all pairs (i , j ) such that i + j is prime.

Looking at the first step in more detail, a natural way to generate the sequence of

pairs consists of three sub-steps. First, generate all integers between 1 and n for i .

Second, for each integer i between 1 and n, generate the list of pairs (i ,1) up to

(i , i −1). This can be achieved by a combination of range and map:

List.range(1, i) map (x => (i, x))

Finally, combine all sublists using foldRight with :::. Putting everything together

gives the following expression:

List.range(1, n)

.map(i => List.range(1, i).map(x => (i, x)))

.foldRight(List[(Int, Int)]()) {(xs, ys) => xs ::: ys}

.filter(pair => isPrime(pair._1 + pair._2))

Flattening Maps. The combination of mapping and then concatenating sublists

resulting from the map is so common that we there is a special method for it in class

List:

abstract class List[+A] { ...

def flatMap[B](f: A => List[B]): List[B] = this match {

case Nil => Nil

case x :: xs => f(x) ::: (xs flatMap f)

}

}

With flatMap, the pairs-whose-sum-is-prime expression could have been written

more concisely as follows.

List.range(1, n)

.flatMap(i => List.range(1, i).map(x => (i, x)))

.filter(pair => isPrime(pair._1 + pair._2))
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9.5 Summary

This chapter has introduced lists as a fundamental data structure in programming.

Since lists are immutable, they are a common data type in functional programming

languages. They have a role comparable to arrays in imperative languages. How-

ever, the access patterns between arrays and lists are quite different. Where array

accessing is always done by indexing, this is much less common for lists. We have

seen that scala.List defines a method called apply for indexing however this oper-

ation is much more costly than in the case of arrays (linear as opposed to constant

time). Instead of indexing, lists are usually traversed recursively, where recursion

steps are usually based on a pattern match over the traversed list. There is also a

rich set of higher-order combinators which allow one to instantiate a set of prede-

fined patterns of computations over lists.





Chapter 10

For-Comprehensions

The last chapter demonstrated that higher-order functions such as map, flatMap,

filter provide powerful constructions for dealing with lists. But sometimes the

level of abstraction required by these functions makes a program hard to under-

stand.

To help understandability, Scala has a special notation which simplifies common

patterns of applications of higher-order functions. This notation builds a bridge

between set-comprehensions in mathematics and for-loops in imperative lan-

guages such as C or Java. It also closely resembles the query notation of relational

databases.

As a first example, say we are given a list persons of persons with name and age fields.

To print the names of all persons in the sequence which are aged over 20, one can

write:

for (p <­ persons if p.age > 20) yield p.name

This is equivalent to the following expression , which uses higher-order functions

filter and map:

persons filter (p => p.age > 20) map (p => p.name)

The for-comprehension looks a bit like a for-loop in imperative languages, except

that it constructs a list of the results of all iterations.

Generally, a for-comprehension is of the form

for ( s ) yield e

Here, s is a sequence of generators, definitions and filters. A generator is of the form

val x <­ e, where e is a list-valued expression. It binds x to successive values in the

list. A definition is of the form val x = e. It introduces x as a name for the value of e

in the rest of the comprehension. A filter is an expression f of type Boolean. It omits



80 For-Comprehensions

from consideration all bindings for which f is false. The sequence s starts in each

case with a generator. If there are several generators in a sequence, later generators

vary more rapidly than earlier ones.

The sequence s may also be enclosed in braces instead of parentheses, in which

case the semicolons between generators, definitions and filters can be omitted.

Here are two examples that show how for-comprehensions are used. First, let’s redo

an example of the previous chapter: Given a positive integer n, find all pairs of

positive integers i and j , where 1 ≤ j < i < n such that i + j is prime. With a for-

comprehension this problem is solved as follows:

for { i <­ List.range(1, n)

j <­ List.range(1, i)

if isPrime(i+j) } yield {i, j}

This is arguably much clearer than the solution using map, flatMap and filter that

we have developed previously.

As a second example, consider computing the scalar product of two vectors xs and

ys. Using a for-comprehension, this can be written as follows.

sum(for ((x, y) <­ xs zip ys) yield x * y)

10.1 The N-Queens Problem

For-comprehensions are especially useful for solving combinatorial puzzles. An ex-

ample of such a puzzle is the 8-queens problem: Given a standard chess-board,

place 8 queens such that no queen is in check from any other (a queen can check

another piece if they are on the same column, row, or diagonal). We will now de-

velop a solution to this problem, generalizing it to chess-boards of arbitrary size.

Hence, the problem is to place n queens on a chess-board of size n ×n.

To solve this problem, note that we need to place a queen in each row. So we could

place queens in successive rows, each time checking that a newly placed queen is

not in check from any other queens that have already been placed. In the course of

this search, it might arrive that a queen to be placed in row k would be in check in

all fields of that row from queens in row 1 to k − 1. In that case, we need to abort

that part of the search in order to continue with a different configuration of queens

in columns 1 to k −1.

This suggests a recursive algorithm. Assume that we have already generated all so-

lutions of placing k −1 queens on a board of size n×n. We can represent each such

solution by a list of length k − 1 of column numbers (which can range from 1 to

n). We treat these partial solution lists as stacks, where the column number of the

queen in row k − 1 comes first in the list, followed by the column number of the

queen in row k −2, etc. The bottom of the stack is the column number of the queen
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placed in the first row of the board. All solutions together are then represented as a

list of lists, with one element for each solution.

Now, to place the k’the queen, we generate all possible extensions of each previous

solution by one more queen. This yields another list of solution lists, this time of

length k. We continue the process until we have reached solutions of the size of the

chess-board n. This algorithmic idea is embodied in function placeQueens below:

def queens(n: Int): List[List[Int]] = {

def placeQueens(k: Int): List[List[Int]] =

if (k == 0) List(List())

else for { queens <­ placeQueens(k ­ 1)

column <­ List.range(1, n + 1)

if isSafe(column, queens, 1) } yield column :: queens

placeQueens(n)

}

Exercise 10.1.1 Write the function

def isSafe(col: Int, queens: List[Int], delta: Int): Boolean

which tests whether a queen in the given column col is safe with respect to the

queens already placed. Here, delta is the difference between the row of the queen

to be placed and the row of the first queen in the list.

10.2 Querying with For-Comprehensions

The for-notation is essentially equivalent to common operations of database query

languages. For instance, say we are given a database books, represented as a list of

books, where Book is defined as follows.

case class Book(title: String, authors: List[String])

Here is a small example database:

val books: List[Book] = List(

Book("Structure and Interpretation of Computer Programs",

List("Abelson, Harold", "Sussman, Gerald J.")),

Book("Principles of Compiler Design",

List("Aho, Alfred", "Ullman, Jeffrey")),

Book("Programming in Modula­2",

List("Wirth, Niklaus")),

Book("Introduction to Functional Programming"),

List("Bird, Richard")),

Book("The Java Language Specification",

List("Gosling, James", "Joy, Bill", "Steele, Guy", "Bracha, Gilad")))
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Then, to find the titles of all books whose author’s last name is “Ullman”:

for (b <­ books; a <­ b.authors if a startsWith "Ullman")

yield b.title

(Here, startsWith is a method in java.lang.String). Or, to find the titles of all

books that have the string “Program” in their title:

for (b <­ books if (b.title indexOf "Program") >= 0)

yield b.title

Or, to find the names of all authors that have written at least two books in the

database.

for (b1 <­ books; b2 <­ books if b1 != b2;

a1 <­ b1.authors; a2 <­ b2.authors if a1 == a2)

yield a1

The last solution is not yet perfect, because authors will appear several times in the

list of results. We still need to remove duplicate authors from result lists. This can

be achieved with the following function.

def removeDuplicates[A](xs: List[A]): List[A] =

if (xs.isEmpty) xs

else xs.head :: removeDuplicates(xs.tail filter (x => x != xs.head))

Note that the last expression in method removeDuplicates can be equivalently ex-

pressed using a for-comprehension.

xs.head :: removeDuplicates(for (x <­ xs.tail if x != xs.head) yield x)

10.3 Translation of For-Comprehensions

Every for-comprehension can be expressed in terms of the three higher-order func-

tions map, flatMap and filter. Here is the translation scheme, which is also used

by the Scala compiler.

• A simple for-comprehension

for (x <­ e) yield e’

is translated to

e.map(x => e’)

• A for-comprehension
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for (x <­ e if f; s) yield e’

where f is a filter and s is a (possibly empty) sequence of generators or filters

is translated to

for (x <­ e.filter(x => f); s) yield e’

and then translation continues with the latter expression.

• A for-comprehension

for (x <­ e; y <­ e’; s) yield e’’

where s is a (possibly empty) sequence of generators or filters is translated to

e.flatMap(x => for (y <­ e’; s) yield e’’)

and then translation continues with the latter expression.

For instance, taking our "pairs of integers whose sum is prime" example:

for { i <­ range(1, n)

j <­ range(1, i)

if isPrime(i+j)

} yield {i, j}

Here is what we get when we translate this expression:

range(1, n)

.flatMap(i =>

range(1, i)

.filter(j => isPrime(i+j))

.map(j => (i, j)))

Conversely, it would also be possible to express functions map, flatMap and filter

using for-comprehensions. Here are the three functions again, this time imple-

mented using for-comprehensions.

object Demo {

def map[A, B](xs: List[A], f: A => B): List[B] =

for (x <­ xs) yield f(x)

def flatMap[A, B](xs: List[A], f: A => List[B]): List[B] =

for (x <­ xs; y <­ f(x)) yield y

def filter[A](xs: List[A], p: A => Boolean): List[A] =

for (x <­ xs if p(x)) yield x

}
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Not surprisingly, the translation of the for-comprehension in the body of Demo.map

will produce a call to map in class List. Similarly, Demo.flatMap and Demo.filter

translate to flatMap and filter in class List.

Exercise 10.3.1 Define the following function in terms of for.

def flatten[A](xss: List[List[A]]): List[A] =

(xss :\ (Nil: List[A])) ((xs, ys) => xs ::: ys)

Exercise 10.3.2 Translate

for (b <­ books; a <­ b.authors if a startsWith "Bird") yield b.title

for (b <­ books if (b.title indexOf "Program") >= 0) yield b.title

to higher-order functions.

10.4 For-Loops

For-comprehensions resemble for-loops in imperative languages, except that they

produce a list of results. Sometimes, a list of results is not needed but we would

still like the flexibility of generators and filters in iterations over lists. This is made

possible by a variant of the for-comprehension syntax, which expresses for-loops:

for ( s ) e

This construct is the same as the standard for-comprehension syntax except that

the keyword yield is missing. The for-loop is executed by executing the expression

e for each element generated from the sequence of generators and filters s.

As an example, the following expression prints out all elements of a matrix repre-

sented as a list of lists:

for (xs <­ xss) {

for (x <­ xs) print(x + "\t")

println()

}

The translation of for-loops to higher-order methods of class List is similar to

the translation of for-comprehensions, but is simpler. Where for-comprehensions

translate to map and flatMap, for-loops translate in each case to foreach.

10.5 Generalizing For

We have seen that the translation of for-comprehensions only relies on the presence

of methods map, flatMap, and filter. Therefore it is possible to apply the same
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notation to generators that produce objects other than lists; these objects only have

to support the three key functions map, flatMap, and filter.

The standard Scala library has several other abstractions that support these three

methods and with them support for-comprehensions. We will encounter some of

them in the following chapters. As a programmer you can also use this principle to

enable for-comprehensions for types you define – these types just need to support

methods map, flatMap, and filter.

There are many examples where this is useful: Examples are database interfaces,

XML trees, or optional values.

One caveat: It is not assured automatically that the result translating a for-

comprehension is well-typed. To ensure this, the types of map, flatMap and filter

have to be essentially similar to the types of these methods in class List.

To make this precise, assume you have a parameterized class C[A] for which you

want to enable for-comprehensions. Then C should define map, flatMap and filter

with the following types:

def map[B](f: A => B): C[B]

def flatMap[B](f: A => C[B]): C[B]

def filter(p: A => Boolean): C[A]

It would be attractive to enforce these types statically in the Scala compiler, for

instance by requiring that any type supporting for-comprehensions implements a

standard trait with these methods 1. The problem is that such a standard trait would

have to abstract over the identity of the class C, for instance by taking C as a type pa-

rameter. Note that this parameter would be a type constructor, which gets applied

to several different types in the signatures of methods map and flatMap. Unfortu-

nately, the Scala type system is too weak to express this construct, since it can han-

dle only type parameters which are fully applied types.

1In the programming language Haskell, which has similar constructs, this abstraction is called a

“monad with zero”
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Mutable State

Most programs we have presented so far did not have side-effects 1. Therefore, the

notion of time did not matter. For a program that terminates, any sequence of ac-

tions would have led to the same result! This is also reflected by the substitution

model of computation, where a rewrite step can be applied anywhere in a term,

and all rewritings that terminate lead to the same solution. In fact, this confluence

property is a deep result in λ-calculus, the theory underlying functional program-

ming.

In this chapter, we introduce functions with side effects and study their behavior.

We will see that as a consequence we have to fundamentally modify up the substi-

tution model of computation which we employed so far.

11.1 Stateful Objects

We normally view the world as a set of objects, some of which have state that

changes over time. Normally, state is associated with a set of variables that can be

changed in the course of a computation. There is also a more abstract notion of

state, which does not refer to particular constructs of a programming language: An

object has state (or: is stateful) if its behavior is influenced by its history.

For instance, a bank account object has state, because the question “can I withdraw

100 CHF?” might have different answers during the lifetime of the account.

In Scala, all mutable state is ultimately built from variables. A variable definition is

written like a value definition, but starts with var instead of val. For instance, the

following two definitions introduce and initialize two variables x and count.

var x: String = "abc"

1We ignore here the fact that some of our program printed to standard output, which technically

is a side effect.



88 Mutable State

var count = 111

Like a value definition, a variable definition associates a name with a value. But in

the case of a variable definition, this association may be changed later by an assign-

ment. Such assignments are written as in C or Java. Examples:

x = "hello"

count = count + 1

In Scala, every defined variable has to be initialized at the point of its definition.

For instance, the statement var x: Int; is not regarded as a variable definition,

because the initializer is missing2. If one does not know, or does not care about, the

appropriate initializer, one can use a wildcard instead. I.e.

val x: T = _

will initialize x to some default value (null for reference types, false for booleans,

and the appropriate version of 0 for numeric value types).

Real-world objects with state are represented in Scala by objects that have variables

as members. For instance, here is a class that represents bank accounts.

class BankAccount {

private var balance = 0

def deposit(amount: Int) {

if (amount > 0) balance += amount

}

def withdraw(amount: Int): Int =

if (0 < amount && amount <= balance) {

balance ­= amount

balance

} else error("insufficient funds")

}

The class defines a variable balance which contains the current balance of an ac-

count. Methods deposit and withdraw change the value of this variable through

assignments. Note that balance is private in class BankAccount – hence it can not

be accessed directly outside the class.

To create bank-accounts, we use the usual object creation notation:

val myAccount = new BankAccount

2If a statement like this appears in a class, it is instead regarded as a variable declaration, which

introduces abstract access methods for the variable, but does not associate these methods with a

piece of state.
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Example 11.1.1 Here is a scalaint session that deals with bank accounts.

scala> :l bankaccount.scala

Loading bankaccount.scala...

defined class BankAccount

scala> val account = new BankAccount

account: BankAccount = BankAccount$class@1797795

scala> account deposit 50

unnamed0: Unit = ()

scala> account withdraw 20

unnamed1: Int = 30

scala> account withdraw 20

unnamed2: Int = 10

scala> account withdraw 15

java.lang.Error: insufficient funds

at scala.Predef$error(Predef.scala:74)

at BankAccount$class.withdraw(<console>:14)

at <init>(<console>:5)

scala>

The example shows that applying the same operation (withdraw 20) twice to an

account yields different results. So, clearly, accounts are stateful objects.

Sameness and Change. Assignments pose new problems in deciding when two

expressions are “the same”. If assignments are excluded, and one writes

val x = E; val y = E

where E is some arbitrary expression, then x and y can reasonably be assumed to be

the same. I.e. one could have equivalently written

val x = E; val y = x

(This property is usually called referential transparency). But once we admit assign-

ments, the two definition sequences are different. Consider:

val x = new BankAccount; val y = new BankAccount

To answer the question whether x and y are the same, we need to be more pre-

cise what “sameness” means. This meaning is captured in the notion of operational

equivalence, which, somewhat informally, is stated as follows.

Suppose we have two definitions of x and y. To test whether x and y define the same

value, proceed as follows.

• Execute the definitions followed by an arbitrary sequence S of operations that

involve x and y. Observe the results (if any).
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• Then, execute the definitions with another sequence S’ which results from S

by renaming all occurrences of y in S to x.

• If the results of running S’ are different, then surely x and y are different.

• On the other hand, if all possible pairs of sequences {S, S’} yield the same

results, then x and y are the same.

In other words, operational equivalence regards two definitions x and y as defining

the same value, if no possible experiment can distinguish between x and y. An ex-

periment in this context are two version of an arbitrary program which use either x

or y.

Given this definition, let’s test whether

val x = new BankAccount; val y = new BankAccount

defines values x and y which are the same. Here are the definitions again, followed

by a test sequence:

> val x = new BankAccount

> val y = new BankAccount

> x deposit 30

30

> y withdraw 20

java.lang.RuntimeException: insufficient funds

Now, rename all occurrences of y in that sequence to x. We get:

> val x = new BankAccount

> val y = new BankAccount

> x deposit 30

30

> x withdraw 20

10

Since the final results are different, we have established that x and y are not the

same. On the other hand, if we define

val x = new BankAccount; val y = x

then no sequence of operations can distinguish between x and y, so x and y are the

same in this case.

Assignment and the Substitution Model. These examples show that our previous

substitution model of computation cannot be used anymore. After all, under this

model we could always replace a value name by its defining expression. For instance

in



11.2 Imperative Control Structures 91

val x = new BankAccount; val y = x

the x in the definition of y could be replaced by new BankAccount. But we have seen

that this change leads to a different program. So the substitution model must be

invalid, once we add assignments.

11.2 Imperative Control Structures

Scala has the while and do­while loop constructs known from the C and Java lan-

guages. There is also a single branch if which leaves out the else-part as well as a

return statement which aborts a function prematurely. This makes it possible to

program in a conventional imperative style. For instance, the following function,

which computes the n’th power of a given parameter x, is implemented using while

and single-branch if.

def power(x: Double, n: Int): Double = {

var r = 1.0

var i = n

var j = 0

while (j < 32) {

r = r * r

if (i < 0)

r *= x

i = i << 1

j += 1

}

r

}

These imperative control constructs are in the language for convenience. They

could have been left out, as the same constructs can be implemented using just

functions. As an example, let’s develop a functional implementation of the while

loop. whileLoop should be a function that takes two parameters: a condition, of

type Boolean, and a command, of type Unit. Both condition and command need

to be passed by-name, so that they are evaluated repeatedly for each loop iteration.

This leads to the following definition of whileLoop.

def whileLoop(condition: => Boolean)(command: => Unit) {

if (condition) {

command; whileLoop(condition)(command)

} else ()

}

Note that whileLoop is tail recursive, so it operates in constant stack space.
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Exercise 11.2.1 Write a function repeatLoop, which should be applied as follows:

repeatLoop { command } ( condition )

Is there also a way to obtain a loop syntax like the following?

repeatLoop { command } until ( condition )

Some other control constructs known from C and Java are missing in Scala: There

are no break and continue jumps for loops. There are also no for-loops in the Java

sense – these have been replaced by the more general for-loop construct discussed

in Section 10.4.

11.3 Extended Example: Discrete Event Simulation

We now discuss an example that demonstrates how assignments and higher-order

functions can be combined in interesting ways. We will build a simulator for digital

circuits.

The example is taken from Abelson and Sussman’s book [ASS96]. We augment

their basic (Scheme-) code by an object-oriented structure which allows code-reuse

through inheritance. The example also shows how discrete event simulation pro-

grams in general are structured and built.

We start with a little language to describe digital circuits. A digital circuit is built

from wires and function boxes. Wires carry signals which are transformed by func-

tion boxes. We will represent signals by the booleans true and false.

Basic function boxes (or: gates) are:

• An inverter, which negates its signal

• An and-gate, which sets its output to the conjunction of its input.

• An or-gate, which sets its output to the disjunction of its input.

Other function boxes can be built by combining basic ones.

Gates have delays, so an output of a gate will change only some time after its inputs

change.

A Language for Digital Circuits. We describe the elements of a digital circuit by

the following set of Scala classes and functions.

First, there is a class Wire for wires. We can construct wires as follows.

val a = new Wire

val b = new Wire

val c = new Wire
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Second, there are procedures

def inverter(input: Wire, output: Wire)

def andGate(a1: Wire, a2: Wire, output: Wire)

def orGate(o1: Wire, o2: Wire, output: Wire)

which “make” the basic gates we need (as side-effects). More complicated function

boxes can now be built from these. For instance, to construct a half-adder, we can

define:

def halfAdder(a: Wire, b: Wire, s: Wire, c: Wire) {

val d = new Wire

val e = new Wire

orGate(a, b, d)

andGate(a, b, c)

inverter(c, e)

andGate(d, e, s)

}

This abstraction can itself be used, for instance in defining a full adder:

def fullAdder(a: Wire, b: Wire, cin: Wire, sum: Wire, cout: Wire) {

val s = new Wire

val c1 = new Wire

val c2 = new Wire

halfAdder(a, cin, s, c1)

halfAdder(b, s, sum, c2)

orGate(c1, c2, cout)

}

Class Wire and functions inverter, andGate, and orGate represent thus a little lan-

guage in which users can define digital circuits. We now give implementations of

this class and these functions, which allow one to simulate circuits. These imple-

mentations are based on a simple and general API for discrete event simulation.

The Simulation API. Discrete event simulation performs user-defined actions at

specified times. An action is represented as a function which takes no parameters

and returns a Unit result:

type Action = () => Unit

The time is simulated; it is not the actual “wall-clock” time.

A concrete simulation will be done inside an object which inherits from the abstract

Simulation class. This class has the following signature:

abstract class Simulation {
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def currentTime: Int

def afterDelay(delay: Int, action: => Action)

def run()

}

Here, currentTime returns the current simulated time as an integer number,

afterDelay schedules an action to be performed at a specified delay after

currentTime, and run runs the simulation until there are no further actions to be

performed.

The Wire Class. A wire needs to support three basic actions.

getSignal: Boolean returns the current signal on the wire.

setSignal(sig: Boolean) sets the wire’s signal to sig.

addAction(p: Action) attaches the specified procedure p to the actions of

the wire. All attached action procedures will be executed every time the signal

of a wire changes.

Here is an implementation of the Wire class:

class Wire {

private var sigVal = false

private var actions: List[Action] = List()

def getSignal = sigVal

def setSignal(s: Boolean) =

if (s != sigVal) {

sigVal = s

actions.foreach(action => action())

}

def addAction(a: Action) {

actions = a :: actions; a()

}

}

Two private variables make up the state of a wire. The variable sigVal represents the

current signal, and the variable actions represents the action procedures currently

attached to the wire.

The Inverter Class. We implement an inverter by installing an action on its input

wire, namely the action which puts the negated input signal onto the output sig-

nal. The action needs to take effect at InverterDelay simulated time units after the

input changes. This suggests the following implementation:

def inverter(input: Wire, output: Wire) {
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def invertAction() {

val inputSig = input.getSignal

afterDelay(InverterDelay) { output setSignal !inputSig }

}

input addAction invertAction

}

The And-Gate Class. And-gates are implemented analogously to inverters. The

action of an andGate is to output the conjunction of its input signals. This should

happen at AndGateDelay simulated time units after any one of its two inputs

changes. Hence, the following implementation:

def andGate(a1: Wire, a2: Wire, output: Wire) {

def andAction() {

val a1Sig = a1.getSignal

val a2Sig = a2.getSignal

afterDelay(AndGateDelay) { output setSignal (a1Sig & a2Sig) }

}

a1 addAction andAction

a2 addAction andAction

}

Exercise 11.3.1 Write the implementation of orGate.

Exercise 11.3.2 Another way is to define an or-gate by a combination of inverters

and and gates. Define a function orGate in terms of andGate and inverter. What is

the delay time of this function?

The Simulation Class. Now, we just need to implement class Simulation, and we

are done. The idea is that we maintain inside a Simulation object an agenda of

actions to perform. The agenda is represented as a list of pairs of actions and the

times they need to be run. The agenda list is sorted, so that earlier actions come

before later ones.

abstract class Simulation {

case class WorkItem(time: Int, action: Action)

private type Agenda = List[WorkItem]

private var agenda: Agenda = List()

There is also a private variable curtime to keep track of the current simulated time.

private var curtime = 0
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An application of the method afterDelay(delay, block) inserts the element

WorkItem(currentTime + delay, () => block) into the agenda list at the appro-

priate place.

private def insert(ag: Agenda, item: WorkItem): Agenda =

if (ag.isEmpty || item.time < ag.head.time) item :: ag

else ag.head :: insert(ag.tail, item)

def afterDelay(delay: Int)(block: => Unit) {

val item = WorkItem(currentTime + delay, () => block)

agenda = insert(agenda, item)

}

An application of the runmethod removes successive elements from the agenda and

performs their actions. It continues until the agenda is empty:

private def next() {

agenda match {

case WorkItem(time, action) :: rest =>

agenda = rest; curtime = time; action()

case List() =>

}

}

def run() {

afterDelay(0) { println("*** simulation started ***") }

while (!agenda.isEmpty) next()

}

Running the Simulator. To run the simulator, we still need a way to inspect

changes of signals on wires. To this purpose, we write a function probe.

def probe(name: String, wire: Wire) {

wire addAction {

println(name + " " + currentTime + " new_value = " + wire.getSignal)

}

}

Now, to see the simulator in action, let’s define four wires, and place probes on two

of them:

scala> val input1, input2, sum, carry = new Wire

scala> probe("sum", sum)

sum 0 new_value = false
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scala> probe("carry", carry)

carry 0 new_value = false

Now let’s define a half-adder connecting the wires:

scala> halfAdder(input1, input2, sum, carry)

Finally, set one after another the signals on the two input wires to true and run the

simulation.

scala> input1 setSignal true; run

*** simulation started ***
sum 8 new_value = true

scala> input2 setSignal true; run

carry 11 new_value = true

sum 15 new_value = false

11.4 Summary

We have seen in this chapter the constructs that let us model state in Scala – these

are variables, assignments, and imperative control structures. State and Assign-

ment complicate our mental model of computation. In particular, referential trans-

parency is lost. On the other hand, assignment gives us new ways to formulate pro-

grams elegantly. As always, it depends on the situation whether purely functional

programming or programming with assignments works best.
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Computing with Streams

The previous chapters have introduced variables, assignment and stateful objects.

We have seen how real-world objects that change with time can be modeled by

changing the state of variables in a computation. Time changes in the real world

thus are modeled by time changes in program execution. Of course, such time

changes are usually stretched out or compressed, but their relative order is the

same. This seems quite natural, but there is a also price to pay: Our simple and pow-

erful substitution model for functional computation is no longer applicable once we

introduce variables and assignment.

Is there another way? Can we model state change in the real world using only im-

mutable functions? Taking mathematics as a guide, the answer is clearly yes: A

time-changing quantity is simply modeled by a function f(t) with a time parame-

ter t. The same can be done in computation. Instead of overwriting a variable with

successive values, we represent all these values as successive elements in a list. So,

a mutable variable var x: T gets replaced by an immutable value val x: List[T].

In a sense, we trade space for time – the different values of the variable now all exist

concurrently as different elements of the list. One advantage of the list-based view

is that we can “time-travel”, i.e. view several successive values of the variable at the

same time. Another advantage is that we can make use of the powerful library of list

processing functions, which often simplifies computation. For instance, consider

the imperative way to compute the sum of all prime numbers in an interval:

def sumPrimes(start: Int, end: Int): Int = {

var i = start

var acc = 0

while (i < end) {

if (isPrime(i)) acc += i

i += 1

}

acc

}
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Note that the variable i “steps through” all values of the interval [start .. end­1].

A more functional way is to represent the list of values of variable i directly as

range(start, end). Then the function can be rewritten as follows.

def sumPrimes(start: Int, end: Int) =

sum(range(start, end) filter isPrime)

No contest which program is shorter and clearer! However, the functional program

is also considerably less efficient since it constructs a list of all numbers in the in-

terval, and then another one for the prime numbers. Even worse from an efficiency

point of view is the following example:

To find the second prime number between 1000 and 10000:

range(1000, 10000) filter isPrime at 1

Here, the list of all numbers between 1000 and 10000 is constructed. But most of

that list is never inspected!

However, we can obtain efficient execution for examples like these by a trick:

Avoid computing the tail of a sequence unless that tail is actually neces-

sary for the computation.

We define a new class for such sequences, which is called Stream.

Streams are created using the constant empty and the constructor cons, which are

both defined in module scala.Stream. For instance, the following expression con-

structs a stream with elements 1 and 2:

Stream.cons(1, Stream.cons(2, Stream.empty))

As another example, here is the analogue of List.range, but returning a stream

instead of a list:

def range(start: Int, end: Int): Stream[Int] =

if (start >= end) Stream.empty

else Stream.cons(start, range(start + 1, end))

(This function is also defined as given above in module Stream). Even though

Stream.range and List.range look similar, their execution behavior is completely

different:

Stream.range immediately returns with a Stream object whose first element is

start. All other elements are computed only when they are demanded by calling

the tail method (which might be never at all).

Streams are accessed just as lists. as for lists, the basic access methods are isEmpty,

head and tail. For instance, we can print all elements of a stream as follows.
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def print(xs: Stream[A]) {

if (!xs.isEmpty) { Console.println(xs.head); print(xs.tail) }

}

Streams also support almost all other methods defined on lists (see below for where

their methods sets differ). For instance, we can find the second prime number be-

tween 1000 and 10000 by applying methods filter and apply on an interval stream:

Stream.range(1000, 10000) filter isPrime at 1

The difference to the previous list-based implementation is that now we do not

needlessly construct and test for primality any numbers beyond 3.

Consing and appending streams. Two methods in class List which are not sup-

ported by class Stream are :: and :::. The reason is that these methods are dis-

patched on their right-hand side argument, which means that this argument needs

to be evaluated before the method is called. For instance, in the case of x :: xs

on lists, the tail xs needs to be evaluated before :: can be called and the new list

can be constructed. This does not work for streams, where we require that the tail

of a stream should not be evaluated until it is demanded by a tail operation. The

argument why list-append ::: cannot be adapted to streams is analogous.

Instead of x :: xs, one uses Stream.cons(x, xs) for constructing a stream with

first element x and (unevaluated) rest xs. Instead of xs ::: ys, one uses the opera-

tion xs append ys.
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Iterators

Iterators are the imperative version of streams. Like streams, iterators describe po-

tentially infinite lists. However, there is no data-structure which contains the el-

ements of an iterator. Instead, iterators allow one to step through the sequence,

using two abstract methods next and hasNext.

trait Iterator[+A] {

def hasNext: Boolean

def next: A

Method next returns successive elements. Method hasNext indicates whether there

are still more elements to be returned by next. Iterators also support some other

methods, which are explained later.

As an example, here is an application which prints the squares of all numbers from

1 to 100.

val it: Iterator[Int] = Iterator.range(1, 100)

while (it.hasNext) {

val x = it.next

println(x * x)

}

13.1 Iterator Methods

Iterators support a rich set of methods besides next and hasNext, which is described

in the following. Many of these methods mimic a corresponding functionality in

lists.
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Append. Method append constructs an iterator which resumes with the given iter-

ator it after the current iterator has finished.

def append[B >: A](that: Iterator[B]): Iterator[B] = new Iterator[B] {

def hasNext = Iterator.this.hasNext || that.hasNext

def next = if (Iterator.this.hasNext) Iterator.this.next else that.next

}

The terms Iterator.this.next and Iterator.this.hasNext in the definition of

append call the corresponding methods as they are defined in the enclosing

Iterator class. If the Iterator prefix to this would have been missing, hasNext

and next would have called recursively the methods being defined in the result of

append, which is not what we want.

Map, FlatMap, Foreach. Method map constructs an iterator which returns all ele-

ments of the original iterator transformed by a given function f.

def map[B](f: A => B): Iterator[B] = new Iterator[B] {

def hasNext = Iterator.this.hasNext

def next = f(Iterator.this.next)

}

Method flatMap is like method map, except that the transformation function f now

returns an iterator. The result of flatMap is the iterator resulting from appending

together all iterators returned from successive calls of f.

def flatMap[B](f: A => Iterator[B]): Iterator[B] = new Iterator[B] {

private var cur: Iterator[B] = Iterator.empty

def hasNext: Boolean =

if (cur.hasNext) true

else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); hasNext }

else false

def next: B =

if (cur.hasNext) cur.next

else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); next }

else error("next on empty iterator")

}

Closely related to map is the foreach method, which applies a given function to all

elements of an iterator, but does not construct a list of results

def foreach(f: A => Unit): Unit =

while (hasNext) { f(next) }
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Filter. Method filter constructs an iterator which returns all elements of the

original iterator that satisfy a criterion p.

def filter(p: A => Boolean) = new BufferedIterator[a] {

private val source =

Iterator.this.buffered

private def skip

{ while (source.hasNext && !p(source.head)) { source.next } }

def hasNext: Boolean =

{ skip; source.hasNext }

def next: A =

{ skip; source.next }

def head: A =

{ skip; source.head }

}

In fact, filter returns instances of a subclass of iterators which are “buffered”. A

BufferedIterator object is an iterator which has in addition a method head. This

method returns the element which would otherwise have been returned by head,

but does not advance beyond that element. Hence, the element returned by head

is returned again by the next call to head or next. Here is the definition of the

BufferedIterator trait.

trait BufferedIterator[+A] extends Iterator[A] {

def head: A

}

Since map, flatMap, filter, and foreach exist for iterators, it follows that for-

comprehensions and for-loops can also be used on iterators. For instance, the ap-

plication which prints the squares of numbers between 1 and 100 could have equiv-

alently been expressed as follows.

for (i <­ Iterator.range(1, 100))

println(i * i)

Zip. Method zip takes another iterator and returns an iterator consisting of pairs

of corresponding elements returned by the two iterators.

def zip[B](that: Iterator[B]) = new Iterator[(a, b)] {

def hasNext = Iterator.this.hasNext && that.hasNext

def next = {Iterator.this.next, that.next}

}

}
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13.2 Constructing Iterators

Concrete iterators need to provide implementations for the two abstract methods

next and hasNext in class Iterator. The simplest iterator is Iterator.empty which

always returns an empty sequence:

object Iterator {

object empty extends Iterator[Nothing] {

def hasNext = false

def next = error("next on empty iterator")

}

A more interesting iterator enumerates all elements of an array. This iterator is con-

structed by the fromArray method, which is also defined in the object Iterator

def fromArray[A](xs: Array[A]) = new Iterator[A] {

private var i = 0

def hasNext: Boolean =

i < xs.length

def next: A =

if (i < xs.length) { val x = xs(i); i += 1; x }

else error("next on empty iterator")

}

Another iterator enumerates an integer interval. The Iterator.range function re-

turns an iterator which traverses a given interval of integer values. It is defined as

follows.

object Iterator {

def range(start: Int, end: Int) = new Iterator[Int] {

private var current = start

def hasNext = current < end

def next = {

val r = current

if (current < end) current += 1

else error("end of iterator")

r

}

}

}

All iterators seen so far terminate eventually. It is also possible to define iterators

that go on forever. For instance, the following iterator returns successive integers

from some start value1.

1Due to the finite representation of type int, numbers will wrap around at 231.
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def from(start: Int) = new Iterator[Int] {

private var last = start ­ 1

def hasNext = true

def next = { last += 1; last }

}

13.3 Using Iterators

Here are two more examples how iterators are used. First, to print all elements of an

array xs: Array[Int], one can write:

Iterator.fromArray(xs) foreach (x => println(x))

Or, using a for-comprehension:

for (x <­ Iterator.fromArray(xs))

println(x)

As a second example, consider the problem of finding the indices of all the elements

in an array of doubles greater than some limit. The indices should be returned as

an iterator. This is achieved by the following expression.

import Iterator._

fromArray(xs)

.zip(from(0))

.filter(case (x, i) => x > limit)

.map(case (x, i) => i)

Or, using a for-comprehension:

import Iterator._

for ((x, i) <­ fromArray(xs) zip from(0); x > limit)

yield i
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Lazy Values

Lazy values provide a way to delay initialization of a value until the first time it is

accessed. This may be useful when dealing with values that might not be needed

during execution, and whose computational cost is signifficant. As a first example,

let’s consider a database of employees, containing for each employee its manager

and its team.

case class Employee(id: Int,

name: String,

managerId: Int) {

val manager: Employee = Db.get(managerId)

val team: List[Employee] = Db.team(id)

}

The Employee class given above will eagerly initialize all its fields, loading the whole

employee table in memory. This is certainly not optimal, and it can be easily im-

proved my making the fields lazy. This way we delay the database access until it is

really needed, if it is ever needed.

case class Employee(id: Int,

name: String,

managerId: Int) {

lazy val manager: Employee = Db.get(managerId)

lazy val team: List[Employee] = Db.team(id)

}

To see what is really happening, we can use this mockup database which shows

when records are fetched:

object Db {

val table = Map(1 ­> (1, "Haruki Murakami", ­1),

2 ­> (2, "Milan Kundera", 1),
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3 ­> (3, "Jeffrey Eugenides", 1),

4 ­> (4, "Mario Vargas Llosa", 1),

5 ­> (5, "Julian Barnes", 2))

def team(id: Int) = {

for (rec <­ table.values.toList; if rec._3 == id)

yield recToEmployee(rec)

}

def get(id: Int) = recToEmployee(table(id))

private def recToEmployee(rec: (Int, String, Int)) = {

println("[db] fetching " + rec._1)

Employee(rec._1, rec._2, rec._3)

}

}

The output when running a program that retrieves one employee confirms that the

database is only accessed when referring the lazy values.

Another use of lazy values is to resolve the initialization order of applications com-

posed of several modules. Before lazy values were introduced, the same effect was

achieved by using object definitions. As a second example, we consider a compiler

composed of several modules. We look first at a simple symbol table that defines a

class for symbols and two predefined functions.

class Symbols(val compiler: Compiler) {

import compiler.types._

val Add = new Symbol("+", FunType(List(IntType, IntType), IntType))

val Sub = new Symbol("­", FunType(List(IntType, IntType), IntType))

class Symbol(name: String, tpe: Type) {

override def toString = name + ": " + tpe

}

}

The symbols module is parameterized with a Compiler instance, which provides ac-

cess to other services, such as the types module. In our example there are only two

predefined functions, addition and subtraction, and their definitions depend on the

types module.

class Types(val compiler: Compiler) {

import compiler.symtab._

abstract class Type

case class FunType(args: List[Type], res: Type) extends Type
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case class NamedType(sym: Symbol) extends Type

case object IntType extends Type

}

In order to hook the two components together a compiler object is created and

passed as an argument to the two components.

class Compiler {

val symtab = new Symbols(this)

val types = new Types(this)

}

Unfortunately, the straight-forward approach fails at runtime because the symtab

module needs the types module. In general, the dependency between modules

can be complicated and getting the right initialization order is difficult, or even im-

possible when there are cycles. The easy fix is to make such fields lazy and let the

compiler figure out the right order.

class Compiler {

lazy val symtab = new Symbols(this)

lazy val types = new Types(this)

}

Now the two modules are initialized on first access, and the compiler may run as

expected.

Syntax

The lazy modifier is allowed only on concrete value definitions. All typing rules

for value definitions apply for lazy values as well, with one restriction removed:

recursive local values are allowed.
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Implicit Parameters and Conver-

sions

Implicit parameters and conversions are powerful tools for custimizing existing li-

braries and for creating high-level abstractions. As an example, let’s start with an

abstract class of semi-groups that support an unspecified add operation.

abstract class SemiGroup[A] {

def add(x: A, y: A): A

}

Here’s a subclass Monoid of SemiGroup which adds a unit element.

abstract class Monoid[A] extends SemiGroup[A] {

def unit: A

}

Here are two implementations of monoids:

object stringMonoid extends Monoid[String] {

def add(x: String, y: String): String = x.concat(y)

def unit: String = ""

}

object intMonoid extends Monoid[Int] {

def add(x: Int, y: Int): Int = x + y

def unit: Int = 0

}

A sum method, which works over arbitrary monoids, can be written in plain Scala as

follows.

def sum[A](xs: List[A])(m: Monoid[A]): A =
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if (xs.isEmpty) m.unit

else m.add(xs.head, sum(m)(xs.tail)

This sum method can be called as follows:

sum(List("a", "bc", "def"))(stringMonoid)

sum(List(1, 2, 3))(intMonoid)

All this works, but it is not very nice. The problem is that the monoid implementa-

tions have to be passed into all code that uses them. We would sometimes wish that

the system could figure out the correct arguments automatically, similar to what is

done when type arguments are inferred. This is what implicit parameters provide.

Implicit Parameters: The Basics

In Scala 2 there is a new implicit keyword that can be used at the beginning of a

parameter list. Syntax:

ParamClauses ::= {‘(’ [Param {‘,’ Param}] ’)’}

[‘(’ implicit Param {‘,’ Param} ‘)’]

If the keyword is present, it makes all parameters in the list implicit. For instance,

the following version of sum has m as an implicit parameter.

def sum[A](xs: List[A])(implicit m: Monoid[A]): A =

if (xs.isEmpty) m.unit

else m.add(xs.head, sum(xs.tail))

As can be seen from the example, it is possible to combine normal and implicit

parameters. However, there may only be one implicit parameter list for a method or

constructor, and it must come last.

implicit can also be used as a modifier for definitions and declarations. Examples:

implicit object stringMonoid extends Monoid[String] {

def add(x: String, y: String): String = x.concat(y)

def unit: String = ""

}

implicit object intMonoid extends Monoid[Int] {

def add(x: Int, y: Int): Int = x + y

def unit: Int = 0

}

The principal idea behind implicit parameters is that arguments for them can be left

out from a method call. If the arguments corresponding to an implicit parameter

section are missing, they are inferred by the Scala compiler.
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The actual arguments that are eligible to be passed to an implicit parameter are all

identifiers X that can be accessed at the point of the method call without a prefix

and that denote an implicit definition or parameter.

If there are several eligible arguments which match the implicit parameter’s type,

the Scala compiler will chose a most specific one, using the standard rules of static

overloading resolution. For instance, assume the call

sum(List(1, 2, 3))

in a context where stringMonoid and intMonoid are visible. We know that the formal

type parameter a of sum needs to be instantiated to int. The only eligible value

which matches the implicit formal parameter type Monoid[Int] is intMonoid so this

object will be passed as implicit parameter.

This discussion also shows that implicit parameters are inferred after any type ar-

guments are inferred.

Implicit Conversions

Say you have an expression E of type T which is expected to type S. T does not con-

form to S and is not convertible to S by some other predefined conversion. Then the

Scala compiler will try to apply as last resort an implicit conversion I (E). Here, I is

an identifier denoting an implicit definition or parameter that is accessible without

a prefix at the point of the conversion, that can be applied to arguments of type T

and whose result type conforms to the expected type S.

Implicit conversions can also be applied in member selections. Given a selection

E .x where x is not a member of the type E , the Scala compiler will try to insert an

implicit conversion I (E).x, so that x is a member of I (E).

Here is an example of an implicit conversion function that converts integers into

instances of class scala.Ordered:

implicit def int2ordered(x: Int): Ordered[Int] = new Ordered[Int] {

def compare(y: Int): Int =

if (x < y1) ­1

else if (x > y1) 1

else 0

}

View Bounds

View bounds are convenient syntactic sugar for implicit parameters. Consider for

instance a generic sort method:

def sort[A <% Ordered[A]](xs: List[A]): List[A] =

if (xs.isEmpty || xs.tail.isEmpty) xs
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else {

val {ys, zs} = xs.splitAt(xs.length / 2)

merge(ys, zs)

}

The view bounded type parameter [a <% Ordered[a]] expresses that sort is ap-

plicable to lists of type a such that there exists an implicit conversion from a to

Ordered[a]. The definition is treated as a shorthand for the following method sig-

nature with an implicit parameter:

def sort[A](xs: List[A])(implicit c: A => Ordered[A]): List[A] = ...

(Here, the parameter name c is chosen arbitrarily in a way that does not collide with

other names in the program.)

As a more detailed example, consider the merge method that comes with the sort

method above:

def merge[A <% Ordered[A]](xs: List[A], ys: List[A]): List[A] =

if (xs.isEmpty) ys

else if (ys.isEmpty) xs

else if (xs.head < ys.head) xs.head :: merge(xs.tail, ys)

else if ys.head :: merge(xs, ys.tail)

After expanding view bounds and inserting implicit conversions, this method im-

plementation becomes:

def merge[A](xs: List[A], ys: List[A])

(implicit c: A => Ordered[A]): List[A] =

if (xs.isEmpty) ys

else if (ys.isEmpty) xs

else if (c(xs.head) < ys.head) xs.head :: merge(xs.tail, ys)

else if ys.head :: merge(xs, ys.tail)(c)

The last two lines of this method definition illustrate two different uses of the im-

plicit parameter c. It is applied in a conversion in the condition of the second to last

line, and it is passed as implicit argument in the recursive call to merge on the last

line.
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Hindley/Milner Type Inference

This chapter demonstrates Scala’s data types and pattern matching by developing a

type inference system in the Hindley/Milner style [Mil78]. The source language for

the type inferencer is lambda calculus with a let construct called Mini-ML. Abstract

syntax trees for the Mini-ML are represented by the following data type of Terms.

abstract class Term {}

case class Var(x: String) extends Term {

override def toString = x

}

case class Lam(x: String, e: Term) extends Term {

override def toString = "(\\" + x + "." + e + ")"

}

case class App(f: Term, e: Term) extends Term {

override def toString = "(" + f + " " + e + ")"

}

case class Let(x: String, e: Term, f: Term) extends Term {

override def toString = "let " + x + " = " + e + " in " + f

}

There are four tree constructors: Var for variables, Lam for function abstractions, App

for function applications, and Let for let expressions. Each case class overrides the

toString method of class Any, so that terms can be printed in legible form.

We next define the types that are computed by the inference system.

sealed abstract class Type {}

case class Tyvar(a: String) extends Type {

override def toString = a

}

case class Arrow(t1: Type, t2: Type) extends Type {

override def toString = "(" + t1 + "­>" + t2 + ")"

}
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case class Tycon(k: String, ts: List[Type]) extends Type {

override def toString =

k + (if (ts.isEmpty) "" else ts.mkString("[", ",", "]"))

}

There are three type constructors: Tyvar for type variables, Arrow for function types

and Tycon for type constructors such as Boolean or List. Type constructors have as

component a list of their type parameters. This list is empty for type constants such

as Boolean. Again, the type constructors implement the toString method in order

to display types legibly.

Note that Type is a sealed class. This means that no subclasses or data constructors

that extend Type can be formed outside the sequence of definitions in which Type is

defined. This makes Type a closed algebraic data type with exactly three alternatives.

By contrast, type Term is an open algebraic type for which further alternatives can be

defined.

The main parts of the type inferencer are contained in object typeInfer. We start

with a utility function which creates fresh type variables:

object typeInfer {

private var n: Int = 0

def newTyvar(): Type = { n += 1; Tyvar("a" + n) }

We next define a class for substitutions. A substitution is an idempotent function

from type variables to types. It maps a finite number of type variables to some types,

and leaves all other type variables unchanged. The meaning of a substitution is

extended point-wise to a mapping from types to types.

abstract class Subst extends Function1[Type,Type] {

def lookup(x: Tyvar): Type

def apply(t: Type): Type = t match {

case tv @ Tyvar(a) => val u = lookup(tv); if (t == u) t else apply(u)

case Arrow(t1, t2) => Arrow(apply(t1), apply(t2))

case Tycon(k, ts) => Tycon(k, ts map apply)

}

def extend(x: Tyvar, t: Type) = new Subst {

def lookup(y: Tyvar): Type = if (x == y) t else Subst.this.lookup(y)

}

}

val emptySubst = new Subst { def lookup(t: Tyvar): Type = t }
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We represent substitutions as functions, of type Type => Type. This is achieved by

making class Subst inherit from the unary function type Function1[Type, Type]1.

To be an instance of this type, a substitution s has to implement an apply method

that takes a Type as argument and yields another Type as result. A function applica-

tion s(t) is then interpreted as s.apply(t).

The lookup method is abstract in class Subst. There are two concrete forms of sub-

stitutions which differ in how they implement this method. One form is defined by

the emptySubst value, the other is defined by the extend method in class Subst.

The next data type describes type schemes, which consist of a type and a list of

names of type variables which appear universally quantified in the type scheme. For

instance, the type scheme ∀a∀b.a→b would be represented in the type checker as:

TypeScheme(List(Tyvar("a"), Tyvar("b")), Arrow(Tyvar("a"), Tyvar("b"))) .

The class definition of type schemes does not carry an extends clause; this means

that type schemes extend directly class AnyRef. Even though there is only one pos-

sible way to construct a type scheme, a case class representation was chosen since

it offers convenient ways to decompose an instance of this type into its parts.

case class TypeScheme(tyvars: List[Tyvar], tpe: Type) {

def newInstance: Type = {

(emptySubst /: tyvars) ((s, tv) => s.extend(tv, newTyvar())) (tpe)

}

}

Type scheme objects come with a method newInstance, which returns the type con-

tained in the scheme after all universally type variables have been renamed to fresh

variables. The implementation of this method folds (with /:) the type scheme’s

type variables with an operation which extends a given substitution s by renaming

a given type variable tv to a fresh type variable. The resulting substitution renames

all type variables of the scheme to fresh ones. This substitution is then applied to

the type part of the type scheme.

The last type we need in the type inferencer is Env, a type for environments, which

associate variable names with type schemes. They are represented by a type alias

Env in module typeInfer:

type Env = List[(String, TypeScheme)]

There are two operations on environments. The lookup function returns the type

scheme associated with a given name, or null if the name is not recorded in the

environment.

1 The class inherits the function type as a mixin rather than as a direct superclass. This is because

in the current Scala implementation, the Function1 type is a Java interface, which cannot be used as

a direct superclass of some other class.



120 Hindley/Milner Type Inference

def lookup(env: Env, x: String): TypeScheme = env match {

case List() => null

case (y, t) :: env1 => if (x == y) t else lookup(env1, x)

}

The gen function turns a given type into a type scheme, quantifying over all type

variables that are free in the type, but not in the environment.

def gen(env: Env, t: Type): TypeScheme =

TypeScheme(tyvars(t) diff tyvars(env), t)

The set of free type variables of a type is simply the set of all type variables which oc-

cur in the type. It is represented here as a list of type variables, which is constructed

as follows.

def tyvars(t: Type): List[Tyvar] = t match {

case tv @ Tyvar(a) =>

List(tv)

case Arrow(t1, t2) =>

tyvars(t1) union tyvars(t2)

case Tycon(k, ts) =>

(List[Tyvar]() /: ts) ((tvs, t) => tvs union tyvars(t))

}

Note that the syntax tv @ ... in the first pattern introduces a variable which is

bound to the pattern that follows. Note also that the explicit type parameter [Tyvar]

in the expression of the third clause is needed to make local type inference work.

The set of free type variables of a type scheme is the set of free type variables of its

type component, excluding any quantified type variables:

def tyvars(ts: TypeScheme): List[Tyvar] =

tyvars(ts.tpe) diff ts.tyvars

Finally, the set of free type variables of an environment is the union of the free type

variables of all type schemes recorded in it.

def tyvars(env: Env): List[Tyvar] =

(List[Tyvar]() /: env) ((tvs, nt) => tvs union tyvars(nt._2))

A central operation of Hindley/Milner type checking is unification, which computes

a substitution to make two given types equal (such a substitution is called a unifier).

Function mgu computes the most general unifier of two given types t and u under a

pre-existing substitution s. That is, it returns the most general substitution s′ which

extends s, and which makes s′(t ) and s′(u) equal types.

def mgu(t: Type, u: Type, s: Subst): Subst = (s(t), s(u)) match {

case (Tyvar(a), Tyvar(b)) if (a == b) =>
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s

case (Tyvar(a), _) if !(tyvars(u) contains a) =>

s.extend(Tyvar(a), u)

case (_, Tyvar(a)) =>

mgu(u, t, s)

case (Arrow(t1, t2), Arrow(u1, u2)) =>

mgu(t1, u1, mgu(t2, u2, s))

case (Tycon(k1, ts), Tycon(k2, us)) if (k1 == k2) =>

(s /: (ts zip us)) ((s, tu) => mgu(tu._1, tu._2, s))

case _ =>

throw new TypeError("cannot unify " + s(t) + " with " + s(u))

}

The mgu function throws a TypeError exception if no unifier substitution exists. This

can happen because the two types have different type constructors at correspond-

ing places, or because a type variable is unified with a type that contains the type

variable itself. Such exceptions are modeled here as instances of case classes that

inherit from the predefined Exception class.

case class TypeError(s: String) extends Exception(s) {}

The main task of the type checker is implemented by function tp. This function

takes as parameters an environment env , a term e, a proto-type t , and a pre-existing

substitution s. The function yields a substitution s′ that extends s and that turns

s′(env) ⊢ e : s′(t ) into a derivable type judgment according to the derivation rules

of the Hindley/Milner type system [Mil78]. A TypeError exception is thrown if no

such substitution exists.

def tp(env: Env, e: Term, t: Type, s: Subst): Subst = {

current = e

e match {

case Var(x) =>

val u = lookup(env, x)

if (u == null) throw new TypeError("undefined: " + x)

else mgu(u.newInstance, t, s)

case Lam(x, e1) =>

val a, b = newTyvar()

val s1 = mgu(t, Arrow(a, b), s)

val env1 = {x, TypeScheme(List(), a)} :: env

tp(env1, e1, b, s1)

case App(e1, e2) =>

val a = newTyvar()

val s1 = tp(env, e1, Arrow(a, t), s)

tp(env, e2, a, s1)
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case Let(x, e1, e2) =>

val a = newTyvar()

val s1 = tp(env, e1, a, s)

tp({x, gen(env, s1(a))} :: env, e2, t, s1)

}

}

var current: Term = null

To aid error diagnostics, the tp function stores the currently analyzed sub-term in

variable current. Thus, if type checking is aborted with a TypeError exception, this

variable will contain the subterm that caused the problem.

The last function of the type inference module, typeOf, is a simplified facade for

tp. It computes the type of a given term e in a given environment env . It does

so by creating a fresh type variable a, computing a typing substitution that makes

env ⊢ e : a into a derivable type judgment, and returning the result of applying the

substitution to a.

def typeOf(env: Env, e: Term): Type = {

val a = newTyvar()

tp(env, e, a, emptySubst)(a)

}

}// end typeInfer

To apply the type inferencer, it is convenient to have a predefined environment that

contains bindings for commonly used constants. The module predefined defines

an environment env that contains bindings for the types of booleans, numbers and

lists together with some primitive operations over them. It also defines a fixed point

operator fix, which can be used to represent recursion.

object predefined {

val booleanType = Tycon("Boolean", List())

val intType = Tycon("Int", List())

def listType(t: Type) = Tycon("List", List(t))

private def gen(t: Type): typeInfer.TypeScheme = typeInfer.gen(List(), t)

private val a = typeInfer.newTyvar()

val env = List(

{"true", gen(booleanType)},

{"false", gen(booleanType)},

{"if", gen(Arrow(booleanType, Arrow(a, Arrow(a, a))))},

{"zero", gen(intType)},

{"succ", gen(Arrow(intType, intType))},

{"nil", gen(listType(a))},

{"cons", gen(Arrow(a, Arrow(listType(a), listType(a))))},

{"isEmpty", gen(Arrow(listType(a), booleanType))},
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{"head", gen(Arrow(listType(a), a))},

{"tail", gen(Arrow(listType(a), listType(a)))},

{"fix", gen(Arrow(Arrow(a, a), a))}

)

}

Here’s an example how the type inferencer can be used. Let’s define a function

showType which returns the type of a given term computed in the predefined en-

vironment Predefined.env:

object testInfer {

def showType(e: Term): String =

try {

typeInfer.typeOf(predefined.env, e).toString

} catch {

case typeInfer.TypeError(msg) =>

"\n cannot type: " + typeInfer.current +

"\n reason: " + msg

}

Then the application

> testInfer.showType(Lam("x", App(App(Var("cons"), Var("x")), Var("nil"))))

would give the response

> (a6­>List[a6])

Exercise 16.0.1 Extend the Mini-ML type inferencer with a letrec construct which

allows the definition of recursive functions. Syntax:

letrec ident "=" term in term .

The typing of letrec is as for let, except that the defined identifier is visible in the

defining expression. Using letrec, the length function for lists can now be defined

as follows.

letrec length = \xs.

if (isEmpty xs)

zero

(succ (length (tail xs)))

in ...





Chapter 17

Abstractions for Concurrency

This section reviews common concurrent programming patterns and shows how

they can be implemented in Scala.

17.1 Signals and Monitors

Example 17.1.1 The monitor provides the basic means for mutual exclusion of pro-

cesses in Scala. Every instance of class AnyRef can be used as a monitor by calling

one or more of the methods below.

def synchronized[A] (e: => A): A

def wait()

def wait(msec: Long)

def notify()

def notifyAll()

The synchronized method executes its argument computation e in mutual exclu-

sive mode – at any one time, only one thread can execute a synchronized argument

of a given monitor.

Threads can suspend inside a monitor by waiting on a signal. Threads that call the

wait method wait until a notify method of the same object is called subsequently

by some other thread. Calls to notify with no threads waiting for the signal are

ignored.

There is also a timed form of wait, which blocks only as long as no signal was re-

ceived or the specified amount of time (given in milliseconds) has elapsed. Fur-

thermore, there is a notifyAll method which unblocks all threads which wait for

the signal. These methods, as well as class Monitor are primitive in Scala; they are

implemented in terms of the underlying runtime system.
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Typically, a thread waits for some condition to be established. If the condition does

not hold at the time of the wait call, the thread blocks until some other thread has

established the condition. It is the responsibility of this other thread to wake up

waiting processes by issuing a notify or notifyAll. Note however, that there is no

guarantee that a waiting process gets to run immediately after the call to notify is is-

sued. It could be that other processes get to run first which invalidate the condition

again. Therefore, the correct form of waiting for a condition C uses a while loop:

while (!C) wait()

As an example of how monitors are used, here is is an implementation of a bounded

buffer class.

class BoundedBuffer[A](N: Int) {

var in = 0, out = 0, n = 0

val elems = new Array[A](N)

def put(x: A) = synchronized {

while (n >= N) wait()

elems(in) = x ; in = (in + 1) % N ; n = n + 1

if (n == 1) notifyAll()

}

def get: A = synchronized {

while (n == 0) wait()

val x = elems(out) ; out = (out + 1) % N ; n = n ­ 1

if (n == N ­ 1) notifyAll()

x

}

}

And here is a program using a bounded buffer to communicate between a producer

and a consumer process.

import scala.concurrent.ops._

...

val buf = new BoundedBuffer[String](10)

spawn { while (true) { val s = produceString ; buf.put(s) } }

spawn { while (true) { val s = buf.get ; consumeString(s) } }

}

The spawn method spawns a new thread which executes the expression given in the

parameter. It is defined in object concurrent.ops as follows.

def spawn(p: => Unit) {

val t = new Thread() { override def run() = p }

t.start()
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}

17.2 SyncVars

A synchronized variable (or syncvar for short) offers get and put operations to read

and set the variable. get operations block until the variable has been defined. An

unset operation resets the variable to undefined state.

Here’s the standard implementation of synchronized variables.

package scala.concurrent

class SyncVar[A] {

private var isDefined: Boolean = false

private var value: A = _

def get = synchronized {

while (!isDefined) wait()

value

}

def set(x: A) = synchronized {

value = x; isDefined = true; notifyAll()

}

def isSet: Boolean = synchronized {

isDefined

}

def unset = synchronized {

isDefined = false

}

}

17.3 Futures

A future is a value which is computed in parallel to some other client thread, to be

used by the client thread at some future time. Futures are used in order to make

good use of parallel processing resources. A typical usage is:

import scala.concurrent.ops._

...

val x = future(someLengthyComputation)

anotherLengthyComputation

val y = f(x()) + g(x())

The future method is defined in object scala.concurrent.ops as follows.

def future[A](p: => A): Unit => A = {
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val result = new SyncVar[A]

fork { result.set(p) }

(() => result.get)

}

The future method gets as parameter a computation p to be performed. The type

of the computation is arbitrary; it is represented by future’s type parameter a. The

future method defines a guard result, which takes a parameter representing the

result of the computation. It then forks off a new thread that computes the result

and invokes the result guard when it is finished. In parallel to this thread, the func-

tion returns an anonymous function of type a. When called, this functions waits on

the result guard to be invoked, and, once this happens returns the result argument.

At the same time, the function reinvokes the result guard with the same argument,

so that future invocations of the function can return the result immediately.

17.4 Parallel Computations

The next example presents a function par which takes a pair of computations as

parameters and which returns the results of the computations in another pair. The

two computations are performed in parallel.

The function is defined in object scala.concurrent.ops as follows.

def par[A, B](xp: => A, yp: => B): (A, B) = {

val y = new SyncVar[B]

spawn { y set yp }

(xp, y.get)

}

Defined in the same place is a function replicate which performs a number of

replicates of a computation in parallel. Each replication instance is passed an inte-

ger number which identifies it.

def replicate(start: Int, end: Int)(p: Int => Unit) {

if (start == end)

()

else if (start + 1 == end)

p(start)

else {

val mid = (start + end) / 2

spawn { replicate(start, mid)(p) }

replicate(mid, end)(p)

}

}
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The next function uses replicate to perform parallel computations on all elements

of an array.

def parMap[A,B](f: A => B, xs: Array[A]): Array[B] = {

val results = new Array[B](xs.length)

replicate(0, xs.length) { i => results(i) = f(xs(i)) }

results

}

17.5 Semaphores

A common mechanism for process synchronization is a lock (or: semaphore). A lock

offers two atomic actions: acquire and release. Here’s the implementation of a lock

in Scala:

package scala.concurrent

class Lock {

var available = true

def acquire = synchronized {

while (!available) wait()

available = false

}

def release = synchronized {

available = true

notify()

}

}

17.6 Readers/Writers

A more complex form of synchronization distinguishes between readers which ac-

cess a common resource without modifying it and writers which can both access

and modify it. To synchronize readers and writers we need to implement opera-

tions startRead, startWrite, endRead, endWrite, such that:

• there can be multiple concurrent readers,

• there can only be one writer at one time,

• pending write requests have priority over pending read requests, but don’t

preempt ongoing read operations.

The following implementation of a readers/writers lock is based on the mailbox

concept (see Section 17.10).
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import scala.concurrent._

class ReadersWriters {

val m = new MailBox

private case class Writers(n: Int), Readers(n: Int) { m send this }

Writers(0); Readers(0)

def startRead = m receive {

case Writers(n) if n == 0 => m receive {

case Readers(n) => Writers(0); Readers(n+1)

}

}

def startWrite = m receive {

case Writers(n) =>

Writers(n+1)

m receive { case Readers(n) if n == 0 => }

}

def endRead = m receive {

case Readers(n) => Readers(n­1)

}

def endWrite = m receive {

case Writers(n) => Writers(n­1); if (n == 0) Readers(0)

}

}

17.7 Asynchronous Channels

A fundamental way of interprocess communication is the asynchronous channel.

Its implementation makes use the following simple class for linked lists:

class LinkedList[A] {

var elem: A = _

var next: LinkedList[A] = null

}

To facilitate insertion and deletion of elements into linked lists, every reference into

a linked list points to the node which precedes the node which conceptually forms

the top of the list. Empty linked lists start with a dummy node, whose successor is

null.

The channel class uses a linked list to store data that has been sent but not read yet.

At the opposite end, threads that wish to read from an empty channel, register their

presence by incrementing the nreaders field and waiting to be notified.

package scala.concurrent
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class Channel[A] {

class LinkedList[A] {

var elem: A = _

var next: LinkedList[A] = null

}

private var written = new LinkedList[A]

private var lastWritten = written

private var nreaders = 0

def write(x: A) = synchronized {

lastWritten.elem = x

lastWritten.next = new LinkedList[A]

lastWritten = lastWritten.next

if (nreaders > 0) notify()

}

def read: A = synchronized {

if (written.next == null) {

nreaders = nreaders + 1; wait(); nreaders = nreaders ­ 1

}

val x = written.elem

written = written.next

x

}

}

17.8 Synchronous Channels

Here’s an implementation of synchronous channels, where the sender of a message

blocks until that message has been received. Synchronous channels only need a

single variable to store messages in transit, but three signals are used to coordinate

reader and writer processes.

package scala.concurrent

class SyncChannel[A] {

private var data: A = _

private var reading = false

private var writing = false

def write(x: A) = synchronized {

while (writing) wait()

data = x

writing = true
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if (reading) notifyAll()

else while (!reading) wait()

}

def read: A = synchronized {

while (reading) wait()

reading = true

while (!writing) wait()

val x = data

writing = false

reading = false

notifyAll()

x

}

}

17.9 Workers

Here’s an implementation of a compute server in Scala. The server implements a

future method which evaluates a given expression in parallel with its caller. Unlike

the implementation in Section 17.3 the server computes futures only with a prede-

fined number of threads. A possible implementation of the server could run each

thread on a separate processor, and could hence avoid the overhead inherent in

context-switching several threads on a single processor.

import scala.concurrent._, scala.concurrent.ops._

class ComputeServer(n: Int) {

private abstract class Job {

type T

def task: T

def ret(x: T)

}

private val openJobs = new Channel[Job]()

private def processor(i: Int) {

while (true) {

val job = openJobs.read

job.ret(job.task)

}

}
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def future[A](p: => A): () => A = {

val reply = new SyncVar[A]()

openJobs.write{

new Job {

type T = A

def task = p

def ret(x: A) = reply.set(x)

}

}

() => reply.get

}

spawn(replicate(0, n) { processor })

}

Expressions to be computed (i.e. arguments to calls of future) are written to the

openJobs channel. A job is an object with

• An abstract type t which describes the result of the compute job.

• A parameterless task method of type t which denotes the expression to be

computed.

• A return method which consumes the result once it is computed.

The compute server creates n processor processes as part of its initialization. Every

such process repeatedly consumes an open job, evaluates the job’s taskmethod and

passes the result on to the job’s return method. The polymorphic future method

creates a new job where the returnmethod is implemented by a guard named reply

and inserts this job into the set of open jobs by calling the isOpen guard. It then waits

until the corresponding reply guard is called.

The example demonstrates the use of abstract types. The abstract type t keeps track

of the result type of a job, which can vary between different jobs. Without abstract

types it would be impossible to implement the same class to the user in a statically

type-safe way, without relying on dynamic type tests and type casts.

Here is some code which uses the compute server to evaluate the expression 41 + 1.

object Test with Executable {

val server = new ComputeServer(1)

val f = server.future(41 + 1)

println(f())

}
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17.10 Mailboxes

Mailboxes are high-level, flexible constructs for process synchronization and com-

munication. They allow sending and receiving of messages. A message in this con-

text is an arbitrary object. There is a special message TIMEOUT which is used to signal

a time-out.

case object TIMEOUT

Mailboxes implement the following signature.

class MailBox {

def send(msg: Any)

def receive[A](f: PartialFunction[Any, A]): A

def receiveWithin[A](msec: Long)(f: PartialFunction[Any, A]): A

}

The state of a mailbox consists of a multi-set of messages. Messages are added to the

mailbox with the send method. Messages are removed using the receive method,

which is passed a message processor f as argument, which is a partial function from

messages to some arbitrary result type. Typically, this function is implemented as a

pattern matching expression. The receive method blocks until there is a message

in the mailbox for which its message processor is defined. The matching message is

then removed from the mailbox and the blocked thread is restarted by applying the

message processor to the message. Both sent messages and receivers are ordered

in time. A receiver r is applied to a matching message m only if there is no other

{message, receiver} pair which precedes m,r in the partial ordering on pairs that

orders each component in time.

As a simple example of how mailboxes are used, consider a one-place buffer:

class OnePlaceBuffer {

private val m = new MailBox // An internal mailbox

private case class Empty, Full(x: Int) // Types of messages we deal with

m send Empty // Initialization

def write(x: Int)

{ m receive { case Empty => m send Full(x) } }

def read: Int =

m receive { case Full(x) => m send Empty; x }

}

Here’s how the mailbox class can be implemented:

class MailBox {

private abstract class Receiver extends Signal {

def isDefined(msg: Any): Boolean

var msg = null
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}

We define an internal class for receivers with a test method isDefined, which indi-

cates whether the receiver is defined for a given message. The receiver inherits from

class Signal a notify method which is used to wake up a receiver thread. When the

receiver thread is woken up, the message it needs to be applied to is stored in the

msg variable of Receiver.

private val sent = new LinkedList[Any]

private var lastSent = sent

private val receivers = new LinkedList[Receiver]

private var lastReceiver = receivers

The mailbox class maintains two linked lists, one for sent but unconsumed mes-

sages, the other for waiting receivers.

def send(msg: Any) = synchronized {

var r = receivers, r1 = r.next

while (r1 != null && !r1.elem.isDefined(msg)) {

r = r1; r1 = r1.next

}

if (r1 != null) {

r.next = r1.next; r1.elem.msg = msg; r1.elem.notify

} else {

lastSent = insert(lastSent, msg)

}

}

The send method first checks whether a waiting receiver is applicable to the sent

message. If yes, the receiver is notified. Otherwise, the message is appended to the

linked list of sent messages.

def receive[A](f: PartialFunction[Any, A]): A = {

val msg: Any = synchronized {

var s = sent, s1 = s.next

while (s1 != null && !f.isDefinedAt(s1.elem)) {

s = s1; s1 = s1.next

}

if (s1 != null) {

s.next = s1.next; s1.elem

} else {

val r = insert(lastReceiver, new Receiver {

def isDefined(msg: Any) = f.isDefinedAt(msg)

})

lastReceiver = r

r.elem.wait()

r.elem.msg
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}

}

f(msg)

}

The receive method first checks whether the message processor function f can be

applied to a message that has already been sent but that was not yet consumed. If

yes, the thread continues immediately by applying f to the message. Otherwise, a

new receiver is created and linked into the receivers list, and the thread waits for

a notification on this receiver. Once the thread is woken up again, it continues by

applying f to the message that was stored in the receiver. The insert method on

linked lists is defined as follows.

def insert(l: LinkedList[A], x: A): LinkedList[A] = {

l.next = new LinkedList[A]

l.next.elem = x

l.next.next = l.next

l

}

The mailbox class also offers a method receiveWithinwhich blocks for only a speci-

fied maximal amount of time. If no message is received within the specified time in-

terval (given in milliseconds), the message processor argument f will be unblocked

with the special TIMEOUT message. The implementation of receiveWithin is quite

similar to receive:

def receiveWithin[A](msec: Long)(f: PartialFunction[Any, A]): A = {

val msg: Any = synchronized {

var s = sent, s1 = s.next

while (s1 != null && !f.isDefinedAt(s1.elem)) {

s = s1; s1 = s1.next

}

if (s1 != null) {

s.next = s1.next; s1.elem

} else {

val r = insert(lastReceiver, new Receiver {

def isDefined(msg: Any) = f.isDefinedAt(msg)

})

lastReceiver = r

r.elem.wait(msec)

if (r.elem.msg == null) r.elem.msg = TIMEOUT

r.elem.msg

}

}

f(msg)

}
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} // end MailBox

The only differences are the timed call to wait, and the statement following it.

17.11 Actors

Chapter 3 sketched as a program example the implementation of an electronic auc-

tion service. This service was based on high-level actor processes that work by in-

specting messages in their mailbox using pattern matching. A refined and opti-

mized implementation of actors is found in the scala.actors package. We now

give a sketch of a simplified version of the actors library.

The code below is different from the implementation in the scala.actors package,

so it should be seen as an example how a simple version of actors could be imple-

mented. It is not a description how actors are actually defined and implemented in

the standard Scala library. For the latter, please refer to the Scala API documenta-

tion.

A simplified actor is just a thread whose communication primitives are those of a

mailbox. Such an actor can be defined as a mixin composition extension of Java’s

standard Thread class with the MailBox class. We also override the run method of

the Thread class, so that it executes the behavior of the actor that is defined by its

act method. The ! method simply calls the send method of the MailBox class:

abstract class Actor extends Thread with MailBox {

def act(): Unit

override def run(): Unit = act()

def !(msg: Any) = send(msg)

}
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