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ABSTRACT. For the Schrödinger equation ut+ iuxx = ⟨∇⟩β [u2], β ∈ (0, 1/2), we estab-

lish local well-posedness in Hβ−1+ (note that if β = 0, this matches, up to an endpoint,

the sharp result of Bejenaru-Tao, [4]). Our approach differs significantly from the previous

one - we use normal form transformation to analyze the worst interacting terms in the non-

linearity and then show that the remaining terms are (much) smoother. In particular, this

allows us to conclude that u− e−it∂2

xu(0) ∈ H−

1

2 (R1), even though u(0) ∈ Hβ−1+.

In addition, as a byproduct of our normal form analysis, we obtain a Lipschitz continuity

property in H−

1

2 of the solution operator (which originally acts on Hβ−1+), which is new

even in the case β = 0. As an easy corollary, we obtain local well-posedness results for

ut + iuxx = ⟨∇⟩βz⟨∇⟩βz.

Finally, we sketch an approach to obtain similar results for the equations ut + iuxx =
⟨∇⟩β [uū] and ut + iuxx = ⟨∇⟩β [ū2].

1. INTRODUCTION

In this paper, we will be concerned with local solutions of the quadratic Schrödinger

equations

(1)

∣∣∣∣
ut + iuxx = Q(u, u) : (t, x) ∈ R

1
+ ×R

1

u(0, x) = u0

The problem has received a lot of attention in the last twenty years and a full account of

the appropriate results and open questions is beyond of the scope of the current project.

We will however outline a selected list of recent works, which has some bearing on the

problem that we are studying.

The classical results of the subject go back to Tsutsumi, [22], which establishes local

well-posedness for data in Hs, s ≥ 0 for all quadratic nonlinearities (i.e. |Q(u, u)| ≤
C|u|2). This is in a way optimal, since for Hamiltonian models (i.e. with Q(eiθu, eiθu) =
eiθQ(u, u)), it is well-known that there is ill-posedness in Hs, s < 0 - this is in the work

of Kenig-Ponce-Vega, [13], see also Christ, [6] and Christ-Colliander-Tao, [7] for further

results in this direction.

For the non-Hamiltonian model, several different models have been considered in the

literature, the most popular being Q(u, u) = u2, uū, ū2. Each of these comes with its

own specifics and the corresponding local well-posedness results reflect that. Regarding

the cases u2, ū2, it has been show by Kenig-Ponce-Vega [13], that these are well posed in
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H− 3
4
+ by means of bilinear estimates in Xs,b spaces. Moreover, such bilinear estimates

necessarily fail at the critical index −3/4, [13, 15]. Regarding the nonlinearity uū, it has

been shown, that the problem is well-posed in H− 1
4
+, [13] and this turns out to be sharp1

,[14]. On the other hand, the results for uū may be pushed down to the really sharp index

s = −1/2+, if one is willing to put some homogeneous Sobolev space requirements on

the low-frequency portion of the data, [14]

Regarding the nonlinearity u2, the results of [13] were extended to the sharp index s ≥
−1,by Bejenaru-Tao [4], see also the work Bejenaru-Da Silva, [3] for the same result in

two spatial dimensions. As we have mentioned, the spaces Xs,b by themselves, could

not accommodate such low regularity of solutions, so the authors had to come up with

further refinements of these spaces, in which they were able to preform their fixed point

arguments, see also Nishimoto, [17] for interesting commentary on these developments.

For the nonlinearity ū2, it has been shown that similar techniques may be used to obtain

l.w.p. in Hs, s ≥ −1, Nishimoto, [16]. It also should be noted that in all of these papers

(with the exception of [17]), it is hard to show optimal l.w.p. for Schrödinger equations

with nonlinearity of the formQ(u, u) = c1u
2+c2ū

2, due to the specifics of the approaches.

The result in [17] achieves this goal, at the expense of further layer of complexity, involved

in the definition of the spaces and the corresponding bilinear estimates that need to be

shown.

Our main result concerns the following specific generalization of the quadratic Schrödinger

equation (1)

(2)

∣∣∣∣
ut + iuxx = ⟨∇⟩β[u2] : (t, x) ∈ R

1
+ ×R

1

u(0, x) = u0 ∈ H−α,

where β ≥ 0. This model has been well-studied over the years, mainly the case β = 1.

We should first mention, that the corresponding equation is ill-posed, in the sense that the

flow map u0 → u experiences norm inflation, Christ [6], see also [7] for related results.In

the work of Stefanov, [20] existence of weak solutions in H1 was shown, under the addi-

tional smallness requirement supx |
∫ x

−∞
u0(y)dy| ≪ 1. Similar results2 (in R

n, n ≥ 1),

were obtained for the more general Ginzburg-Landau equation in the work of Han-Wang-

Guo, [11]. Finally, we mention some recent local well-posedness results, which were

obtained for (not necessarily small) data in weighted Sobolev spaces by Bejenaru, [1, 2]

and Bejenaru-Tataru, [5].

While some of the positive results mentioned above surely will extend to the case β ∈
(0, 1), it seems that this model has not been considered in the literature. One of the purposes

of the current paper is to address the question for local well-posedness of this problem.

An alternative goal is to develop an alternative proof of the known results in the case

β = 0, which is within the framework of the standard Xs,b spaces. We achieve that by

the technique of normal forms. This method has been used extensively in the last twenty

years, to treat global small solutions of models with low-power nonlinearities - see the

pioneering work of Shatah, [18] and more recent developments in Germain-Masmoudi-

Shatah [9], [10] and Shatah, [19].

1At least as far as the uniform continuity of the solution map goes
2again for data small in L1 sense and so that it belongs to some smooth modulation spaces
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Informally, the method starts with a preconditioning of the equation first (via a change

of variables - normal form). The particular type of the normal form is a bilinear pseudo-

differential operator, which solves explicitly the Schrödinger equation with right-hand side,

which consists of the most troublesome terms in the nonlinearity, see (34) below. Then, one

needs to argue that the remaining terms of the solution (which are obtained through a fixed

point argument, involving themselves, the normal form and various interactive terms) are

better behaved - in our case, the are (much) smoother than the free solution. As a byproduct

of this approach, we obtain more precise information on these correction terms (see (3)).

To the best of our knowledge, this paper is the first one that treats low regularity solutions,

with the method of normal forms.

Our main results recover (up to an endpoint) the sharp results of [4], [17] in the case

β = 0, but of course covers also the new cases β ∈ (0, 1/2), where the results are also

arguably sharp. We also obtain the Lipschitz property (4) of the solution map, which is a

new feature, even in the case β = 0.

More specifically,

Theorem 1. Let β ∈ [0, 1
2
) and α : 1

2
< α < 1− β. Then the equation (2) is locally well-

posed in H−α(R1). More specifically, for every u0 ∈ H−α(R1), there exists a non-trivial

T > 0, so that the equation (2) has an unique solution u ∈ C([0, T ), H−α).
Moreover, for fixed δ : 0 < δ < 1−α−β

10
, there is the following decomposition

(3) u = e−it∂2
xu0 + h+ w,

where h ∈ L∞
t H

1
2
−α

x ∩X1−α−δ,δ, w ∈ X− 1
2
, 1
2
+δ. In particular u− e−it∂2

xu0 ∈ L∞
t H

− 1
2

x .

We also have the following Lipschitz property of the solution map of (2). Let N > 0 and

u0, v0 ∈ H−α(R1) : ∥u0∥H−α < N, ∥v0∥H−α < N , so that u0 − v0 ∈ H− 1
2 . Then the

corresponding solutions (defined on a common non-trivial time interval (0, TN)) satisfy

(4) ∥u− v∥
L∞

T
H

−
1
2

x

≤ CN∥u0 − v0∥
H

−
1
2

x

.

where CN depends only on N .

Remarks:

• There are of course well-posedness results in the cases α ∈ (0, 1/2) and they are

easier to obtain. We chose to include only those with α > 1/2 in order to simplify

our exposition.

• The Lipschitz property (4) is new even in the case β = 0.

• We do not obtain l.w.p. for the case α = 1 − β, which in the case β = 0, will

correspond to the endpoint case of s = 1, considered in [4]. Our arguments would

imply such a statement, at least in the case of a Besov-1 space version of the main

result.

• While our arguments fail at β ≥ 1/2, we cannot claim sharpness in this regard.

However, we very strongly suspect that this is the case. That is, we conjecture that

some form of ill-posedness must occur, when one considers solutions to (2) with

β = 1/2.
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We also have the following corollary. Consider

(5)

∣∣∣∣
zt + izxx = ⟨∇⟩βz⟨∇⟩βz (t, x) ∈ R

1
+ ×R

1

z(0, x) = z0

Setting u = ⟨∇⟩βz yields the equation

(6) ut + iuxx = ⟨∇⟩β[u2],

for u. By Theorem 1, we conclude that (6) is well-posed in H−α, for all 1
2
< α < 1 − β.

Therefore, in terms of z, we have well-posedness in H−α+β

Corollary 1. Let β ∈ [0, 1/2) and 0 < γ < 1−2β. The equation (5) is well posed in H−γ .

The paper is organized as follows. In Section 2, we introduce the Xs,b spaces, as well

as Tao’s theory of bilinear estimates with Xs,b entries, [21]. In Section 3, we construct the

normal forms and set the function spaces that will be used. In Section 3.2, we provide the

basic estimates for the normal form transformation. In Section 3.3, we state and prove the

bilinear and trilinear estimates, needed for the fixed point argument. This is where the main

technical difficulties are present. In Section 3.4, we conclude the proof, by reducing it to

the bilinear and trilinear estimates proved in Section 2 and Section 3.3. In Section 4, we

give some ideas on how to approach the question for local well-posedness for the problem

with nonlinearities of the form ⟨∇⟩β[uū] and ⟨∇⟩β[ū2].

2. SOME NOTATIONS AND PRELIMINARIES

2.1. Littlewood-Paley projections and Paraproducts. Introduce the Fourier transform

and its inverse via

ĥ(ξ) =

∫

R1

h(x)e−ixξdx,

h(x) =
1

2π

∫

R1

ĥ(ξ)eixξdx.

Let Φ : R1 → R
1 be a positive, smooth even function supported in {ξ : |ξ| ≤ 2}, and

Φ(ξ) = 1 for all |ξ| ≤ 1. Define φ(ξ) = Φ(ξ)− Φ(2ξ), which is supported in the annulus

1/2 ≤ |ξ| ≤ 2. Clearly Φ(ξ) +
∑

k∈Z+ φ(2−kξ) = 1 for all ξ.

The kth Littlewood-Paley projection is P̂kf(ξ) = φ(2−kξ)f̂(ξ) for k ∈ Z
+. Similarly,

P̂≤0f(ξ) = Φ(ξ)f̂(ξ), and for any subsetA ⊆ Z, we denote P̂Af(ξ) =
∑

k∈A φ(2
−kξ)f̂(ξ)

with the summation replaced by Φ(ξ) when necessary. The kernels of Pk, P≤0 are uni-

formly integrable and thus Pk, P≤0 : Lp → Lp for 1 ≤ p ≤ ∞ with the bound equivalent

to ||Φ̂(ξ)||L1 (independent of k). We will often use the notation gk in place of Pkg.

Define the operator ⟨∇⟩α : Hs → Hs−α by ⟨̂∇⟩αg(ξ) = (1+ ξ2)1/2ĝ(ξ). Then ∥g∥Hs =
∥⟨∇⟩sg∥L2 , so ∥gk∥Hs ∼ 2ks∥g∥L2 and ∥g≤0∥Hs ∼ ∥g∥L2 .

Note that in order to simplify the exposition, we will use the notation somewhat loosely

in the sense that gk will always denote a function so that ĝk(ξ) = ψ(2−kξ)ĝ(ξ), where

ψ ∈ C∞
0 ([1/2, 2]) (but the function ψ may change from line to line).
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Next, we introduce the following basic decomposition from the theory of the paraprod-

ucts. For any two Schwartz functions f, g and k ∈ Z,

Pk(fg) = Pk

(∑

l,m

flgm

)
= Pk


 ∑

|l−m|≤3

flgm


+ Pk


 ∑

|l−m|>3

flgm


 .

Furthermore, in the first sum, we have the restriction min(l,m) > k − 5; and in the

second sum, we have |max(l,m) − k| ≤ 3. Otherwise the supp f̂lgm will be away from

{ξ : |ξ| ∼ 2k}, and thus Pk(flgm) = 0. We refer to the first summand as ”high-high

interaction” terms, and the second summand as ”high-low interaction” terms.

2.2. Xs,b spaces and bilinear L2 multipliers. For s, b ∈ R
1 and a function h of one

variable, we define the (inhomogeneous)Xs,b
τ=h(ξ) spaces to be the completion of S(R×R)

with respect to the norm3

(7) ∥u(t, x)∥Xs,b

τ=h(ξ)
=

(∫

R1×R1

(1 + ξ2)s(1 + |τ − h(ξ)|)2b|ũ(τ, ξ)|2 dτ dξ

) 1
2

where ũ(τ, ξ) =

∫

R1×R1

u(t, x)e−i(tτ+xξ) dt dx. Note that Xs,0
τ=h(ξ) = L2

tH
s
x.

For Shrödinger’s equations, we use h(ξ) = ±ξ2. For convenience, we will shorten the

notation Xs,b := Xs,b
τ=ξ2 . Sometimes it will be necessary to use the space Xs,b

τ=−ξ2 , and it

will be distinguished properly.

The usefulness of Xs,b spaces come from the fact that it measures smoothness of a func-

tion not only in the classical Sobolev sense, but also in terms of the interaction between

space and time frequencies. More specifically, for f ∈ L2, the free solution e−it∂2
xf ∈ L2

has no additional smoothness in the Sobolev scale than the initial data, but it is indeed very

smooth in the weight τ − ξ2 (and in fact lives, on the Fourier side, exactly on the parabola

τ = ξ2).

Xs,b spaces can be used to study local-in-time solutions. This is usually done by multi-

plying the solution by a smooth cutoff function. There is the following classical estimate

Proposition 1. Let Φ be a smooth cutoff adapted to (−2, 2) as defined as in Section 2.1. If

u(t, x) solves (∂t + i∂2x)u = F and u(0, x) = u0(x), then for T > 0, s ∈ R
1 and δ > 0,

there exists CT,δ, so that

∥Φ(t/T )u∥
Xs, 12+δ ≤ CT,δ(||u0||Hs + ||F ||

Xs,− 1
2+δ).

We give some additional properties of Xs,b norms.

3All of this makes perfect sense in higher spatial dimensions, but in this paper, we will confine our atten-

tion to the case x ∈ R
1
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Using ũ(τ, ξ) = ũ(−τ,−ξ), we obtain

(8) ∥u(t, x)∥Xs,b

τ=ξ2
=

∫

R1×R1

(1 + ξ2)s(1 + |τ + ξ2|)2b|ũ(τ, ξ)|2 dτ dξ = ∥u∥Xs,b

τ=−ξ2
.

Also we have the duality relation: (Xs,b
τ=ξ2)

∗ = X−s,−b
τ=−ξ2 , which also allows us to define

the equivalent norm

(9) ∥u(t, x)∥Xs,b

τ=ξ2
= sup

∥v∥
X

−s,−b

τ=−ξ2

=1

∣∣∣∣
∫

R1×R1

u(t, x)v(t, x) dt dx

∣∣∣∣ .

Note that using (8), we can also write

(10) ∥u(t, x)∥Xs,b

τ=ξ2
= sup

∥v∥
X

−s,−b

τ=ξ2

=1

∣∣∣∣
∫

R1×R1

u(t, x)v(t, x) dt dx

∣∣∣∣ .

Observe that for u, v ∈ Xs,b
τ=ξ2 ,

∥uv∥Xs,b

τ=ξ2
= sup

∥w∥
X

−s,−b

τ=−ξ2

=1

∣∣∣∣
∫

R1×R1

u(t, x)v(t, x)w(t, x) dt dx

∣∣∣∣

= sup
∥v∥

X
−s,−b

τ=−ξ2

=1

∣∣∣∣
∫

R1×R1

ûv(τ, ξ)ŵ(−τ,−ξ) dt dx

∣∣∣∣

= sup
∥w∥

X
−s,−b

τ=−ξ2

=1

∣∣∣∣∣∣

∫
τ1 + τ2 + τ3 = 0;
ξ1 + ξ2 + ξ3 = 0

û(τ1, ξ1)v̂(τ2, ξ2)ŵ(τ3, ξ3) dσ

∣∣∣∣∣∣
.(11)

where dσ is the measure on the given hyperplane inherited from R
3 ×R

3.

Next, we point out an useful relationship between the mixed Lebesgue spaces and the

Xs,b spaces, which is based on the Strichartz estimates for the free Schrödinger equation.

Namely, since we have ∥e−it∂2
xf∥Lq

tL
r
x
≤ CStr.∥f∥L2 , for all pairs (q, r) : 2 ≤ q, r ≤ ∞,

2
q
+ 1

r
= 1

2
, we may conclude the following estimate

(12) ∥u∥Lq
tL

r
x
≤ CStr.,δ∥u∥X0, 12+δ .

for all Strichartz pairs (q, r) : 2
q
+ 1

r
= 1

2
and for all δ > 0.

Motivated from the expression (11), we introduce the bilinear L2 multiplier norm. For

the rest of the section, we generally follow Tao’s setup, [21].

Let τ = (τ1, τ2, τ3) ∈ R
3, ξ = (ξ1, ξ2, ξ3) ∈ R

3. Let Γ be a hyperplane in R
3 ×R

3 such

that τ1 + τ2 + τ3 = 0 and ξ1 + ξ2 + ξ3 = 0, and let dσ be the measure on Γ inherited from

R
3 ×R

3.
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Given a function m(τ, ξ) defined on Γ, we define ||m||M to be the smallest constant C
such that the following inequality holds:

(13)

∣∣∣∣
∫

Γ

m(τ, ξ)u(τ1, ξ1)v(τ2, ξ2)w(τ3, ξ3) dσ

∣∣∣∣ ≤ C∥u∥L2
τ1,ξ1

∥v∥L2
τ2,ξ2

∥w∥L2
τ3,ξ3

.

From the definition (13), we claim the Comparison Principle. That is, if |m(τ, ξ)| ≤
M(τ, ξ) for all (τ, ξ) ∈ Γ, then ∥m∥M ≤ ∥M∥M.

2.3. Estimates on bilinear L2 multiplier norms from [21]. We introduce new notations

which will be useful for working with these multipliers. Let

ũN,L(τ, ξ) = χ[N,2N ](|ξ|)χ[L,2L](|τ − ξ2|)ũ(τ, ξ),

By using capitalized letters N,L, we will always assume that N,L are dyadic numbers,

i.e. N = 2j , L = 2l for some j, l ∈ Z.

For εj = ±1 for j = 1, 2, 3, following multipliers will be used often to decompose

bilinear operators with respect to Fourier frequencies of each term:

χ(ε1,ε2,ε3) := χ[H,2H](|ε1ξ
2
1 + ε2ξ

2
2 + ε3ξ

2
3 |)

3∏

j=1

χ[Nj ,2Nj ](|ξj|)χ[Lj ,2Lj ](|τ − εjξ
2|).

Note that χ(ε1,ε2,ε3) depends on H,N1, N2, N3, L1, L2, L3. The following statement is

Proposition 11.1 in [21].

Proposition 2 ((+,+,+) case). Let H,N1, N2, N3, L1, L2, L3 > 0 satisfy Nmax ∼ Nmed,

H ∼ N2
max and Lmax ∼ max(H,Lmed). Then we have the following estimates.

(1) In the exceptional case where Nmax ∼ Nmin and Lmax ∼ H ,

(14) ∥χ(+,+,+)∥M ≤ CL
1
2
minL

1
4
med

(2) Otherwise (i.e. Nmin ≪ Nmax or Lmax ≁ H), there is an absolute constant C, so

that

(15) ∥χ(+,+,+)∥M ≤ C
L

1
2
minL

1
2
med

N
1
2
max

The following Proposition covers the other important case - namely, when not all εj, j =
1, 2, 3 match. Note that while almost all the cases below already appear in the work of Tao,

[21], there is the estimate (17), which is not stated explicitly4 (and shall be crucial for us in

the sequel).

Proposition 3 ((+,+,−) case). Let H,N1, N2, N3, L1, L2, L3 > 0 satisfy Nmax ∼ Nmed,

H ∼ N1N2 and Lmax ∼ max(H,Lmed). Then we have the following estimates.

(1) There is an absolute constant C so that

(16) ∥χ(+,+,−)∥M ≤ CL
1
2
minN

1
2
min

4although it is implicit in the arguments in [21]
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(2) There is an absolute constant C so that

(17) ∥χ(+,+,−)∥M ≤ Cmin

(
L1L3

N2

,
L2L3

N1

) 1
2

(3) If L3 = Lmax

(a) and N1 ∼ N2 ∼ N3 holds, then there is an absolute constant C so that

(18) ∥χ(+,+,−)∥M ≤ CL
1
2
minL

1
4
med.

(b) and N1 ∼ N2 ∼ N3 does not hold, then there is an absolute constant C so

that

(19) ∥χ(+,+,−)∥M ≤ C
L

1
2
minL

1
2
med

N
1
2
max

Proof. We will only prove (17). For the others, we refer to [21].

Define the following sets.

A1 = {(τ, ξ) ∈ R
2 : ξ ∼ N1, τ − ξ2 ∼ L1}

A2 = {(τ, ξ) ∈ R
2 : ξ ∼ N2, τ − ξ2 ∼ L2}

A3 = {(τ, ξ) ∈ R
2 : ξ ∼ N3, τ + ξ2 ∼ L3}

To prove (17), let Nj = Nmin. Define R = {(τ, ξ) ∈ R
2 : |ξ| ≤ εNmin}. Then we can

find m = O(1/ε) numbers ξ0j ∼ Nj , so that the sets of type (0, ξ0j ) + R covers the set A.

Then we can apply the Box Localization (Corollary 3.13 of [21]) so that

∥χ(+,+,−)∥M ≤ C∥
3∏

k=1

χAk∩[(0,ξ
0
k
)+R](τk, ξk)∥M

for some ξ0k ∈ Ak so that ξ01 + ξ02 + ξ03 ≤ εNmin. Denote A0
k = Ak ∩ [(0, ξ0k) +R]. Now by

comparison principle and Corollary 3.10 of [21],

∥χ(+,+,−)∥M ≤ C∥
3∏

k=2

χA0
k
(τk, ξk)∥M

≤ C|{(τ2, ξ2) ∈ A0
2 : (τ, ξ)− (τ2, ξ2) ∈ A0

3}|
1
2

for some (τ, ξ) ∈ A1 + 2R. Note that ξ ∼ N1 for ε > 0 small.

We have τ2 = ξ22 +O(L2) and τ − τ2 = −(ξ− ξ2)
2 +O(L3). First we can remove τ2 by

restricting it to an interval of length at most O(min(L2, L3)) for a fixed ξ2. Furthermore,

these restrictions give ξ22 − (ξ − ξ2)
2 = τ + O(max(L2, L3)); that is 2ξξ2 = τ + ξ2 +

O(max(L2, L3)). So

∥χ(+,+,−)∥M ≤ C[min(L2, L3)|{ξ2 ∼ N2 : ξ2 =
τ + ξ2

2ξ
+O(max(L2, L3)/ξ)}| ]

1
2 .
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Clearly, ξ2 above is contained in an interval of length at most O(max(L2, L3)/N1). So

we get the estimate

∥χ(+,+,−)∥M ≤ C

(
L2L3

N1

) 1
2

.

By reversing the role of A1, A2 and following the same arguments, we also obtain

∥χ(+,+,−)∥M ≤ C

(
L1L3

N2

) 1
2

.

This proves (17). �

We now apply Proposition 2 and Proposition 3 to deduce some important bilinear esti-

mates, which will be one of the main tools in the sequel.

Lemma 1. Let T > 0 and u, v ∈ S((−T, T ) × R
1). Then for δ > 0, k > 0, and some

C = C(δ, T );

∥(ukv≪k)∼k∥L2
t,x

≤ C 2(−
1
2
+δ)k∥u∥

X0, 12+δ∥v∥X0, 12+δ(20)

∥(ukv∼k)≪k∥L2
t,x

≤ C 2(−
1
2
+δ)k∥u∥

X0, 12+δ∥v∥X0, 12+δ(21)

∥ukv∥L2
t,x

≤ C∥u∥
X

0, 12+δ

T

∥v∥
X

0, 12+δ

T

(22)

In addition, there are the following estimates concerning the bilinear form (u, v) → uv̄

∥(ukvk)k∥L2
tx
≤ C 2(−

1
2
+δ)k∥u∥

X0, 12+δ∥v∥X0, 12+δ(23)

∥(ukv≪k)k∥L2
tx
≤ C 2(−

1
2
+δ)k∥u∥

X0, 12+δ∥v∥X0, 12+δ(24)

∥ukv∥L2
tx
≤ C∥u∥

X
0, 12+δ

T

∥v∥
X

0, 12+δ

T

(25)

Remark: It is easy to see from the arguments below that constants on the right side of

(20), (21), (23) and (24) can be replaced by 2(−1/2+ε)kCT,δ,ε for any ε > 0. But we will

not take advantage of this in the sequel, thus we have allowed the constants to depend on

δ > 0 only to to keep the involved parameters to the minimum.

Proof. We first dispense with the easy estimates (22) and (25). Indeed, taking into ac-

count the boundedness of P∼k and P≪k on all Lp spaces, we estimate both expressions by

Hölder’s and (12)

CT 1/4∥u∥L8
T
L4
x
∥v∥L8

T
L4
x
≤ CδT

1/4∥u∥
X0, 12+δ∥v∥X0, 12+δ ,

since q = 8, r = 4 is a Strichartz pair.

For the estimates (20) and (21), we use Proposition 3. We use the partition of unity

χ(+,+,+), where N1, N2, N3 indicates the respective frequencies of u, v, uv. Denote by∑
, summation over N1, N2, N3, L1, L2, L3 ≥ 1. Note that Nmax ∼ 2k and the relation

Lmax ∼ max(Lmed, N
2
max), which holds trivially by the constraints, see [21].
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For (20), we apply (15) to obtain

∥(ukv≪k)∼k∥L2
t,x

= sup
∥w∥

L2
t,x

=1

∣∣∣∣
∫

R1×R1

uk(t, x)v≪k(t, x)w∼k(t, x) dt dx

∣∣∣∣

= sup
∥w∥

L2
t,x

=1

∣∣∣∣
∫

Γ

∑
χ(+,+,+)ũk(τ1, ξ1)ṽ≪k(τ2, ξ2)w̃∼k(τ3, ξ3) dσ

∣∣∣∣

≤ C
∑ 1

L
1
2
+δ

1 L
1
2
+δ

2

L
1
2
minL

1
2
med

N
1
2
max

∥u∥
X0, 12+δ∥v∥X0, 12+δ

≤ C
∑ 1

Lδ
medN

1
2
max

∥u∥
X0, 12+δ∥v∥X0, 12+δ

≤ Cδ2
(− 1

2
+δ)k∥u∥

X0, 12+δ∥v∥X0, 12+δ .

(21) is estimated exactly the same way as (20).

To prove (23)and (24), we use Proposition 3. We use the partition of unity χ(+,+,−),

where N1, N2, N3 indicates the respective frequencies of u, uv, v. Denote by
∑

, summa-

tion over N1, N2, N3, L1, L2, L3 ≥ 1. Note Lmax ∼ max(Lmed, N1N2) and N1 ∼ 2k.

For both (23) and (24),N2 ∼ Nmax ∼ 2k. Since the calculations will be almost identical,

we will only prove (23) here. We apply (17) to obtain

∥(ukv∼k)∼k∥L2 = sup
∥w∥

L2=1

∣∣∣∣
∫

R1×R1

uk(t, x)v∼k(t, x)w∼k(t, x) dt dx

∣∣∣∣

= sup
∥w∥

L2=1

∣∣∣∣
∫

Γ

∑
χ(+,+,−)ũk(τ1, ξ1)ṽ∼k(τ3, ξ3)w̃∼k(τ2, ξ2) dσ

∣∣∣∣

≤ C
∑ 1

L
1
2
+δ

1 L
1
2
+δ

3

L
1
2
1L

1
2
3

N
1
2
2

∥uk∥L2
t,x
∥v∼k∥L2

t,x

≤ Cδ2
(− 1

2
+δ)k∥u∥

X0, 12+δ∥v∥X0, 12+δ

�

We now provide a technical corollary, which allows us to put ∥v∥
X0, 12−δ norms on the

right hand sides of (23), (24) and (25) at the expense of slightly less gain in 2k.

Corollary 2. With the assumptions in Lemma 1, we have

∥(ukvk)k∥L2
tx
≤ C 2(−

1
2
+5δ)k∥u∥

X0, 12+δ∥v∥X0, 12−δ(26)

∥(ukv≪k)k∥L2
tx
≤ C 2(−

1
2
+5δ)k∥u∥

X0, 12+δ∥v∥X0, 12−δ(27)

∥ukv∥L2
tx
≤ C22δk∥u∥

X
0, 12+δ

T

∥v∥
X

0, 12−δ

T

(28)

Proof. We will show only (26), the others follow similar route. Indeed, we use a com-

bination of Hölders with the Sobolev embedding ∥uk∥L∞

x
≤ C2k/2∥uk∥L2

x
to obtain the
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following estimate

∥(ukvk)k∥L2
tx
≤ ∥uk∥L∞

tx
∥vk∥L2

tx
≤ C2k/2∥uk∥L∞

x L2
x
∥v∥X0,0 ≤ Cδ2

k/2∥u∥
X0, 12+δ∥v∥X0,0 .

For a fixed function u, we are set to use complex interpolation between this and (23).

Noting that [X0, 1
2
+δ, X0,0]4δ = X0, 1

2
−δ−4δ2 , we conclude

∥(ukvk)k∥L2
tx
. 2−( 1

2
−4δ−ε+4δε)k∥u∥

X0, 12+δ∥v∥X0, 12−δ−4δ2 . 2−k( 1
2
−5δ)∥u∥

X0, 12+δ∥v∥X0, 12−δ

where we have let 0 < ε ≤ δ in the last inequality.

For the proof of (28), we interpolate between (25) and the estimate

∥ukv̄∥L2
tx
≤ C∥uk∥L∞

tx
∥v∥L2

tx
≤ Cδ2

k/2∥uk∥X0, 12+δ∥v∥X0,0

�

The next lemma is new and addresses one situation in the (generally unfavorable) case

(22), where one still can get a gain of almost half derivative. For a smooth function u ∈
S(R1+1), we define

û+(t, ξ) := û(t, ξ)χ(0,∞)(ξ), û−(t, ξ) := û(t, ξ)χ(−∞,0)(ξ).

Lemma 2. For all δ > 0 small and k > 0, there exists a constant C = Cδ > 0 so that

(29) ||(u+∼kv
−
∼k)∼k||L2 ≤ C 2(−

1
2
+δ)k||u||

X0, 12+δ ||v||X0, 12+δ .

Proof. We present the argument for ||(u+k v
−
k )

−
k ||L2 . The proof for the other case ||(u+k v

−
k )

+
k ||L2

is analogous.

First we define the following sets.

A := {(τ, ξ)|ξ > 0, ξ ∼ 2k, |τ − ξ2| ∼ L1}

B := {(τ, ξ)|ξ < 0, ξ ∼ 2k, |τ − ξ2| ∼ L2}

C := {(τ, ξ)|ξ < 0, ξ ∼ 2k}

Then we need to show

(30) ||χA(τ1, ξ1)χB(τ2, ξ2)χC(τ1 + τ2, ξ1 + ξ2)||[3;R1+1] .
L

1
2
1L

1
2
2

2
k
2

.

Note that if max(L1, L2) & 22k, then (14) gives us the desired statement. Otherwise, we

have max(L1, L2) ≪ 22k.

For some ε > 0 small, we partitionA (similarlyB) intom = O(1/ε) subsetsA1, · · · , Am

so that the diameter of Aj (similarly Bj) is less than ε2k for all 1 ≤ j ≤ m. Then, remov-

ing the terms when χAi
χBj

χC = 0, we can omit χC from the expression (30).

We have the following general estimate

(31) ||χA(ξ1)χB(ξ2)||[3;Z] ≤ |{ξ1 ∈ A : ξ − ξ1 ∈ B}|
1
2 .

for some ξ ∈ Z.
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So the left side of (30) is bounded by

(32)

m∑

i,j=1

|{(ξ1, τ1) ∈ Ai : (τ, ξ)− (τ1, ξ1) ∈ Bj}|
1
2

where τ, ξ are fixed. Note that (ξ, τ) ∈ C, so ξ ∼ −2k. Writing out the condition of the

set gives τ1 = ξ21 +O(L1) and τ − τ1 = (ξ − ξ1)
2 +O(L2). So, for a fixed ξ1, the τ1 must

be in an interval of length O(min(L1, L2)). Then (32) is bounded by

m∑

i,j=1

min(L1, L2)
1
2

∣∣{ξ1 > 0, ξ1 ∼ 2k : ξ21 + (ξ − ξ1)
2 = τ +O(max(L1, L2))}

∣∣ 12

We can write ξ21 + (ξ − ξ1)
2 =

ξ2 + (2ξ1 − ξ)2

2
. So the condition given above can be

written as

(ξ1 −
ξ

2
)2 = Cτ,ξ +O(max(L1, L2))

where Cτ,ξ := 2τ−ξ2

4
. Since ξ1 and ξ have the opposite sign, the left hand side of the

above is ∼ 22k. On the other hand, max(L1, L2) ≪ 22k, so Cτ,ξ ∼ 22k. Then we have

|ξ1 − (
ξ

2
+
√
Cτ,ξ)| =

√
Cτ,ξ +O(max(L1, L2))−

√
Cτ,ξ

=
O(max(L1, L2))√

Cτ,ξ +O(max(L1, L2)) +
√
Cτ,ξ

.
O(max(L1, L2))

2k
.

So ξ1 must be contained in an interval of length
O(max(L1, L2))

2k
. Using this interval in

(32) gives the desired estimate (30). �

We remark that interpolation can be applied to the above Lemma as in the proof of

Corollary 2 to replace X0, 1
2
+δ norm on the right side of (29) with X0, 1

2
−δ.

3. PROOF OF THEOREM 1

We first perform a change of variables, which transforms the problem (2) into a problem

with data in L2. Namely, let v : u = ⟨∇⟩αv. A quick calculation then shows that (2)

becomes

(33)

∣∣∣∣
vt + i∂2xv = ⟨∇⟩β−α[⟨∇⟩αv⟨∇⟩αv] : (t, x) ∈ R

1 ×R
1

v(0, x) = ⟨∇⟩−αg =: f ∈ L2(R1).

Thus, we need to study the well-posedness of (33) in the L2 setting.
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3.1. Setting up the normal forms. Introduce G(u, v) := ⟨∇⟩β−α[⟨∇⟩αu⟨∇⟩αv], so that

the nonlinearity in (33) is of the form G(v, v), note G(u, v) = G(v, u). Observe that the

bilinear form G may be written as follows

G(u, v)(x) =
1

4π2

∫
⟨ξ⟩α⟨η⟩α

⟨ξ + η⟩α−β
û(ξ)v̂(η)ei(ξ+η)xdξdη.

We now decompose the form G(v, v) as follows

G(v, v) = G(v≤0, v) +G(v>0, v) = G(v≤0, v) +G(v>0, v≤0) +G(v>0, v>0) =

= G(v≤0, (Id+ P>0)v) +G(v>0, v>0).

Next, we perform a change of variables v → z, v = e−it∂2
xf + z. Clearly, z(0) = 0 and

zt + i∂2xz = G([e−it∂2
xf + z]≤0, (Id+ P>0)[e

−it∂2
xf + z]) +

+G([e−it∂2
xf + z]>0, [e

−it∂2
xf + z]>0)

Clearly, a lot of terms are generated by this transformation. We comment now on the form

of various terms (especially the least favorable ones!), since this will influence our normal

form analysis.

Heuristically, if we expect the z term to be smoother, then the least smooth term is

expected to be G(e−it∂2
xf>0, e

−it∂2
xf>0). Indeed, there are α derivatives acting on each of

the two entries (which free solutions and hence, in general, no better than L2
x smooth) and

β − α derivatives acting on the product itself5. Thus, if we manage to build a smoother

function h, which solves

(34) (∂t + i∂2x)h = G(e−it∂2
xf>0, e

−it∂2
xf>0),

one would be compelled to change variables again, z → w, where z = h + w. Define a

bilinear operator T

T (u, v)(x) =
1

8π2i

∫
⟨ξ⟩α⟨η⟩α

⟨ξ + η⟩α−β

1

ξη
û>0(ξ)v̂>0(η)e

i(ξ+η)xdξdη.

It is easy to check that for a pair of functions u(t, x), v(t, x) ∈ S(R1 ×R
1),

(35) (∂t + i∂2x)T (u, v) = T ((∂t + i∂2x)u, v) + T (u, (∂t + i∂2x)v) +G(u>0, v>0).

This last identity tells us that

(∂t + i∂2x)T (e
−it∂2

xf, e−it∂2
xf) = G(e−it∂2

xf>0, e
−it∂2

xf>0)

which provides an explicit solution6of (34). Hence, set

h := T (e−it∂2
xf, e−it∂2

xf).

5In fact this β − α derivatives on the product may not be of much help in “high-high to low interaction

scenario
6Note that while the solution h(t) of the Schrödinger equation (34) is not unique, it is completely deter-

mined by its value h(0)
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We now change variables z = h + w = T (e−it∂2
xf, e−it∂2

xf) + w, whence we get the

following equation for w

(36)
wt + i∂2xw = G([e−it∂2

xf + h+ w]≤0, (Id+ P>0)[e
−it∂2

xf + h+ w])+

+2G((h+ w)>0, e
−it∂2

xf>0) +G((h+ w)>0, (h+ w)>0)

Note also that since z(0) = 0, it follows that the Schrödinger equation for w is supple-

mented by the following initial condition: w(0) = −h(0) = −T (f, f). We have now

prepared ourselves to close the argument in the w variable. More precisely, the proof of

Theorem 1 reduces to establishing the local well-posedness of the Schrödinger equation

(36) in an appropriate function space.

Fix 1 >> δ > 0. Consider the spaces

X = Xα− 1
2
, 1
2
+δ,

H = L∞
t H

1
2
x ∩X1−δ,δ,

Our strategy will be to show that the fixed point argument for w closes in the space X ,

given that f ∈ L2, h ∈ H and where we will occasionally need to use the particular form

h = T (e−it∂2
xf, e−it∂2

xf).

3.2. Estimates on the normal form. In this section, we show the required smoothness

of the normal form h, namely h ∈ H. This will be done in two steps - in Lemma 3 and

Lemma 4.

Lemma 3. T : L2(R)× L2(R) → H
1
2 (R) continuously.

Proof. Let u, v ∈ S(R). Then

(37) ∥T (u, v)∥
H

1
2
≤
∑

k≥l+3

∥T (uk, vl)∥H 1
2
+
∑

|k−l|<3

∥T (uk, vl)∥H 1
2
= I1 + I2

where k, l > 0. Regarding the first sum in (37), we apply Hölder’s and then the Sobolev

embedding ∥ul∥L∞ ≤ C2l/2∥ul∥L2 . We get

I1 ≤ C
∑

l>0

∑

k≥l

2
k
2

2αk+αl

2(α−β)k+k+l
∥ukvl∥L2 ≤ C

∑

l>0

∑

k≥l

2(β−
1
2
)k+(α−1/2)l∥uk∥L2∥vl∥L2

≤ C∥u∥L2∥v∥L2

∑

l>0

2(α+β−1)l ≤ C∥u∥L2∥v∥L2

Regarding the second sum in (37),

I2 ≤ C
∑

k>0

∑

m≤k+2

2
1
2
m 22αk

2(α−β)m+2k
||Pm(ukvk)||L2 ≤ C

∑

k>0

∑

m≤k+2

2(
1
2
−α+β)m+(2α−2)k2

m
2 ||ukvk||L1

≤ C∥u∥L2∥v∥L2

∑

k>0

2(α+β−1)k ≤ C∥u∥L2∥v∥L2 .

�

The next lemma provides a different type of estimate, namely that if we measure

T (e−it∂2
xf, e−it∂2

xf) in averages L2
tx sense, we actually get a full spatial derivative gain.

More precisely,
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Lemma 4. Let u, v ∈ X
0, 1

2
+δ

τ=ξ2 , then for 0 ≤ δ < 1− α− β,

∥T (u, v)∥X1−δ,δ ≤ Cδ∥u∥X0, 12+δ∥v∥X0, 12+δ .

Proof. By using the partition of unity χ(+,+,−), we can localize spacial and time frequencies

to their respective indices. (Here we localize u, v, uv respectively to N1, N2, N3.) Also

denote by the symbol
∑

to be the summation over N1, N2, N3, L1, L2, L3 ≥ 1. We have

∥T (u, v)∥X1−δ,δ ≤ C
∑ N1−α+β−δ

3

N1−α
1 N1−α

2

∥u v∥X0,δ

≤ C
∑ N1−α+β−δ

3

N1−α
1 N1−α

2

sup
∥w∥

X
0,−δ

τ=−ξ2

=1

∣∣∣∣
∫

R1×R1

u(t, x)v(t, x)w(t, x) dt dx

∣∣∣∣

≤ C sup
∥w∥

X
0,−δ

τ=−ξ2

=1

∑ N1−α+β−δ
3

N1−α
1 N1−α

2

∥χ(+,+,−)∥M∥u∥L2
t,x
∥v∥L2

t,x
∥w∥L2

t,x
(38)

≤ C∥u∥
X0, 12+δ∥v∥X0, 12+δ

∑ N1−α+β−δ
3 Lδ

3

N1−α
1 N1−α

2 L
1
2
+δ

1 L
1
2
+δ

2

∥χ(+,+,−)∥M(39)

We refer to Proposition 3. If max(L1, L2) = Lmax, we use that max(N1, N2) & N3 to

simplify (39) and then apply the multiplier bound (16). We estimate the sum in (39) by

∑ Lδ
3N

β−δ
3

L
1
2
+δ

1 L
1
2
+δ

2

L
1
2
minN

1
2
min ≤ C

∑ N
1
2
−δ

min N
β
max

L
1
2
max

≤ Cδ

If L3 = Lmax and N1 ∼ N2 ∼ N3 ∼ N , then we can assume L3 ∼ N2, so applying (18)

yields the estimate

∑ N1−α+β−δLδ
3

N1−αN1−αL
1
2
+δ

1 L
1
2
+δ

2

L
1
2
minL

1
4
med ≤ C

∑ 1

N1−α−β−δ
≤ Cδ,

provided 0 < δ << 1− α− β.

The remaining case is when L3 = Lmax ∼ N1N2 with the bound (19). We have

∑ N1−α+β−δ
3 Lδ

3

N1−α
1 N1−α

2 L
1
2
+δ

1 L
1
2
+δ

2

L
1
2
minL

1
2
med

N
1
2
max

≤ C
∑

N
β− 1

2
+δ

max ≤ C.

�

3.3. Some bilinear and trilinear estimates involving typical right-hand sides. Let us

start with few words regarding strategy. All the terms (with an exception of one single

term) in the right hand-side of (36), which contain at least one smooth term (i.e. in the

form u≤0) will be dealt with by relatively simple arguments, mainly based on Lemma 1.

For all other terms, we shall need specific (bilinear and trilinear) estimates, which handle

different type of configurations (i.e. h and w, h and e−i∂2
xf ) on the right-hand side of (36).

These multilinear estimates are presented below. We also attempt to indicate the relevancy

of each such estimate, before the statement of each Lemma.
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The next lemma is useful, when one deals with terms in the form G(w, e−i∂2
xf) and

G(w,w) on the right hand side of (36).

Lemma 5. Let z satisfy (∂t + i∂2x)z = G(u>0, v>0) with z(0, x) ≡ 0, and let 0 < 10δ <
1− α− β. Then

∥z∥
X

α−
1
2 , 12+δ

T

≤ CT,δ∥u∥Xα−
1
2 , 12+δ∥v∥X0, 12+δ .

Proof. By using the partition of unity χ(+,+,−), we can localize spacial and time frequen-

cies to their respective indices. (Here we localize u, v, uv respectively toN1, N2, N3.) Also

denote by the symbol
∑

to be the summation over N1, N2, N3, L1, L2, L3 ≥ 1.

Applying Proposition 1, we obtain

∥z∥
X

α−
1
2 , 12+δ

T

≤ CT,δ∥G(u>0, v>0)∥Xα−
1
2 ,− 1

2+δ

≤ CT,δ

∑ Nα
1 N

α
2

N
1
2
−β

3

∥u v∥
X0,− 1

2+δ

≤ CT,δ

∑ Nα
1 N

α
2

N
1
2
−β

3

sup
∥w∥

X
0, 12−δ

τ=−ξ2

=1

∣∣∣∣
∫

R1×R1

u(t, x)v(t, x)w(t, x) dt dx

∣∣∣∣

≤ CT,δ

∑ Nα
1 N

α
2

N
1
2
−β

3

sup
∥w∥

X
0, 12−δ

τ=−ξ2

=1

∥χ(+,+,−)∥M∥u∥L2
t,x
∥v∥L2

t,x
∥w∥L2

t,x

≤ CT,δ∥u∥Xα−
1
2 , 12+δ∥v∥X0, 12+δ

∑ N
1
2
1 N

α
2

N
1
2
−β

3 L
1
2
+δ

1 L
1
2
+δ

2 L
1
2
−δ

3

∥χ(+,+,−)∥M(40)

Now we refer to Proposition 3 for appropriate bounds. If we have Lmax ∼ Lmed ≫
N1N2, we apply (16). Then the sum in (40) is estimated by

∑ N
1
2
1 N

α
2

N
1
2
−β

3 L
1
2
+δ

1 L
1
2
+δ

2 L
1
2
−δ

3

N
1
2
minL

1
2
min ≤

∑ N
1
2
1 N

α
2 N

β
min

Lmax

≤
∑ 1

L1−α−β
max

≤ Cα,β

Otherwise, we may assume that Lmax ∼ N1N2.

If L1 = Lmax, we apply ∥χ(+,+,−)∥M ≤ C
L

1
2
2L

1
2
3

N
1
2
1

. If L2 = Lmax, then we can use

∥χ(+,+,−)∥M ≤ C
L

1
2
1L

1
2
3

N
1
2
2

.

Both cases will work out similarly. For instance, if L1 = Lmax, then the sum in (40) is

estimated

∑ N
1
2
1 N

α
2

N
1
2
−β

3 L
1
2
+δ

1 L
1
2
+δ

2 L
1
2
−δ

3

L
1
2
2L

1
2
3

N
1
2
1

≤
∑ Nα

2

N
1
2
−β

3 L
1
2
+δ

max

≤
∑ 1

Lδ
max

= Cδ.
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If L3 = Lmax and N1 ∼ N2 ∼ N3 ∼ N , then we can estimate the sum in (40) via (18).

∑ Nα+β

L
1
2
−δ

max

≤
∑

Nα+β−1+2δ ≤ Cα,β,δ.

Otherwise, (19) can be used to estimate the sum in (40)

∑ N
1
2
1 N

α− 1
2

2

N
1
2
−β

3 L
1
2
−δ

max

≤
∑ 1

Lδ
max

≤ Cδ.

�

The next lemma deals with right-hand sides of the form G(h, h).

Lemma 6. Let z satisfy (∂t + i∂2x)z = G(u>0, v>0) with z(0, x) ≡ 0. Then for 0 < δ <
1− α− β,

∥z∥
X

α−
1
2 , 12+δ

T

≤ CT,δ∥u∥X1−δ,δ∥v∥X1−δ,δ .

Proof. By using the partition of unity χ(+,+,−), we can localize spacial and time frequen-

cies to their respective indices. (Here we localize u, v, uv respectively toN1, N2, N3.) Also

denote by the symbol
∑

to be the summation over N1, N2, N3, L1, L2, L3 ≥ 1.

Applying Proposition 1, we obtain

∥z∥
X

α−
1
2 , 12+δ

T

≤ CT,δ∥G(u>0, v>0)∥Xα−
1
2 ,− 1

2+δ

≤ CT,δ

∑ Nα
1 N

α
2

N
1
2
−β

3

∥u v∥
X0,− 1

2+δ

≤ CT,δ

∑ Nα
1 N

α
2

N
1
2
−β

3

sup
∥w∥

X
0, 12−δ

τ=−ξ2

=1

∣∣∣∣
∫

R1×R1

u(t, x)v(t, x)w(t, x) dt dx

∣∣∣∣

≤ CT,δ

∑ Nα
1 N

α
2

N
1
2
−β

3

sup
∥w∥

X
0, 12−δ

τ=−ξ2

=1

∥χ(+,+,−)∥M∥u∥L2
t,x
∥v∥L2

t,x
∥w∥L2

t,x

≤ CT,δ∥u∥X1−δ,δ∥v∥X1−δ,δ

∑ 1

N1−α
1 N1−α

2 N
1
2
−β

3 Lδ
1L

δ
2L

1
2
−δ

3

∥χ(+,+,−)∥M(41)

We refer to Proposition 3 for appropriate bounds. We apply the bound (16) to the multi-

plier to estimate the sum in (41) by

∑ N
1
2
min

N1−α
1 N1−α

2 N
1
2
−β

3 Lδ
max

≤
∑ 1

Lδ
max

≤ Cδ.

�

Our next lemma treats all the terms on the right-hand side of (36) in the form

G(h, e−it∂2
xf) = G(T (e−it∂2

xf, e−it∂2
xf), e−it∂2

xf). Unfortunately, we cannot control such

terms only with the a posteriori information h ∈ H, e−it∂2
xf ∈ X0, 1

2
+δ. Instead, we must

treat the whole expression as a trilinear one, which then yields the desired control.
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Lemma 7. Let z satisfy (∂t + i∂2x)z = G(T (f, g), v>0) with z(0, x) ≡ 0, where f, g ∈

X0, 1
2
+δ. Then for 0 < 10δ < 1− α− β,

∥z∥
X

α−
1
2 , 12+δ

T

≤ CT,δ∥f∥X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ .

Remark: In addition, we have similar control for z1, z2, so that

(∂t + i∂2x)z1 = G(T (f, g)>0, v>0), (∂t + i∂2x)z2 = G(T (f, g)≤0, v>0). Namely

(42) ∥z1∥
X

α−
1
2 , 12+δ

T

+ ∥z2∥
X

α−
1
2 , 12+δ

T

≤ CT,δ∥f∥X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ .

Proof. We handle the term z1 first, after which, we quickly indicate how to treat the general

case for z (and z2 = z − z1 is subsequently controlled).

Noting T (f, g) = C⟨∇⟩β−α
[
⟨∇⟩α

∇
f>0 ·

⟨∇⟩α

∇
g>0

]
, we can write

G(T (f, g), v) = C⟨∇⟩β−α

[
⟨∇⟩β

[
⟨∇⟩α

∇
f>0

⟨∇⟩α

∇
g>0

]
· ⟨∇⟩αv

]

Applying Proposition 1 and the duality relation (10),

∥z1∥
X

α−
1
2 , 12+δ

T

≤ CT,δ

∥∥∥∥⟨∇⟩β−α

[
⟨∇⟩β

[
⟨∇⟩α

∇
f>0

⟨∇⟩α

∇
g>0

]
· ⟨∇⟩αv

]∥∥∥∥
Xα−

1
2 ,− 1

2+δ

≤ CT,δ

∑

k,l>0

2βk+αl
∑

k1,k2>0

2(α−1)(k1+k2)∥(fk1gk2)kvl∥Xβ− 1
2 ,− 1

2+δ

≤ CT,δ

∑

k, l > 0
k1, k2 > 0

2(α−1)(k1+k2)+βk+αl sup
∥w∥

X

1
2−β, 12−δ

τ=ξ2

=1

∣∣∣∣
∫

R1×R1

(fk1gk2)kvlw dt dx

∣∣∣∣ .

Note that unless k − 3 ≤ max(k1, k2), otherwise the integral above vanishes. We split the

last sum
∑

k,l>0 into three parts

∑

l≤k−3

·+
∑

k≤l−3

·+
∑

k∼l

·

where k, l > 0. We denote the corresponding terms by I1 + I2 + I3. On each summand,

we will apply Lemma 1 to obtain the desired estimate. We need to estimate the integral

(43) 2(α−1)(k1+k2)+βk+αl

∣∣∣∣
∫

R1×R1

(fk1gk1)kvlw dt dx

∣∣∣∣ .

For I1, we have high-low interaction between (fk1gk2)k and vl, so (fk1gk2)kvl = P∼k[(fk1gk2)kvl].
Hence it suffices to control

2(α+β)k+(α−1)(k1+k2)

∣∣∣∣
∫

R1×R1

(fk1gk2)kvlw∼k dt dx

∣∣∣∣ .

Thus by the Cauchy-Swartz inequality,

(43) ≤ C2(α+β)k+(α−1)(k1+k2)∥(fk1gk2)k∥L2
t,x
∥vlw∼k∥L2

t,x
.
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Here we need to consider two cases: first when 2k1 ∼ 2k2 ∼ 2k, and second when this

does not take place. In the first case, we apply (22) and (27)

(43) ≤ C2(3α+β−2)k∥(f∼kg∼k)k∥L2
t,x
∥vlw∼k∥L2

t,x

≤ Cα,δ,T2
(3α+2β−3+5δ)k∥f∥

X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X 1
2−β, 12−δ .

On the other hand, if 2k1 ∼ 2k2 ∼ 2k does not take place, then we can gain 1
2

derivative

from ∥(fk1gk2)k∥L2 via (20) or (21). Thus the estimate follows

(43) ≤ C2(α+β)k+(α−1)(k1+k2)∥(fk1gk2)k∥L2
t,x
∥vlw∼k∥L2

t,x

≤ Cα,δ,T2
(α+β−1+6δ)k+(α−1)(k1+k2)∥f∥

X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X0, 12−δ .

Clearly in both cases, the sums in k > 0 goes through since 0 < 10δ < 1 − α − β and

hence the bound (42) for this portion of the sum.

For I2, note that now (fk1gk2)kvl = P∼l[(fk1gk2)kvl] and hence

(43) ≤ C2(α−1)(k1+k2)+(α+β)l

∣∣∣∣
∫

R1×R1

(fk1gk1)kvlw∼l dt dx

∣∣∣∣

If 2k1 ∼ 2k2 ∼ 2l, then applying Cauchy-Schwartz inequality, (21) and (25)

(43) ≤ C2(3α+β−2)l∥(f∼lg∼l)k∥L2
t,x
∥vlw∼l∥L2

t,x

≤ CT,δ2
(3α+2β−3+3δ)l∥f∥

X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X 1
2−β, 12−δ .

If 2k1 ∼ 2k2 ∼ 2l does not hold, say |k1 − l| > 3. Then we would like to estimate the

last integral by something close to ∥fk1vl∥L2
t,x
∥gk2w∼l∥L2

t,x
which would give us at least a

1/2 derivative gain in l. However, we cannot quite do that, since the integral in (43) is not

a pointwise product, but rather the operator Pk acting on fk1gk2 , which then is multiplied

by vlwl.

The following calculation however provides a substitute for this, namely by Plancherel’s

and triangle inequality
∣∣∣∣
∫

R1×R1

(fk1gk2)kvlw∼l dt dx

∣∣∣∣ ≤

∫

R1×R1

|f̂k1 ∗ ĝk2(ξ)|φ(2
−kξ)|[v̂l ∗ ŵ∼l](−ξ)|dξ dt

≤

∣∣∣∣
∫

R1×R1

Q[fk1 ]Q[gk2 ]Q[vl]Q[w∼l]dx dt

∣∣∣∣ ,

where Q[h] := F−1[|ĥ|]. Note that Q[h]k = Q[hk] and ∥Q[h]∥Xs,b = ∥h∥Xs,b , by the

definition of ∥ · ∥Xs,b . In other words, we have managed to remove the Littlewood-Paley

operator Pk (and to reduce to an expression as an integral of pointwise product of four

functions), at the expense of introducing the operators Q, which do not really affect the

Xs,b norms of the entries. With that last reduction in mind, we continue our estimation of

(43).
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By (20) and (28) respectively

(43) ≤ C2αl+(α+β−1+δ)k+(α−1)(k1+k2)∥Q[fk1 ]Q[vl]∥L2
t,x
∥Q[gk2 ]Q[wl]∥L2

t,x

≤ CT,δ2
(α+β−1+3δ)l+(α−1)(k1+k2)∥f∥

X0, 12+δ∥v∥X0, 12+δ∥g∥X0, 12+δ∥w∥X 1
2−β, 12−δ .

This clearly sums in l, provided 0 < 10δ < 1− α− β.

For I3, we have

(43) ≤ C2(α+β)k+(α−1)(k1+k2)

∣∣∣∣
∫

R1×R1

(fk1gk2)k(v∼kw)∼k dt dx

∣∣∣∣ .

At this point, let us discuss the frequency localization for w. Clearly,

(44) (v∼kw)∼k = (v∼kw<k+3)∼k = (v∼kw∼k)∼k + (v∼kw≪k)∼k,

In particular, w may not be high frequency.

If |k1 − k| ≥ 3 or |k2 − k| ≥ 3, then by (20) or (21) (applied to ∥(fk1gk2)k∥L2
t,x

) and

either (26) or (27) (applied to ∥(v∼kw)∼k∥L2)

(43) ≤ C2(α+β)k+(α−1)(k1+k2)∥(fk1gk2)k∥L2
t,x
(∥(v∼kw∼k)∼k∥L2 + ∥(v∼kw≪k)∼k)∥L2)

≤ Cδ2
(α+β−1+6δ)k+(α−1)(k1+k2)∥f∥

X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X0, 12−δ .

Summing in k yields a bound, provided 0 < 10δ < 1− α− β.

Otherwise, 2k1 ∼ 2k2 ∼ 2k. In this case, we first handle the w∼k term, which is easier

due to the gain of 1
2
− β derivatives in k. Applying Cauchy-Swartz inequality, (22) and

(26),

(43) ≤ C2(3α+β−2)k∥(f∼kg∼k)k∥L2
t,x
∥(v∼kw∼k)∼k∥L2

t,x

≤ C2(3α+2β−3+5δ)k∥f∥
X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X 1

2−β, 12−δ .

For the term with w≪k, we need a more refined analysis, which is possible thanks to the

estimate (29). We can write

(45) (f∼kg∼k)k = (f+
∼kg

−
∼k)k + (f−

∼kg
+
∼k)k + (f+

∼kg
+
∼k)

+
k + (f−

∼kg
−
∼k)

−
k .

For the first two terms, due to (29) and (27), we obtain

(43) ≤ C2(3α+β−2)k∥(f+
∼kg

−
∼k)k∥L2

t,x
∥(v∼kw≪k)∼k∥L2

t,x

≤ Cδ2
(3α+β−3+6δ)k∥f∥

X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X0, 12−δ .

To deal with the next two terms in (45), note that the integral in (43) is in the form∫
(f+

k g
+
k )

+(v−k w≪k)
−
k or

∫
(f−

k g
−
k )

−(v+k w≪k)
+
k . We estimate the first one, the second one
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being symmetrically equivalent to the first. We need to once again apply the bounds in-

volving the operator Q.

(43) ≤ C2(3α+β−2)k

∣∣∣∣
∫

R1×R1

(f+
∼kg

+
∼k)k(v

−
∼kw≪k)

−
∼k dt dx

∣∣∣∣

≤ C2(3α+β−2)k

∣∣∣∣
∫

R1×R1

Q[f+
∼k]Q[g

+
∼k]Q[v

−
∼k]Q[w≪k]dt dx

∣∣∣∣
≤ C2(3α+β−2)k∥Q[f+

∼k]Q[v
−
∼k]∥L2

t,x
∥Q[g+∼k]Q[w≪k]∥L2

t,x

≤ Cδ2
(3α+β−3+6δ)k∥f∥

X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X0, 12−δ

where we have applied (29) for ∥Q[f+
∼k]Q[v

−
∼k]∥L2

t,x
and (27) for ∥Q[g+∼k]Q[w≪k]∥L2

t,x
.

Now to prove the same estimate for z2, it is clear that the sums I1 and I3 do not appear

(or is finite), since k < 0 and l > 0. So we need to regard the sum of type I2. Note

that we can consider l ≫ 1, otherwise there is nothing to prove. We will use a projection

P≤0 instead of Pk to represent this case. With the restriction P≤0(fk1gk2), we must have

|k1 − k2| ≤ 3.

(43) ≤ C2αl+(2α−2)k1

∣∣∣∣
∫

R1×R1

(fk1g∼k1)≤0vlw∼l dt dx

∣∣∣∣

If |k1 − l| ≤ 3, then by (21) and (28)

(43) ≤ C2(3α−2)l∥(f∼lg∼l)≤0∥L2
t,x
∥vlw∼l∥L2

t,x

≤ CT,δ2
(3α+β−3+3δ)l∥f∥

X0, 12+δ∥g∥X0, 12+δ∥v∥X0, 12+δ∥w∥X 1
2−β, 12−δ .

Otherwise, we can assume that |k1 − l| > 3, thus by (20) and (28)

(43) ≤ C2αl+(2α−2)k1∥Q[fk1 ]Q[vl]∥L2
t,x
∥Q[g∼k1 ]Q[wl]∥L2

t,x

≤ CT,δ2
(α+β−1+6δ)l−(2α−2)k1∥f∥

X0, 12+δ∥v∥X0, 12+δ∥g∥X0, 12+δ∥w∥X 1
2−β, 12−δ .

Both of these cases are summable in l > 0, so we are done. �

3.4. Conclusion of the proof of Theorem 1. Now that we have the needed multilinear

estimates, we perform a fixed point argument for the solution w of (36) in the space X . For
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simplicity, we group the terms on the right-hand side of (36) as follows7

N1 = G([e−it∂2
xf + w]≤0, (Id+ P>0)[e

−it∂2
xf + h+ w]);

N2 = G(h≤0, (Id+ P>0)[h+ w]) =

= G(h≤0, (Id+ P>0)[h]) +G(T (e−it∂2
xf, e−it∂2

xf)≤0, (Id+ P>0)[w]);

N3 = G(h≤0, e
−it∂2

x(Id+ P>0)f) = G(T (e−it∂2
xf, e−it∂2

xf)≤0, e
−it∂2

x(Id+ P>0)f);

N4 = 2G(e−it∂2
xf>0, h>0) = 2G(T (e−it∂2

xf, e−it∂2
xf)>0, e

−it∂2
xf>0);

N5 = 2G(e−it∂2
xf>0, w>0);

N6 = G(h>0, h>0); N7 = G(h>0, w>0) = G(T (e−it∂2
xf, e−it∂2

xf)>0, w>0);

N8 = G(w>0, w>0).

In order to finsh the proof, we need to show that w0 := e−it∂2
x [−T (f, f)] and

w
j : (∂t + i∂2x)w

j = Nj,w
j(0) = 0, j = 1, . . . , 8, we have

(46)

8∑

j=0

∥wj∥X ≤ CT,δ(∥f∥L2 + ∥h∥H + ∥w∥X )
2(1 + ∥f∥L2 + ∥h∥H + ∥w∥X ).

3.4.1. Estimates for w0. We have by Proposition 1 and Lemma 3 (with s = α− 1
2
< 1

2
)

∥w0∥X = ∥e−it∂2
x [T (f, f)]∥

X
α−

1
2 , 12+δ

T

. ∥T (f, f)∥
Hα−

1
2
. ∥f∥2L2 .

3.4.2. Estimates for w1. Let us note first that for any two functions µ, ν,

G(µ≤0, ν) = ⟨∇⟩β−α(⟨∇⟩αµ≤0⟨∇⟩αν) behaves for all practical purposes like µ≤0⟨∇⟩βν.

Thus,

∥w1∥X ≤ CT∥G([e
−it∂2

xf + w]≤0, (Id+ P>0)[e
−it∂2

xf + h+ w])∥
L2
tH

α−
1
2

x

≤ CT∥[e
−it∂2

xf + w]≤0 · ⟨∇⟩β(Id+ P>0)[e
−it∂2

xf + h+ w]∥
L2
tH

α−
1
2

x

.

By Hölder’s inequality, we have

∥[e−it∂2
xf + w]≤0 · ⟨∇⟩β(Id+ P>0)[h]∥

L2
tH

α−
1
2

x

≤ ∥[e−it∂2
xf + w]≤0∥L∞

t,x
∥h∥

L2
tH

α+β− 1
2

x

.

By the definition of H however, H →֒ X1−δ,δ →֒ L2
tH

α+β− 1
2

x . Thus ∥h∥
L2
tH

α+β− 1
2

x

≤

C∥h∥H and by Sobolev embedding and (12)

∥[e−it∂2
xf + w]≤0∥L∞

t,x
≤ C∥e−it∂2

xf + w∥L∞

t L2
x
≤ C(∥f∥L2 + ∥w∥X )

Regarding the remaining term in N1, we can again split in two terms

(Id+P>0)[e
−it∂2

xf +w] = [e−it∂2
xf +w]≤0+2[e−it∂2

xf +w]>0. The low frequency term is

7Recall that G is a bilinear form
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easy to deal with (by the argument above for h), whereas for the high-frequency term, we

have by Lemma 1 (more specifically (20)) that

∥[e−it∂2
xf + w]≤0 · ⟨∇⟩β[e−it∂2

xf + w]>0∥
L2
tH

α−
1
2

x

≤ ∥[e−it∂2
xf + w]≤0∥X0, 12+δ

∑

k>0

2−( 1
2
−δ)k2α+β− 1

2
k∥[e−it∂2

xf + w]k∥X0, 12+δ

≤ C(∥f∥L2 + ∥w∥
X0, 12+δ)

2.

3.4.3. Estimates for w
2. Write w

2 = w
2
1 + w

2
2, where w

2
1 is the solution corresponding

from the first term in N2. Then,

∥w2
1∥X ≤ CT∥G(h≤0, (Id+ P>0)[h])∥

L2
tH

α−
1
2

x

≤ C∥h≤0∥L∞

t,x
∥h∥

L2
tH

α−
1
2

x

≤ C∥h≤0∥
L∞

t H
1
2
x

∥h∥H ≤ C∥h∥2H.

since H →֒ L2
tH

α− 1
2

x ∩ L∞
t H

1
2
x .

As far as w2
2 is concerned, we apply Lemma 7 (more precisely (42) for z2), which yields

∥w2
2∥X ≤ CT∥e

it∂2
xf∥2

X0, 12+δ
∥(Id+ P>0)w∥X0, 12+δ ≤ C∥f∥2L2∥w∥X .

3.4.4. Estimates for w
3. The estimate for w3 is pretty similar to the one for w2

2. Also,

the low frequency term G(h≤0, e
it∂2

xf≤0) is already estimated in Section 3.4.2, so here we

estimate only the non-linearity G(h≤0, e
it∂2

xf>0). By (42), applied for z2,

∥w3∥X ≤ CT∥e
−it∂2

xf∥2
X0, 12+δ

∥e−it∂2
xf∥

X0, 12+δ ≤ C∥f∥3L2 .

3.4.5. Estimates for w4. We have by (42), applied for z1, that

∥w4∥X ≤ C∥e−it∂2
xf>0∥

3

X0, 12+δ
≤ C∥f∥3L2 .

3.4.6. Estimates for w5. For w5, we apply Lemma 5, whence

∥w5∥X ≤ C∥w∥
Xα−

1
2 , 12+δ∥e

−it∂2
xf∥

X0, 12+δ ≤ C∥w∥X∥f∥L2 .

3.4.7. Estimates for w6. The estimate for w6 follows form Lemma 6,

∥w6∥X ≤ C∥h∥2X1−δ,δ ≤ C∥h∥2H.

3.4.8. Estimates for w
7. This terms is in fact simpler than w

4 (since w in the second

component is in fact smoother than the free solution in N4). We deal with it in the same

way. Namely, by (42), applied to z1, we have

∥w7∥X ≤ C∥e−it∂2
xf∥2

X0, 12+δ
∥w∥

X0, 12+δ ≤ C∥f∥2L2∥w∥X .

3.4.9. Estimates for w8. Finally, the estimate for w8 follows from Lemma 5. We have

∥w8∥X ≤ C∥w∥
Xα−

1
2 , 12+δ∥w∥X0, 12+δ ≤ C∥w∥2X
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4. REGARDING L.W.P. FOR NONLINEARITIES OF THE FORM ⟨∇⟩β[uū] AND ⟨∇⟩β[ū2]

We will just briefly sketch the analysis that one needs to undertake, in order to pursue

well-posedness of the problem

ut + iuxx = ⟨∇⟩β[uū].

As a byproduct of this discussion, we will hopefully be able to shed some light on the issue

with low regularity, which is present in this particular case, [14].

Following the ideas of Section 3, we need to construct T , so that (35) is satisfied, where

of course G(u, v) = ⟨∇⟩β−α[⟨∇⟩αv⟨∇⟩αv̄]. It is easy to see that the needed T is in the

form

(47) T (u, v)(x) =
1

8π2i

∫
⟨ξ⟩α⟨η⟩α

⟨ξ + η⟩α−β

1

ξ(ξ + η)
û>0(ξ)̂̄v(η)ei(ξ+η)xdξdη.

Note that this transformation may be performed only when the output function T (u, v) is

Fourier localized, so that its frequency satisfies & 1, so that we do not run into trouble with

the term (ξ + η)−1 inside the symbol of T . This is the reason why, in general (and unless

we impose some homogeneous Sobolev norms in small frequencies, as is done in [14]), we

cannot do better than H− 1
4
+ l.w.p.

It is also clear from the form (47), that in the case of “high-high” interactions, the (gener-

ally smoothing) term (ξ+η)−1 is not of much help to achieve better smoothness of T (u, v).
Therefore, performing this transformation would be advantageous, only if 2α < 1. This is

a simple (if a little naive) way to see the optimality of restriction α < 1/2 in the results of

[14].

For the nonlinearities of the form ⟨∇⟩β[ū2], following the same ideas, we come up with

the following normal form

(48) T (u, v)(x) =
1

8π2i

∫
⟨ξ⟩α⟨η⟩α

⟨ξ + η⟩α−β

1

2(ξ2 + η2 + ξη)
û(ξ)̂̄v(η)ei(ξ+η)xdξdη.

Clearly, this normal form gains a derivative in each variable (very similar to the case

⟨∇⟩β[u2] and hence, one may expect to get an identical result to Theorem 1 for this non-

linearity as well. We will not pursue these issues here.
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