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ABSTRACT 

Business competition requires organizations to increase their products’ quality and reduce 

cost at the same time. Statistical process control (SPC) techniques are important tools for 

monitoring process performance over time to detect special causes. Automatic process control 

(APC) systems, on the other hand, are utilized to regulate performance relative to a specified 

target. The literature indicates that combining APC and SPC systems result in integrated SPC 

(ISPC) systems offering an effective approach to process improvement.  

The objective of this research was twofold. The first objective was aimed at identifying 

the various process factors likely to affect the long-term performance of ISPC systems. The 

process considered was one of discrete parts manufacturing characterized by the integrated 

moving average model IMA (1, 1). A simulation model was developed to represent system 

performance in terms of the mean squared error (MSE) of the resulting output and the average 

run length (ARL) of the SPC chart utilized. Simulated results were analyzed to identify 

influential factors likely to affect the system performance. 

The second objective targeted the development of criteria for the economic performance 

of ISPC systems. Two mathematical cost models were developed utilizing Taguchi’s quadratic 

loss function and accounted for key characteristics of the process and system design factors. 

These two models were used to derive criteria for the economic selection of the SPC chart design 

parameters. It is hoped that the proposed criteria will help practitioners select appropriate 

charting alternatives to minimize the total cost of operation. 
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CHAPTER 1 

INTRODUCTION 

Statistical process control (SPC) is a procedure that focuses on process monitoring and 

control by separating common causes from assignable causes. Common causes are the sources of 

variation that are inherent in the process and cannot be eliminated when the process is in 

statistical control, while an assignable cause variation is unpredictable but can be easily detected 

and removed. The traditional tools of SPC are Shewhart control charts, which are based on 

assumptions that all processes are in control and observations are independent. Since the 

pioneering work of Shewhart in 1931, control charts have been successfully used to monitor 

process performance over time. However, because of the advanced measurement technology and 

shortened sampling interval, the independence of each observation is violated in many scenarios, 

especially in continuous process industries, e.g., chemical process. The lack of independence 

among samples always comes in the form of serial correlation, which can be either positively or 

negatively correlated. This behavior of process outputs significantly downgrades the 

performance of control charts. As a result, the control limits of control charts are narrower than 

what they should be and may signal false alarms more frequently. The consequence is 

unnecessary investigation, which consumes a considerable amount of time and money. 

Therefore, several authors point out that the traditional charts fail to control and improve the 

quality of correlated processes (Jiang et al., 2000; Loredo et al., 2002; Zhang, 1998). 

Although there are a few methods which have been proposed to solve the correlation 

problem, the utilization of forecasting techniques is one of the most powerful solutions. Jiang et 

al. (2000) reported the success of the integrating SPC control charts and the autoregressive 

integrated moving average (ARIMA), which is a class of forecasting models for monitoring 
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correlated observations. Loredo et al. (2002) contends that the ARIMA is a powerful tool for 

improving the ability of control charts to monitor correlated processes, since it is able to take the 

correlation structure into account. However, the method to select the most appropriate 

forecasting model and control charts to monitor the correlated data is still a widely discussed 

issue among many authors. Moreover, another critical issue after the integration is the 

continuous improvement of the monitoring method, since most process observations have no 

specific correlated pattern over time. 

Another alternative is the utilization of automatic process control (APC). APC was 

developed to control processes, and it disregards the pattern of the observed data. For APC, 

frequent adjustment on the process can be done in order to keep the output on the desired target. 

Box and Kramer (1992) proposed the idea of using feedback control to compensate disturbances 

estimated by statistical forecasting, while SPC has been deployed to monitor the process output 

after the adjustment in order to detect an assignable cause which cannot be compensated by the 

controller. Montgomery et al. (1994) supported the claim that SPC can detect an assignable cause 

from the output rapidly, while APC can effectively keep a process on target. Some authors refer 

to systems, where SPC and APC are integrated, such as the integrated statistical process control 

(ISPC) system. 

Chapter 2 is a review of the literature pertaining to the ISPC system. Chapter 3 provides a 

discussion leading to the research gap. Chapter 4 presents information on the research gap, 

together with objectives and research procedure. The analysis of statistical performance is 

provided in Chapter 5 in order to characterize the properties of the ISPC system. Economic cost 

models of the APC and the ISPC systems are presented in Chapter 6, and conclusions and future 

research are provided in Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents a review of publications in the area of the integrated statistical 

process control system and its implementation. This review is divided into six sections. The first 

section addresses a review of process models and disturbance models. The second section 

presents a definition of Statistical process control, underlying assumptions, and deterioration of 

its performance due to correlation. The third section reviews automatic process control, which 

includes different types of controllers. These are minimum mean squared error (MMSE), 

proportional integral (PI), and exponentially weighted moving average (EWMA) controller.  The 

ISPC system, which focuses on the logic and advantages of the integration between control 

charts and automatic control, is discussed in the fourth section, followed by its economic models 

and Taguchi’s method. 

2.1 Process Models 

For variable control charts, the quality characteristic is described by the measure of 

tendency and variability, and the process model under the normal condition can be expressed in 

the form of (Montgomery, 2001) 

              tt eY += μ                                                         (2.1) 

where Yt is the process output at time t, μ is the process mean, and et is the random error at time 

t. According to equation (2.1), the process data has a fixed mean, and the fluctuation is the result 

of white noise, which is independent, random, and normally distributed. This type of variability 

is called the stationary behavior, since the process data vary around a fixed mean in a predictable 

manner. The assumption underlying the traditional SPC is built from this process model.  
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Another model is used to represent the stationary behavior but correlated, and is shown in 

the form of  

                                                                     ttt eYY ++= −1φξ                                                   (2.2) 

where ξ is unknown constant, φ is the coefficient ranging from -1 to 1, and et is the random error 

at time t. This model is also known as first-order autoregressive. The observations from this 

model are dependent. A value above the mean tends to be followed by another value above the 

mean, whereas a value below the mean is usually followed by another such value. However, they 

still have a constant mean and variance.  

The last process model is used to explain the non-stationary variation. This type of 

process always occurs in the chemical and process industries. The process is very unstable, and it 

drifts or wanders from the mean. Therefore, it does not have a fixed mean. The non-stationary 

model can be represented by using the first-order integrated moving average, IMA (1, 1), model 

or 

                                                                11 −− −+= tttt eeYY θ                                                     (2.3) 

where yt is the observation at time t, θ is the moving average parameter ranged from -1 to 1,  

(1-θ ) is the drift rate, and et is the random error at time t.  

The stationary and non-stationary behaviors of the process are the result of this 

disturbance. As a result, disturbances are integrated into the process model in order to explain the 

correlation structure and drift in the mean. If the model is identified correctly, the sequence of 

the output error represents white noises with zero mean and constant variance. 

MacGregor (1998) signifies that disturbances can be differentiated into two categories: 

deterministic and stochastic. Stochastic disturbances occur in random and can be stationary or 
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non-stationary, while deterministic disturbances might be in the form of sudden shift in the mean 

or ramp change and can be modeled by transfer functions and differential equations. 

Box and Jenkins (1970) introduced the concept that stochastic disturbances can be 

modeled by stochastic difference equation models in the form of autoregressive integrated 

moving average (ARIMA) methodology. Different equations have been utilized in order to 

forecast one step ahead of disturbances, according to the characteristics of data (stationary or 

non-stationary). The stochastic difference equation can be categorized by following the 

stationarity of a data set. If the disturbance is stationary, then it can be represented by an 

autoregressive moving average (ARMA) or a mixed autoregressive moving average model. The 

autoregressive model of order p, AR (p), is expressed in the form of 

                                                       (2.4) tptpttt aYYYY ++++= −−− φφφ ...ˆ
2211

whereas, the autoregressive moving average, ARMA (p, q), is expressed as 

                                              (2.5) tqtqtptpttt aaaYYYY +−−−+++= −−−−− θθφφφ ......ˆ
112211

AR (p) is the regression model with lag values of dependent variables, while ARMA (p, q) is the 

mixed model between the autoregressive and moving average. Predicted disturbances depend on 

past and current values of disturbances as well as past and current values of errors. However, if 

the disturbance is not stationary, the Box and Jenkin’s ARIMA model, ARIMA (p, d, q), is 

expressed in the form of 

          (2.6) tqtqtdtdttttPtptt aaaYYYYYYYY +−−−−++−++++= −−−−−−−−−− θθφφ ..)(...)(..ˆ
11121111

The ARIMA (p, d, q) model indicates p order of the autoregressive part, d the amount of 

differencing, and q the order of the moving average. The integrated moving average, IMA (1, 1), 

can be considered a special case of ARIMA (1, 1, 1) with φ = 0. 
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MacGregor (1990) applied Deming’s funnel experiment to explain that control policy can 

keep the process mean on target due to the reduction of uncontrollable disturbances. If the 

observations are correlated and there is drift from the mean, the output is a drifting process mean 

in the form of equation (2.2). The estimation of disturbances in the process can be modeled by 

the AR (1) model. MacGregor also showed that process adjustment can reduce the variation 

caused by disturbances. The variance regarding rule 2 of Deming’s experiment is small 

compared to rule 1, when process variables are highly correlated (φ =1), so the adjustment can 

help to keep the process mean on target.   

Box and Kramer (1992) suggested that disturbances can be modeled by relying on the 

stationarity of models. If the disturbance is stationary, the autoregressive processes should be 

appropriate to model the process. To the contrary, the IMA (1, 1) model is recommended for 

modeling non-stationary disturbances. This non-stationary model is utilized to explain drifting 

behavior of output from a fixed target when there is no adjustment in the process. 

Montgomery et al. (1994) pointed out that the IMA (1, 1) model is robust to the 

misspecification of the disturbance model. Even when the stochastic disturbance model follows 

another ARIMA model, IMA (1, 1) with the appropriate θ is still an excellent choice of fitting 

model for the disturbance. 

Nembhard and Mastrangelo (1998) noted that a shift in this process can occur as the 

result of assignable causes (e.g., machine shutdown, or changes in raw materials, equipment or 

products) and during the transient state (production startup), which results in abundant loss in the 

process. The transient phase is induced by the dynamic behavior of the process, which causes the 

output to lag behind input before reaching a steady state. The dynamic behavior of processes can 

be modeled by deploying continuous state space equations from the control theory. The 
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integration between SPC and APC provides the opportunity to perform an adjustment, which can 

significantly decrease the transient-period length as well as the variation of processes. 

Jiang et al. (2000) used a different approach to model disturbances for testing the 

performance of the special-cause chart (SCC) and exponentially weighted moving average for 

stationary (EWMAST) charts proposed by Zhang (1998), which are specially designed for 

autocorrelated data. Two different sets of sample data were selected and fitted to choose models 

for predicting disturbances. Results show that ARMA (3, 2) and ARMA (2, 1) represent the best 

fit and were utilized to assess the performance of the two charts. 

Jiang (2004) noted that the selection of an appropriate disturbance model is an open issue 

for discussion among authors. Some suggest that the IMA, which is a non-stationary model, best 

represents disturbances in the process because of its flexibility. However, many others use a 

stationary model, such as ARMA, to model disturbances.  

2.2 Statistical Process Control  

According to MacCarthy and Wasusri (2002), statistical process control is a powerful 

tool to monitor and control processes and has been widely used in the manufacturing and non-

manufacturing processes since it was first introduced by Walter A. Shewhart. The application of 

SPC control charts can be classified into four categories: process monitoring, planning, 

evaluating customer satisfaction, and forecasting. Among these categories, process monitoring is 

considered the traditional use of SPC tools in order to stabilize and improve the process 

capability. However, control charts can only work effectively when the sampled data follows all 

underlying assumptions (independent and normally distributed). These charts immediately lack 

robustness, when observations violate these conditions. The problem is that most industrial 
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processes are continuous and correlated. When the data is highly correlated, traditional charts 

signal a high rate of false alarms. 

Traditional control charts were developed in 1931 by Shewhart for process monitoring. 

They have been widely used to distinguish between assignable causes and chance causes of 

variation. Several definitions of control charts are found in the literature. Shewhart (1931) 

defined the control charts as follows:  “The control chart may serve, first, to define the goal or 

standard for a process that management strives to attain; second, it may be used as an instrument 

for attaining that goal and third, it may be serve as a means of judging whether the goal has been 

reached.” A control chart may also be viewed as a statistical tool as defined by Duncan (1956): 

“… is a statistical device principal used for the study and control of repetitive processes.” 

Moreover, Feigenbaum (1983) defined a control chart as:  “… a graphical comparison of the 

actual product-characteristics with limits reflecting the ability to produce as shown by past 

experience on the product characteristics.” 

Therefore, a control chart is a graphical display used to monitor a process. It usually 

consists of a horizontal centerline corresponding to the in-control value of the parameter that is 

monitored, and lower and upper control limits. The control limits are neither determined 

arbitrarily, but rather based on statistical criteria, nor related to specification limits. If the sample 

point falls within the control limits, the process is deemed to be in control, or free from any 

assignable causes. Points beyond the control limits indicate an out-of-control process, i.e., 

assignable causes are likely present. This signals the need for corrective action in order to find 

and remove the assignable causes. The assignable causes, also called special causes, are the 

portion of the variability in a set of observations that can be traced to specific causes such as 

operators, materials, or equipment. On the other hand, chance causes, also called common 
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causes, are the portion of the variability in a set of observations that is due to only random forces 

and cannot be traced to specific sources, such as, operators, materials, or equipment. The average 

run length (ARL) is used to evaluate the performance of control charts. The ARL can be 

calculated from  

             
α
1

0 =ARL                                                          (2.7) 

where α is the probability that any point exceeds the control limits. For a Shewhart X  chart with 

3σ limits, α = 0.0027 is the probability that a single point falls outside the limits when the 

process is in control. Therefore, the ARL of the  X  chart when the process is in control is called 

ARL0 or 

370
0027.0

11
0 ===

α
ARL  

Even if the process remains in control, an out-of-control signal will be generated on the average 

of every 370 samples. Moreover, the expected number of samples taken before the shift is 

detected is called ARL1 or 

                                                                       
β−

=
1

1
1ARL                                                      (2.8) 

where β is the probability of points falling within the control limits after causing a shift. 

Therefore, the probability a shift will be detected on the first subsequent sample is 1-β 

(Montgomery, 2001).  

Since the serial correlation in the output generates the dramatic disturbances which 

violate the underlying assumption of the Shewhart’s control chart, different mathematical models 

are used to represent the disturbances (Montgomery and Mastrangelo, 1991). As a result, control 
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charts, which are based on the disturbances model, have been developed in order to monitor the 

highly correlated observations. 

2.2.1 Exponentially Weighted Moving Average Control Charts 

The exponentially weight moving average (EWMA) technique has been widely used in 

order to monitor the process mean, since it weighs the average of all past and present 

observations. Therefore, this approach is deployed to keep track of the time series model, which 

is highly correlated. EWMA is defined as 

                                                                1)1( −−+= iii ZXZ λλ                                                 (2.9) 

where λ is the constant factor (0 < λ< 1), Zi is the predicted value of process mean at time i, and 

Xi is the observed value of process mean at time i. The EWMA statistic has been extensively 

utilized to construct control charts with control limits or 

                  
λ

λσμ
−

+
2

0 L                                                      (2.10) 

Lucas and Saccucci (1990) studied the performance of EWMA control charts by 

considering average run lengths at different λ and L. The selection of EWMA parameters and 

control charts can be done by identifying ARL0 and ARL1; corresponding values of λ and L are 

chosen later to achieve the desired average run length. 

Montgomery and Mastrangelo (1991) suggested that EWMA charts are appropriate for 

monitoring correlated data, since the EWMA statistic is powerful in predicting the one-step-

ahead value of the data, especially when the data structure follows ARIMA (0, 1, 1) or IMA (1, 

1). EWMA control charts also work well for other ARIMA family types of data, e.g., AR (1), if 

the appropriate choice of λ is selected. 
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Montgomery (2001) suggested that the optimal range of λ should lie between 0.05 and 

0.25, so the values of λ are always set at 0.05, 0.1, or 0.2. The rule of thumb in selecting λ is that 

the small value of λ should be used to detect small shifts, and this value is varied due to the size 

of the shift. For the width of the control limit, Montgomery recommended setting L at 3, since it 

works well in detecting a shift in many situations. 

Box and Luceno (1997) suggested the use of the EWMA approach to forecast and keep 

track of the process mean, since it has been proved to be successful in estimating various time 

series. Even though it is not the perfect estimating technique, EWMA is efficient in predicting 

non-stationary time series. Moreover, if the disturbances follow IMA model, EWMA is the 

optimal estimator, because it provides the lowest minimum mean squared error (MMSE). This 

can be proved by considering the mean squared error  

                                                              (2.11) 22 )( TMSE y −−= μσ

If the EWMA equation is arranged in the form of IMA (1, 1) and the error is a white noise 

process, then the MSE of EWMA would be optimal since the white noise has a zero mean with 

the smallest variance, or 

                tttt aaZZ θ−=− ++ 11                                                 (2.12) 

Moreover, since the EWMA represents a recursive process, it can adapt itself to the system 

dynamics. Using the EWMA to exponentially weight the previous data makes sense and proves 

that EWMA is optimal (causing the lowest minimum mean square error) if the disturbance in the 

process follows the IMA (1, 1). 

EWMA charts are more robust to the violation of the normality assumption than 

traditional control charts (Borror et al., 1999). If the normality holds, the in-control average run 

length (ARL0) would be located at 370.4, because it corresponds to the 3-sigma control limits. 
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For EWMA charts, the value of L (width of the control limit) and lambda (weight factor) are 

selected in order to maintain the desired ARL0
 (370.4). Instead of using the normally distributed 

data, the observations are generated from t and Gamma distributions. The purpose of having 

different types of distribution is to observe the detection ability of control charts when the data is 

not normally distributed. When observations follow the Gamma distribution, the in-control ARL 

from the EWMA is much larger than Shewhart or moving range (MR) charts, especially when 

the weight factor is small (0.05). In this case, the result shows that the capability of the Shewhart 

chart is severely deteriorated when the data is based on the Gamma distribution. However, if a 

mean shift occurs in the Gamma distributed data, EWMA charts would have smaller out-of- 

control ARL (ARL1) than MR charts, when the shift size is smaller than 1.5 standard deviations 

(mean and standard deviation of the process are known). The MR charts seem to have a better 

performance in the case of shifts at 2.5 and 3.0 standard deviations.  

Another scenario is that the data is t-distributed at various degrees of freedom (from 1 to 

50). If the process is in control, the ARL0 of EWMA charts is close to 370.4, especially when the 

number of degrees of freedom is high (the shape of the t-distribution is more like the normal 

distribution). On the contrary, the MR charts still have higher rates of signaling false alarms than 

EWMA charts. When a shift occurs in the t-distributed data, the performances of both EWMA 

and MR charts are similar to the Gamma-distribution case, i.e., the MR chart is more sensitive to 

a large shift size, while the EWMA chart is more appropriate in detecting small shifts.   

Performances of the traditional Shewhart charts and EWMA charts, when the process is 

correlated, were compared in an experiment by Lu and Reynolds (1999). In this experiment, the 

weighting factor of control chart was set at 0.2. The experimental data was simulated by 

following the autoregressive model ARMA (1, 1), since Box Jenkin’s ARIMA model has been 
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proved to be successful in fitting correlated processes. Two types of EWMA charts (residual and 

observation) were utilized in order to monitor this data. Results show that residual EWMA charts 

are appropriate when detecting small shifts, while the observation chart is for larger shifts. 

Moreover, the residual chart is more sensitive to detect a shift after a few sample points. A 

second experiment compared the performance of both Shewhart and EWMA charts when the 

process is highly correlated and there is a shift. After the Shewhart and MR charts were applied 

to the data, the control limits were too tight and signaled many false alarms, even when there was 

no shift. To the contrary, the EWMA chart relaxed the tightness of the control limits and signaled 

less false alarms, but the ARL was still lower than the desired level. Lu and Reynolds (1999) 

concluded that the ARL value could be improved if the parameters of the EWMA are based on 

large initial data, since the accuracy of the time series estimation depends on the sample size.  

Another comparative study has been conducted by English et al. (2004) to compare the 

performance of traditional control charts (X bar) and EWMA charts for the autocorrelated 

processes. Shewhart control charts are appropriate only when the process output is independent 

and in statistical quality control, but not in the environment in which the data is correlated. 

According this experimental study, process output was simulated by generating numbers based 

on the autoregressive process ARMA (1, 1), and these two control charts were utilized to 

monitor the output. The average run lengths of each control chart were measured when there 

were different shift sizes occurred in the process (0, 0.5, 1, 1.5, 2, 2.5, 3 sigma: standard 

deviation of the error from the underlying process mean). Results show that the ARL of the 

X charts was much lower than that of the EWMA charts, especially when the output is highly 

correlated. When there is a mean shift, X charts need twice as many sample sizes as EWMA 

charts in order to detect the shift. 
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Chen and Elsayed (2002) addressed the benefit of using EWMA as a technique to filter 

the noise and estimate the true mean of disturbance in a system. If the disturbance follows IMA 

(1, 1), the EWMA is the optimal mean estimator of the process. They chose the optimal EWMA 

parameters (weight constant) by minimizing the expected difference between the estimated and 

actual mean of the disturbance. Moreover, the step change or mean shift in the disturbance can 

be detected by considering the dramatic change in the autocorrelation coefficients. 

Triantafyllopoulos et al. (2005) addressed the fact that the traditional EWMA’s capability 

to forecast would be downgraded if the process is not modeled correctly, especially when there is 

a sudden shift in the process. In this case, the EWMA lags behind the shift, and the adjustment 

for error might not be effective. For this reason, they proposed the application of a local-level 

model (a form of state-space model) in order to compensate for the variability and shift, since 

this method is based on the recursive Kalman gain factor which can adapt the predicted value to 

the changed output. Except for the traditional EWMA control chart, the following authors 

proposed special types of EWMA. 

Mastrangelo and Montgomery (1991) introduced the moving centerline exponentially 

weighted moving average (MCEWMA) statistic, which is adaptive to the autocorrelated structure 

of the data. For MCEWMA, the EWMA statistic is used to calculate the process mean and mean 

error at a given time, or  

                                                         (2.13) 1
ˆ)1(||ˆ

−−+= ttt MeM αα

The control limits for MCEWMA are shown as 

                                                             (2.14) tt MKYUCLLCL ˆ)25.1(ˆ),( ±=

where K is the number of standard deviations,  is the predicted process mean at time t,and Mt 

is the mean error at time t. The standard deviation of the error for MCEWMA is calculated from  

tŶ
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                                                                         (2.15) te Mt ˆ25.1)(ˆ ≈σ

Shaughnessy and Haugh (2002) studied the adaptive EWMA method when the 

disturbance is correlated, and they identified the fact that the appropriate value of λ depends on 

the underlying time series model of disturbances. In order to reduce the prediction error, the 

approach introduced by Cox (1961) has been utilized to achieve the optimal value of λ. If the 

noise process follows AR (1), the weight factor λ is 

          1
3

1
);

1
(

2

1
1 <<

−
−= φ

φ
φλ                                              (2.16) 

However, when the disturbances can be modeled by IMA (1, 1), the optimal λ is equal to 1-θ. 

Guo and Chen (2002) proposed a dynamic tuning EWMA (DT-EWMA) that can estimate 

the process mean and adapt it to the change from the random shifts and linear drifts. The mean 

estimator follows the standard EWMA equation as  

              1
ˆ)1(ˆ −−+= ttt WWY μμ                                                (2.17) 

where W is the EWMA control parameter. According to traditional EWMA methodology, the 

value of W is fixed, and it is not adaptive to any change in the process. For this reason, the 

ability to detect a shift or drift would be downgraded. Guo and Chen provided the algorithm to 

choose the optimal W, which starts by utilizing the control chart to detect a shift.  If a shift is 

detected at time t = t*, then the optimal W at time t is equal to 1 / (t – t* + 1), since it is proved to 

minimize the mean squared deviation (MSD) or 

                                                             (2.18) })ˆ{( 2

ttEMSD μμ −=

When there is a shift, the value of W would increase (provide more weight to the forecast value 

instead of the previous mean). However, if there is no shift, W would decrease until it is equal to 

zero. This situation can prevent the tuning algorithm to counter with the linear drift, so the 
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minimum value of W has been set. In this study, the process mean estimation performance was 

assessed by using normalized mean squared estimation error (MSEE / σ2) or 

           2
** /})ˆ(
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jt

n

j
jtn

MSEE                               (2.19)  

where σ is the standard deviation of the process mean. 

Another performance measurement is the deviation from the target, which can be 

formulated in the form of normalized mean squared error (MSE / σ2) as             

                                                  2
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t

t TY
n

MSE                                           (2.20) 

The result of the experiment shows that the DT-EWMA algorithm is easy to implement and is 

effective to adjust the process affected by random shifts and linear drifts. 

2.2.2 Cumulative Sum Control Charts 

Since the Shewhart control chart uses only information from the last observation, it is not 

sensitive to small shifts in the process. For this reason, a cumulative sum (CUSUM) chart is 

utilized as an alternative when the shift size is small. A CUSUM chart may be constructed for 

individual observations, which always occur in practice (Montgomery, 2001). The CUSUM 

statistic can be computed as  

                                                                                           (2.21) ])(,0max[ 10

+
−

+ ++−= iii CKxC μ

                                                                                           (2.22) ])(,0max[ 10

−
−

− +−−= iii CxKC μ

where μ0 is the target value, K is the reference value (often chosen about halfway between the 

target: μ0 and out-of-control value of the mean: μ1), and  and are the one-sided upper and 

lower CUSUMS. If either  or exceeds the decision interval (H), the process is considered 

to be out of control. Using H = 4 or H =5 and K = 0.5 always provide a CUSUM that has good 

+
iC −

iC

+
iC −

iC
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ARL properties against a shift of about 1σ in the process mean. The average run length of the 

CUSUM chart can be calculated by utilizing Siegmund’s approximation as 
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        (2.23) 

where δ is the shift magnitude.  

2.3 Automatic Process Control 

Automatic process control and statistical process control are two strategies that are 

utilized in different industries. While SPC originates from the parts industry, APC is widely used 

in the process industry. However, these two strategies share the same objective – quality 

improvement of the product. The assumption underlying SPC is that observations are 

independent and completely stationary, while APC focuses on keeping the process mean on 

target. For this reason, APC disregards the correlation of data and adjusts the process with the 

frequency that ensures the lowest deviation from the target (Montgomery et al., 1994).  

2.3.1 Minimum Mean Squared Error Controllers 

There are many types of controllers (feedforward, feedback, and adaptive), and each one 

is appropriate for specific scenarios. However, the minimum mean squared error controller is one 

of the industrial standards (Montgomery et al., 1994). The MMSE controller is the application of 

the one-step-ahead forecasting statistic to compensate for disturbance. The objective is to 

minimize the mean squared error of the output response. Mean squared error is the average of the 

squared deviation from the target or the summation between the output variance (σy
2) and the 

square of the target deviation (μ-T)2 or 

                                                               (2.24) 22 )( TMSE y −+= μσ
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Intuitively, the process mean  and 

Luceno (1997) proved that the A statistic is the best forecast to providing the lowest MSE, 

(μ) should be set on the target in order to reduce the MSE. Box

 EWM

or 

         ttt ZZZ ˆˆ
1 θλ +=+ ; θλ −= 1                                               (2.25) 

where θ is a smoothing constant. For this reason, the EWMA is also called the MMSE statistic. 

The nature of this statistic is a ive process that automatic

 and compensate for the stochastic disturbances in the process (whitening the 

autoco

 

rm of 

 recurs ally updates the forecast value 

when the new observation is obtained. Therefore, the estimated value is based on observation in 

the past. 

 MacGregor et al. (1984) pointed out that the MMSE controller uses the MMSE statistic 

to predict

rrelated data). If the disturbance model is correctly specified, the residual after the 

adjustment would be uncorrelated. Moreover, another important property of the MMSE

controller is the ability to optimally reduce the error variance.  

Box et al. (1994) proposed that the optimal control action can be derived in the fo

the minimum mean squared error as 

                   tt a
B

X
φ
φθ

−
−

=
1

                                                        (2.26) 

when the disturbance model follows the ARMA (1, 1) as 

                                                                  tt a
B

B
D

φ
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−
−

=
1

1
                                                         (2.27) 

However, if the disturbance model follows the ARMA (1, 1, 1) model or  

                                                            tt a
BB

B
D

1)(1(

1

−−
−θ

=
φ )

                                                 (2.28) 

then the adjustment signal from the MMSE controller is 
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                                                  (2.29) 

where θ is the moving average coefficient, φ is the autoregressive coefficient, and at is the 

dered a special case of ARMA (1, 1, 1) 

2.3.2 Exponentially Weighted Moving Average Controllers 

EWMA controller is a run-by-run (RbR) controller, which operates by using an output 

feedback to regulate the process. The operation mode of the controller can be categorized into 

ode, the controller compensates for a disturbance 

al mode, 

which continuously responds to the gradual drif

random error. The disturbance model IMA (1, 1) is consi

where φ = 0. 

two modes, rapid and gradual. In the rapid m

only when the large disturbance is detected. Otherwise, the controller is in the gradu

t in the process (Ingolfsson and Sachs, 1993). 

Ingolfsson and Sachs (1993) investigated the stability and sensitivity of the EWMA 

controller when the process is in statistical quality control (gradual mode) by applying the 

EWMA statistic in the form of  

            tt xa βα +=                                                      (2.30) 

with three types of processes: a deterministic first-order process as 

           tt xY βα +=                                                        (2.31) 

a deterministic second-order process as  

                                                                    (2.32) 

and a drifting process with noise as   

                

2

ttt xxY δβα ++=

ttt etkxY +++= σβα                                              (2.33) 

t is the control signal at time t, α and β are the 

regression coefficients, et is the random error at time t, and σ is the variance of et. The 

where Yt is the output response at time t, X
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asymptotic mean squared deviation (AMSD) was used as the 

 in 

 the target 

ely used in the semiconductor industry and batch-oriented 

(run-to-run) processes, which need frequent adjustment since there are alw

their quality characteristics. The EWMA statistic is powerful in forecasting one-step-ahead value 

of the process response (Castillo, 2001).  

Castillo (2002) pointed that the EWMA statistic can be utilized to manipulate the control 

signal and compensate for disturbances, since it is easy to tune and robust to the non-normality 

of disturbances. Moreover, the EWMA controller is equivalent to the widely used integral (I) 

controller. This type of controller is extensively used in the industry, especially as a flow 

controller in order to control flow processes, since it is an efficiency tool for forecasting one-

step-ahead disturbance and compensating dead time (Venkatesan, 2001). Dead time is caused by 

process disturbances, and reduces the response speed of the output due to input adjustments. For 

the integral controller, the output response converges to the target in a short period if the 

sampling period is short because of the large control signal. Moreover, it provides the minimum 

mean squared error if the drift disturbance is IMA (1, 1). 

Castillo (2002) investigated the performance of the EWMA controller when there are 

IMA (1, 1) disturbances, a deterministic trend (DT) and a random walk with drift (RWD): 

               

criteria to measure deviation from 

the target of the output response, or 

                                                              (2.34) }){( 2TYEMSD −= ∞  

The general solution for α (ratio of convergence) and γ in each type of process was derived

order to obtain the operating region when the output response (Yt) swiftly converges to

value (T). 

The EWMA controller is wid

ays disturbances in 

tttt NN εθε +−=                                                 (2.35) −− 11
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                      tt tN εδ +=                                                        (2.36) 

                NN ttt εδ ++= −1                                                     (2.37) 

The mi

RWD represent the process, then the value of λ directly depe

in order to reduce the AMSD.

2.3.3 Proportional-Integral Controllers 

ler, 

  

nimum AMSD of processes with each type of disturbance was derived. The EWMA 

controller guarantees the lowest AMSD if the process disturbances follow IMA (1, 1). If a DT or 

nds on the drift size in the process 

  

The most widely used device in the process control industry is the three-term control

which is the linear combination of three modes of control action (Box et al., 1994). The equation 

for this controller is in the form of 

                                                    dtekek
dt

de
kkX tItP

t
Dot ∫+++=                                      (2.38) 

where Xt is the control action from the device, et is the output error at time t, k0 is a constant, kD 

is the derivative gain, kP is the proportional gain, and kI is the integral gain. If the value of kD is 

set at zero, the proportional-integral-derivative (PID) controller will become a proportional-

integral (PI) controller, which is proportional to the last error and the sum of all previous errors, 

or  

           ∑ =
+=

t

k kItPt ekekX
0

                                                  (2.39)

The PI controller is the most popular control method among all other control schemes, because 

of its robust property to disturbance in the model. This is not limited to stationary disturbanc

alone, but non-stationary ones as well. Moreover, it has a simple structure and is easy to 

imp

 

es 

lement in the process (Tsung et al., 1998). Venkatesan (2001) also confirmed that the PI 
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controller has been widely used for a long time in the industry in order to control various 

variables, e.g., pressure, speed, torque, velocity, etc. 

Box and Luceno (1997) derived the constrained-input PI controller adjustment xt,whi

depends on only the last two observations Yt and Yt-1. The objective of this design is to reduc

variance of the output response and control signal. Therefore, the controller is designed to

minimize these variances by following the constraint as 

ch 

e 
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)var()(
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α tXYVar
22, σσPG

∇
+                                           (2.40

Then, in order to achieve the best control signal, the optimal value of a linear coefficient 

combination is obtained as 

) 

                                                     1211)( −− +=∇+−=∇ ttttt YcYcYPYGX                                (2.41) 

 Jiang et al. (2002) used the signal-to-noise (SN) ratio (process mean after the shift/standard 

with 

 

cess Control Systems 

m 

 

isturbances. Both the average run length and the average squared 

ulated study, they 

conclud

deviation of the error) as the criteria to choose the optimal parameters of the PI controller 

ARMA (1, 1) disturbances. 

2.4 Integrated Statistical Pro

Montgomery et al. (1994) used Shewhart charts along with EWMA and cumulative su

(CUSUM) charts to monitor the simulated data with different shift sizes. The MMSE controller

was used to compensate for d

deviation from the target were used to measure performance. Based on a sim

ed that the combination of SPC and APC results in a smaller average squared deviation 

than running APC solely. In addition, Shewhart control charts outperformed EWMA and 

CUSUM charts in terms of detecting a sudden shift, especially when the shift size is large. 

However, when there is a trend, EWMA and CUSUM charts indicated better performance than 
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Shewhart control charts.  For the average run length, CUSUM has a smaller ARL than tha

EWMA and Shewhart charts.   

Tsung et al. (1998) introduced a performance measurement, σ2
e / σ2

a (representing the 

variance of white noise and output, respectively), which is utilized to derive the optimal values

of ARMA (1, 1) and ARIMA (1

t of 

 

, 1, 1) respectively. From a simulation, results showed that the PI 

control e 

ing 

tput 

 

o 

ider than the typical 

EWMA d 

t 

ler is more robust than the P, I, and MMSE controllers since it can be operated to achiev

σ2
e / σ2

a =1 in a broader operation area (different values of φ and θ), although disturbances are 

estimated by ARMA or ARIMA. Moreover, Jiang and Tsui (2002) reported that the PI controller 

can still work well when the model of disturbances is misidentified or gain values of the process 

are changed, since the transient and signal-to-noise ratios of the control action for the PI 

controller is higher than the MMSE controller. For the MMSE controller, they noted that 

monitoring the output signal is more efficient than control action, when φ is positive and shift 

size is large, since its transient ratio is high and ARL is small. The control signal monitor

seems to be a better choice when the shift is small (less than 3σe), since the ARL of the ou

signal is larger than the control signal. However, when the value of φ is negative, observing the

output signal is more efficient than the control signal, since it has a higher signal-to-noise rati

and lower ARL. For the PI controller, if a chart cannot detect a shift in the transient state, then 

observing a control action would be more likely because of the low ARL. 

Zhang (1998) introduced the exponential weight moving average charts for stationary 

process in order to monitor the autocorrelated data. Since the autocorrelated structure has been 

accounted for the calculation of the control limit, the range of the limit is w

 or MCEWMA charts proposed by Montgomery and Mastrangelo (1991). The propose

EWMA charts were tested with data simulated from AR (1) and ARMA (1, 1). Results show tha
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EWMAST has a better performance than EWMA or MCEWMA charts, when the autocorrelation

is not positively strong and the shift size is small to medium (0-2 standard deviation of the 

process error). 

Nembhard (1998) used a simulating dynamics system (SIMULINK) to model first- and 

second-order dynamic processes, with disturbances modeled using the ARMA model. Dyna

processes were 

 

mic 

modeled by continuous state-space equations, which are widely used in control 

enginee

 

ring. SPC and APC were integrated in the form of a PI controller, Shewhart charts and 

EWMA charts in order to control and monitor the process. Different performance measures were

investigated, including the squared error of the output process, number of adjustments, average 

adjustment, and number of alarms. It was shown again that for the first-order dynamic process, 

the PI-controller and Shewhart charts have better performance than using only the PI controller 

or no control policy in the system. 

Janakiram and Keats (1998) studied the integration between SPC and APC in a powder-

loading operation for an automobile air-bag initiator. In this integration, Shewhart charts ( X and

R charts) were utilized to monitor th

 

e weight of explosive powder, while disturbances (humidity) 

were m  odeled using the autoregressive model, ARMA (0, 1, 1) or IMA (1, 1). The control action

is manipulated by the MMSE controller in order to cancel predicted stochastic disturbance in the 

form of 

         ∑
=
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e
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X
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λ
                                                    (2.42) jt

          TYe jj −=                                                          (2.43) 

where g is the gain of the MMSE controller, λ is the gain of

process output at time j, and T is the target. The correlogram of residual from the disturbance 

 the EWMA parameter, Yj is the 
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model shows that all autocorrelation ents at eve

nce 

c 

troller was used to adjust the process, while disturbances were 

modele

nt 

tion 

2,…), the ARMA charts detected a mean 

shift m

coeffici ry lag are not significantly different from 

zero, which means that IMA is the appropriate model to estimate disturbances.  The performa

evaluation shows that the integration between SPC and APC can monitor and control stochasti

disturbances effectively. 

Capilla et al. (1999) deployed the integration of SPC and APC to monitor and control 

polymer viscosity by considering the temperature of the reactor as a controllable factor. In this 

case study, an MMSE con

d using AR (1) and ARMA (1, 1). Two types of charts, EWMA and CUSUM, were 

utilized in order to detect assignable causes. Performance evaluation based on simulated data 

showed that utilizing SPC and APC can reduce the variability of viscosity, while significa

disturbances can be detected or compensated rapidly. 

Jiang et al. (2000) proposed the ARMA chart to monitor disturbances in an APC- 

controlled system. When a shift size was small (less than 0.75 σa; σa being the standard devia

of an independent, identically distributed process, a1, a

ore efficiently than EWMA charts. 

Jiang and Tsui (2000) introduced a signal-to-noise ratio in transient state and steady state 

to perform an error measurement on the ISPC system as 

                                                           
Z

Z

SZ

S

Z

Z
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TR = R
σ
μ

σ
μ

=,                                                       (2.44) 

where is the signal-to-noise ratio in the transient state, is the signal-to-noise ratio in the 

steady state, µT  is the process mean in the transient state, µS is the process mean in the steady 

state, and σz is the standard deviation of the chart statistic. A shift in the mean was detected 

rapidly when the transient ratio was high (4 or 5). However, the authors noticed that the detection 

ZR Z

SRT
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was delayed if the transient ratio was less than 3 and the st dy-state ratio measured the shift 

detection capability during the steady state.   

Nembhard et al. (2001) studied the consequences of integrating ARIMA-modeled 

disturbances and the first-order dynamic system by using a SIMULINK program. In this 

scenario, since the dynamic process was included in the model, the startup or transient-state- a

steady-state- behavior were taken into conside

ea

nd 

ration. Output of the process was monitored by 

SPC (E  

licy 

 

ch 

WMA charts), APC, and integration between SPC and APC in order to measure the

performance of each approach. Results of the simulation show that deploying the APC po

solely can reduce the sum squared error significantly, but the integration between SPC and APC 

can greatly decrease the number and magnitude of adjustments. Moreover, using SPC and APC

together might outperform deploying SPC or APC individually.   

Jiang and Tsui (2002) analyzed both the process output (e) and control action (X) , whi

are under the minimum mean squared error and proportional-integral control policies. If ARMA 

(1, 1) is the chosen model to estimate disturbances, then signal-to-noise ratios for the MMSE 

controller are 

θ
         

φμμ −
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where µ is the 

φ− 2

46) 

mean shift pattern. The transient and steady-state ratios depend on the value of 

ARMA parameters. The transient ratio cannot be tuned to

ratio. These two signal-to-noise ratios were deployed as criteria in the comparison of chart 

performance for detecting the shift. Jiang and Tsui utilized SN r

of Shewhart and EWMA charts.  

o high since it reduces the steady-state 

atios to predict the performance 
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Gultekin et al. (2002) proposed the idea of integrating SPC and APC to minimize the 

output variation of continuously stirred tank reactors. In this case, the PI controller was selected 

to make an adjustment in the process. The integration between these two techniques was 

categorized into four different phases: disturbances detection using SPC, estimation of time of 

shift, determination of type of disturbance, and estimation of magnitude of disturbance and 

process ift 

 

s mean. 

 adjustment. The process model included three types of disturbances: determinisitic (sh

in the process), random input, and random output. In the detection phase, Shewhart and CUSUM

charts were utilized to signal the out-of-control status when there was a shift in the proces

The estimate of disturbance magnitude was obtained by deploying the maximum likelihood 

estimator to minimize the mean squared error for disturbance identification. By using a 

simulation, the integration showed that it can reduce the mean squared error by 81 percent, 

compared to utilization of the PI controller alone. 

2.5 Economic Model of ISPC Systems 

Elsayed and Chen (1994) proposed an economic model for X control chart using the 

quadratic loss function. The cost model consisted of four parts: inspection cost, cost of 

investigating false alarms, cost of finding an assignable cause, and quality cost during the in

control and out-of control period (due to Taguchi’s

-

 loss function). Their model was based on 

Duncan’s economic design of  the X chart.  

Jiang and Tsui (2000) introduced the economic model for th integration between SPC

and APC. They assumed that the production process can move between two states, in co

out of control, while the duration of time in the in-control state follows the geometric distribu

and the time interval from the beginning of the in-control state to the adjustment of the out-of-

control state is considered as a prod ction cy

e  

ntrol and 

tion 

u cle. Moreover, it was also assumed that the shift 
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occurs 

ses). 

once every cycle, and no other shift occurs before the previous shift is detected and 

removed. The identification of any assignable causes was perfect, and there was no adjustment 

for any false alarm signals. The in-control cost is the sum of the quadratic loss of the in-control 

items and the expected diagnosis cost for false alarms, while the out-of-control cost is the sum of 

the expected quadratic loss of the out-of-control items, the diagnosis cost (cost of identifying 

assignable cause from the signal), and the adjustment cost (cost of correcting assignable cau

Another assumption was that the subgroup size is one, and the sampling frequency is fixed. 

When the shift size is a step mean shift, the diagnosis cost is zero.  Different types of SPC 

(individual Shewhart and EWMA charts) could be applied with this model. The economic model 

is equal to  
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where LA is the average quality cost, σ2 is  the variance of the white noise, μ is the size of th

mean shift, p is the probability that an assignable cause occurs, and ARL1 is the out-of-control 

average run 

A

e 

length.  

Wang and Yue (2001) proposed an economic model for the APC. Their assumption was 

that the disturbance on the quality characteristic follows IMA (1, 1) and the adjustment by 

 

ere considered: minor and a major. A minor adjustment brings the quality 

back to

ear 

automatic control aims to bring the quality characteristic back to the target. However, it cannot 

eliminate the effect of the previous wear and tear, which is considered in this model. Two types

of APC adjustment w

 the target but cannot eliminate the effect of wear and tear, while a major adjustment is 

one that not only keeps the characteristic on target but also removes the effect of wear and t

from the previous operations. As a result, the total expected quality cost consists of the cost of 
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major adjustment, the cost of minor adjustment and the off-target cost. Then, the unit quality cos

(UQC) of a product is derived as                             
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where C  is the cost of major adjustment, C  is the co

C ii

8)          

major minor st of minor adjustment, m is the 

number of units produced between two minor adjustments, n is the number of minor adjustments 

in a production cycle, k is the proportionality constant, A is the loss because of a non-conforming 

item pr eter, 

e variance of random error in the IMA (1, 1) model. Another important assumption is 

oduce, Δ is the tolerance of the product characteristic, θ is the moving average param

and σi
2 is th

that a major adjustment is needed after n minor adjustments have been done. 

Ben-Daya and Duffuaa (2002) incorporated Taguchi’s loss function with the economic 

design of the control chart in order to construct a new economic model. The assumption 

underlying their model is that the production starts in the in-control sate (mean μ and standard 

deviation σ). However, an assignable cause with magnitude δ would result in an average shift in 

the process mean from μ to μ ± δ. The X control chart with centerline μ and control limits 

nk /σμ ±  was utilized to monitor the process. Once the process is out of control, the search 

while the time interval between occurrences is exponentially distributed with mean 1/λ hours. 

The assumption of this model does not hold for the out-of-control shift due to tool wear and

igue. As a result, the expected cost per production cycle E(C) was derived as 

for an assignable cause is initiated. After it has been eliminated, the process is back to the state of 

in control. It was assumed that the occurrence of an assignable cause follows a Poisson process, 
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where a1 is the fixed sampling cost, a2 is the variable sampling cost, a3 is the cost of finding an 

 the cost of investigating a false alarm, a4 is the expected 

cost, n is the sample size, h is the length of the sampling interval, k is the control limit 

coefficient, μ is the process mean, δ is the shift magnitude from the mean, λ is the parameter of 

 

imit-

for 

ould 

l variables or the APC process. The deviation from the target was detected 

by SPC

                                     (2.53) 

assignable cause, '3a  is out-of-control 

the exponential distribution governing the control period, Δ is the acceptable deviation of the 

quality characteristic from its target value, E(T) is the expected length of a production cycle, β is

the P(not exceeding control limit-process out of control), α is the P(exceeding control l

process in control), h / (1-β) - τ is the expected length of the out-of-control period, gn is the 

number of sample size taken until an assignable cause is detected, and D is the time to search 

the assignable cause. 

Duffuaa et al. (2004) utilized Taguchi’s loss function to decide   whether the APC sh

be performed or the process should be left as-is. For the integration, the adjustment cost was 

compared to the loss due to variability. The cost of an action was calculated based on the 

manipulation of contro

, and the loss due to the variability was derived. They proposed two different economical 
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models when SPC and APC are integrated. For the first model, the cost of APC is diagnos

and adjustment cost per product or 

                                                   

is cost 

u
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where B is the cost per measurement of product characteristics, C is the cost per adjustment, n is 

the measurement interval, and u  is the predicted average number of products between 

successive adjustm mes from va

rget is 

ents. The loss per product co riation when the production is in 

control, variation when the production is out of control, time lag, and the measurement error. If 

the production is in control during the diagnosis, the mean squared deviation from the ta

approximated by D2/3 (the variance of the uniform distribution is [(m+D)-(m-D)]2 /12). 

Moreover, the variation during the out-of-control period is proportional to the number of 

defective units between successive diagnoses and the time lag. The cost of SPC is based on the 

quadratic loss function and is shown as  
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where A is the reworking/scrapping cost,

2 m

 D is the adjustment or control limit, Δ is tolerance of 

product characteristics, 
2

ive 
1+n

is the average number of defective units between success

2

According to the second model, the cost of APC is equal to the cost of quality loss when 

the sample mean is plotted outside the control limit m ± D. The other model was derived from 

        

diagnoses, σm  is the measurement error, and l is time lag (in units).  

the variance of the process as 

2

2
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A
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where C is the adjustment cost, ν2 is the mean squared deviation, A is the rework/scrap cost, and 

Δ is the half tolerance of product characteristics.  

Yang and Sheu (2007) extended Lorenzen and Vance (1986)’s model to construct a 

quality cost model for the integration between SPC and A

production cycle is the time from the beginning of the in-control state until the adjustment of the 

out-of-control state. A signal is triggered when there is an occurrence of an assignable cause. The 

time between each occurrence of a special cause is assumed to be exponentially distributed. The 

shift occurs only once in a production cycle, and another shift does not occur before the previous 

shift is detected and removed. Another assumption is that the process returns to the initial state of 

statistical control after the elimination of the assignable cause (renewal-reward process).  

PC. Their assumption is that a 
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where TC is the expected total cost per cycle, C0 is the quality cost per hour while producing in 

control, C1 is the quality cost per hour while producing out of control, h-ϕ is the expected time 

between a shift and the next sam ple and chart one item, 1

production continues during the repair of the process and 0 otherwise, T1 is the expected time to 

discover the assig air the assignable c

 is the expected number of samples while in control, Y is the cost to 

ple, E is the time to sam γ  is 1 if 

nable cause, T2 is the expected time to rep ause, 
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investigate false alarms, W is the cost of locating and repairing an assignable cause, a is the fixed

cost per item, and b is the cost per unit sampled. 

2.6 Taguchi’s Model 

Taguchi (1986) defined quality loss as the loss to society caused by the product after it is 

shipped out. He proposed a quadratic loss function to estimate the cost due to the dev

duct characteristic. The expected loss E (L) is proportional to the squ

deviation from the target value and the process standard deviation, or 
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the target of the pro ared 
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d loss per unit, A is the per unit cost of repair or rework, Δ is one half 

the tolerance spread, σ is the process standard deviation, μ is the process average, and T is the 

target value. It is interesting to note that the value of product is reflected in the repair and rework 

cost per unit, since the cost of product should be proportional to the cost due to deviation.    

 

 

where E(L) is the expecte
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CHAPTER 3 

DISCUSSION 

The reduction of process variability is one of the most important aspects of improving 

process performance. Two statistically based approaches were introduced to solve this problem. 

The first approach is the statistical process control. This approach has the ability to effectively 

reduce variability by detecting special causes in the process. Once an assignable cause is 

removed, the process is in the state of statistical control and the variability is reduced. According 

to the literature, SPC has been successfully used to monitor discrete parts manufacturing.  

However, when SPC is used with the continuous processes, its performance deteriorates. 

The assumption underlying SPC is that there is the possibility of bringing any processes back to 

the state of statistical control. The in-control state means that the process has only random 

variation around the fixed target so that the frequent adjustment is not required. Deming (1986) 

introduced the funnel experiment to demonstrate how adjustment affects processes in different 

scenarios. In that experiment, a funnel was mounted over a target, or the bull’s eye, and a 

number of marbles were dropped through the funnel with the objective of hitting the target. 

Based on this analogy, Deming evaluated four adjustment rules. Rule 1: there is no adjustment 

for the position of the funnel. Rule 2: deviation is measured from the target and the point that the 

marble last hits. The funnel is moved in the opposite direction with an equal distance from its 

current position. Rule 3: the funnel is moved from the target to the position that is opposite to the 

dropping position of a marble. Rule 4: the position of the funnel is relocated to the latest 

dropping position of the marble.  

Rule 1 is equivalent to the process that is in statistical control, and SPC is a powerful 

technique to monitor this type of process. For rules 2 and 3, there is an adjustment every time 
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there is deviation from the target. If there is no adjustment in the process, output from the 

process will be stationary with highly correlated data or non-stationary due to disturbances. This 

might cause the process mean to wander from the desired target. The difference between these 

two rules is the control action (both rules uses different approaches to set the control action), 

which is used to compensate the deviation. Rule 4 is similar to rules 2 and 3, but the adjustment 

makes the process behave like a random walk model. Control actions in rules 2, 3, and 4 are 

equivalent to the utilization of APC for controlling a process mean within the target when there 

is a deviation in the process (process is not in the state of statistical control). 

Montgomery (1992) suggested that SPC applies well to rule 1 of the funnel experiment, 

which requires no adjustment to the funnel (the process is still in control). Rule 2 adjusts the 

position of the funnel to the opposite direction every time the marble misses the target. This rule 

has a similar process model as that of APC. Box and Kramer (1992) proposed the idea of using 

feedback control to compensate for disturbances estimated by statistical forecasting. SPC has 

been deployed to monitor process output after the adjustment in order to detect an assignable 

cause, which cannot be compensated for by the controller. Montgomery et al. (1994) supported 

the idea that SPC can detect an assignable cause from the output rapidly, while APC can 

effectively keep a process on target.  

Under the statistical framework, SPC works under the assumptions that the process is in 

control and that observations are normally and independently distributed as shown by equation 

(2.1).  For this reason, when all assumptions have been satisfied, the control charts are used to 

draw conclusions regarding the process’s state of statistical control. The standard Shewhart chart, 

which is the traditional SPC tool, is widely used to monitor most industrial processes, and it is 

powerful in identifying the special cause which results in a shift in the process mean. Moreover, 
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if the control limits are set appropriately, the average run length or false alarm rate can be easily 

obtained. Another advantage is that control charts still work well, even when the normality 

assumption is slightly violated. However, many authors, including Alwan and Roberts (1998), 

Alwan (1992), Harris and Ross (1991), Montgomery and Mastrangelo (1991), and Maragah and 

Woodall (1992), pointing out the disadvantage of using SPC in the scenario when observations 

are correlated (even at a low level of correlation). The impact of correlation on SPC includes the 

increasing frequency of signaling false alarms and erroneous conclusions regarding the state of 

the process. Even though EWMA and CUSUM have been developed to monitor the correlated 

process, they require more statistical and mathematical background than the traditional Shewhart 

charts. 

On the other hand, APC is developed by focusing on the process and assumes that there 

is another variable to handle the correlation. When the process mean tends to drift or shift from 

the target, a manipulated process variable is adjusted to correct the process output. A series of 

adjustments can be done in order to keep the process mean as close to the target as possible. 

Different techniques have been used to control the process, but these approaches work on the 

same assumption that the relationship between the input and output processes can be expressed 

by a specific dynamic model. If the model is correctly specified, APC is the most effective tool 

to reduce variation in the process.  

Box and Jenkin’s autoregressive integrated moving average, ARIMA (0, 1, 1) or IMA (1, 

1), is usually used as the dynamic model to represent stochastic disturbances, since this type of 

time series model is non-stationary and flexible enough to fit most disturbances. However, the 

exact dynamic model of each process is unknown, and the misspecification always leads to an 

error in the adjustment. 
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Another critical issue is assignable causes in the process, since controllers make an 

adjustment when the process mean is off target. It is inexpensive to compensate for random 

variations, because the magnitude of fluctuation is small. It is not economical to adjust the 

process when there is a shift, especially a large shift size, since the cost of taking control may 

significantly increase. 

As a result, APC has been integrated with SPC, since these two approaches perform 

different functions but share the same objective of focusing on variability reduction. APC 

estimates the disturbances and makes frequent adjustments until the process mean is on target, 

while SPC detects assignable causes. Many authors (Box and Kramer, 1992; Montgomery et al., 

1994; Box et al., 1994; Box and Luceno, 1997; and Castillo, 2002) support the idea of integrating 

these control policies together in order to improve the process quality. Disadvantages of each 

technique are eliminated when these two approaches are integrated.  

One of the most critical issues regarding the advantage of the ISPC system is the 

response to process variability. SPC takes action only when assignable causes occur, while APC 

adjusts processes when they are off target (Montgomery et al., 1994). Crowder et al. (1997) 

showed that it is normal for the process to be affected by common causes, and rapid control by 

APC can reduce the process variability effectively. However, the manipulation of APC to 

compensate for abrupt changes in the process mean or variance due to a special cause is not 

appropriate because of the large size of shift. In this environment, control charts can be 

complimentary to APC, since it is a powerful tool to detect and remove a shift from the process. 

Another important issue, which supports integration, is the attempt to improve the 

process quality by combining the advantage of each technique. SPC originated in the discrete 

parts industry and focuses on manufacturing items with the smallest variation.  On the other 
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hand, APC has been widely used in the process industry, where adjustment cost is negligible, and 

the process mean can be frequently adjusted. 

However, Gultekin et al. (2002) reported that a large number of discrete part 

manufacturers have started to use the automatic control in their processes. For example, the 

impending chatter is analyzed by using the acoustic data before the milling machine is operated, 

so the process is automatically adjusted to anticipate the acceptable quality of surface finish.  

The performance of the ISPC depends on process variability. According to the literature, 

the IMA (1, 1) parameter λ is always assumed to be constant. For this reason, performance 

studies of integration are based on simulated data from only one disturbance model. However, 

the range of λ in the IMA (1, 1) model can be varied from 0 to 1, and the observations generated 

wander more for larger values of λ (Vander Weil, 1996). Therefore, a specific value of  λ 

generates a unique disturbance model, and this is useful for conducting the simulation to select 

the best ISPC system. 
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CHAPTER 4 

RESEARCH PROCEDURE 

Two different methodologies, SPC and APC, have been used in parallel for a long time, 

and they share a common objective. Recently, a number of research works support the 

integration of these two approaches. However, this research is primarily based on a specific 

scenario or uses only one disturbance model to simulate data for the analysis. Research that 

addresses the implementation boundaries and utilization in practice is limited. 

There are no specific guidelines for when the combination should be utilized. A 

comprehensive review of the literature has shown that practitioners in the industry should have 

guidelines for choosing the appropriate control policy. If quality practitioners know the moving 

average coefficient of the disturbance model and the shift size, they should be able to accurately 

select the best control approach. 

4.1 Research Gap 

Stability in the manufacturing process must be maintained in order to improve and reduce 

variability. SPC is an effective tool for reducing variability in the process. However, a control 

chart is not the best method for reducing variability around the target in correlated observations. 

On the other hand, the APC, which is based on the idea of disturbance prediction and the 

manipulation of the control variable, has been effectively used, especially when the process is 

not stationary. APC responds to regulate the output response when there is a deviation from the 

target, but it does not remove the assignable causes and does not provide information concerning 

the process. Therefore, the integration between APC and SPC could lead to substantial 

improvement in process quality, since they compliment each other. 
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A limited amount of researches has been conducted to evaluate the statistical 

performance of the ISPC system, since it is typically based on one specific disturbance model or 

type of controller and control chart. For this reason, results may not be applied to different 

scenarios. Moreover, there is no clear evidence to indicate the boundaries for economic 

integration (when these two approaches should be integrated) or the economic consequence after 

integration. 

Another interesting issue is the signal to be monitored by SPC. Montgomery (2001) 

pointed out whether the control chart should be used to monitor the control error or the control 

signal is still in question. Practitioners need guidelines in order to monitor the right signal for 

achieving the highest performance of integrating SPC and APC. Figure 4.1 shows the application 

of control charts to monitor the residual (error) and control signals. 

 

Use feedback control 
with an adjustment chart 

or 
another APC procedure 

or 
APC/SPC 

 

Use statistical forecast + SPC Use SPC+APC 

Fit ARIMA: Apply 
standard control charts 

(EWMA, CUSUM, X, MR) to either 
residuals 

or 
use moving centerline EWMA 

or  
use a model-free approach 

Is Process data autocorrelated? 
  

     Is there an adjustment variable?  

Yes 

Yes 

 

Figure 4.1. Application of SPC to monitor the error and control signals (Montgomery, 2001). 
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For parts industry, the cost regarding the adjustment and frequency of monitoring is 

considered high, and SPC originated in this industry. By contrast, APC, which is widely used in 

the process industry, considers the cost of being off target as a critical issue, while the adjustment 

cost is negligible. Since these two approaches are different economically, the optimal economic 

scheme for the integration is derived.  

4.2 Research Objectives 

The objective of this research was twofold. The first was to characterize the statistical 

performance of ISPC systems under varying levels of selected factors. These include model 

coefficient, shift magnitude, type of controller, and type of chart. Efforts were made to study the 

effect of monitoring the error signal as opposed to the correction signal. The system performance 

was characterized in terms of the mean squared error and the average run length. While the first 

is used to evaluate the performance of APC systems, the second is typically used to evaluate the 

performance of SPC systems. This helps identify scenarios where the integration would result in 

an improved performance of the system.  

The second objective of this research was to evaluate the economic performance of such 

ISPC systems. Research efforts included consideration of the expected benefits of monitoring the 

performance of the APC controller using a SPC technique. A mathematical cost function was 

developed and utilized to study the tradeoff between the sensitivity of the APC controller and 

that of the SPC charting technique. This helped identify scenarios where the economic benefits 

of the integration can be maximized for the specified process model.   
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4.3 Stages of Research Procedure 

In order to achieve the above objectives, the following research procedures were done. 

The first stage, focusing on the statistical performance of the ISPC system under varying 

disturbance models, included the following: 

1. Sets of simulated data were generated to represent disturbances. The disturbances were 

monitored and controlled by both APC and SPC. 

2. Different disturbance models were considered by adjusting the parameter λ in the IMA 

model. The effect of parameter change  λ in the IMA (1, 1) model was analyzed. 

Different shift sizes in the form of step signal were added to the process to observe the 

performance of each control approach. 

3. The response variables, the mean squared error and average run length, were used as 

measurement criterion for evaluating each control policy. The MSE is a measurement of 

the average deviation from the target, while the ARL is the average number of points 

plotted before a point indicates an out-of-control status.  

4. Changes in the disturbance models associated with changes in shift sizes, types of control 

charts, choices of controllers, and signals to be monitored  were analyzed using a 

statistically designed experiment. 

The second stage of this research was devoted to the economic feasibility of utilizing the 

integrated approach. By extending the quadratic loss function proposed by Taguchi et al. (1989), 

the loss due to variability in the process was calculated. Also, the cost of performing APC action 

was accumulated with the quadratic loss, and this determined the economic consequence of using 

the ISPC system under different levels of model parameters. 
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CHAPTER 5 

STATISTICAL PERFORMANCE 

In this chapter, the experimental design is utilized for evaluating the statistical 

performance of the ISPC systems. For the experiment, process disturbances, which are simulated 

at specified levels of wandering λ from 0.1 to 1, and a step signal, which causes a shift ranging 

from 0.5 to 2.5 standard deviation, were added to the process model to generate process 

observations. These observations were compensated to meet the target by using controllers 

(MMSE and PI), while the error and control signal after the adjustment were monitored by 

control charts (Shewhart and EWMA). The performance of the integration between controllers 

and control charts was evaluated by considering MSE and ARL. 

5.1 Simulation Modeling 

A simulation was conducted using @Risk, Version 4.5, an add-on software package for 

Microsoft Excel, to generate a set of random numbers with mean = 0 and variance = 1. This 

simulated data was used as random errors for the integrated moving average, IMA (1, 1), which 

represents the process disturbance 

11 )1(ˆˆ
−− −−+= tttt aaNN λ ; 0 < λ< 1 

The value of λ was varied from 0 to 1, since Vander Weil (1996) showed that the simulated IMA 

data wanders (drifts) more for larger values of λ. For each λ, the disturbances were simulated 

from period 1 to 100 (100 observations), while the selected process model was the non-stationary 

model in equation (2.2). Different levels of step shifts (0.5 and 2.5 units) were added to the 

process model at period 51 in order to assess the robustness of the ISPC system to shifts. Two 

types of controllers, MMSE and PI, were utilized in order to compensate for the disturbances and 

shifts in the process. The assumption for these controllers was the gain of the manipulated 
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variable (X) is equal to 1, and the lag period between control signal and action is 1. For the 

MMSE controller, the optimal adjustment for IMA (1, 1): ttt aXX λ+= −1 was used to control 

disturbances. For the constrained-input PI controller, the optimal control signal for IMA (1, 1) 

was shown in equation (2.38). The optimal value of C1 and C2 for each λ was calculated by using 

the solver function in EXCEL. The deviation from the target after the adjustment (Yt-T) and the 

control signal (Xt) from both controllers was monitored by control charts, the Shewhart control 

charts for individual measurements and EWMA charts. Due to individual charts, the observations 

from period 1 to 50 were used to construct phase 1 control charts. For the EWMA, the value of λ 

was set at 0.4, and the width of the limits (L) was set at 3.054 (Montgomery, 2001). As shown in 

Figure 5.1, a number of simulated runs of N = 10,000 was selected to generate disturbances in 

order to obtain the MSE and ARL1 for each ISPC system. 

 

Simulated IMA (1, 
Rando
numbe

generato

PI MMS
controlle
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Error

Control 

Error

Control 

Iteration 

Simulated IMA (1, 1) 
 

Random 
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    Generator
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Controller 

MMSE 

Controller

Individual 
Chart 
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Design of Experiment 

Shift = 0.5, 2.5 
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Observation
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Individual 
Chart 

Control Control 

EWMA 
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ARL 

MSE 
ARL 

MSE 

ARL 

Figure 5.1. Simulation model for statistical performance. 
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5.2 Model Validation 

According to Law and Kelton (1982), the validity of a simulation model depends on how 

accurate it can resemble the output data expected from the actual system. Tsung et al. (1998) 

pointed out that the ISPC system should be able to keep track of the process output and reduce 

variation from the target. For the MSE response, Box et al. (1994) claimed that the output 

standard deviation corresponding to the controller is σa*(1+λ) ½ , when σa is the random error of 

the disturbance, which follows IMA (1, 1). Since the simulation model is based on the correlated 

data IMA (1, 1), which is generated from the random number ~N (0, 1), the error (deviation from 

the target) after the adjustment should have a constant mean at zero and constant variance in the 

range specified by Box et al. Table 5.1 shows the mean, variance, and 95 percent confidence 

intervals of the output error after the adjustment under different conditions, when lambda is set at 

0.1. Since all confidence intervals include σa*(1+λ) ½ = 1*(1+0.1)1/2 = 1.004809, it can be 

concluded that the simulation model is accurate enough to represent the actual system. 

TABLE 5.1  

MEAN AND VARIANCE OF THE OUTPUT ERROR AFTER THE ADJUSTMENT 

SPC APC Shift  σa*(1+λ)½
 Mean Variance 95% C.I. of Variance 

0.5 1.004809 0 1.00396 (0.713116, 1.294804) MMSE 

3.5 1.004809 0 1.15893 (0.734198, 1.583662) 

0.5 1.004809 0 1.00582 (0.711075, 1.300565) 

EWMA 

PI 

3.5 1.004809 0 1.18052 (0.731072, 1.629968) 

0.5 1.004809 0 1.00631 (0.713114, 1.299506) MMSE 

3.5 1.004809 0 1.18509 (0.818315, 1.551865) 

0.5 1.004809 0 1.00575 (0.70636, 1.30514) 

X 

PI 

3.5 1.004809 0 1.18412 (0.772108, 1.596132) 

 
 

For the ARL response, the validation was performed by benchmarking the ability of the 

developed simulation model with the one from Huang and Lin (2002). Huang and Lin used IMA 

(1, 1) model with λ = 0.5 to represent the disturbance, and the shift magnitudes were set at 1, 5, 
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and 10. The process output was monitored and controlled by the ISPC system. In the experiment, 

disturbance was added into the system at time t =150, and the detection was performed until time 

t = 400 (maximum ARL =250). As shown in Table 5.2, the result of the experiment simulation 

(ARL) from Huang and Lin’s work was compared with the one from the simulation model, 

which was run under the same conditions. According to the comparison, all 95 percent 

confidence intervals of the ARL from the proposed simulation model include the values from 

Huang and Lin’s model. 

TABLE 5.2 

 ARL COMPARISON BETWEEN TWO SIMULATION MODELS 

Huang and Lin’s 

Model 

Proposed Simulation Model 

X-Chart EWMA-Chart 

(W=0.9, L=3) 

Shift 

X-

Chart 

EWMA-

Chart 

(W=0.9,L=3) ARL 95%  C.I. ARL 95% C.I. 

1 176.18 221.13 178.32 (175.99, 180.64) 219.43 (217.28, 221.58) 

5 3.96 8.01 3.29 (2.47, 4.09) 7.7 (7.18, 8.21) 

10 1 1 0.66 (0.239, 1.07) 0.89 (0.68, 1.09) 

 

5.3 Data Analysis 

The MSE and ARL from the ISPC system under different scenarios were analyzed using 

Design-Expert, Version 7. The factors which have a highly significant effect on these responses 

were identified with quantified levels of effect. The 25 experiment was conducted in order to 

study the effect of potential factors on the responses, which are mean squared error and average 

run length. Input factors are listed in Table 5.3, and experimental data for both responses is 

shown in Appendix A. 

 46



TABLE 5.3 

LIST OF FACTORS: MSE AND ARL 

Factor Low High 

A (Lambda) 0.1 1 

B (Shift magnitude) 0.5 2.5 

C (Type of controller) MMSE PI 

D (Type of chart) Individual X  EWMA 

E (signal) Control (X) Error (e) 

 

 

5.3.1 Analysis of Mean Squared Error  

 

 As shown in Figure 5.2, the half-normal plot points out that the interaction ABDE is 

significant, while the effect list indicates that shift magnitude (B) contributes as much as 81.57 

percent on the response MSE. The second highest effect comes from the interaction between A 

and E, which accounts for 6.27 percent. Therefore, further investigation of the effect on shift size 

of the MSE might be required. The analysis of variance (ANOVA) in Table 5.4 shows that the 

shift size and interaction between λ and types of controllers are statistically significant with p-

value < 0.0001.  
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     Figure 5.2. Half-Normal plot: MSE. 
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TABLE 5.4  
 

ANALYSIS OF VARIANCE: MSE 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

 

Model 0.12098 15 0.008065 182394.9 < 0.0001 

A-Lambda 0.00194 1 0.00194 43875.6 < 0.0001 

B-Shift 0.098691 1 0.098691 2231871 < 0.0001 

D-SPC 0.001026 1 0.001026 23208.12 < 0.0001 

E-Output 0.000805 1 0.000805 18205.74 < 0.0001 

AB 0.0008 1 0.0008 18097.92 < 0.0001 

AD 0.000661 1 0.000661 14950.77 < 0.0001 

AE 0.007597 1 0.007597 171814.9 < 0.0001 

BD 0.00093 1 0.00093 21042.98 < 0.0001 

BE 0.000342 1 0.000342 7732.685 < 0.0001 

DE 0.000744 1 0.000744 16816.35 < 0.0001 

ABD 0.000588 1 0.000588 13293.13 < 0.0001 

ABE 0.005137 1 0.005137 116176.6 < 0.0001 

ADE 0.000456 1 0.000456 10307.49 < 0.0001 

BDE 0.000779 1 0.000779 17623.81 < 0.0001 

ABDE 0.000482 1 0.000482 10906.57 < 0.0001 

Residual 7.08E-07 16 4.42E-08   

Total 0.12098 31    

 

According to Figure 5.3, cube plots represent the interaction among λ, type of controllers, 

and signal at different values of shift magnitudes (0.5 and 2.5). At the high level of shift 

magnitude, the minimum average MSE (1.081) is obtained at the high level of drift rate, when 

the EWMA chart is used to monitor the error signal. Similar results (1.0035) are obtained at the 

low level of shift. However, a maximum average MSE (1.2044) is obtained at the low level of 

drift rate, when the Shewhart chart is used to monitor the error signal. Similar results (1.00306) 

are obtained at the low level of shift. 

5.3.2 Analysis of Average Run Length 

The half-normal plot in Figure 5.4 points out that the interaction of ABDE is significant, 

while the effect list indicates that type of signal contributes as much as 67.99 percent on the ARL 
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followed by the shift magnitude and lambda in which the percent contribute are 9.16 percent and 

3.13 percent respectively. Therefore, further investigation of the effect of type of signal and shift 

magnitude on ARL might be required. 
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             Figure 5.3. Cube plots of the ABDE interaction (MSE). 
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                Figure 5.4. Half-Normal plot: ARL. 
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As shown in Table 5.5, the analysis of variance (ANOVA) shows that the type of signal 

and the interaction ABDE are statistically significant with p-value < 0.0001.  

TABLE 5.5  

ANALYSIS OF VARIANCE: ARL 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

 

Model 11681.36 15 778.7575 81596.69 < 0.0001 

A-Lambda 377.6164 1 377.6164 39565.91 < 0.0001 

B-Shift 1087.642 1 1087.642 113961.1 < 0.0001 

D-SPC 3.555111 1 3.555111 372.4976 < 0.0001 

E-Output 7960.311 1 7960.311 834066 < 0.0001 

AB 381.4902 1 381.4902 39971.8 < 0.0001 

AD 56.82047 1 56.82047 5953.538 < 0.0001 

AE 313.7838 1 313.7838 32877.66 < 0.0001 

BD 5.621975 1 5.621975 589.0596 < 0.0001 

BE 912.7705 1 912.7705 95638.32 < 0.0001 

DE 1.839937 1 1.839937 192.7851 < 0.0001 

ABD 84.60989 1 84.60989 8865.259 < 0.0001 

ABE 348.7414 1 348.7414 36540.45 < 0.0001 

ADE 55.27052 1 55.27052 5791.138 < 0.0001 

BDE 9.282879 1 9.282879 972.642 < 0.0001 

ABDE 82.00514 1 82.00514 8592.339 < 0.0001 

Residual 0.152704 16 0.009544   

 Total 11681.51 31    

 
 

Cube plots shown in Figure 5.5 represent the interaction among λ, shift magnitude, and 

type of controller for different types of signal (control and error signal). When the control signal 

was monitored, the ARL was significantly lower than when the error signal was monitored. 

Therefore, the control signal should be monitored rather than the error signal. When the EWMA 

chart was used to monitor the control signal, the shift rate was high while the drift rate was slow. 

This scenario caused a minimum ARL of 1.54, and similar results (2.15) were obtained when the 

EWMA chart was used to monitor the error signal. However, a maximum ARL of 3.36 was 

obtained when the shift size is small and drift rate is fast, and the Shewhart chart was used to 
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monitor the control signal. Similar results (46.37) were obtained when the error signal was 

monitored by the EWMA chart.     
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Figure 5.5. Cube plots of the ABDE interaction (ARL). 
 
 

After characterization of the integration system under different conditions was 

performed, the ISPC system was justified by developing economic models for both APC and 

ISPC systems in order to derive the economic boundaries of the integration. Chapter 6 discusses 

this justification. 
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CHAPTER 6 

ECONOMIC COST MODELS 

This chapter explains how mathematical models for estimating the loss from utilizing an 

APC system and an ISPC system were formulated. It was assumed that the process follows an  

IMA (1, 1), subjected to a shift in input. Cost elements were due to the loss incurred when the 

process output deviated from the target value. The common cost for both systems was the cost 

during the steady state and transient state. In the transient state, the APC system compensated for 

the shift until the process output was back within the acceptable range. However, in the ISPC 

system, the SPC acted to detect the shift and signal the out-of-control condition. For this reason, 

economic loss during the steady state was different for the two systems. Moreover, the ISPC 

system had to deal with the cost of false alarms. Therefore, a tradeoff was considered in order to 

select the most economical system to monitor and control the process. After the individual cost 

models for each control system were derived, the justification was done to recommend the most 

appropriate control chart to integrate with the APC system. The assumptions in this modeling 

include the following: (1) the process is the discrete manufacturing process, and (2) the control 

policy follows the post-process measurement technique, which takes a measurement of the final 

product and then makes an adjustment in the process (for the next item) after the information has 

been received. 

6.1 Notation 

Notations in the economic cost models are as follows: 

θ Moving average parameter 

A Rework or scrap cost ($ per unit) 

Δ Half the tolerance of the product characteristic 

 52



μ Process average 

σ Process variance 

δ Shift magnitude 

R Production rate (unit per hour) 

δ0 Range of the controller 

λ Occurrence rate of shift (per hour) 

l Lag time  

T Adjustment time  

ε Sensitivity 

F False alarm cost ($ per occurrence) 

α Probability of type 1 error 

ARL0   Average run length when the process is in control 

β Probability of type 2 error 

ARL1   Average run length when the process is out of control 

n Subgroup size 

h Sampling interval 

k Width of the control limits (Individual measurement chart) 

H Decision interval (CUSUM chart) 

K Reference interval (CUSUM chart) 

L Width of the control limits (EWMA chart) 

W Weight factor (EWMA chart)  
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6.2 Economic Cost Model of APC System 

In the beginning, the process started with a state of control (steady state), and there was 

some noise in the process, which was compensated for by the controller. If the occurrence of an 

assignable cause follows the Poisson distribution with mean λ, then the average time until the 

occurrence of the assignable causes is 1/λ. At time t0, there was a shift occurring at the input; this 

was the starting point of the transient period. After a shift occurred, the controller reacted to 

compensate for the shift. However, there was a lag between the acknowledgement of shift 

occurring and the reaction of the actuator. As a result, the controller experienced a time lag (l) to 

compensate for the shift. The period of the time lag lasted from time t0 until t1. Moreover, 

because of the dynamic behavior of the controller and the process, there was a gap before the 

error was fully compensated. It is interesting to note that the range of adjustment (δ0) from the 

controller can be either smaller or longer than the shift magnitude (δ < δ0 or δ > δ0). Since the 

process adjustment followed the post-process technique, the process adjustment time equaled the 

production of one item and the schematic of the cycle time for the APC system, as shown in 

Figure 6.1. 

According to Figure 6.1, two schematics represent the process output (yt) and 

compensation or control action (Xt) from the controller. The centerline of process output 

schematics is the target that the process wants to achieve, while the centerline of the control 

action is zero. The control action was approximately normally distributed with a constant 

variance (σ 2). Since there were two periods of adjustment, the analysis of total loss is presented 

in the following two sections – loss during steady state and loss during transient state.  
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                Figure 6.1. Schematics representation of cycle time (APC system). 

6.2.1 Loss During Steady State 

Steady state covers the period before the occurrence of the shift (t < t0). The expected 

value and variance of the control action at time t (Xt) during the steady state period are  

                 E (Xt )=0, Var (Xt )=σ 
2
; 0<t<t0 

The loss per unit in the steady-state period can be expressed in terms of the quadratic loss 

function proposed by Taguchi et al. (1989) as 

                                                           2

2

2

2
)()0)(()( σσ

Δ
=+

Δ
=

AA
LE S                                     (6.1) 

If R is the production rate, then the expected number of items produced during the steady-state 

period is 
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()(                                                   (6.2) 

As a result, the expected cost ($) during the steady state is  

   (*)()( SS ELECE )SN=                          

                                                                           ))(( 2

2
σ

λ Δ
=

AR
                                                  (6.3) 

depends on the variance of

quency of the shift occurrence. 

g period (l) and the adjustment period (T). The loss 

e categorized based on the shift magnitude (δ) and the 

range o p 

controller is the lag period 

s delay in the response time to compensate for the shift. If the shift affects only 

the exp r 

Therefore, the expected cost during this period  the control action and 

the fre

6.2.2 Loss During Transient State 

The transient state covers the la

analysis during the transient state can b

f the controller (δ0). Two different cases are considered depending on the relationshi

between the shift magnitude (δ) and the range of the controller (δ0). 

Case#1: δ < δ0 

After the shift occurs in the process, one characteristic of the 

(l), which cause

ected value of the control action and not the variance, then the expected quadratic loss pe

unit can be obtained as 

                                                                      2)()( σ=
A

LE                                                     (6.4) 
2Δl

If the expected number of items produced during the lag period is RlNE l =)( , then the expected 

cost ($) in this period is 

      Rl
A 2σ=CE l 2

)()(
Δ

                                                   (6.5) 
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According to Jiang and Tsui (2002), xpected control ac

the transient period (not include lag time), when a shift of size δ occurs at time t1, is equal to 

; t1 ≤ t ≤ t2                                    (6.6) 

where θ is the moving average parameter of the process model (IMA (1, 1)) considered, and X  is 

the control action at time t. After the lag period is surpassed, the controller is expected to fully 

compensate for the shift at time t2 in one adjustment cycle. However, because of the sensitivity of 

the controller (rate of change in the output of a controller with respect to changes in the inputs), 

the output error is ε (small positive value) in which the value of yt is the closest to the target.  

the e tion of the MMSE controller during 

δθ )1()( 11+−−= tt

tXE

t

ε
θ

=
−1

 
δθθ − +−− )( 11212 tttt

i.e., 

ε
θ

δθθ
=

−
−−

1

)1(12 tt

 

and, 

  
δ
εθ =− 12 tt

                                                        (6.7) 

Therefore, the adjustment period can be expressed as 

θ
δε

ln

)/ln(
12 =−= ttT                                                     (6.8) 

From equation (6.8), if  ε = δ, there is no adjustment period (T

steady-state period (T) is greater than zero. Therefore, the average control action during the 

adjustment period is given by 

                                          (6.9)            

Consequently, the expected loss per unit during the adjustment period can be obtained as 

 = 0). However, if  δ > ε, the 

δθδθ )1()1()( 1112 ++− −=−= Ttt

AXE
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The expected number of items produced during the adjustment period is , and the RTNE A =)(

expected cost ($) during the adjustment period is  

)(*)()E(CA AA NELE=  

          RT
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2
σθδ +−

Δ
+                           (6.11) 

Therefore, the expected cost ($) during the transient state (δ < δ0) is the summation of equations 

(6.5) and (6.11), i.e., 

)()()E(CT Al CECE +=  
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+
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A T σθδσ +−+
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= +                                    (6.12) 

Obviously, when the drift rate of process model is high (fast drift) and the adjustment time is 

long, this scenario will cause expected cost during the transient stat

te for the shift step by step (each step 

ompensation is equal to its range δ0) until control action is within the range δ ± ε.  

the maximum e. The opposite 

result is obtained when the drift rate is small (slow drift). 

Case#2: δ > δ0 

In this case, the controller is expected to compensa

or cycle of the c
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From Figure 6.2., the relation between the control action and the shift magnitude can be 

approximated in the form of a linear function; therefore, Xt = δ, and the expected of these two 

values are 

                                                                  )()( δEXE t =                                                         (6.1

If the shift 

3) 

magnitude is approximated by a triangular distribution with E (δ) = 2δ/3, then  

 
3

2
)(

δ
=tXE  

3

2δ
=                                                                                                                                        (6.14) 

 

 

                Figure 6.2. Schematic representation of cycle time (APC System, δ > δ0). 
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The expected loss per unit during the transient period in this case is 
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2

){(()( 22 σ
32

δ
+=

A
LE T  

Δ

                  )
9

4
)(( 2

2

2
σδ

+
Δ

=
A

                                                  (6.15)              

Since there is always a lag before each adjustment, the cycle

result, the average number of items produced in one cycle time of adjustment is R(l+T),  and the 

expected number of items produced during the whole transient period is 

 time of an adjustment is l+T.. As a 

                                                            )()(
0

TlRNE T +=
δ
δ

                                                   (6.16)         

ent period when δ > The expected cost ($) during the transi δ0 can be obtained as 
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If p and q are the probability of δ < δ0 and δ > δ0 such that p + q =1

during the transient period is 

, then the expected cost ($) 
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 expected total cost of the APC system is 

                     

Therefore, the

)()()( TSAPC CECETCE +=  

Substituting the expected values from equations (6.3) and (6.18), 
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          (6.19)                    
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It is interesting to note that the value of the expected cost can vary depending on lag time, 

adjustment time, and probability of shift magnitude, which can be estimated based on the 

historical data of the occurrence of the shift. 

6.3 Economic Cost Model of ISPC System 

As shown in Figure 6.3, before the occurrence of the shift in the process, the controller is 

active to keep the output yt on the target. This is similar to the APC case. However, the 

difference is that an SPC chart has been integrated to work in conjunction with the controller. 

Therefore, during the steady state period (in-control period), there are a number of false alarms 

from the control chart (the characterization part suggested that the control signal should be 

monitored).  
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Figure 6.3. Schematic representation of cycle time (ISPC system). 
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When there is a shift occurring in the output (the beginning of the out-of-control period), 

the controller is still active in order to compensate for that shift. Afterwards, the SPC signals the 

occurrence of a shift when the out of control signal is plotted outside the control limits and there 

is a search for an assignable cause, followed by its removal. For this reason, the loss cost due to 

the loss is categorized into two elements. Namely, the cost before the occurrence of the shift 

(steady state or in-control period) and cost after the shift has occurred (out-of-control period). 

6.3.1 Loss During In-Control Period 

The cost elements in this period come from the loss due to the control action’s variance 

(same value as E (CS) for the APC system) and false alarms, which incur an additional cost to 

search for the assignable causes when none exist. The expected number of false alarms during 

the steady state period is given by 

                                                          α
λα
RE(N

NE S
F ==

1/

)
)(                                                 (6.20) 

The expected cost ($) due to false alarms during an in-control period equals 

                                                                  F
R

CE F α
λ

=)(                                                        (6.21) 

It is interesting to note that there are two cases regarding the cost of false alarm 

investigation. The first is that the operation must be stopped during the search. Another is that 

the search and operation can be done in parallel so that the cost regarding a false alarm in this 

case is lower than the one from the first case. 

6.3.2 Loss During Out-of-Control Period 

When a shift occurs in the process, the SPC chart takes time to detect. The period of time 

from the occurrence until the chart signals a shift is expressed in term of the average run length 

(ARL1). Similar to the APC case, the adjust property depends on δ and δ0. When δ > δ0 , this 
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scenario for the ISPC system is similar to the APC case. As a result, the expected loss per unit 

during the out-of-control period is  

                                                               ]
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and the expected cost ($) in this period is equal to 
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Therefore, the expected total cost ($) for the ISPC system is 

                                                   )()()()( oFSI CECECETCE ++=     

Substituting the expected values from equations (6.3), (6.21), and (6.23),                              
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The difference between the expected cost of the APC and ISPC systems is the false alarm cost 

and the cost during the out-of-control period. 

6.4 Economics of ISPC System 

According to the above economic model of the controller and the ISPC system, the only 

cost to the APC system is quadratic loss when the controller cannot adjust the process mean 

within the target. After the SPC is added to the system, there would be an additional cost of false 

alarms. However, the tradeoff is that SPC helps to detect a shift so that the loss in the out-of –

control period might be less than the one controlled by the APC system. For this reason, 

economic integration would require that the total cost of the APC is greater than that of the ISPC 

system. This scenario can be justified by using the net savings expected, E (NS), when the ISPC 

system is implemented, or  

                                                         IAPC TCETCE )()( E(NS) −=                                          (6.25)                         
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If the cost savings is positive, the ISPC system would be preferred. Therefore, the criterion for 

economic integration can be expressed as 

0)()( ≥− IAPC TCETCE  

Substituting the expected values from equations (6.19) and (6.24), 
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Equation (6.26) is true only if these two criteria are satisfied. 

Criterion 1: 

Integrating SPC in the system is useful only if there are net savings in the transient 

period. On the other hand, the value of (δ / δ0)*R*(l+T), which is the transient period of the APC 

system, has to be greater than the average run length (ARL1) of the SPC chart. i.e.,  

                                                                  1

0

)( ARLTlR >+
δ
δ

                                                (6.27) 

According to the first criterion, equation (6.27) indicates that the maximum average run length 

(ARL1) that the control chart might have is )(*)/( 0 TlR +δδ , for given δ / δ0, R, l, and T; 

therefore, that the ISPC system would be selected. It is worth noting here that if the design 

parameters of the controller were selected such that 0.1)(*)/( 0 ≤+ TlRδδ , there would be no 

economic justification for the ISPC system. Otherwise, integration would be feasible, subjected 

to the cost of investigating false alarms. Furthermore, equation (6.27) offers a possible tradeoff 

between investing in a high-end controller, with high range, small lag, and transient times, and a 

low-end controller to be integrated with an SPC chart.      
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Criterion 2: 

Given that the first criterion has been satisfied (the control chart’s ARL1 is less than the 

maximum ARL1 allowed), the expected cost of false alarms must be examined. If 

IARLTlR Δ=−+ 10 )(*)/( δδ  such that ΔI > 0, then equation (6.26) can be expressed as 

                                                             0)
9

4
)(( 2

2

2
≥−Δ+

Δ
F

R
q

A
I α

λ
σδ

                                 (6.28) 

Expressing α in term of the average run length during the in-control state (ARL0), the second 

criterion can be expressed as                                                                                
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                                 (6.29) 

Equation (6.29) indicates the minimum ARL0 of the control chart required for economic 

integration. The parameter F represents the cost of investigating a false signal. This cost depends 

to a great extent on the out-of-control action plan adopted. The value of F is expected to be high, 

should the process be stopped while investigating the chart signal. However, if the signal can be 

investigated during operation, F is expected to be relatively low. High production rates coupled 

with high values of F would impose serious limitations on the economic feasibility of the 

integration. Unfortunately, the evaluation of equation (6.29) depends on the value of ΔI and the 

type of control chart selected for integration. The following section represents an application of 

the model for the selection of an appropriate control chart as an illustration.  

6.5 Sample Computation 

To illustrate the above procedure, consider the following example. A manufacturing 

process and its control system have the following characteristics and cost coefficients: 
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δ0 = 4σ λ = 1.5 occurrence per hour 

R = 100 units per hour A = $ 50 per unit 

l = 0.005 hour δ = 8σ 

T = 0.02 hour q = 0.7 

F = $ 200 per occurrence Δ = 0.001 

σ = 0.000167 μ0 = 0.00 

 

The process manager is interested in comparing three types of control charts for 

individual measurements. These include the Shewhart, CUSUM, and EWMA charts. According 

to equation (6.27), the ARL1 of the control chart selected should not exceed the following: 

5)005.002.0(*100*2)(
0

=+=+ TlR
δ
δ

 

If the ARL1 of the control chart is less than five, it would satisfy the first criterion. 

However, its ARL0 has to be greater than the minimum ARL0 obtained using equation (6.29). 

These values depend on the chart selected and its design parameters. The following charting 

alternatives are considered. 

Shewhart Type Chart 

 Since subgroup size (n) =1 and sampling interval (h) =1/R, the average run length ARL0 

and ARL1 need to be quantified at different values of control width factor (k). Table 6.1 shows 

the results of using equations (2.7) and (2.8). 
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TABLE 6.1  

ARL OF INDIVIDUAL CHART  

K ARL1 ΔI min ARL0 ARL0 NS 

4 2 3 563.60 15787.19 $22.81 

3.5 1.47 3.55 475.77 2149.34 $21.82 

3 1.19 3.81 443.61 370.39 -$5.94 

2.5 1.07 3.93 430.40 80.519 -$134.61 

2 1.02 3.98 425.18 21.98 -$575.31 

 
 
The maximum expected net saving is achieved at k = 4.  

CUSUM Chart 

The design of the CUSUM chart requires selection of the reference value (K) and the decision 

interval (H), both of which can be used to calculate the average run length utilizing equations 

(2.21) and (2.22). The results obtained at H = 4 are summarized in Table 6.2, while those 

obtained at H = 5 are summarized in Table 6.3. As shown in Tables 6.2 and 6.3, the maximum 

expected net saving is achieved at K = 1.0 for both values of H. 

 
TABLE 6.2  

ARL OF CUSUM CHART FOR H = 4  

K ARL1 ΔI min ARL0 ARL0 NS 

1.5 1.99 3.01 560.98 1195314 $23.76 

1.25 1.81 3.19 530.36 130031.4 $25.04 

1 1.67 3.33 507.14 15344.06 $25.42 

0.75 1.54 3.46 488.95 2053.78 $20.78 

0.5 1.44 3.57 474.28 338.09 -$11.32 

0.25 1.34 3.66 462.22 77.23 -$143.79 
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TABLE 6.3  

ARL OF CUSUM CHART FOR H = 5  

 

 

K ARL1 ΔI  min ARL0 ARL0 NS 

1.5 2.39 2.61 646.83 24008594 $20.61 

1.25 2.18 2.82 598.73 1584156 $22.26 

1 1.99 3.00 563.41 113413.3 $23.55 

0.75 1.85 3.15 536.76 9230.15 $23.39 

0.5 1.72 3.28 515.65 938.22 $11.65 

0.25 1.61 3.39 498.57 141.93 -$67.20 

 
EWMA Chart 

This chart design requires specifying values of the control limit widths (L) and weight 

factor (W), both of which are used in calculating the average run length using the method of 

Lucas and Saccucci (1990). Calculated values of the expected net savings obtained at selected 

levels of L and W are shown in Table 6.4. 

TABLE 6.4  

ARL OF EWMA CHART  

L W ARL1 ΔI min ARL0 ARL0 NS 

3.09 1 1.22 3.78 497.94 500 $3.14 

3.087 0.75 1.23 3.77 498.42 500 $3.06 

3.071 0.5 1.36 3.64 501.019 499 $1.98 

3.054 0.4 1.46 3.54 503.81 498 $1.14 

3.023 0.3 1.6 3.4 508.97 497 -$0.02 

2.998 0.25 1.69 3.31 513.22 496 -$0.78 

2.962 0.2 1.8 3.2 519.46 496 -$1.65 

2.814 0.1 2.2 2.8 546.78 492 -$5.02 

2.615 0.05 2.68 2.32 588.39 487 -$9.08 

2.437 0.03 3.09 1.91 631.36 480 -$12.72 

 
 

Table 6.4 indicates that the maximum net saving of $3.14 per hour is obtained at L = 3.09 

and W = 1.0. Overall, the maximum expected net savings is obtained by integrating the CUSUM 
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chart with H = 4 and K =1.  To gain better understanding of the model performance, a sensitivity 

analysis is performed in the following section.   

6.6 Sensitivity Analysis 

In this section, a sensitivity analysis was conducted to examine the effect of the various 

input parameters on the decision variables. Since the selection of the control system depends on 

two criteria regarding the boundary of the average run length, the responses, ARL0 and ARL1, 

are analyzed in the following two sections. 

6.6.1 Sensitivity Analysis  of ARL1 

For ARL1, a factorial experiment was used to examine the effect of the APC’s parameters 

on the selection of ARL1, and there are four factors (δ / δ0, R, l, and T) to be considered 

according to equation (6.27). The values of these parameters have been set by considering the 

work of Weheba and Nickerson (2005) and practical levels (Table 6.5). The selected design is a 

three-level factorial with a total of 81 runs. The design matrix of this experiment is shown in 

Appendix B. 

 
TABLE 6.5  

LIST OF FACTORS: MAX ARL1  

Factor Low Medium High 

δ / δ0 1.5 2 2.5 

R 70 100 130 

 l 0.0001 0.005 0.009 

T 0.01 0.02 0.03 

 
 

As a result, the analysis of variance for the reduced model, as shown in Table 6.6, 

indicates that there are significant effects from two factor interactions: δ / δ0, R, l, T,  

(δ / δ0) * R, (δ / δ0) * l, (δ / δ0) * T, R * l, R * T. 
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TABLE 6.6  

ANALYSIS OF VARIANCE:  MAX ARL1 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

 

Model 479.8325 9 53.31472 6493.943 < 0.0001

δ / δ0 83.33264 1 83.33264 10150.24 < 0.0001

R 119.945 1 119.945 14609.77 < 0.0001

L 32.89447 1 32.89447 4006.676 < 0.0001

T 212.3753 1 212.3753 25868.15 < 0.0001

(δ / δ0) * R  4.7961 1 4.7961 584.1839 < 0.0001

(δ / δ0) * l 1.137825 1 1.137825 138.5916 < 0.0001

(δ / δ0) * T 8.246469 1 8.246469 1004.452 < 0.0001

R * l 1.651225 1 1.651225 201.1257 < 0.0001

R * T 11.86803 1 11.86803 1445.572 < 0.0001

Residual 0.582904 71 0.00821   

Total 480.4154 80    

 

The normal probability plot (Figure 6.4) shows that the residuals are normally distributed, 

and there are no outliers. 
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    Figure 6.4. Normal probability plot of the residual: max ARL1. 
 
 

According to Figure 6.5, the maximum ARL1 reaches the highest value of 8.2, when  
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δ / δ0 and R are at their high levels (2.5 and 130). These conditions would favor the utilization of 

an ISPC system. However, the ARL1 significantly drops to less than 4.87, when  

δ / δ0 is reduced to only 1.5 at the high level of R. When both parameters are set at their low 

levels, the maximum ARL1 decreases to about 2.6. If δ / δ0 increases to 2.5 and R is kept at the 

low level, then the maximum ARL1 is significantly increased to 4.38. This would represent a 

challenge for the ISPC system’s performance. Therefore, the higher the level of δ / δ0 and R, the 

more the opportunity for utilizing the ISPC system. 
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                   Figure 6.5. Response surface plot of the interaction (δ / δ0) * R. 

According to Figure 6.6, the highest value of maximum ARL1 of 7.2 is obtained at the 

high level of δ / δ0 and l (1.5 and 0.001). This scenario increases the chance that the ISPC system 
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would be implemented. When δ / δ0 is at the low level (1.5), the ARL1 significantly drops to 

4.35. On the other hand, if both parameters are set at the low level, then the maximum ARL1 

decreases to 3.14, which is the lowest value of the maximum ARL1. Hence, a decrease in the 

values of both lag and shift ratio would reduce the opportunity for the ISPC system to be utilized 

because of its low maximum ARL1.  
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                   Figure 6.6. Response surface plot of the interaction (δ / δ0) * l.  

As shown in Figure 6.7, at the low levels of δ / δ0 and T (1.50 and 0.01), the lowest value 

of maximum ARL1 is achieved at 2.24. If one of these values is increased to the high level while 

the other is kept at the low level, the maximum ARL1 significantly increases. The maximum 

ARL1 reaches the highest point at 8.7, when δ / δ0 and T are set at their high levels. As a result, if 

either δ / δ0 or T is at the high level, the maximum allowed ARL1 of the ISPC would be 
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maximized. In this scenario, the adjustment time seems to have more effect on the value of the 

maximum ARL1 than the shift ratio. 

 
 

  1.50

  1.75

  2.00 
  2.25 

  2.50

0.01  

0.015 

0.02  
0.025   

0.03   

2.2   

3.85   

5.5   

7.15   

  A: Shift ratio    D: T   

  max ARL1   

8.8   

 
 

                Figure 6.7. Response surface plot of the interaction (δ / δ0) * T. 
 
 

According to Figure 6.8, the maximum ARL1 of 7.48 is at the lowest point, when R and l 

are at their low levels (70 and 0.001). The ARL1 would significantly increase if R is set at the 

high level (130). At the high levels of R and l (130 and 0.009), the maximum ARL1 is at the 

highest point or 7.5. It is interesting to note that lag time seems to have less effect on the 

maximum ARL1 than production rate.  
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           Figure 6.8. Response surface plot of the interaction R * l. 

Figure 6.9 shows that the highest value of maximum ARL1 of 9.1 is achieved when  

R and T are high (130 and 0.03). However, the ARL1 significantly drops to 4.9 when R decreases 

to 70. If both parameters are set at the low levels, then the maximum ARL1 decreases to 2.1. If R 

increases to 130 and T is kept at the low level, the maximum ARL1 of 2.09 is obtained. 

In conclusion, the value of the maximum ARL1 depends on the two factors interaction 

between δ / δ0 or R with l or T. The chance of implementing the ISPC systems would be 

increased if two of these three factors are set at their high levels.  
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                                       Figure 6.9. Response surface plot of the interaction R * T. 

6.6.2 Sensitivity Analysis of ARL0 

 Many factors affect the value of the minimum ARL0 (equation (6.29)); therefore, an 

experiment was conducted to study the effect of each parameter on the minimum ARL0. A three- 

level factorial experiment would require a total of 38 runs. However, in practice, F and λ can be 

expressed as functions of R, while A, δ, and σ are expressed as functions of Δ. Consequently, the 

design can be reduced to a three-level factorial with a total of 81 runs. The list of factors and 

their respective levels are shown in Table 6.7, and the experimental data is shown in Appendix 

C. 
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TABLE 6.7  

LIST OF FACTORS: MIN ARL0 

Factor Low Medium High 

R 70 100 130 

Δ 0.0005 0.001 0.0015 

q 0.1 0.55 1 

ΔI 1 5.5 10 

 
 

The analysis of variance (Table 6.8) shows that there are significant effects from two 

factor interactions and quadratic terms (R, q, ΔI, R
2, q2, and ΔI

2), while the normal probability 

plot in Figure 6.10 indicates that the error is normally distributed. 

 
TABLE 6.8  

ANALYSIS OF VARIANCE: MIN ARL0 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Prob > F 

 

Model 202.0182 13 15.53986 42.87348 < 0.0001 

R 38.32515 1 38.32515 105.7366 < 0.0001 

q 37.75482 1 37.75482 104.1631 < 0.0001 

ΔI 33.09641 1 33.09641 91.31084 < 0.0001 

R2 6.155265 1 6.155265 16.98198 0.0001 

q2 6.237698 1 6.237698 17.2094 < 0.0001 

ΔI
2 3.310066 1 3.310066 9.132256 0.0036 

Residual 24.28473 67 0.362459   

Total 226.303 80    

 

According to Figure 6.11, the minimum ARL0 reaches the maximum value of 509.01 

when the production rate is set at 130 units per hour. However, when the production rate is at its 

low level of 70 units per hour, the minimum ARL0 is significantly reduced to 272.88. This would 

increase the chance for implementing the ISPC system in the process. 
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                        Figure 6.10. Normal probability plot of the residual: min ARL0. 
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                          Figure 6.11. Main effect plot of R. 
 
 

Figure 6.12 indicates the quadratic effect of the probability q. The minimum ARL0 is 

significantly higher than the one at the high level of q (1.0). As shown, a ten-fold increase in the 
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estimated value of q results in a reduction of 1926.06 in the minimum ARL0. Therefore, the 

opportunity that the ISPC system is utilized would be maximized if q is increased. 
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                               Figure 6.12. Main effect plot of q. 
 
 

As shown in Figure 6.13, when the value of ΔI is increased from 1 to 10, the minimum 

ARL0 drops from 2141.38 to 217.29. Hence, if ΔI is at the high level, the greater the chance that 

the ISPC system would be preferred.      

In conclusion, the minimum ARL0 would be maximized if either q or ΔI  are high while 

the production rate is set at the low level. This scenario increases the chance that the control 

chart could satisfy the second criterion. However, when one of these factors is set at the opposite 

level to the one mentioned above, the chance of utilizing the ISPC system would be minimized. 
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                                  Figure 6.13. Main effect plot of ΔI. 
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CHAPTER 7 

  CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

The first objective of this research was to characterize the statistical performance of the 

ISPC system under varying levels of selected factors. These included model coefficient, shift 

magnitude, type of controller, and type of control chart. In order to achieve this objective, a 

simulation model was developed for the purpose of studying the impact of these factors on the 

long-term performance of the system. The process model considered is one of discrete 

manufacturing characterized by the integrated moving average IMA (1, 1) model with different 

levels of drift rate. It was assumed that the process mean is subjected to a random shift of a 

specified magnitude following the Poisson process. Combinations involving the minimum mean 

squared error and proportional integral controllers were considered with the Shewhart individual 

measurement and exponentially weighted moving average (EWMA) control charts. These 

control charts were used to monitor both the control signal and output errors under varied levels 

of process factors. Observed values of the mean squared error and average run length were 

analyzed using a two-level factorial design. Results indicated that it is more effective to monitor 

the control signal than the output error, regardless of the type of the controllers used. This offers 

an answer to the question posed by Montgomery (2001) about whether to monitor the control 

signal or the output error for the best performance of ISPC systems. In addition, results identified 

a number of influential factors to be considered in estimating the total cost of operation.  

The second objective of this research was to evaluate the economic performance of the 

ISPC systems. In meeting this objective, two mathematical models were developed, with due 

consideration of the quadratic loss concept proposed by Taguchi (1986). The first represents the 
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expected loss of utilizing an APC system alone and accounts for the cost of operation during the 

steady and transient states of the production cycle. The expected total loss was expressed in 

terms of the controller’s range, lag time, adjustment time, and variance. Also, the model accounts 

for the rate of production, product value, design tolerance, shift magnitude, and rate of 

occurrence. It was shown that total cost depends on the shift magnitude relative to the range of 

the controller and its associated probability of occurrence. 

The second cost function was developed to represent the expected loss of utilizing an 

ISPC system. In contrast to the former, this cost model included the additional cost of false 

alarms during the steady state and the cost of operation during the out-of-control state. Both were 

expressed in terms of average run length of the control chart utilized.  

The difference between these two cost models was used to obtain the net savings 

expected from the integration. Two criteria were derived to indicate boundaries for economic 

integration in terms of the required average run length during in-control and out-of-control 

stages. As such, this would help select among alternative SPC charting techniques to maximize 

the expected net savings. To the best of my knowledge, this is the first attempt made to offer the 

economic justification of utilizing the ISPC system. Furthermore, the model can be easily 

modified to represent other process models including the autoregressive AR (1) and the 

autoregressive moving average ARMA (1, 1) models. This can be accomplished by modifying 

the adjustment time during the transient state to accommodate differences in their dynamic 

behaviors.  

An application of the economic criteria was presented for the selection among three 

charting alternatives to monitor the control signal. For a specified set of process characteristics 

and cost coefficients, it was shown that the use of a cumulative sum chart with H = 4 and K =1 
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would maximize the net expected savings as a result of the integration. To investigate the model 

performance, a sensitivity analysis was performed utilizing a three-level factorial design 

involving a wide range of process characteristics and cost coefficients. Results indicate that the 

adjustment time (T) has the highest effect on the maximum allowable average run length during 

the out-of-control state, followed by the production rate (R) and shift ratio (δ/δ0). On the other 

hand, the average run length during the in-control state was found to be sensitive to changes in 

the production rate followed by the probability q and ΔI. A procedure for obtaining the reliable 

estimate of the probability p based on the historical data has been proposed.  

7.2 Future Research 

Advantages of the model developed in this research suggest that it might be utilized in 

justifying the use of ISPC systems. An extension of the research for other process models could 

easily be made. Moreover, assumptions made to maintain the generality of the model might be 

examined. In addition, the following are proposed areas for future research. 

Effect of Measurement Errors 

An implicit assumption was made that the measurements are accurate and error free. In 

any measurement system, as noted by Shewhart, there are two sources of error: bias and 

imprecision. If the error is negligible, the assumption made in this research would hold true. 

Otherwise, the overall performance of the ISPC systems would be affected. The significance of 

research in this area would be to investigate the effect of measurement error on the expected net 

savings and provide methods for compensating their effects.  

Multivariate process control 

In this research, only one output variable was considered; therefore, an extension to the 

multivariate scenario would be required when the controller can adjust for more than one 
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variable at the same time. Situations exist where these variables may be correlated, leading to an 

increased rate of false alarms. Research in this area would help identify appropriate charting 

alternatives for economic integration. 

Accounting for system degradation  

The assumption was that the APC system would maintain its original performance 

characteristic over time. Like most systems, controllers are subject to wear and tear and may 

experience an increasing failure rate during their service life. Therefore, integration may become 

economically feasible as the performance of the controller deteriorates over time. Future research 

could identify the appropriate time for SPC integration as an alternative to total replacement of 

the APC system.   

Incorporating the value of knowledge gained 

While this research focused on the cost of ISPC systems, it is anticipated that the 

statistical monitoring of the control signal would result in gaining additional process-specific 

knowledge. This knowledge could be used to improve the quality of the process or product. 

Hence, the model may be expanded to include the value of the knowledge gained and 

consequently offer more economic justification of the integration. 
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APPENDIX A 

DESIGN MATRIX FOR MSE AND ARL 

Standard 

Order 

Drift 

Rate 
Shift Controller Chart Signal MSE ARL 

1 0.1 0.5 MMSE Ind X 1.00592 2.0362

2 1 0.5 MMSE Ind X 1.00504 2.3758

3 0.1 2.5 MMSE Ind X 1.0965 1.05794

4 1 2.5 MMSE Ind X 1.12506 1.3815

5 0.1 0.5 PI Ind X 1.00585 2.052

6 1 0.5 PI Ind X 1.00507 2.3491

7 0.1 2.5 PI Ind X 1.0971 1.0569

8 1 2.5 PI Ind X 1.125006 1.414

9 0.1 0.5 MMSE EWMA X 1.00469 1.4899

10 1 0.5 MMSE EWMA X 1.00508 1.8339

11 0.1 2.5 MMSE EWMA X 1.0916 1.0782

12 1 2.5 MMSE EWMA X 1.124614 1.3798

13 0.1 0.5 PI EWMA X 1.00407 1.7741

14 1 0.5 PI EWMA X 1.00496 2.0114

15 0.1 2.5 PI EWMA X 1.0921 1.05998

16 1 2.5 PI EWMA X 1.124952 1.6935

17 0.1 0.5 MMSE Ind e 1.01438 43.4212

18 1 0.5 MMSE Ind e 1.00305 44.2674

19 0.1 2.5 MMSE Ind e 1.2045 16.0418

20 1 2.5 MMSE Ind e 1.089507 30.8625

21 0.1 0.5 PI Ind e 1.01444 43.4563

22 1 0.5 PI Ind e 1.00307 44.181

23 0.1 2.5 PI Ind e 1.2042 15.8751

24 1 2.5 PI Ind e 1.089779 30.8422

25 0.1 0.5 MMSE EWMA e 1.01371 45.4457

26 1 0.5 MMSE EWMA e 1.00307 43.7739

27 0.1 2.5 MMSE EWMA e 1.129688 1.157

28 1 2.5 MMSE EWMA e 1.080866 39.5636

29 0.1 0.5 PI EWMA e 1.01388 45.2909

30 1 0.5 PI EWMA e 1.00303 43.8926

31 0.1 2.5 PI EWMA e 1.129819 1.1419

32 1 2.5 PI EWMA e 1.081126 39.5123
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APPENDIX B 

DESIGN MATRIX FOR MAX (ARL1) 

Standard 

Order 

Shift 

Ratio 

Production 

Rate 

Lag Tolerance Max ARL1 

1 1.5 70 0.001 0.01 1.155 

2 2 70 0.001 0.01 1.54 

3 2.5 70 0.001 0.01 1.925 

4 1.5 100 0.001 0.01 1.65 

5 2 100 0.001 0.01 2.2 

6 2.5 100 0.001 0.01 2.75 

7 1.5 130 0.001 0.01 2.145 

8 2 130 0.001 0.01 2.86 

9 2.5 130 0.001 0.01 3.78 

10 1.5 70 0.005 0.01 1.575 

11 2 70 0.005 0.01 2.1 

12 2.5 70 0.005 0.01 2.625 

13 1.5 100 0.005 0.01 2.25 

14 2 100 0.005 0.01 3 

15 2.5 100 0.005 0.01 3.75 

16 1.5 130 0.005 0.01 2.925 

17 2 130 0.005 0.01 3.9 

18 2.5 130 0.005 0.01 4.875 

19 1.5 70 0.009 0.01 1.995 

20 2 70 0.009 0.01 2.66 

21 2.5 70 0.009 0.01 3.325 

22 1.5 100 0.009 0.01 2.85 

23 2 100 0.009 0.01 3.68 

24 2.5 100 0.009 0.01 4.75 

25 1.5 130 0.009 0.01 3.705 

26 2 130 0.009 0.01 4.94 

27 2.5 130 0.009 0.01 6.175 

28 1.5 70 0.001 0.02 2.205 

29 2 70 0.001 0.02 2.94 

30 2.5 70 0.001 0.02 3.675 

31 1.5 100 0.001 0.02 3.15 

32 2 100 0.001 0.02 4.2 

33 1.5 100 0.001 0.02 3.15 

34 1.5 130 0.001 0.02 4.095 

35 2 130 0.001 0.02 5.46 

36 2.5 130 0.001 0.02 6.825 

37 1.5 70 0.005 0.02 2.625 

38 2 70 0.005 0.02 3.5 
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Standard 

Order 

Shift 

Ratio 

Production 

Rate 

Lag Tolerance Max ARL1 

39 2.5 70 0.005 0.02 4.375 

40 1.5 100 0.005 0.02 3.75 

41 2 100 0.005 0.02 5 

42 2.5 100 0.005 0.02 6.25 

43 1.5 130 0.005 0.02 4.875 

44 2 130 0.005 0.02 6.5 

45 2.5 130 0.005 0.02 8.125 

46 1.5 70 0.009 0.02 3.045 

47 2 70 0.009 0.02 4.06 

48 2.5 70 0.009 0.02 5.075 

49 1.5 100 0.009 0.02 4.35 

50 2 100 0.009 0.02 5.8 

51 2.5 100 0.009 0.02 7.25 

52 1.5 130 0.009 0.02 5.655 

53 2 130 0.009 0.02 7.54 

54 2.5 130 0.009 0.02 9.425 

55 1.5 70 0.001 0.03 3.255 

56 2 70 0.001 0.03 4.34 

57 2.5 70 0.001 0.03 5.425 

58 1.5 100 0.001 0.03 4.65 

59 2 100 0.001 0.03 6.1 

60 2.5 100 0.001 0.03 7.75 

61 1.5 130 0.001 0.03 6.045 

62 2 130 0.001 0.03 8.06 

63 2.5 130 0.001 0.03 10.075 

64 1.5 70 0.005 0.03 3.675 

65 2 70 0.005 0.03 4.9 

66 2.5 70 0.005 0.03 6.125 

67 1.5 100 0.005 0.03 5.25 

68 2 100 0.005 0.03 7 

69 2.5 100 0.005 0.03 8.75 

70 1.5 130 0.005 0.03 6.825 

71 2 130 0.005 0.03 9.1 

72 2.5 130 0.005 0.03 11.375 

73 1.5 70 0.009 0.03 4.095 

74 2 70 0.009 0.03 5.46 

75 2.5 70 0.009 0.03 6.825 

76 1.5 100 0.009 0.03 5.85 

77 2 100 0.009 0.03 7.8 

78 2.5 100 0.009 0.03 9.75 

79 1.5 130 0.009 0.03 7.605 

80 2 130 0.009 0.03 9.98 

81 2.5 130 0.009 0.03 12.11 
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APPENDIX C 

DESIGN MATRIX FOR MIN (ARL0) 

Standard 

Order 

Production 

Rate 
Δ q Δ I Min ARL0 

1 70 0.0005 0.1 1 8287.88 

2 100 0.0005 0.1 1 11760.6 

3 130 0.0005 0.1 1 14980.3 

4 70 0.001 0.1 1 8279.4 

5 100 0.001 0.1 1 11851.6 

6 130 0.001 0.1 1 14880.3 

7 70 0.0015 0.1 1 8284.91 

8 100 0.0015 0.1 1 11835.62 

9 130 0.0015 0.1 1 14870.2 

10 70 0.0005 0.55 1 1506.35 

11 100 0.0005 0.55 1 2151.77 

12 130 0.0005 0.55 1 2797.51 

13 70 0.001 0.55 1 1506.35 

14 100 0.001 0.55 1 2151.12 

15 130 0.001 0.55 1 2798.89 

16 70 0.0015 0.55 1 1506.35 

17 100 0.0015 0.55 1 2151.78 

18 130 0.0015 0.55 1 2797.53 

19 70 0.0005 1 1 828.49 

20 100 0.0005 1 1 1183.56 

21 130 0.0005 1 1 1583.63 

22 70 0.001 1 1 828.49 

23 100 0.001 1 1 1183.56 

24 130 0.001 1 1 1538.63 

25 70 0.0015 1 1 828.49 

26 100 0.0015 1 1 1183.56 

27 130 0.0015 1 1 1538.63 

28 70 0.0005 0.1 5.5 1506.35 

29 100 0.0005 0.1 5.5 2170.93 

30 130 0.0005 0.1 5.5 2811.51 

31 70 0.001 0.1 5.5 1506.35 

32 100 0.001 0.1 5.5 2134.79 

33 130 0.001 0.1 5.5 2760.51 

34 70 0.0015 0.1 5.5 1506.35 

35 100 0.0015 0.1 5.5 2151.12 

36 130 0.0015 0.1 5.5 2797.51 

37 70 0.0005 0.55 5.5 267.88 

38 100 0.0005 0.55 5.5 398.26 
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Standard 

Order 

Production 

Rate 
Δ q Δ I Min ARL0 

39 130 0.0005 0.55 5.5 501.64 

40 70 0.001 0.55 5.5 272.88 

41 100 0.001 0.55 5.5 382.26 

42 130 0.001 0.55 5.5 523.64 

43 70 0.0015 0.55 5.5 273.88 

44 100 0.0015 0.55 5.5 391.26 

45 130 0.0015 0.55 5.5 508.64 

46 70 0.0005 1 5.5 154.64 

47 100 0.0005 1 5.5 226.19 

48 130 0.0005 1 5.5 279.75 

49 70 0.001 1 5.5 155.64 

50 100 0.001 1 5.5 209.19 

51 130 0.001 1 5.5 279.75 

52 70 0.0015 1 5.5 150.64 

53 100 0.0015 1 5.5 215.19 

54 130 0.0015 1 5.5 279.75 

55 70 0.0005 0.1 10 836.49 

56 100 0.0005 0.1 10 1183.56 

57 130 0.0005 0.1 10 1538.68 

58 70 0.001 0.1 10 828.49 

59 100 0.001 0.1 10 1198.56 

60 130 0.001 0.1 10 1556.36 

61 70 0.0015 0.1 10 814.49 

62 100 0.0015 0.1 10 1176.56 

63 130 0.0015 0.1 10 1598.63 

64 70 0.0005 0.55 10 157.64 

65 100 0.0005 0.55 10 215.19 

66 130 0.0005 0.55 10 282.75 

67 70 0.001 0.55 10 150.64 

68 100 0.001 0.55 10 215.19 

69 130 0.001 0.55 10 280.75 

70 70 0.0015 0.55 10 150.64 

71 100 0.0015 0.55 10 215.19 

72 130 0.0015 0.55 10 279.75 

73 70 0.0005 1 10 82.85 

74 100 0.0005 1 10 124.36 

75 130 0.0005 1 10 161.86 

76 70 0.001 1 10 84.85 

77 100 0.001 1 10 122.38 

78 130 0.001 1 10 161.86 

79 70 0.0015 1 10 81.85 

80 100 0.0015 1 10 118.31 

81 130 0.0015 1 10 156.86 
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