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Constraint-based Assembling of Protein

Fragments

Enrico Pontelli1 and Alessandro Dal Palú2

1Department of Computer Science, New Mexico State University, Las Cruces, NM
2Department of Mathematics, University of Parma, Italy

In this presentation, we overview a recent approach that makes use of con-
straint programming techniques to tackle the problem of predicting the structure
of a protein starting from its primary sequence. The approach relies on the con-
struction of a database of fragments from the observations of known proteins,
and the use of Constraint programming to assemble fragments in the 3-d space,
minimizing an energy function. We present a preliminary design and some pre-
liminary experimental results.



Extended BDI-based Model for Human Decision-

Making and Social Behavior: Various Applications 

Young-Jun Son 

 

Systems and Industrial Engineering, The University of Arizona, Tucson, AZ 85721, 

USA 

son@sie.arizona.edu 

Abstract. An extended Belief-Desire-Intention (BDI) modeling framework is 

presented that the author has been developing for human decision-making and 

social behavior, effectively integrating engineering-, psychology-, and 

economics-based models. To mimic realistic human behaviors, attributes of the 

BDI framework are reverse-engineered from human-in-the-loop experiments 

conducted in the Cave Automatic Virtual Environment (CAVE). We will 

discuss various applications that the proposed modeling framework has been 

applied, such as 1) evacuation behaviors under a terrorist bomb attack, 2) 

pedestrian behaviors in the Chicago Loop area, 3) workforce assignment in a 

multi-organizational social network for community-based software 

development, 4) pedestrian behaviors in a shopping mall, 5) evacuation 

behaviors under fire in a factory, and 6) error detection and resolution by people 

in a complex manufacturing facility. 

Keywords: BDI, human decision behavior, planning, Bayesian belief network. 

1   Introduction 

The goal of this extended abstract is to describe an extended Belief-Desire-Intention 

(BDI) modeling framework [1] and [2] (see Fig. 1(a)) that has been developed by the 

author for human decision-making and social behavior, effectively integrating 

engineering-, psychology-, and economics-based models. BDI [3] and [4] is a model 

of the human reasoning process, where a person’s mental state is characterized by 

three major components: beliefs, desires, and intentions. Later, Zhao and Son [5] 

extended the decision-making module (corresponding to the intention component) of 

the original BDI model to include three detailed submodules: (1) a deliberator, (2) a 

real-time planner, and (3) a decision executor in the decision-making (intention) 

module, where this extension was necessary to accommodate both the decision-

making and decision-planning functions in a unified framework. In addition, an 

emotional module containing a confidence index and time pressure also has been 

appended to represent these aspects of human psychology. The emotional module 

affects and is affected by the three other mental modules, that is, beliefs, desires, and 

decision making. While Zhao and Son [5] provided a conceptual extension of the BDI 



model, Lee and Son [1] proposed actual algorithms and techniques that have been 

employed and further developed to realize submodules for the extended model. 

The submodules of the extended BDI modeling framework [1] and [2] are based on 

a Bayesian Belief Network (BBN), Decision-Field-Theory (DFT), and a Probabilistic 

Depth-First Search (PDFS) technique, and a key novelty of the framework is its 

ability to represent both the human decisionmaking and decision-planning functions 

in a unified framework. 

 

  

  

    

Fig. 1. (a) Components of extended BDI framework [1] and [2]; (b) Snapshot of emergency 

evacuation simulation [2]; (c) Snapshot of multi-organizational social network simulation [6]; 

(d) Snapshot of pedestrian behaviors in Chicago Loop area [7]; (e) Snapshot of pedestrian 

behaviors in a shopping mall [8]; (f) Snapshot of evacuation behaviors under fire in factory [9]. 

The proposed modeling framework has been sucessfully demonstrated for a 

human’s behaviors under various applications, such as 1) evacuation behaviors under 



a terrorist bomb attack (see Fig. 1(b)), 2) workforce assignment in a multi-

organizational social network for community-based software development (see Fig. 

1(c)), 3) pedestrian behaviors in the Chicago Loop area (see Fig. 1(d)), 4) pedestrian 

behaviors in a shopping mall (see Fig. 1(e)), 5) evacuation behaviors under fire in a 

factory (see Fig. 1(f)), and 6) error detection and resolution by people in a complex 

manufacturing facility. 

To mimic realistic human behaviors, attributes of the BDI framework are reverse-

engineered from human-in-the-loop experiments conducted in the Cave Automatic 

Virtual Environment (CAVE). For emergency evacuation scenario as an example [1] 

and [2], each subject is asked to evaluate the risk and the evacuation time of three 

available paths (i.e., right, forward, and left) depending on the various environmental 

observations (i.e., fire, smoke, police, and crowd) at each intersection. Also, each 

subject is asked to select one of the three available paths. The data collected on the 

relationship between the environment and the subject’s evaluation was used to 

construct a BBN in the form of a conditional probability distribution. The constructed 

BBN infers 1) subjective evaluations for each attribute (e.g., risk and time) of each 

given option and 2) subjective weights of attention corresponding to each attribute, 

and the DFT calculates preference values of the options based on those matrices of 

evaluations and weights. Then, the simulated environment and agents conforming to 

the proposed BDI framework has been implemented. The constructed simulation has 

been used to test the impact of various factors (e.g., demographics, number of police 

officers, information sharing via speakers) on evacuation performance (e.g., average 

evacuation time, percentage of casualties). In the presentation, major modeling issues 

for each of the above mentioned applications will be addressed in detail. 
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Mixed Variable Surrogate Models for

Engineering Analysis

Patty Hough

Sandia National Laboratories, Livermore, CA

Modeling and simulation have become common tools in the design and analy-
sis of engineered systems. Depending on the complexity of the system in question
and the phenomena of interest, these simulations can take anywhere from a few
minutes of wall clock time on a few CPUs to several days of wall clock time
on hundreds of CPUs. Furthermore, exploration of the model parameter space
(e.g., optimization or uncertainty quantification) is often required to complete
the analysis. As a result, the computational requirements can easily exceed the
allotted time and resources. One approach to alleviating the computational load
is the use of surrogate models. Surrogate models are computationally inexpen-
sive approximations that greatly enhance the tractability of simulation-based
engineering analysis. They have been highly successful in solving continuous
problems; however, an increasing number of problems include categorical or dis-
crete variables, and surrogate modeling techniques for mixed variable domains
are in their infancy and are largely untested. In this talk, I will give an exam-
ple of how surrogates are used in engineering analysis and briefly describe three
approaches for constructing surrogates in mixed variable domains: categorical
regression, Treed Gaussian Processes (TGP), and Adaptive Component Selec-
tion and Smoothing Operator (ACOSSO) splines. I will describe our efforts to
evaluate and compare these approaches, including the principles and metrics we
used and the characteristics of the test functions we considered. Finally, I will
present our numerical results and discuss our observations regarding the merits
of each approach.



Parallel Traversal of Spatio-Temporal Graphs in

the Shortest Time under Constraints

Xiaobai Sun

Department of Computer Science

Duke University, NC

We present a new approach and its analysis for parallel traversal of spatio-
temporal graphs in the shortest time under constraints in hardware resource
and software support. Many large-scale computations in scientific or engineering
studies can be cast as that of traversing large graphs that capture the relation-
ships, in space and time, between the computation nodes and often have irregular
structures. We introduce and consider as a model problem the parallel computa-
tion of the celebrated fast multipole method (FMM). There are persistent efforts
in the last two decades on parallel FMM for increasingly large computation prob-
lems. Recently, thread programming on existing and emerging computers with
global address space provides and promises new and friendly means to exploit
the complex spatio-temporal relationships. The new approach has unleashed, on
multi-core processors in particular, substantial and previously untapped poten-
tial in Parallelizing the FMM, especially when the graph is highly irregular as a
result of adaption to the sample sparsity, which had remained until now a major
challenge. We present also experimental results.



Predicting the impact of non synonymous Single

Nucleotide Polymorphisms on protein function

François Modave

Texas Tech University Health Sciences Center

El Paso, TX

A non-synonymous single nucleotide polymorphism (SNP) is a mutation of
the genetic code that produces a different amino acid. It can be either a missense,
in which case, a polypeptide with a changed amino acid is produced, or nonsense,
where the mutation leads to an early stop codon. Numerous mutations result in
no (obvious) phenotype change. However, the 122,000 SNPs in the human SNP
database represent more than 50% of the mutations involved in human diseases.
For instance, sickle-cell anemia is the result of a simple A to T mutation on
the beta-globin gene. In the event of a homozygous mutation, life expectancy is
significantly reduced, unlike in the heterozygous case.

Therefore, being able to predict which mutations are innocuous and which
mutations are dangerous or deleterious is critical. In this talk, we will present
two well-known algorithms and softwares (SIFT and PolyPhen2) that are used to
predict the effect of SNPs on protein function, and will discuss their limitations,
as well as some of the issues associated with bioinformatics softwares in general.
We will then discuss research directions to develop reliable methods to accurately
predict how SNPS affect protein function.



Optimal control applied to a discrete influenza

model

Invited speaker: Leticia Velazquez
List of all authors: Leticia Velazquez, Paula A. Gonzalez-Parra,

Sunmi Lee, Carlos Castillo-Chavez

Math Department

The University of Texas at El Paso

Discrete time Susceptible - Asymptomatic - Infectious - Treated - Recov-
ered (SAITR) model is introduced in the context of influenza transmission. We
evaluate the potential effect of control measures such as social distancing and
antiviral treatment on the dynamics of a single outbreak.

Optimal control theory is applied to identify the best way of reducing morbid-
ity and mortality at a minimal cost. The problem is solved by using a discrete
version of Pontryagin’s maximum principle. Numerical results show that dual
strategies have stronger impact in the reduction of the final epidemic size.

We present some preliminar results by using interior points methods as an-
other strategy to solve the problem.



Adding Constraints –
A (Seemingly Counterintuitive but) Useful
Heuristic in Solving Difficult Problems

Olga Kosheleva, Martine Ceberio, and Vladik Kreinovich

University of Texas at El Paso

El Paso, TX 79968, USA

{olgak,mceberio,vladik}@utep.edu

Abstract. Intuitively, the more constraints we impose on a problem,

the more difficult it is to solve it. However, in practice, difficult-to-solve

problems sometimes get solved when we impose additional constraints

and thus, make the problems seemingly more complex. In this method-

ological paper, we explain this seemingly counter-intuitive phenomenon,

and we show that, dues to this explanation, additional constraints can

serve as a useful heuristic in solving difficult problems.

Keywords: constraints, algorithmic problems, heuristics

Commonsense intuition: the more constraints, the more difficult the problem.

Intuitively, the more constraints we impose on a problem, the more difficult it

is to solve it.

For example, if a university has a vacant position of a lecturer in Computer

Science Department, and we want to hire a person with a PhD in Computer

Science to teach the corresponding classes, then this hiring is a reasonably easy

task. However, once we impose constraints: that the person has several years of

teaching experience at similar schools and has good evaluations to show for this

experience, that this person’s research is in the area close to the classes that he

or she needs to teach, etc., then hiring becomes a more and more complicated

task.

If a person coming to a conference is looking for a hotel to stay, this is usually

an easy problem to solve. But once you start adding constraints on how far this

hotel is from the conference site, how expensive it is, how noisy it is, etc., the

problems becomes difficult to solve.

Similarly, in numerical computations, unconstrained optimization problems

are usually reasonably straightforward to solve, but once we add constraints, the

problems often become much more difficult.

Sometimes constraints help: a seemingly counterintuitive phenomenon. In prac-

tice, difficult-to-solve problems sometimes get solved when we impose additional

constraints and thus, make the problems seemingly more complex.

Sometimes this easiness to solve is easy to explain. For example, when a trav-

eler prefers a certain hotel chain, and make this chain’s brand name a constraint,



then making reservations in a small town is usually not a difficult problem to
solve, because in this town, there is usually only one hotel from this chain.

However, in other cases, the resulting easiness-to-solve is not so easy to ex-
plain.

Many such examples come from mathematicians solving practical problems.
For example, in application problems, mathematicians often aim for an optimal
control or an optimal design. To a practitioner, this desire for the exact optimum
may seem like a waste of time. Yes, it is desirable to find an engineering design
with the smallest cost under the given constraints – or, vice versa, with the best
performance under the given cost constraints – but since we can predict the
actual consequences of each design only approximately, wasting time to exactly
optimize the approximately optimize the approximately known function does not
seem to make sense. If we only know the objective function f(x) with accuracy
ε > 0 (e.g., 0.1), then once we are within ε of the maximum, we can as well stop.

In some cases, it is sufficient to simply satisfy some constraint f(x) ≥ f0
for some value f0. However, from the algorithmic viewpoint, often, the best
way to solve this problem is to find the maximum of the function f(x) on a
given domain – by equating partial derivatives of f(x) to 0. If there is a value
x for which f(x) ≥ f0, then definitely max

y

f(y) ≥ f0, so the place x where

the function f(y) attains its maximum satisfies the desired constraint. In other
words, by imposing an additional constraint – that not only f(x) ≥ f0, but also
that f(x) = max

y

f(y) – we make the problem easier to solve.

In theoretical mathematics, a challenging hypothesis often becomes proven
when instead of simply looking for its proof, we look for proofs that can be
applied to other cases as well – in other words, when we apply an additional
constraint of generalizability; see, e.g., [16] and references therein.

Similarly, interesting results about a physical system become proven in the
realm of rigorous mathematics, while, due to the approximate character of the
model, arguments on the physical level of rigor would be (and often are) suffi-
cient.

In engineering and science, often, problems get solved when someone starts
looking not just for a solution but for a solution that satisfies additional con-
straints of symmetry, beauty, etc. – or when a physicist looks for a physical
theory that fits his philosophical view of the world; a large number of examples
how the search for a beautiful solution helped many famous mathematicians and
physicists – including Bolzmann and Einstein – are described in [8].

In software design, at first glance, additional constraints imposed by software
engineering – like the need to have comments, the need to have simple modules,
etc. – seem to make a problem more complicated, but in reality, complex designs
often become possible only after all these constraints are imposed.

This phenomenon extends to informal problems as well. For example, in art,
many great objects have been designed within strict requirements on shape,
form, etc. – under the constraints of a specific reasonable regulated style of
music, ballet, poetry, painting, while free-form art while seemingly simpler and
less restrictive, does not always lead to more impressive art objects. Some people



find personal happiness when accepting well-regulated life rules – e.g., within a
traditional religious community – while they could not find personal happiness
in their earlier freer life.

How can we explain this seemingly counter-intuitive phenomenon?

Analysis of the problem. By definition, when we impose an additional constraint,
this means that some alternatives which were originally solutions to the problem,
stop being such solutions – since we impose extra constraints, constraints that
are not always satisfied by all original solutions.

Thus, the effect of adding a constraint is that the number of solution de-
creases. At the extreme, when we have added the largest possible number of
constraints, we get a unique solution.

It turns out that this indeed explains why adding constraints can make the
problems easier.

Related known results: the fewer solutions, the easier to solve the problem. Many
numerical problems are, in general, algorithmically undecidable: for example,
no algorithm can always find a solution to an algorithmically defined system
of equation or find a location of the maximum of an algorithmically defined
function; see, e.g., [1, 2, 4–6, 17, 18, 22].

The proofs of most algorithmic non-computability results essentially use func-
tions which have several maxima and/or equations which have several solutions.
It turned out that this is not an accident: uniqueness actually implies algorith-
mic computability. Such a result was first proven in [19], where an algorithm
was designed that inputs a constructive function of one or several real variables
on a bounded set that attains its maximum on this set at exactly one point –
and computes this global maximum point. In [20], this result was to constructive
functions on general constructive compact spaces.

In [12, 14], this result was applied to design many algorithms: from optimal
approximation of functions to designing a convex body from its metric to con-
structive a shortest path in a curved space to designing a Riemannian space
most tightly enclosing unit spheres in a given Finsler space [7]. Several efficient
algorithms based on uniqueness have been described in [9–11].

On the other hand, it was proven that a general algorithm is not possible for
functions that have exactly two global maxima or systems that have exactly two
solutions; see, e.g., [12–15, 17].

Moreover, there are results showing that for every m, problems with exactly
m solutions are, in general, more computationally difficult than problems with
m− 1 solutions; see, e.g., [21].

Resulting recommendation. The above discussion leads to the following seem-
ingly counter-intuitive recommendation: If a problem turns out to be too complex
to solve, maybe a good heuristic is to add constraints and make it more complex.

For example, if the problem that we have difficulty solving is an applied
mathematical problem, based on an approximate description of reality, maybe
a good idea is not to simplify this problem but rather to make it more realistic.



This recommendation may sound counter-intuitive, but applied mathematicians

know that often, learning more about the physical or engineering problem helps

to solve it.

This can also be applied to education. If students have a hard time solving a

class of problems, maybe a good idea is not to make these problems easier, but to

make them more complex. Again, at first glance, this recommendation may sound

counter-intuitive, but in pedagogy, it is a known fact: if a school is failing, the

solution is usually not to make classes easier – this will lead to a further decline

in knowledge. Anecdotal evidence shows that a turnaround happens when a new

teacher starts giving students more complex more challenging problems – and

this boosts their knowledge.

This recommendation is in line with a general American idea – that to be

satisfying, the job, among other things, must be a challenge.

Caution. Of course, it is important not to introduce so many constraints that

the problem simply stops having solutions at all. Since it is difficult to guess

which level of constraints will lead to inconsistency, it may be a good idea to

simultaneously several different versions of the original problem, with different

number of constraints added – this way, we will hopefully be able to successfully

solve one of them.

Acknowledgments. This work was supported in part by the National Sci-

ence Foundation grants HRD-0734825 and DUE-0926721 and by Grant 1 T36

GM078000-01 from the National Institutes of Health.
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à l’analyse récurslve. Compt Rend. 245(13), 1040–1043 (1957)

20. Lifschitz, V.A.: Investigation of constructive functions by the method of fillings,
J. Soviet Math. 1, 41–47 (1973)
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Finite Difference Equations with the Interval

Parameters

Andrzej Pownuk
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The Finite Difference Method is one of the most general approach for so-
lution of partial differential equations (PDE). In many situations parameters
of the equations are uncertain. There are many definitions of the solution set.
In this presentation the united solution set will be applied. The interval solu-
tion will be calculated by using adaptive approximation method. Both explicate
and implicate finite difference method will be discussed. In order to speed up
the calculations special domain specific language (DSL) will be applied. Several
numerical examples and applications to structural mechanics will be presented.
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Abstract. It is well known that many computational problems are, in
general, not algorithmically solvable: e.g., it is not possible to algorith-
mically decide whether two computable real numbers are equal, and it
is not possible to compute the roots of a computable function. We pro-
pose to constraint such operations to certain “sets of typical elements”
or “sets of random elements”.

In our previous papers, we proposed (and analyzed) physics-motivated
definitions for these notions. In short, a set T is a set of typical elements if
for every definable sequences of sets An with An ⊇ An+1 and

⋂
n

An = ∅,

there exists an N for which AN ∩T = ∅; the definition of a set of random

elements with respect to a probability measure P is similar, with the
condition

⋂
n

An = ∅ replaced by a more general condition lim
n

P (An) = 0.

In this paper, we show that if we restrict computations to such typical
or random elements, then problems which are non-computable in the
general case – like comparing real numbers or finding the roots of a
computable function – become computable.

Keywords: constraints, computable problems, random elements, typi-
cal elements

Physically meaningful computations with real numbers: a brief reminder. In prac-
tice, many quantities such as weight, speed, etc., are characterized by real num-
bers. To get information about the corresponding value x, we perform measure-
ments. Measurements are never absolute accurate. As a result of each measure-
ment, we get a measurement result x̃; for each measurement, we usually also
know the upper bound ∆ on the (absolute value of) the measurement error

∆x
def
= x̃− x: |x− x̃| ≤ ∆.

To fully characterize a value x, we must measure it with a higher and higher
accuracy. As a result, when we perform measurements with accuracy 2−n with
n = 0, 1, . . ., we get a sequence of rational numbers rn for which |x− rn| ≤ 2−n.



From the algorithmic viewpoint, we can view this sequence as an oracle that,
given an integer n, returns a rational number rn. Such sequences represent real
numbers in computable analysis; see, e.g., [9, 10].

First negative result. In computable analysis, several negative results are known.
For example, it is known that no algorithm is possible that, given two numbers
x and y, would check whether these numbers are equal or not.

Computable functions and relative negative results. Similarly, we can define a
function f(x) from real numbers to real numbers as a mapping that, given an
integer n, a rational number xm and its accuracy m, produces either a message
that this information is insufficient, or a rational number yn which is 2−n-close to
all the values f(x) for d(x, xm) ≤ 2−m – and for which, for every x and for each
desired accuracy n, there is an m for which a rational number yn is produced.
We can also define a computable function f(x1, . . . , xk) of several real variables
(and, even more generally, a function on a computable compact).

Several negative results are known about computable functions as well. For
example,

– while there is an algorithm that, given a function f(x) on a computable
compact set K (e.g., on a box [x

1
, x1]× . . .× [x

k
, xk] in k-dimensional space),

produces the values max{f(x) : x ∈ K},
– no algorithm is possible that would always return a point x at which this

maximum is attained (and similarly, with minimum).

From the physicists’ viewpoint, these negative results seem rather theoretical.

From the purely mathematical viewpoint, if two quantities coincide up to 13
digits, they may still turn to be different: for example, they may be 1 and 1 +
10−100.

However, in the physics practice, if two quantities coincide up to a very high
accuracy, it is a good indication that they are actually equal. This is how physical
theories are confirmed: if an experimentally observed value of a quantity turned
out to be very close to the value predicted based on a theory, this means that
this theory is (triumphantly) true. This is, for example, how General Relativity
has been confirmed.

This is how discoveries are often made: for example, when it turned out the
speed of the waves described by Maxwell equations of electrodynamics is very
close to the observed speed of light c, this led physicists to realize that light is
formed of electromagnetic waves.

How physicists argue. A typical physicist argument is that while numbers like
1+10−100 (or c · (1+10−100)) are, in principle, possible, they are abnormal (not
typical).

When a physicist argues that second order terms like a ·∆x2 of the Taylor
expansion can be ignored in some approximate computations because ∆x is
small, the argument is that



– while abnormally high values of a (e.g., a = 1040) are mathematically possi-
ble,

– typical (= not abnormal) values appearing in physical equations are usually
of reasonable size.

How to formalize the physicist’s intuition of typical (not abnormal). A formal-
ization of this intuition was proposed and analyzed in [1–7]. Its main idea is as
follows. To some physicist, all the values of a coefficient a above 10 are abnormal.
To another one, who is more cautious, all the values above 10 000 are abnor-
mal. Yet another physicist may have another threshold above which everything
is abnormal. However, for every physicist, there is a value n such that all value
above n are abnormal.

This argument can be generalized as a following property of the set T of all
typical elements. Suppose that we have a monotonically decreasing sequence of
sets A1 ⊇ A2 ⊇ . . . for which

⋂

n

An = ∅ (in the above example, An is the set of

all numbers ≥ n). Then, there exists an integer N for which T ∩AN = ∅.
We thus say that T is a set of typical elements if for every definable decreasing

sequence {An} for which
⋂

n

An = ∅, there exists an N for which T ∩AN = ∅.

Comment. Of course, to make this definition precise, we must restrict definability
to a subset of properties, so that the resulting notion of definability will be defined
in ZFC itself (or in whatever language we use); for details, see, e.g., [3].

Relation to randomness. The above notion of typicality is related to the ran-
domness. Indeed, a usual definition of a random sequence (see, e.g., [8]) is based
on the idea that a sequence is random if it satisfies all the probability laws –
like the law of large numbers, the central limit theorem, etc. A probability law
is then described as a definable property that is satisfied with probability 1, i.e.,
as a complement to a definable set S of probability measure 0 (P (S) = 0). Thus,
we can say that a sequence is random if it does not belong to any definable set
of measure 0. (If we use different languages to formalize the notion “definable”,
we get different versions of Kolmogorov-Martin-Löf randomness.)

Informally, this definition means that (definable) events with probability 0
cannot happen. In practice, physicists also assume that events with a very small
probability cannot happen. It is not possible to formalize this idea by simply
setting a threshold p0 > 0 below which events are not possible – since then, for
N for which 2−N < p0, no sequence of N heads or tails would be possible at
all. However, we know that for each monotonic sequence of properties An with
lim p(An) = 0 (e.g., An = “we can get first n heads”), there exists an N above
which a truly random sequence cannot belong to AN . In [1–7], we thus propose to
describe a set R as a set of random elements if it satisfies the following property:
for every definable decreasing sequence {An} for which limP (An) = 0, there
exists an N for which R ∩AN = ∅.

It turns out that properties of T and R are related:

– every set of random elements is also a set of typical elements, and



– for every set of typical elements T , the difference T −RK , where RK is the
set of the elements random in the usual Komogorov-Martin-Löf sense, is a
set of random elements [2].

Physically interesting consequences of these definitions. These definitions have
useful consequences [1–7].

For example, when the universal set X is a metric space, both sets T and
R are pre-compact – with the consequence that all inverse problems become
well-defined: for any 1-1 continuous function f : X → X, the restriction of the
inverse function to T is also continuous. This means that, in contrast to ill-defined
problem, if we perform measurements accurately enough, we can reconstruct the
state of the system with any desired accuracy.

Another example is a justification of physical induction: crudely speaking,
there exists an N such that if for a typical sequence, a property is satisfied in
the first N experiments, then it is satisfied always.

New results: when we restrict ourselves to typical elements, algorithms become

possible. In this paper, we analyze the computability consequences of the above
definitions. Specifically, we show that most negative results of computability
analysis disappear if we restrict ourselves to typical elements.

For example, for every set of typical pairs of real numbers T ⊆ IR2, there
exists an algorithm, that, given real numbers (x, y) ∈ T , decides whether x = y

or not. To prove it, consider a decreasing sequence of definable sets

An = {(x, y) : 0 < d(x, y) < 2−n}.

By definition of T , there exists an N such that AN ∩T = ∅. Thus, if we compute
d(x, y) with accuracy 2−(N+1) and get a value < 2−N , this means that x = y –
otherwise x '= y.

Similar (but somewhat more complex) arguments lead to

– an algorithm that, given a typical function f(x) on a computable compact
K, computes a value x at which f(x) attains its maximum,

– an algorithm that, given a typical function f(x) on a computable compact
K that attains a 0 value somewhere on K, computes a value x at which
f(x) = 0,

– etc.
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Abstract.  
 

            The recognition of an abnormal activity of the brain functionality is a vital 

issue. To determine the type of the abnormal activity either a brain image or brain 

signal are usually considered. Imaging localizes the defect within the brain area and 

relates this area with some body functionalities. However, some functions may be 

disturbed without affecting the brain. In this case, imaging may not provide the 

symptoms of the problem. A cheaper yet efficient approach that can be utilized to 

detect abnormal activity is the measurement and analysis of the electroencephalogram 

(EEG) signals. The main goal of this work is to come up with a new method to 

facilitate the classification of the abnormal and disorder activities within the brain 

directly using EEG signal processing, which makes it possible to be applied in an on-

line monitoring system. 

  Classification of EEG abnormality may be approached using different 

analysis methods and classifiers. Among these methods are wavelet decomposition, 

Fourier analysis, and phase space.     Four different approaches are proposed in this 

work to classify EEG abnormal activity. These approaches depend on transforming 

the signal into another domain to easily extract significant features that allow proper 



classification. The main goal is to yield an efficient classification yet using a simple, 

fast, and reliable classifier. The first approach is based on selecting features using 

wavelet coefficients only. The second approach is a combination between wavelet and 

phase space. The third approach is based on phase space reconstruction only. Finally 

the fourth approach uses features extracted from Fourier domain using fuzzy logic. 

All the proposed approaches showed good results and were able to detect the normal 

EEG with 96 % accuracy. However, abnormal activity detection accuracy varied 

among the different proposed classifier. The results obtained using these classifiers 

are comparable to those obtained from recent published works.  

                 The data used in this research is long and it is taken from multichannels 

of the brain. The first technique ,wavelet transform,  showed very high accuracy 

reached to 96%.  The wavelet transform used in this technique has many advantages 

over other transforms, like Fourier transform, such that it can preserve both frequency 

and timing information and it can simultaneously extract both low frequency and high 

frequency signal with different frequency resolutions. 

               The second technique, reconstruction phase space plot of wavelet based 

coefficients, showed high frequency 90%. In the third technique, phase space of 

original signal without transformation, detecting the seizure is fast and simple, but the 

frequency ranges can’t be detected, the accuracy still 90%. The fourth technique , 

Fourier transform and fuzzy logic, showed accuracy of distinguishing between normal 

and abnormal of 95%, the classifier depends on the percentages of points that 

represents the phase of the system and the direction of the points from the center. 

From the above, this research used two main theory representations for non-linear 

analysis summarizes in wavelet transform and phase space, these two categories are 



highly used in recent researches in studying the nonstationary signals like EEG signal. 

The phase space is used to represent the state space of the system in time domain, 

while the wavelet transform helps in finding the relationship between time and 

frequency at any level. The results in this research are taken using Mat Lab software. 

  

 

 

Keywords: Wavelet, Phase space, EEG, Epilepsy, Spikes. 
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Abstract. In solving inverse problems, one of the successful methods of

determining the appropriate value of the regularization parameter is the

L-curve method of combining the corresponding soft constraints, when we

plot the curve describing the dependence of the logarithm x of the mean

square difference on the logarithm y of the mean square non-smoothness,

and select a point on this curve at which the curvature is the largest. This

method is empirically successful, but from the theoretical viewpoint, it

is not clear why we should use curvature and not some other criterion. In

this paper, we show that reasonable scale-invariance requirements lead

to curvature and its generalizations.

Keywords: soft constraints, inverse problems, regularization, L-curve,

curvature

1 Formulation of the Problem

Inverse problem: a brief reminder. In science and engineering, we are interested
in the state of the world, i.e., in the values of different physical quantities that
characterize this state. Some of these quantities we can directly measure, but
many quantities are difficult or even impossible to measure directly.

For example, in geophysics, we are interested in the density and other prop-
erties of the material at different depths and different locations. In principle, it
is possible to drill a borehole and directly measure these properties, but this is
a very expensive procedure, and for larger depths, the drilling is not possible at
all. To find the values of such difficult-to-measure quantities q = (q1, . . . , qn), we
measure the values of the auxiliary quantities a = (a1, . . . , am) that are related
to qi by a known dependence ai = fi(q1, . . . , qn), and then reconstruct the values
qj from these measurement results.

In the idealized situation when measurements are absolutely accurate, we
can then reconstruct the desired values qj from the system of m equations
a1 = f1(q1, . . . , qn), . . . , am = fm(q1, . . . , qn). In real life, measurements
are never 100% accurate, so the measured values ai are only approximately
equal to fi(q1, . . . , qn). Usually, it is assumed that the measurement errors
ai − fi(q1, . . . , qn) are independent normally distributed random variables with
0 means and the same variance; see, e.g. [3]. In this case, the constraint that the



values qj are consistent with the observations ai can be described as a constraint

s ≤ s0 on the sum s
def
=

m∑

i=1

(ai − fi(q1, . . . , qn))
2. The value s0 depends on the

confidence level: the larger s0, the more confident we are that this constraint
will be satisfied. For each value x0, the constraint x ≤ x0 is a soft constraint:
there is a certain probability that this constraint will be violated.

Often, this constraint is described in a logarithmic scale, as x ≤ x0, where

x
def
= ln(s).

Regularization: how to take into account additional constraints. Often, there are
additional constraints on qj . Usually, the values qj are more regular than ran-
domly selected values. Methods for taking these additional regularity constraints
into account are known as regularization methods; see, e.g., [4].

For example, in geophysics, the density values at nearby locations are usually
close to each other. In other words, the differences qj − qj′ corresponding to
nearby locations should be small.

This constraint can also be described in statistical terms: that there is a prior
distribution on the set of all the tuples, in which all the differences qj − qj′ are
independent and normally distributed with 0 mean and the same variance. In this
case, the constraint that the values qj are consistent with this prior distribution

can be also described as a constraint t ≤ t0 on the sum t
def
=

∑

(j,j′)

(qj − qj′)
2.

This constraint is also often described in a logarithmic space, as y ≤ y0, where

y
def
= ln(t).
We can combine the two constraints, e.g., by using the Bayesian statistics

to combine the prior distribution (describing the regularity of the actual values)
and the distribution corresponding to measurement uncertainty. For the result-
ing posterior distribution, the Maximum Likelihood method of determining the
optimal values of the quantities qj is then equivalent to minimizing the sum
s + λ · t, for some coefficient λ depending on the variance of the prior distribu-
tion.

There are also other more complex regularization techniques; see [4].

How to determine a regularization parameter. As we have mentioned, the actual
value of the regularization parameter depends on the prior distribution and is,
therefore, reasonably subjective. It is therefore desirable to find the value of this
parameter based on the data.

For each value of the parameter λ, we can find the corresponding solution
qj(λ), and, based on this solution, compute the values x(λ) and y(λ) of the
quantities x and y. These two values represent a point on a plane. Points cor-
responding to different values λ form a curve. In these terms, the question of
which value λ to choose can be reformulated as which point on the curve should
we choose?

In practice, often, this curve has a clear turning point, a point that is distinct
from others – as a point at which the curve “curves” the most. In such cases,



when we have an L-shaped curve, it is reasonable to select the turning point as
the point corresponding to the solution. This idea often leads to a good solution;
see, e.g., [1, 2].

In line with the above description, the desired point is selected as a point

at which the absolute value |C| of the curvature C =
x′′ · y′ − y′′ · x′

((x′)2 + (y′)2)3/2
takes

the largest possible value; here, as usual, x′ denotes the derivative
dx

dλ
, and x′′

denotes the second derivative of x with respect to the parameter λ.

Remaining open problem. Empirically, the method of selecting a point with
the largest curvature works well. It is therefore desirable to come up with a
theoretical justification for the use of curvature function – or at least for a class
containing the curvature function.

What we do in this paper. We provide such a justification: specifically, we show
that reasonable properties select a class of functions that include curvature.

2 Analysis of the Problem

Let us first analyze the invariance properties of curvature.

Scale-invariance. The numerical values of each quantity depend on the selection
of a measuring unit. For example, if instead of meters, we use centimeters, then
all numerical values get multiplied by 100. In general, if we select a new mea-
suring unit which is c times smaller than the previous one, then all numerical
values get multiplied by c.

If we change a measuring unit for a to a new one which is ca time smaller,
then the numerical values of ai and ai − fi(q1, . . . , qn) get multiplied by ca. As

a result, the sum s =
n∑

i=1

(ai − fi(q1, . . . , qn))
2 gets multiplied by c2a, and the

original value x = ln(s) changes to x+∆x, where we denoted ∆x
def
= ln(c2a).

Similarly, if we change a measuring unit for q to a new one which is cq time
smaller, then the numerical values of qj and qj − qj′ get multiplied by cq. As a
result, the sum t =

∑
(qj − qj′)

2 gets multiplied by c2q, and the original value

y = ln(t) changes to y +∆y, where we denoted ∆y
def
= ln(c2q).

Under these changes x(λ) → x(λ)+∆x and y(λ) → y(λ)+∆y, the derivatives
do not change – since ∆x and ∆y are constants – and thus, the curvature does
not change. Thus, the curvature is invariant under these scale transformations.

Invariance under re-scaling of parameters. Instead of the original parameter λ,
we can use a new parameter µ for which λ = g(µ). This re-scaling of a parameter
does not change the curve itself and thus, does not change its curvature. So, the
curvature is invariant under these scale transformations.



Our idea. Our main idea is to describe all the functions which are invariant with
respect to both types of re-scalings.

3 Main Result

Definition. By a parameter selection criterion (or simply criterion, for short),
we mean a function F (x, y, x′, y′, x′′, y′′) of six variables. We say that the pa-
rameter selection criterion F (x, y, x′, y′, x′′, y′′) is:

– scale-invariant if for all possible values ∆x and ∆y, we have

F (x+∆x, y +∆y, x
′, y′, x′′, y′′) = F (x, y, x′, y′, x′′, y′′);

– invariant w.r.t. parameter re-scaling if for every function g(z) and for the
functions x̃(µ) = x(g(µ)) and ỹ(µ) = y(g(µ)), we have

F (x̃, ỹ, x̃′, ỹ′, x̃′′, ỹ′′) = F (x, y, x′, y′, x′′, y′′).

Notation. By C(x, y, x′, y′, x′′, y′′), we denote the parameter selection criterion
corresponding to curvature.

Comment. Once a criterion is selected, for each problem, we use the value λ for
which the value F (x(λ), y(λ), x′(λ), y′(λ), x′′(λ), y′′(λ)) is the largest.

Main result. A parameter selection criterion which is scale-invariant and in-
variant w.r.t. parameter re-scaling if and only if it has the form

F (x, y, x′, y′, x′′, y′′) = f

(
C(x, y, x′, y′, x′′, y′′),

x′

y′

)

for some function f(C, z).

Proof.

1◦. For each tuple (x, y, x′, y′, x′′, y′′), by taking ∆x = −x and ∆y = −y, we con-
clude that F (x, y, x′, y′, x′′, y′′) = F (0, 0, x′, y′, x′′, y′′). Thus, we conclude that

F (x, y, x′, y′, x′′, y′′) = F0(x
′, y′, x′′, y′′), where we denoted F0(x

′, y′, x′′, y′′)
def
=

F (0, 0, x′, y′, x′′, y′′), i.e., we conclude that the value of the parameter selection
criterion does not depend on x and y at all.

In terms of the function F0, invariance w.r.t. parameter re-scaling means that
F0(x̃

′, ỹ′, x̃′′, ỹ′′) = F0(x
′, y′, x′′, y′′).

2◦. When we go from the original function x(λ) to the new function x̃(µ) =
x(g(µ)), the chain rule for differentiation leads to x̃′ = x′

· g′ and thus, x̃′′ =
x′′

· (g′)2 + x′
· g′′. Similarly, ỹ′ = y′ · g′ and ỹ′′ = y′′ · (g′)2 + y′ · g′′.

In particular, at the point where g′ = 1, we have x̃′ = x, x̃′′ = x′′ + x′
· g′′,

ỹ′ = y′, and ỹ′′ = y′′ + y′ · g′′, and thus, invariance w.r.t. parameter re-scaling
means that F0(x

′, y′, x′′ +x′
· g′′, y′′ + y′ · g′′) = F0(x

′, y′, x′′, y′′). This is true for



every possible values of g′′. In particular, for g′′ = −

y′′

y′
, we have y′′ + y′ · g′′ = 0

and thus,

F0(x
′, y′, x′′, y′′) = F0

(
x′, y′, x′′

− x′
·

y′′

y′
, 0

)
.

Since

x′′
− x′

·

y′′

y′
= C ·

((x′)2 + (y′)2)3/2

y′
,

we thus conclude that

F0(x
′, y′, x′′, y′′) = h(C, x′, y′),

where

h(C, x′, y′)
def
= F0

(
x′, y′, C ·

((x′)2 + (y′)2)3/2

y′
, 0

)
.

For the new function h(C, x′, y′), since the curvature is invariant w.r.t. pa-
rameter re-scaling, invariance means that h(C, x̃′, ỹ′) = h(C, x′, y′). This means
that

h(C, x′, y′) = h(C, x′
· g′, y′ · g′).

This is true for every possible values of g′. In particular, for g′ =
1

x′
, we have

x′
· g′ = 1 and thus,

F (x, y, x′, y′, x′′, y′′) = F0(x
′, y′, x′′, y′′) = h(C, x′, y′) = h

(
C, 1,

y′

x′

)
,

i.e., F (x, y, x′, y′, x′′, y′′) = f

(
C,

y′

x′

)
for f(C, z)

def
= h(C, 1, z).

The statement is proven.
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