Definitions

- EXPONENTIAL NOTATION: will be used to do expanded form (below). When multiplying a number times itself many times, exponential notation is quicker. Ex1. 8*8*8*8*8 = 8⁵
- BASE: the number which is being multiplied times itself. Ex1.(Revisited) In 8⁵, 8 is the base.
- 3. POWER / EXPONENT: the number of times you multiply the base. It is the superscript in exponential notation.

Ex1.(Revisited) In 8^5 , 5 is the power, or the exponent.

4. HINDU-ARABIC / BASE 10: our usual way of writing numbers. In this system, we use 10 different symbols (0,1, 2, 3, 4, 5, 6, 7, 8, 9), and each digit has a PLACE VALUE that is a power of ten.

Ex2. 4 0 3 6 7 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ $10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0$

- 5. BASE X (x can be any number): another way of writing numbers. In this system, we use X different symbols (01,2,3, ..., X-1), and each digit has a PLACE VALUE that is a power of X. Ex3. Base 5 uses the symbols 0, 1, 2, 3, 4, and the place values are powers of 5.
- 6. BASE 10-EXPANDED FORM: combines definitions 1. and 4.

Ex2.(Revisited) $40367 = (4*10^{4}) + (0*10^{3}) + (3*10^{2}) + (6*10^{1}) + (7*10^{0})$ or $40367 = (4*10^{4}) + (3*10^{2}) + (6*10^{1}) + (7*10^{0})$ (without zeros),

7. BASE X-EXPANDED FORM: combines definitions 1. and 5.

Ex3.(Revisited) In Base 5, $10034_{\text{five}} = (1*5^4) + (0*5^3) + (0*5^2) + (3*5^1) + (4*5^0)$ or $10034_{\text{five}} = (1*5^4) + (3*5^1) + (4*5^0)$ (without zeros). *Exponential Notation* is a type of short-hand. Instead of writing 8*8*8*8, it is quicker and shorter to use exponential notation:

RULES

1. Anything raised to the zero power equals one: $1^0 = 1$ $2^0 = 1$ $13^0 = 1$ anything^0 = 12. Anything raised to the one power equals itself: $1^1 = 1$ $5^1 = 5$ $23^1 = 23$ anything^1 = itself

Special Case.

Something funny happens with tens:

 $10^{0} = 1$ $10^{1} = 10$ $10^{2} = 100$ $10^{3} = 1000$ $10^{4} = 10000$ $10^{5} = 100000$

For powers of ten only, the exponent equals the number of zeros.

Calculator Note: Find out where the exponent button is on your calculator (sometimes has the symbol ^), so that instead of typing "8x8x8x8x8" you can just type "8^5"

Base Ten, or Hindu Arabic Numbers is the usual way we write numbers, using digits 0 thru 9. Each Hindu Arabic/Base Ten number has an expanded form, which is obtained by multiplying each digit times its place value, then adding them all up.

Example:

Expanded Form

Or, we can also use a slightly shorter expanded form: $(4 * 10^4) + (3 * 10^2) + (6 * 10) + (7 * 1)$. What's different? $10^1 = 10$ $10^0 = 1$

Omit $(0 * 10^3)$, since it equals zero.

Base Two, or Binary is a way of writing number using only 0's and 1's. Each Base Two number has a Base Two Expanded Form, obtained in a similar way as above, but now with powers of two instead of powers of ten.

Example:

This digit has a place value of
$$2^{0}$$
, or 1.

$$2^{3} 2^{2} 2^{1}$$

$$1 0 1 1_{\text{two}} = (1 * 2^{3}) + (0 * 2^{2}) + (1 * 2^{1}) + (1 * 2^{0})$$

Base Two Expanded Form

Or, the slightly shorter expanded form looks like $(1 * 2^3) + (1 * 2) + (1 * 1)$.

<u>Base Five</u> is a way of writing number using only 0 through 4. Each Base Five number has a Base Five Expanded Form, obtained in a similar way as above, but now with powers of five.

Example

Base Anything! Using similar ideas, we can do base 2, base 3, base 4,, base anything! Just change the place values.

Converting between Base 10 and Base X

TO Hindu Arabic/Base Ten

Example:

Convert the base eight number 27011_{eight} to Hindu Arabic/Base Ten.

 $= (2 * 8^{4}) + (7 * 8^{3}) + (1 * 8) + (1 * 1)$ 1. Change to Base Eight Expanded Form: 2. Just multiply / add up part 1: = (2 * 4096) + (7 * 512) + 8 + 1= 8192 + 3584 + 9= 11785

In general, if you start with a number in base Y, and want to convert it to Hindu Arabic/Base Ten:

- 1. Change to Base Y Expanded Form.
- 2. Just multiply / add up what you found in part 1.

FROM Hindu Arabic/Base Ten

Example:

Convert the Hindu Arabic/Base Ten number 10 into base two/binary:

- 1. List powers of two until you reach 10:
 - $2^0 = 1$ $2^2 = 4$ $2^1 = 2$ $2^3 = 8$ 2^{4} 16 (is greater than 10. Too big, stop here!)
- 2. Start with the largest power from step 1, and start dividing:

$$2^{3}\overline{)10} = 8\overline{)10} \text{ remainder } 2$$

$$2^{2}\overline{)2} = 4\overline{)2} \text{ remainder } 2$$

$$2^{1}\overline{)2} = 2\overline{)2} \text{ remainder } 0$$

$$2^{0}\overline{)0} = 1\overline{)0} \text{ remainder } 0$$

Therefore $10 = 1010_{two}$ in base two.

Let's check our answer by converting 1010_{two} back into Hindu Arabic/Base Ten: $1010_{\text{two}} = (1*2^3) + (1*2^1) = 8 + 2 = 10 \sqrt{10}$

In general, if you start with a number in Hindu Arabic/Base Ten and you want to convert it to base Y: 1. List powers of Y until you reach the number.

2. Start with the largest power from step 1, and start dividing. Each time you divide, you obtain another digit of the base Y number.

Another example: Convert 6826 into base five:

- 2. List powers of five until you reach 6826:
 - $5^{0} = 1$ $5^{1} = 5$ $5^{2} = 25$ $5^{3} = 125$ $5^{4} = 625$ $5^{5} = 3125$ (is greater than 6826. Too big, stop here!)
- 2. Start with the largest power from step 1, and start dividing:

$$5^{5}\overline{)6826} = 3125\overline{)6826}^{2} \text{ remainder 576}$$

$$5^{4}\overline{)576} = 625\overline{)576}^{0} \text{ remainder 576}$$

$$5^{3}\overline{)576} = 125\overline{)576}^{4} \text{ remainder 76}$$

$$5^{2}\overline{)76} = 25\overline{)76}^{3} \text{ remainder 1}$$

$$5^{1}\overline{)1} = 5\overline{)1} \text{ remainder 1}$$

$$5^{0}\overline{)1} = 1\overline{)1} \text{ remainder 0}$$

Therefore the Hindu Arabic/Base Ten number 6826, is 204301_{five} in base five.

Let's check our answer by converting 204301_{five} back into Hindu Arabic/Base Ten: $204301_{\text{five}} = (2*5^5) + (4*5^3) + (3*5^2) + (1*5^0)$ = (2*3125) + (4*125) + (3*25) + (1*1) = 6250 + 500 + 75 + 1 $= 6826 \sqrt{}$

Summary

