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ABSTRACT 

 

For mass production, the traditional approach of drawing the confidence limits was 

satisfactory when many bad units were being produced; however, the same approach becomes 

ineffective for high yield processes, when the defective rates have small magnitudes, such as 

parts per million. In particular, the traditional p-control charts used to control nonconformance 

rates present many problems when p, the rate of nonconformance, is small. One problem is an 

increase in the probability of false alarm, and another is the increase in sample size, sometimes 

making the extremely large size of the sample prohibitive. The biggest problem with the p-

control chart is discussed by Brown, Cai and DasGupta (2001), where the theory of the normal 

approximation to the binomial distribution is debunked and the need for rewriting the chapter on 

binomial distribution in statistics textbooks is suggested.  Many rejoinders to this work also 

agree on this important discussion.  

An alternative to the p-control chart is the cumulative conformance control (CCC) chart, 

which solves most of the problems of the p-chart except that the CCC chart is insensitive to 

small process deterioration and the methodology is non-sequential.  The advocates of sequential 

procedure criticize the major drawbacks of those traditional control charts, including the p and 

CCC control charts, with phase I and phase II production. They argue that any non-sequential 

procedure allows for the “double use of the data” in phase I, where phase I is designed to set the 

control limits to be used in phase II of production.  Specifically, in phase I, the sampled 

observations are used to estimate the parameters needed to set the control limits, and these 

control limits in turn are used to test the same observations. There is a bias imbedded in this 

approach. Another major criticism to a non-sequential procedure is the need for a predetermined 
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fixed and large sample size. The following questions therefore arise: (1) How can a large sample 

size with a very small rate of nonconformance be predetermined? (2) What happens if that 

particular large sample contains no nonconformance? (3) How should the sample size be 

enlarged?  Another argument in favor of a sequential procedure is made to the importance of the 

fact that any estimate of p in phase I of the production has to be an accurate estimate, 

representative of the whole process.  

In this dissertation, it is shown that even a regular sequential procedure, while preserving 

the benefits of its “sequential” nature, cannot detect process deterioration in a high yield process. 

Therefore, a sequential Bayesian CCC control chart is designed that is capable of detecting 

process deterioration. The sequential Bayesian CCC chart is a more capable alternative to the p-

control chart and to the CCC chart. It offers a significant improvement over a regular sequential 

procedure, because of its added capability in detecting process deterioration. It also allows for 

immediate reaction to process deterioration. When an observation falls outside of the control 

limits, often the observation can be discarded and the process is allowed to continue.  However, 

when a process deterioration becomes visible as soon as the observations are tested, the system 

can be halted and the cause investigated immediately. The timely reaction to process 

deterioration is crucial and valuable in terms of the ability of preserving the “health of the 

system.” 

The approach where each additional observation is viewed as the value of a random 

variable from a distribution updated by that additional observation is powerful in concept. The 

updating becomes more refined with the flow of information. Using the observations as values of 

random variables instead of parameter estimates incorporates not just the observation values into 
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the procedure, but also the variability among the observations. This incorporated variability is 

essential in detecting process deterioration. 

In a high yield environment, when the cost of the initial sample size used for the layout of 

the control chart is either prohibitive or simply unavailable, one is compelled to make good use 

of every observation given. The Bayesian methodology developed in this dissertation is tested 

and works satisfactorily for a range of values of probability of nonconformance p, from 0.1 to 

0.00001. The methodology may also be used successfully in such circumstances calling for self-

starting mechanisms and/or requiring short production runs.  
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CHAPTER 1 

INTRODUCTION 

 

The increase in the commitment to quality in industry is leading to a significant decrease 

in the defective rate of a product.  The traditional approach of drawing the confidence limits has 

served its purpose when many bad parts were being produced.  However, the same approach 

becomes ineffective for high yield processes where the defective rate is in small magnitude such 

as parts per million (ppm).  One example of a high yield process is the thermo-sonic wire 

bonding (Chang and Gan, 2007), where the number of defects is in the range of 116 ppm.  

Another example of a high yield process is in the manufacture of integrated circuits as stated by 

Pesotchinsky (1987).  

In this dissertation, a sequential Bayesian cumulative conformance control (CCC) chart is 

developed to address the deficiencies of past methodologies in environments of minute defective 

rates. In past methodologies, the low rate of nonconformance p is treated as a fixed parameter. In 

the approach advanced here, the rate of nonconformance p is treated as a random variable to 

incorporate variability and uncertainty in the estimation of the rate of nonconformance p.  

For the study of high yield processes, the methodology calls for 100 percent inspection 

on attribute data. Some of the operational advantages of control charts based on attribute data are 

advocated by Bourke (1991).  He advances the proposition that the distributional assumptions of 

the variables in question become unnecessary when attribute data is used and the gauging 

instruments of “go no-go” type speed up the inspection process.  Sometimes a quantitative 

inspection is carried out before an overall categorization of conforming-nonconforming is made.  

Glushkovsky (1994) states that the statistical process control (SPC) methods for attribute data 
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should be applied only for low quality processes and that for high yield processes it is necessary 

to do 100 percent inspection to be able to ensure a large sample size and proper SPC functioning.  

He also addresses an important dilemma in high yield processes when there is disparity between 

the lot size and required sample size.  What should be done, for example, if the production lot is 

five hundred units and the sample size should be at least 1000?  

One of the main classical approaches used in charting nonconformance rates is through 

the use of the p-control chart based on the binomial distribution.  The standard confidence 

interval for the binomial proportion p which is the basis of the p-control chart is simple in 

concept and easy to calculate.  It is based on some heuristic justification concept of the central 

limit theorem which states that the larger the sample size n is, the better the normal 

approximation is and correspondingly, the closer the actual coverage of the confidence interval 

would be to the nominal level.  The statistics books lead one to believe that the coverage 

probabilities of this method are close to the nominal value except when n is “small” and/or p (the 

rate of nonconformance) is close to zero or one [1-5]. 

A very important finding by Brown, Cai and DasGupta (2001) debunks the theory behind 

the confidence limits of binomial proportion (one that is the basis of the p-control chart which is 

still widely used in statistical process control for fraction defectives) and addresses the very 

unpredictable and problematic behavior of the binomial distribution.  Brown et al. compare the 

coverage probabilities of a binomial distribution for different values of p and n against their set 

nominal confidence interval levels.  Their findings are disturbing.  The concept of a “lucky n” 

and “lucky p” are discussed, where a good confidence interval that is close to the nominal 

interval for a particular n becomes poor for a larger n value.  Moreover, the chaotic coverage of p 

is found almost everywhere its value could be, not just around the p boundaries of zero and one 
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as would be suspected.  The stated cause is due primarily to the fact that the binomial distribution 

is discrete and skewed.  

The article is followed by rejoinders and positive comments from statisticians with 

suggestions, including, a reevaluation of the way binomial distributions are taught in statistics 

books.  Some commenting authors suggest, as one solid alternative, the use of Jeffreys interval, 

for both cases when n40 and n >40. 

In particular, the Jeffreys interval is based on a non-sequential Bayesian methodology, 

where the prior is “non-informative” (nothing is known a priori about the parameter values) and 

the parameters of the prior are fixed and both equal to ½.  In the sequential Bayesian 

methodology proposed in this dissertation, the prior is “informative” (something is known a 

priori about the parameter values) and the data cause changes in the parameter values.  In this 

proposed sequential Bayesian approach, the dynamic flow of new information leads to 

continuously updated parameter values which affect the prior, the posterior , and the predictive 

distribution where the corresponding CL are constructed from. 

There are some other obvious obstacles that are encountered with the p-control chart in 

high yield environments, primarily due to the inability of the p-chart to detect process shift and 

to the increase in the rate of false alarms.  There are also problems with the significant increase 

in sample size and the negative lower control limit. 

In order to deal with the problems associated with the p-control chart when the rate of 

nonconformance p is very small, an alternative chart called the cumulative conformance control 

(CCC) chart is introduced by Calvin(1983).  It is classical in nature in the sense that it is non-

sequential and requires two phases: phase I for setting up the control limits and phase II for the 

testing of new observations.  The CCC methodology solves most of the problems generated from 
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the p-control chart when the rate of nonconformance p is small (Kaminsky et al., 1992; 

Glushkovsky, 1994; Nelson, 1994; Woodall, 1997; and Xie and Goh, 1992, 1997) except that 

embedded in the CCC chart is an inability to detect small process deterioration (Chan and Goh, 

1997; Xie and Goh, 1992; Xie et al, 2000; Tang and Cheong, 2004; Glushkovsky, 1994; 

Kaminsky et al., 1992 and Yang et al., 2002).  

Montgomery (2001) describes how the traditional control charts with the two-phase 

approach are set up using pre-determined sample sizes in phase I of production.  The sampled 

observations are used to estimate the parameters needed to set the control limits.  Then the same 

observations are checked against the control limits, and any observation that is out of control is 

discarded.  The process is then checked for special cause variation and the source of the 

variation, if any, is eliminated.  The remaining observations are used to set up the new control 

limits.  The process continues until all the remaining observations fall within the control limits.  

Bayarri and Garcia-Donato (2005) note that in the phase I period (which is referred to as base 

plan or BP), any non-sequential approach to finding the control limits based on the heuristic 

approach described by Montgomery (2001) causes “the double use” of the data.  In other words, 

any non-sequential approach uses observations to compute the control limits and then uses the 

control limits to test the same observations used to set these limits.  This is hardly an unbiased 

approach.  In contrast, the sequential Bayesian procedure introduced in this dissertation uses 

sequentially updated data to set new control limits and the observations used to set the control 

limits are not the same as the observations being tested.  

Besides the unbiased nature of the sequential methodology, there are other very important 

practical advantages to any sequential procedure.  It can be used when the amount of data is 
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limited, valuable or unavailable. It can be applied in short run processes and as self-starting 

mechanisms.  

In this dissertation, a sequential Bayesian procedure is developed based on the CCC 

chart.  The methodology, given its sequential nature, solves the bias problem of non-sequential 

approaches posed by Bayarri et al. (2005).  Also, because it relies on the distribution theory of 

the CCC chart (i.e., the geometric distribution), it avoids the fundamental problems of the 

binomial distribution addressed by Brown et al. (2001) and incorporates the advantages of the 

CCC chart. Moreover, because of its Bayesian in nature (i.e., incorporating variability in the 

nonconformance estimate of p), the methodology can detect process deterioration whereas a 

simple sequential CCC procedure fails.  

In addition to the sequential Bayesian procedure developed in this dissertation, a simple 

sequential CCC procedure is introduced and used as a benchmark for the sequential Bayesian 

methodology.  Furthermore, the performance of the CCC procedure, the simple sequential and 

the sequential Bayesian procedures are compared.  The dissertation shows that although both the 

simple sequential and sequential Bayesian procedures are superior in their ability to detect an 

“out-of-control” observation compared to the CCC procedure, the sequential Bayesian 

methodology is much better at detecting process deterioration than the simple sequential 

procedure.  The sequential Bayesian methodology is superior to the sequential methodology 

(which smoothes the variability since it relies only on averages - behaving more like a moving 

average) because it is the only one that incorporates the knowledge of variability among 

observations and therefore mirrors their behavior when they are deteriorating. 
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The sequential Bayesian methodology developed in this dissertation allows for the 

construction of confidence limits even when only originally three observations are given.
1
  These 

observations are used at the start of the process to define the parameters of the prior and the 

predictive distributions, and from the predictive distribution, the original control limits (CL) are 

constructed.  If past knowledge or data is available, that information can be used to define the 

prior distribution parameters and no observations are required to set the original control limits.  

A new observation is then taken and tested against the original control limits.  If the observation 

falls inside the limits, that observation is used to update the prior and set the next confidence 

limits.  By conditioning on the present observation and drawing the control limits for the next 

observation, the posterior distribution at index i becomes the prior distribution at index i+1.  If 

and when an observation falls outside the “in-control” interval, the observation is discarded and 

the previous observations are used to compute a new prior that would lead to more accurate 

estimates of the control limits.  In this new sifting approach, the good observations are not 

shuffled back into the mix for redrawing new control charts as is done in the phase I of any 

classical control chart approach.  The prior is used as a “counter” to account for the time order of 

past observations and a “sifter” to separate the “in-control” observations from the “out-of 

control” ones.  

Furthermore, it is also shown in this dissertation that not only is the Bayesian 

methodology sensitive in detecting process deterioration when the rate of nonconformance p is 

very small, but it is also just as powerful when the rate of nonconformance is “not small”.  It is in 

effect applicable for a wide range of values of nonconformance rates p.  The tested values in this 

dissertation are from 10
-1

 to 10
-5

.   

                                                 
1 An observation refers to the number of conforming units up to the nonconforming one.  
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The proposed sequential Bayesian procedure has never been introduced in the literature.  

However, different benefits of the sequential Bayesian procedure have been mentioned in the 

literature under some proposed methodology when dealing with the different problems generated 

from high yield processes.  The power of the proposed approach is that it incorporates all of the 

proposed remedies under one methodology while avoiding their drawbacks.  
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CHAPTER 2 

LITERATURE REVIEW 

 

A comprehensive literature review is presented in this chapter.  The first section 

introduces the traditional p-control charts [6-7].  The second section identifies the problems with 

the traditional charts when the rate of nonconformance p is very small.  The third section 

discusses techniques that can be used to handle such high yield processes, including 

transformations, run- rule charts, and the cumulative conformance control (CCC) charts, along 

with their drawbacks.  The fourth section discusses the problems remaining regarding the CCC 

chart.  The fifth section describes some problems with estimating the probability of 

nonconformance p during phase I of production.  The sixth section discusses further different 

solutions to overcome the drawbacks of the methodologies introduced, including: Cumulative 

sum (CUMSUM) charts, synthetic charts, conditional CCC charts and sequential CCC charts.  

The last section introduces the motivation behind the Bayesian control chart proposed in this 

dissertation.  

 

2.1 The p-control chart 

The traditional Shewhart control charts have been designed to essentially increase quality 

and productivity.  The p-control chart monitors the fraction of defective items.  The underlying 

theory behind the p-control chart is that the random variable x representing the number of 

defectives in a sample of size n follows a binomial distribution.  Based on the central limit 

theorem, the observations selected from a binomial distribution can be approximated by a normal 
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distribution with mean and standard deviation estimated by p and 
n

pp )1( 
, respectively, 

where n is the number of items in the subgroup, and p represents the average fraction of defects 

of a preliminary number of samples inspected (or from past production data).  This 

approximation is used to determine the upper and lower control limits of the p-control chart.  The 

probability of a nonconformance value of p  from a sample falling above the upper control limit 

(UCL) or below the lower control limits (LCL) is very small (.0027 for the 6 sigma levels), and 

whenever that happens it probably means that the process has deviated from its process mean 

and should be investigated.  A point above the UCL translates into a highly defective sample, 

and a point below the LCL translates into a higher quality sample; both cases not likely to 

happen due to chance alone.  Guidelines on when to use a normal approximation to the binomial 

distribution have been set in many statistical books: np and nq >= 5, n and nq large; np and nq 

both >=10, np and nq >5, n  25 and .2  p  .8.  Here p is the fraction nonconforming, n the 

sample size and q = (1-p).  

In Figure 1, a classical p-control chart is exhibited with UCL = 0.0066, LCL = -0.020 (set 

to 0) and an average nonconformance value of p at 0.0023.  In percentage terms they are 0.66, 0 

and 0.23, respectively.  In general, at least 20 observations or subgroups are needed to set the 

control limits during phase I of the production process.  If Figure 1 represents the setting of the 

control limits for phase I of the production process, then observations (subgroups) 3 and 13 have 

to be thrown out, and the control limits recomputed with the rest of the data points.  Here 

observations were generated with an average subgroup size of n=2250.  Note that since the graph 

becomes somewhat stable after point 14, provisions should be made to substantially increase the 

subgroup size. 
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Figure 1.  A traditional p-control chart 

 

2.2 Problems with the traditional p-control chart when p is small  

Notwithstanding the repudiation by Brown et al. (2001) of the traditional process used in 

establishing the p-control chart, other concerns have been addressed in the literature regarding 

the p-control chart when p is small.  These concerns are discussed next.  

 

2.2.1 Negative lower control limit 

For a small rate of defects or nonconformance, p, and a sample size that is not “very 

large,” very often, the LCL dips below zero. Goh (1987a) shows that for an exceedingly small 

value of p (e.g., p = .0004, an average of 400 ppm nonconforming), and an n value of 200 (the 
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sample size of each inspection), the lower control limit becomes negative.  Another paper by the 

same author (1987b) shows that for n = 100 and p = .006, the LCL is also negative.  Usually, 

when the LCL becomes negative, it is set to zero because a negative control limit is meaningless 

for a p-control chart, as p must be greater or equal to zero.  The author argues that this renders 

the control limits asymmetrical about the central line, something not in line with the normal 

approximation theory behind the control charts, essentially violating the theory. 

Xie and Goh (1993) argue that not only is the LCL not reliable due to a violation of the 

theory behind it, but that the LCL contains information about the process improvement, 

information not less important than process deterioration from a management point of view.  

Setting the LCL to zero translates into a missed opportunity in the ability of identifying and 

therefore sustaining a continuous improvement of the process.  They suggest an np value larger 

than 25, for the normal approximation of the binomial to work.  Furthermore, Chan and Goh 

(1997) propose that when the nonconforming rate is in the order of 10 
-4

 or lower, the use of the 

p or np chart is no longer acceptable.  

 

2.2.2 Increase in the probability of false alarm 

Another problem with the p-control chart in dealing with high yield processes is the high 

probability of false alarm. Goh (1987a) shows that one nonconforming item in a sample will 

throw the process out of control, which means that the process has to have practically zero defect 

to be in control.  This translates into an increase in the false alarm probability.  Chan et al. (2002) 

argue that when the rate of nonconformance is very low, the UCL of a p-control chart is usually 

a fraction less than 1/n, and, because of the nature of the discrete behavior, will give a false 

alarm every time a nonconforming item is observed even though the process is in control.  
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2.2.3 Increase in the sample size 

The sample size required in detecting process shift is also extremely important to high 

yield processes. Glushkovsky (1994) shows that by setting the lower control limit value to 1, the 

smallest possible value it can take, and the α/2 value (the rate of false alarm) at the common 

value of .00135 for the  3σ control limits,  then for a nonconformance value of p value at 0.01, 

the sample size must be greater than 660.  For a nonconformance value of p in the magnitude of 

100 ppm the sample size must be greater than 66,000.  Even when it is possible to indulge in 

very large samples, Chang and Gan (2007, p. 871) note: “A charting scheme based on a large 

sample size may not provide a timely feedback on the ‘health’ of a process being monitored if 

the inspection of quality is not swift enough.” 

. 

2.2.4 Inability to detect a process shift 

The ability to detect process shift in a timely fashion is an important feature of a control 

chart.  Goh (1987a) shows that the p-chart with low nonconformance rate p does not respond fast 

enough to a process shift.  Western Electric Rules are commonly used to detect process shift in a 

classical Shewhart chart such as the p-control chart [8].  However, because the rules are based on 

the assumption that the distribution is symmetric and unimodal, they cannot be applied in our 

case, given the fact that the binomial distribution is highly skewed and the normal approximation 

of the binomial fails to apply, according to the findings of Brown et al.(2001) discussed in the 

introduction section of this dissertation.  

 

2.3 Suggestions for coping with high yield processes  
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2.3.1 Run rules chart 

As an alternative to the p-control chart,, Goh (1987a) proposes a special chart for low rate 

of nonconformance p called the “low p chart” where a pattern of different values of pi from 

consecutive samples are used instead of an individual conformance value p value from one 

sample.  The pattern is then evaluated to check whether or not a process is out of control.  The 

pattern essentially can be formulated as follows: If m out of M consecutive samples have d 

defectives, then the process is out of control.  The author suggests its use whenever the LCL is 

negative and when the nonconformance value of p is low and the n value is not large enough, 

rendering infeasible the normal approximation to the binomial.  The actual binomial distribution 

is used instead of its normal approximation.  The approach does not assume 100% inspection.  

Instead, an assumption is made about the belief in the stability of the process.  The approach 

involves a complex reasoning in statistical theory and is impractical to use in many applications. 

Furthermore, it has not been tested for cases with very low rates of nonconformance, such as the 

ones in the parts per million.  The author suggests its use when the nonconformance value p is 

less than one percent.  It was tested at a minimum nonconformance value p of .006.  

 

2.3.2 Transformation of distributions 

Nelson (1994) suggests a transformation of distributions.  He assumes that with a 

constant production rate, counting the number of units produced can be substituted by time. If 

the time between the production of nonconforming items is exponentially distributed, then a 

simple transformation from an exponential into a Weibull distribution with equal mean and 

median would render the new distribution close to the normal one and therefore further justify 

the control chart.  The problem with this methodology is that the technique is difficult to 
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implement and the plotted points are hard to interpret.  Ryan and Schwertman (1997) suggest 

transforming the data using the arcsine function to get a closer approximation to the normal 

distribution.  They also indicate that the sample size required to produce a non-zero LCL after a 

transformation is performed is smaller than the sample size required by just using a normal 

approximation approach.  Queensberry (1991) developed a “Q” chart for the binomial parameter 

p, where the normalized transformations are utilized in the p-control chart.  He concludes that the 

Q chart provides a better approximation to the nominal upper tail area whereas the arcsine 

approach provides a better approximation to the nominal lower tail area.  

Ryan and Schwertman (1997) state that the problems of the Q control chart and the arcsine 

transformations are practically the same as the traditional p-control chart when the 

nonconformance rate p is very small, such as in the range of parts per million.  They argue that 

both the arcsine transformation and the Q chart approaches lead to an LCL of zero for any 

realistic sample size value of n.  Therefore, they suggest doing a computer search to determine 

the value of the sample size n when the nominal tail areas are closely approaching.  They also 

suggest using an approach given by Nelson (1994), which is not different in concept than the 

approach used by Calvin (1983) when he first introduce the CCC chart.  

Chang and Gan (2007) make the point that all distributions based on transformations work 

on the premise that the transformations are a better approximation of the normal distributions. 

However, they argue against the use of transformations since: “The main disadvantage of using 

transformed statistics is that they are much harder to interpret.  Besides, a transformed statistic 

may not be an optimal statistic for the parameter of interest, and thus there will be some loss of 

detection capability” (p. 859.) 
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2.3.3 Modified Shewhart chart 

Bourke (1991) suggests using a modified Shewhart control chart based on the sum of the 

two most recent run lengths to increase the sensitivity of detecting large shifts in 

nonconformance rate.  By making better use of “the time order of the observation” which a 

regular p-chart does not perform, a relatively more sensitive test is generated.  The tests use a 

minimum value of nonconformance rate p in the order of 5×10
-4

, and a value of   (probability 

of Type I error) at .02  

 

2.3.4 Use of the exact binomial distribution 

Xie and Goh (1993) suggest using the exact binomial distribution in determining the 

UCL and LCL but even they concede that it is not appropriate to consider the  3σ control limits 

when p is small, n is low and one sample is drawn.  As an effective alternative solution, the 

cumulative conformance control (CCC) chart is suggested by the authors in this case.  Next, a 

brief introduction to CCC chart and a detailed literature review are provided. 

. 

2.3.5 Cumulative conformance control (CCC) chart  

The CCC chart (denoted sometimes by the G chart) has been shown to be an effective 

alternative to the p-control chart when dealing with high yield processes.  

Calvin (1983) was the first to introduce the CCC chart.  He suggests concentrating on the 

number of good parts between two bad ones and plotting them cumulatively on a chart with 

logarithmic vertical scale and a linear horizontal scale.  Goh (1987a) then reintroduces the 

concept of the CCC chart and highlights its importance by pointing out the problems arising 
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when nonconformance is in the hundreds ppm and the ability of the CCC chart to solve those 

problems.   

Gluskowsky (1994) uses the CCC control chart concept but calls it a G-chart, where the 

observed variable G is the number of conforming units between two nonconforming ones.  He 

compares the sensitivity of the G-chart with the classical p-chart by constructing average run 

length (ARL) curves and finds that the sensitivity is higher in the geometric chart. He concludes 

that the G-chart can be applied in high yield processes with an estimated rate of nonconformance 

value p being less than 10
-4

 (100 ppm), low volume manufacturing, short runs and stepped 

processes where an attribute is “good” up to a certain moment and then becomes continuously 

“bad”, such as with chemical and thermodynamical processes and with wear and tear of 

instruments.  He also concludes that the G-charts require fewer observations than the classical p-

chart for process shift detection.  He states that: “Compared with the classical p-chart of the same 

sensitivity, the G-chart provides more dynamic, quicker response, because on the average fewer 

units are to be observed between the process change and this change detection.”(p.20).  He talks 

about the optimal “subgroup” size for a required degree of detection or a sensitivity level, but his 

sample sizes used in the analyses are in the thousands (up to 100,000). Again this is due to the 

low nonconformance value of p in a high yield process.  

Goh and Xie (1995) divide processes into moderate, low and near zero nonconformity 

processes and suggest an approach for each case: exact probability limits in the first case, pattern 

recognition or run rules approach in the second case and a CCC approach in the third case. 

 

2.3.5.1 Mathematical approach to the CCC chart 
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The CCC chart is based on the fact that the probability that the x
th

 item is found 

nonconforming after the first 1x conforming ones follows a geometric distribution with 

probability:  

                  f(x) = (1-p)
x-1

p,                       0   p  1,        x=1, 2, 3                                              (1) 

 

where x is taking on discrete values greater than zero and p is the probability of a nonconforming 

item. The cumulative distribution function is then: 

                                                         F(x) = pp
x

i

i



1

1)1(                                                             (2) 

This cumulative distribution function is a geometric series converging to 1-(1-p)
x
.  Calvin (1983) 

argues that (1-p)
x
 can be expanded into: 

                                           (1-p)
x
 = [1 – xp  + 

!2

)1( xx 2p  - …]                                                  (3) 

and p replaced by 

x

1
, where 



x  is the average run length, and for large x, F(x) can be 

approximated by 1- e




x

x

.  Solving for x in F(x) yields: 

                                                         x = -


x ln(1-F(x))                                                                   (4) 

The CL is set at the median level, i.e., the value that solves F(x) =0.5.  The median then is x~ =-



x ln(1-0.5) or x~ = .6931


x    .7


x  

As in any control chart, the UCL and the LCL are defined such that the probability that a 

point will fall outside the control limits, even when the process is under control, is  .  This is 

the same as equating F(x) to 
2


for the LCL and 1-

2


for the UCL. Replacing the value of F(x) in 

equation (4) by 
2


 and the value of x by LCL yields: 
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                                              LCL = 
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for small   and 
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
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x                                         (6) 

where 


x  is the estimate of the parameter p,    and    represent the ceiling and the floor of the 

numerical values. 

Another approach leading to very similar results uses the fact that the CDF of the 

geometric distribution with parameter p from equation (2) is of the form: 

                                                             F(x)  = pp
x

i

i



1

1)1(                                                (7) 

and 

                                         P(X<k) = pp
k

i

i





1

1

1)1( = 1)1(1  kp                                        (8) 

which is the converging form of the geometric series. This translates into: 

                                          P(X<LCL) = pp
LCL

i

i





1

1

1)1( and 1)1(1  LCLp  = 
2


                          (9) 

Solving for LCL yields: 

                                                      1
)1ln(

)2/1ln(














p
LCL


                                                       (10) 

Using equation (8),  

                                        P(X>UCL) = pp
UCLi

i





1

1)1( and UCLp)1(  =
2


                               (11) 

Solving for UCL yields: 
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                                                      UCL= 







 )1ln(

)2/ln(

p


                                                                  (12) 

 

For a process where on average, it takes 3700 conforming items until seeing a 

nonconforming one, 


x = 3700 and 
^

p  = .00027. At an  /2 level of .025, the floor of the UCL 

and LCL are: UCL = 







 )1ln(

)2/ln(

p


= 13,661 and a lower limit 













)1ln(

)2/1ln(

p
LCL


+1 = 94, 

respectively.  Values below 94 means the process is deteriorating and any values above 13,661 

means the process is behaving better than expected with a probability of false alarm at .05.  

Figure 2 illustrates a CCC chart with xi = 3000, 8000, 90, 5000, 500 and 16,000. 
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Figure 2. The CCC chart 
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Note: The index of x, (i= 1, 2, 3, 4, 5, 6) denotes the situation when the i
th

 

nonconformance is observed. The value x denotes the number of conformances up to the 

nonconformance. Whether inspection is done in batches or on the spot, a counter is used to count 

the number of conformities until the first nonconformity is found and record it as x1.  The value 

of x1 can then be charted and out of control situations immediately observed.  The counter is then 

reset at zero and the counting restarts until the second nonconformity is found and x2 recorded, 

and so on.  One can also note that in the CCC chart, points below the LCL indicate process 

deterioration and points above the UCL indicate process improvement, contrary to the p–control 

chart. 

 

2.4 Problems with CCC charts  

2.4.1 Inability to detect small process deterioration  

Chan and Goh (1997) bring up the fact that the CCC control chart is not sensitive in 

detecting an upward shift in the rate of nonconformance p.  In other words, it is not able to detect 

process deterioration. An example is provided to bring the problem to light: when the defective 

rate is increased by 10 fold (from p = .0004 to p = .004), the probability that the process is still 

“in control” is about 0.6, which is pretty high.  To deal with the problem, a two-stage approach is 

suggested where the number of items inspected until the observance of two nonconforming parts 

is studied.  The first CCC1 control chart is tested with n1 points and the second CCC2 control 

chart is tested with n2 points where the probability of type I error (the probability of false alarm ) 

in the first and second stage is α1 and α2 respectively.  If one nonconforming item is found within 

the first n1 inspected then the process is out of control, if not, then two nonconforming items 
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have to be found in the second phase with n2 – n1 inspected for the process to be out of control.  

The value n2 is expected to be at least twice as large as n1.  Here the CCC2 control chart seems to 

increase the sensitivity to a change in the rate of nonconformance p.  However, since so many 

inspections are required to reach the second phase, the approach tends to be lengthy, costly and 

thus impractical.  

Xie and Goh (1992) suggest using a decision graph to monitor the levels of the 

nonconformance rate p.  They define s, the level of certainty about the process, which is the 

probability that a nonconforming part is not found in n samples inspected for a given confidence 

level α and a given rate of nonconformance p.  The value n is the number of conforming parts 

prior to finding a nonconforming one.  A table is developed initially that registers the value of n 

for different values of p and s.  Then the cumulated count of conforming parts is checked against 

the tabulated value; if it is less than the tabulated one, then the proportion of nonconforming 

parts is higher than p with probability s.  The table is transferred then into a “decision graph.”  

The table also allows finding the minimum number of conforming parts that must be observed 

before a nonconforming one is encountered when the process is in control for a particular p and 

s.  The landmark of the methodology is that it allows the controller to estimate the rate of 

nonconformance p for a particular s whenever a nonconforming item is encountered.  It also 

checks whether the value of p has deteriorated or not.  The problem with this approach is that the 

table and decision graph are limited to pre-selected p and s values and would have to be 

generated again for other sets of values.  Moreover, when the number of consecutive conforming 

items becomes very large (over 2,000 in an example) before a nonconforming item is observed, 

that item is deemed in control whether it actually is or not, from the simple fact that the process 
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at that point is behaving “much better than expected.”  Dealing with that situation is “beyond the 

scope of the present study” state the authors (p. 359). 

Yang et. al. (2002) also confirm that the CCC chart is not sensitive to small process 

deterioration and try to demonstrate the reason for that. They posit that: for a given number of 

items sampled m, an estimated nonconformance value of p0 and a desired false alarm rate  , we 

have estimated control limits;   If the nonconformance parameter value shifts from p0 to p, the 

interesting finding is the that the alarm rate (AR) increases as p decreases from p0 but as p 

increases from p0, the AR first decreases and then increases very slowly.  This confirms that the 

geometric chart is able to detect a process improvement but inefficient in detecting a process 

deterioration unless that deterioration is significant.  This makes sense intuitively if one can 

picture the control limits.  When the rate of nonconformance p decreases, the plotted number of 

conformances up to the nonconformance is larger, and therefore tends to exceed the UCL, thus 

increasing the AR.  When p increases, the plotted quantity is smaller and so does not go above 

the UCL.  However,, it still has no chance to go beyond the LCL because the LCL is already 

very small due to the low rate of nonconformance p0 used to define the LCL.  When the rate of 

nonconformance p increases significantly, the plotted quantity drops below the LCL and the AR 

increases.  According to the paper, it turns out that the average run length (ARL) measures are 

relatively more sensitive to both upward and downward shifts in the rate of nonconformance p 

when using the geometric control charts, but in essence the ARL behavior is similar to the (AR) 

function.  When p decreases from p0, both the ARL and the standard deviation of the run length 

(STRL) increase, but when p increases from p0, both the ARL and the SDRL increase first and 

then decrease.  This is “undesirable and can be explained in the same way as for the AR 

function.” (p.453), state the authors. 
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Other authors like Xie et al. (2000) also show that the ARL increases at the beginning of 

process deterioration.  An adjustment factor to the control limits is suggested so that the ARL is 

maximized when the process is at its normal state.  The adjustment factor is criticized by Tang 

and Cheong (2005) because that adjustment factor does not have a probability interpretation.  

They also state that the type I error of the control chart changes after the adjustment is made to 

the control limits.  Moreover, the false alarm probabilities outside the control limits are no longer 

equal. 

Tang and Cheong (2004) also conclude that the CCC chart is better able to detect process 

improvement than process deterioration unless the rate of increase in p is large.  The authors 

state that this is “a common problem for data with a skewed distribution” (p.845) such as the 

geometric distribution.  

 

2.4.2 Loss of past information 

Xie and Goh (1992) tackle another issue with the CCC control chart: The fact that the 

CCC procedure resets the cumulative count at zero after a nonconforming item is found and the 

process is still in control. This translates into a loss of valuable information. Therefore, they 

propose using probability theory to translate that zero count into a cumulative count, a better 

representative of the state of the process. 

 

2.5 Problems with Estimating p during phase I of production  

So far, in all the articles discussed above, the rate of nonconformance p is assumed to be 

a quantity accurately estimated from a previous run or from a preset sample size measured 

during phase I, the upstream phase of the production process. This might not be a very realistic 
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assumption and, as is discussed below, finding an accurate estimate of p might not be an easy 

task.  

 

2.5.1 Sample size  

Yang, et al. (2002) bring out a very important argument; that a parameter that must be 

estimated accurately during phase I may require a very large sample that could be impossible to 

produce. 

 

2.5.2 Bias in the estimate of p  

A large sample, if not impossible to produce, will introduce bias in the estimate.  Tang 

and Cheong (2004) suggest that when the binomial distribution is used, the false alarm rate is 

dependent on the true nonconformance value of p.  Since p needs to be estimated in the initial 

production phase, and there might not be any defective items in the initial sample, the sample 

size is increased on an ad hoc basis, until an arbitrarily number of defective items is observed. 

This increases the bias in the estimate of p. 

 

2.5.3 Importance of an error free estimate 

An error from the nonconformance estimate p will affect the control limit estimates and 

therefore shifts the process from the true limits. Tang and Cheong (2004) emphasize the 

importance of a good estimate of p and address the situation when the process parameter p is 

unknown. They state that “the proposed scheme performs well in detecting process changes, 

even in comparison with the often utopian situation in which the process parameter, p, is known 

exactly prior to the start of the CCC chart” ( p 841).  They design a sequential procedure where, 
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as the index of x (the number of nonconformities up to the conformity) moves from i=1 to i>1, 

the distribution becomes negative binomial and control limits are drawn at each sequential 

iteration i.. This sequential procedure essentially takes care of the bias in p estimated from a 

fixed sample size during the phase I process.  

 

2.6 More suggested solutions 

2.6.1 Cumulative sum (CUMSUM) chart 

The CUSUM control chart is based on summing cumulatively all the deviations of the 

sample values from the target values.  It incorporates all the values from the previous samples up 

to the present one.  Most CUMSUM applications focus on continuous variables.  Lucas (1985) is 

the first to introduce the CUMSUM concept for attribute data to detect shifts in the probability of 

nonconformance, p, but not when p is very small.  Lucas also introduces the fast initial response 

(FIR) to be able to detect quickly an out of control situation at the start-up of the process.  He 

also discusses the robust CUMSUM, where the process will differentiate between outliers and 

process shift, i.e. will quickly detect a shift but will be insensitive to the outliers in the process.  

Although there are many methods for applying the CUMSUM theory, the most used one 

and the “best known” (Xie, Goh and Lu, 1998, p.340) is through the use of the V-mask.  The 

mask is in the shape of a tilted V to the right, and the boundaries of the defined V lines influence 

the performance of the CUMSUM chart.  The theory is involved and the technique is not simple 

to use.  CUMSUM is designed to detect small process shifts.  Xie, Goh and Lu (1998) mention 

that the “CCC technique is more suitable for high quality processes” (p. 339) than the CUMSUM 

chart.  In their paper an attempt is made to incorporate the CCC chart with the CUMSUM 

methodology.  The claim is that the CUMSUM “will be able to detect small process changes 
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relatively quickly.  However, some analytical studies are needed to justify the conclusion”(p. 

342).  Their work on the sensitivity of the CUMSUM chart when compared to the CCC chart 

through the measure of the ARL indicates that the CUMSUM chart is more sensitive to process 

shifts, particularly an increase in probability of nonconformance p, i.e., a deterioration in the 

process.  However the value of p is measured at .002 and higher.  In addition, the CUMSUM 

procedure assumes a fixed sample size and no decision can be made until all the items in the 

sample have been inspected. 

Bourke (1991) proposes the use of attribute charts by mentioning some operational 

advantages for their use.  Among them are:1) With the “go-no go” gauging type instruments, the 

inspection process is usually expedited; 2) The distributional assumptions on the variables 

observed are not necessary; and 3) Some of the inspection can be done qualitatively before a 

determination of a conformance or a nonconformance can be made.  It is also mentioned that 

attribute control charts are not as effective in detecting shifts as variable control charts.  He 

introduces the run length (RL) CUMSUM chart based on the lengths of runs of conforming 

items.  RL is defined as the number of inspected units between two nonconforming ones. RL 

charts are mostly applicable when 100% of the items produced are inspected in the order in 

which they are produced.  The distribution of the RL will change when p shifts.  It is shortened 

as p increases and is lengthened as p decreases.  The result shows that the run length CUMSUM 

chart is somewhat more efficient in detecting shifts in fraction nonconforming than the Poisson 

CUMSUM chart.  This might be attributed to the fact that the Poisson CUMSUM chart 

“artificially groups the observations, thus losing information associated with the time order of the 

observations” (p.236). 
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Reynolds and Stoumbos (2000) show that the Bernoulli CUMSUM chart detects changes 

in the rate of nonconformance p ( increase and decrease) substantially faster than the traditional 

p-control chart, but the minimum value of nonconformance rate they use is at .01. 

Chang and Gan (2001) propose design procedures for CUMSUM charts for high yield 

processes based on run length (RL).  The average number of items sampled until a signal is 

issued (ANIS) is used to measure the RL of the charts based on the Markov Chain approach.  

They compare the run length performances of CUMSUM of Bernoulli, binomial and geometric 

charts where both increases and decreases in the nonconformance value p are tested. They 

propose an upper sided geometric CUMSUM chart for detecting increases in p.  For detecting 

decreases in p, a two-sided CUMSUM Bernoulli chart is preferred.  Between the Bernoulli and 

the geometric CUMSUM charts, the Bernoulli CUMSUM chart closely monitors the process 

since every item is charted and therefore reacts quicker than the geometric CUMSUM chart.  

“On the other hand, a Bernoulli CUMSUM chart requires continuous plotting while the 

geometric CUMSUM chart does not” (p. 798). 

 

2.6.2 Sequential sampling scheme 

Tang and Cheong (2004) propose a sequential sampling scheme for the CCC chart where 

“every successive observation accumulated to date, adaptively updates the estimate and revises 

the control limits, at the same time, the results are used for monitoring the process.  This means 

that it is not necessary to assemble a huge number of initial samples before the control begins”(p. 

842).  To use an estimate of the probability of nonconformance p, a minimum of m = 2 samples 

is needed. This is enough to start using the CCC control chart.  Here the control limits are 

updated every time the cumulative number of conforming items up to the nonconforming one 
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falls within the control limits.  The performance of the CCC chart is improving continuously as 

more data are incorporated.  The authors use the adjustment factor on the control limits proposed 

by Xie, Goh and Kulmarani (2000) to ensure that the ARL chart will detect process deterioration 

when the rate of nonconformance value p, increases.  Later, Tang and Cheong (2005) address the 

issue that the adjustment factor changes the probability interpretation of the control limits, the 

type I error, and makes the false alarm rates unequal on both ends of the distribution.  Zang et al. 

(2004) propose an adjustment procedure with equal probabilities except that their procedure only 

considers a known probability of nonconformance value p and requires many iterations.  

The assumption for the sequential model is that the inspected items are produced 

independently.  This approach is attractive for the following reason:  The updating of the 

estimate means that the process does not depend on an estimated rate of nonconformance p in the 

upstream process, something desirable since, as discussed above, the sampling procedure to find 

the estimate of p could be problematic.  To prevent using data from a shifted process in updating 

the parameter p, Tang et al. (2004) suggest that some guidelines be developed for checking on 

new data before it is incorporated or that the process is allowed to stop after a predetermined 

amount of time.  In essence, the paper solves the problem of having to estimate the rate of 

nonconformance p from a fixed sample size.  Also, the sequential updating of the p estimate 

makes it possible to start production right away. 

Tang and Cheong (2005) elaborate on when to terminate or abort the sequential process 

to “avoid using the contamination data from drifted processes” (p. 12).  They also suggest that 

when adopting the conventional non-sequential procedure, one way to avoid the situation where 

all items in the phase I production are all conforming is to ensure the probability of at least one 

nonconforming item in the sample is pretty large (that usually leads to a very large sample size).  
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The authors finally state that with the given guidelines on terminating the process, the sequential 

procedure is just as effective as the one used with known rate of nonconformance p in detecting 

process shift, except the comparison was tested on a process improvement instead of 

deterioration. 

 

2.6.3 Conditional CCC chart 

Kuralmani et al. (2002) propose a conditional CCC chart for detecting process shifts. A 

comparison is made for both the CCC and the conditional CCC charts having the same in-control 

ARL.  The conditional CCC is shown to have tighter control limits and an improved sensitivity 

in detecting process shifts.  The proposed process incorporates, in addition to the CCC chart, a 

run rule based on previous in-control runs.  This is like basing the current decision by 

conditioning on the behavior of the past observations. 

The two-stage approach proposed by Chan and Goh (1997) is also designed to improve 

the sensitivity of detecting a shift and also uses the approach of conditioning on past 

observations.  

 

2.6.4 Synthetic control chart 

Wu et al. (2001) suggest a synthetic control chart for detecting increases in the rate of 

nonconformance p.  The synthetic chart is a combination of the np chart and the CRL 

(conforming run length) chart.  It involves an optimization procedure where users can minimize 

the out-of control ATS (the average time to signal an out-of control observation) by adjusting the 

parameters c, n and L, where c is the upper control limit of the np chart, n is the number of units 

inspected, and L is the lower control limit of the CRL chart.  They show that the synthetic chart 
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is more sensitive to increases in p than both the classical np chart and the RL chart.  The chart is 

based on 100% inspection but the synthetic chart could also be based on the number of 

conforming units between nonconforming ones in the inspected data, where the non-inspected 

data is ignored.  The authors mentioned that the CUMSUM chart might be “more effective” than 

the synthetic chart (p. 111) but nothing tangible was presented to back up that statement.  They 

also recommend the use of the synthetic control chart in steady-state situations since “its 

detection of delayed shifts may be slower” (p.111). 

 

2.6.5 Control charts using moving averages. 

Gan (1990) discusses the exponentially weighted moving average (EWMA)  using 

binomial distributions.  Trevanich and Bourke (1993) discuss the EWMA chart for attribute data.  

Roberts (2000) discusses the control charts based on geometric moving averages.  A geometric 

moving average gives the greatest weight to the most recent observation, and all previous 

observations decrease in a geometric progression of weights back to the first observation.  When 

tests are conducted to compare the relative sensitivity of detecting shifts in process average 

between control limits based on geometric moving averages with control limits based on regular 

moving averages, the geometric moving average has a higher sensitivity in detecting process 

shifts. 

 

2.6.6 Further comparisons among different control charts 

Chang and Gan (2007) propose, along with the traditional p-control chart, a run chart 

based on similar principles as the one designed by Goh (1987b) to track both increases and 

decreases in the probability of nonconformance p.  Among the traditional CCC chart, conditional 
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CCC chart, the CUMSUM geometric and Bernoulli charts, the synthetic chart and their own 

modified run chart, they found from run length comparisons that “ all the charts considered are 

found to be unable to provide a timely feedback of an out-of-control situation even for relatively 

large increases in p” (p. 874).  They also found that their technique (the run chart along with the 

traditional p-chart) is more sensitive than the synthetic chart in detecting increases in the rate of 

nonconformance p.  It is also more sensitive than the CCC and the conditional CCC in detecting 

increases in the rate of nonconformance p.  Its performance is comparable to the CUMSUM 

Bernoulli chart.  

 

2.7 Motivation for using the sequential Bayesian approach 

Based on the literature review, the most widely used technique for dealing with high 

quality processes is the CCC chart. The CCC methodology solves most of the problems 

associated with the p-control chart when the rate of nonconformance p is small (Kaminsky et al., 

1992; Glushkovsky, 1994; Nelson, 1994; Woodall, 1997;  Xie and Goh, 1992, 1997).  

 One main drawback of the CCC chart is that it still uses the same approach in the phase I 

of the production process as the traditional Shewhart chart, namely: gets a sample, finds an 

estimate of p (the probability of nonconformance of any one item), uses the value of p to set the 

control limits and then tests the same sample against the control limits. If a point falls outside the 

control limits, throws out the point, re-computes p and restarts the process over again. The flaw 

of using data points to draw the control limits that test the same data points has been addressed in 

the introduction of this dissertation and was labeled “double use of data”.  Another problem with 

the CCC approach is that the value of the nonconformance p is estimated from the initial sample. 

If the initial sample size does not contain any nonconformity, then the estimate of p is not 
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possible and the sample size is increased on an ad-hoc basis until one obtains nonconformities in 

the sample.  The problem becomes: how should one increase the sample size and when should 

one stop? Given the importance of a good estimate for phase I production discussed in the 

literature and iterated in section 2.5.3, one is compelled to start looking for approaches “outside 

the box”.  Another important problem with the CCC chart discussed in the literature is its 

inefficiency in detecting process deterioration unless that deterioration shift is large (Chan and 

Goh, 1997; Xie and Goh, 1992; Xie et Al., 2000; Tang and Cheong, 2004; and Yang et al., 

2002). 

In the section below, similarities between the Bayesian approach and the different 

solutions proposed in the literature to deal with the shortcomings of the CCC chart are 

highlighted.  

 

2.7.1 Similarities with solutions offered in literature 

The literature and methodologies discussed so far describe mostly problems associated 

with high yield processes and to lesser degree problems with phase I of the production process.  

Answers to these problems are also offered in the literature.  The more relevant answers seem to 

have common features with the Bayesian approach.  The conditional CCC, the CUMSUM 

technique, the sequential procedure, the resetting of the counter to a value different than zero to 

account for past information, the different moving averages and Jeffreys prior all seem to have a 

similarity in approach to the Bayesian concept, except the Bayesian concept incorporates all of 

these methodologies.  From there lies its power. Below is a more detailed discussion regarding 

these similarities.  
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2.7.1.1 Resetting the counter  

One point discussed in section 2.4.2 is the fact that having to reset the counter at zero 

translates into loss of information.  Recalibration is done to account for past information.  This is 

similar to the Bayesian approach where the past information is updated continuously. 

 

2.7.1.2 Sequential procedure 

Thang and Chong (2004) address the problem of finding a good estimate of the 

probability of nonconformance p by designing a sequential procedure where p is continuously 

updated and a continuous adjustment is made to the CL. Thang and Chong, (2005), in a 

subsequent paper, dismiss the adjustments made to the CL and state that their use of adjustments 

change the probabilistic interpretations of the original control limits. This is the closest of a 

procedure to a simple sequential procedure and to a sequential Bayesian approach. 

 

2.7.1.3 Conditional CCC chart 

The conditional CCC chart introduced by Kuralmani et al. (2002) is also similar in its 

approach to the Bayesian methodology since the basis of the Bayesian methodology is to 

condition the predictive distributions on previous observations.  The authors claim that their 

approach results in tighter control limits and an improved sensitivity in detecting process shifts 

compared to the regular CCC chart. 

 

2.7.1.4 Moving average 

Most of the literature on moving averages in setting control charts is concentrated on 

variable data.  Trevanich & Bourke (1993) compare the CUMSUM charts in monitoring fraction 
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defectives with the exponentially weighted moving averages (EWMA) charts and find that the 

EWMA approach is better able to detect and respond to a small to moderate deterioration in the 

process.  Roberts (2000) shows that the control chart based on a geometric average (where the 

most recent observation weighs the most) show increase sensitivity to small process changes 

compared to a standard EWMA chart.  Even though the author uses the


x control chart for his 

analysis, he claims that the results apply to other sample statistics control charts.  The geometric 

EWMA control chart approach is similar in theory to the Bayesian approach.  In the face of lack 

of data in the Bayesian approach, more weight is put on the information provided by the prior 

distribution; however, as data is collected, the weight shifts to the most recent observations, the 

same way geometric EWMA works.  

 

2.7.1.5 CUMSUM chart 

The CUMSUM procedure is shown throughout the literature discussed above to have an ability 

to detect a process shift over the CCC chart, particularly process deterioration.  The CUMSUM 

approach is based on summing cumulatively all the deviations of the sample values from the 

target values and incorporating all the values from the previous samples up to the present.  The 

Bayesian sequential approach is similar in the sense that even though the variability of the 

sample values is not compared against a target value, the variability among the samples is taken 

into account.  The Bayesian approach also has the cumulative effect since all the past values with 

their deviations are updated sequentially.  

 

2.7.1.6 Jeffreys interval 
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Brown, Cai and DasGupta (2001), in their serious criticism of the classical procedure of 

interval estimate for proportion, recommend using the equal tailed Jeffreys prior interval.  They 

also recommend that the introductory statistics textbooks introduce their alternative intervals 

even at the expense of simplicity.  Jeffreys methodology is similar to the sequential Bayesian 

procedure in that it is Bayesian in nature except that the prior is noninformative and the 

methodology is not sequential. 

 

2.7.1.7 A Bayesian approach to a u-control chart  

Bayarri and Denato (2005) test a sequential Bayesian approach to replace the traditional 

non-sequential u-control chart with its Poisson model for observations.  The claim is that the 

Poisson model might not be adequate for process control data.  They back up that claim with 

extensive bibliography showing that data coming from production processes do not meet the 

hypotheses underlying the Poisson model.  Other literature points to extra variance often present 

in the Poisson model.  Other research points to a “significant increase in the false alarm rate”(p. 

144).  They make three comparisons:1) a traditional u-control chart using a Poisson distribution; 

2) an Empirical Bayesian (EB) u-control chart with a given sample and therefore an informative 

prior along with a hierarchical Poisson-gamma model; and 3) a Bayesian sequential u-control 

chart with an “objective” Jeffrey’s prior.  When a sample of 25 observations is tested using an 

example from a book, all three methods show observation 13 to be out of control, but in the 

sequential approach, that fact is acknowledged immediately after the observation is taken and 

plotted.  This is unlike the non-sequential approaches where one has to wait past the base period 

(BP), after the 25 observations have been collected and control limits have been set.  The 

sequential approach has wider control limit widths than the EB control limits but the limits tends 
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to grow narrower as the number of observations increases so that the control limits of the 

sequential Bayesian procedure converge to the fixed control limits of the EB control chart. 

 

2.7.2 Self-starting mechanism and short runs. 

Short runs are executed traditionally through the use of EWMA, moving average and 

CUMSUM, approaches that mimic in one form or another the Bayesian approach [9-11].  

Quesenberry (1991) uses approximately normalized control charts (called Q charts) to chart a 

binomial random variable in the cases when p is known and p is unknown (before the charting 

begins).  Transformations are made in both cases, and the technique is used for short runs.  

Hawkins et al. (2007), commenting on the importance of self-starting mechanisms, state 

that parameter estimates gathered from phase I sample to establish process parameter values for 

the chart cannot possibly establish the exact process parameters.  They also argue that small 

random errors translate into serious distortions of the run behavior of the chart.  They suggest 

using “self-starting” methods that begin the control of the process right away without using the 

preliminary step of a large phase I sample.  

 

2.7.3 Avoiding the problem of multiple control charts  

For high yield processes with 100 percent inspection, Breyfogle III (2003) suggests using 

time between nonconformance occurrences and converting that into an average number of 

nonconformances per unit time (for example, the number of nonconformances that occur each 

month). A c-control chart is utilized, which tracks the number of nonconforming units per unit 

time.  Moreover, the number of nonconformances is also converted into a rate of 

nonconformance (changing the data from discrete to continuous), and a combination of two 
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charts, the X chart (for individual observations) and the moving range chart (that charts the range 

between two consecutive observations) is proposed. The combination of the two charts is called 

XmR chart.  A visual comparison of the XmR control chart and the c-control chart shows that the 

XmR chart is able to detect one out of control observation whereas the c-control chart does not.  

Breyfogle III concludes that the XmR chart, which charts measurement rates instead of counts is 

the better procedure, and states that “count information is generally weaker than measurement 

data”(p.242).  But he also states that “Some practitioners prefer not to construct moving range 

charts … and the moving ranges are correlated which can induce patterns of runs or cycles” (p. 

227).  Abbasi, Taghi and Niaki (2007) note that when two separate univariate control charts are 

applied together, the determination of type I error becomes problematic.  Bayarri and Berger 

(2003) discuss issues related to differences between “frequentist” and “Bayesian” approaches to 

statistics. One of the differences involves multiple comparisons.  A frequentist approach makes 

adjustment to the type I error when multiple tests are conducted simultaneously, whereas “a 

correct adjustment is automatic within the Bayesian paradigm” (p.37).  
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CHAPTER 3 

THE PROPOSED MODEL 

 

The sequential Bayesian CCC approach is able to change or adjust previous beliefs about 

a process or a system in light of new and incoming data.  In contrast with the classical approach 

which uses a specific estimate of the unknown parameter p, the Bayesian approach proposes a 

distribution for this parameter called a prior distribution to take into account the variability 

inherent in the estimation of p.[12-17]  During implementation, the posterior distribution based 

on Bayes’s theorem is computed by incorporating data just collected.  The change from prior 

distribution to posterior distribution reflects the information about the parameter value provided 

by the new data.  In a sequential Bayesian methodology, the posterior distribution at time t 

becomes the new prior for time t+1. 

The sequential Bayesian methodology developed in this dissertation allows drawing 

confidence limits even when only originally three observations are given.  These observations 

are used to define the parameters of the prior and the predictive distributions when the process 

starts and the original control limits (CL) from the predictive distribution. If past knowledge or 

data is available, that information can be used to define the prior distribution parameters and no 

observations are required to set the original control limits.  A new observation is then taken and 

tested against the original control limits.  If the observation falls inside the limits, that 

observation is used to update the prior and set the next confidence limits.  By conditioning on the 

present observation and drawing the control limits for the next observation, the posterior 

distribution at index i becomes the prior distribution at index i+1.  If and when an observation 

falls outside the CL, the observation is discarded and the previous observations are used to 
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compute a new prior that would lead to more accurate estimates of the CL.  By adjusting the 

information about the parameter p in light of new data, deterioration in the data is mirrored in the 

corresponding CL, and deterioration detection can be clearly and quickly made. 

 

3.1 The Advantages of the proposed approach 

The sequential Bayesian approach proposed in this dissertation is a very efficient tool 

capable of resolving many issues and problems including: Avoidance of the “double-use” of the 

data, a better estimate of rate of nonconformance p, increased sensitivity in detecting process 

deterioration, increase in process speed resulting in timely feedback, no restrictions on the 

parameter of the prior distribution, and an increased efficiency in data gathering and analysis.  

These advantages are discussed in greater detail below. 

 

3.1.1 Avoidance of the “double-use” of the data 

The data used to set the control limits is different from the data tested by the control 

limits.  This problem is addressed by Bayarri and Garcia-Donato (2005).  It can be seen that 

because of the phase I period (referred to as base plan or BP), any non-sequential approach to 

finding the control limits causes the “double-use” of data.  In other words, any non-sequential 

approach uses observations to set the control limits and then uses the control limits to test the 

same observations used to set these limits.  This is clearly a biased approach.  In contrast, the 

sequential Bayesian procedure proposed in this dissertation uses sequentially updated data to set 

new control limits, and the observations used to set the control limits are not the same as the 

observations being tested.  
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3.1.2. Better estimate of p  

The proposed approach takes into account the uncertainty in the rate of nonconformance 

p.  In the traditional approach, the estimate of p is based on its average and the variability of the 

estimate is neglected.  Moreover, it is crucial to have an accurate estimate of p during phase I, 

but the traditional control charts do not guarantee that.  This is addressed by Tang and Cheong 

(2004), Yang et. al. (2002) and Hawkins et al. (2007) and discussed in greater detail in section 

2.5 of the literature review of this dissertation. 

 

3.1.3 Increased sensitivity in detecting process deterioration 

The CCC chart, while solving the problem of the p-control chart due to the high 

conformance rate, cannot detect a small deterioration shift.  Alternatively, because the Bayesian 

methodology incorporates the knowledge contained in new observations, any shift in the 

observations can be visibly detected through a shift in the LCL.  

 

3.1.4 Timely feedback 

The dynamic sequential nature of the Bayesian approach captures shifts immediately as 

observations are drawn and control limits updated. 

As stressed by Chang and Gan (2007), a timely feedback on the “health of a process” is 

very important.  The speed of the inspection of quality and therefore the opportunity for a quick 

reaction is more assumed under a sequential Bayesian procedure than under any other classical 

non-sequential procedure.  This is because the classical procedure uses a pre-determined fixed 

sample size of observations to get the estimate of nonconformance rate p in order to draw the 

control limits.  That sample has to come from a stable process for the estimate of p to be 
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representative, and the sample size might not be adequate.  In the Bayesian approach, only three 

observations are needed to set up the initial control limits and start the production process, 

essentially a self-starting procedure.  When historical data is available (a pessimistic estimate of 

p, an optimistic estimate and a most likely estimate), that historical data is used to compute the 

parameter values of the prior distribution.  As a result, no initial observations are needed to set 

the initial control limits.  As new information is incorporated, the estimated nonconformance rate 

p and its variance are updated, so are the control limits. 

Moreover, during phase I of the process, in the non-sequential approach, if and when 

observations falls outside the control limits, the observations are discarded and the new control 

limits redrawn based on the rest of the observations, observations already tested.  One has to wait 

until all the observations are tested before any can be discarded.  The process iterates until all 

observations fall inside the control limits.  This is sharply contrasted with the sequential 

methodology where at the sight of the first observation falling outside the control limits, the 

observation is immediately discarded and the “in-control” observations preserved via a new 

updated prior and the testing process continues. 

Note that in the non-sequential procedure tested observations are added in the mix and 

retested whereas in the sequential procedure and through a sifting approach, an observation is 

tested only once and tagged if it passes the test and then reused for updating the CL.  

 

3.1.5 No restriction on the parameters of prior distribution 

Kepner and Wackerly (2002) studied the behavior and the shape of the predictive 

distributions when the values of the parameters of the prior change.  They found that particular 

choices of parameter values could lead to undesirable results for the predictive distribution.  In 
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particular, the binomial distribution along with its conjugate beta prior is looked at and some 

useful and important conclusions are drawn.   

When the parameter p that comes from a binomial distribution is described in Bayesian 

terms as having a beta prior with parameters   and  , the corresponding predictive distribution 

of the random variable x (corresponding to the number of non conformances in a sample of size 

n) is called a beta-binomial distribution or a “beta mixture of binomial distributions.”  It has a 

closed form representation.   

The authors found that for the situations where the parameters of the beta prior 

are: 1,1   ; 1,1   ; 1,1    and ,1,1   the predictive distribution is monotone 

decreasing.  This means that the most likely value of the random variable x is 0, the minimum 

possible value of the random variable x regardless of the size of n.  Likewise, when 1,1    

and ,1,1    the predictive distribution is monotone increasing, implying that the most likely 

value of x is n, the maximum possible value of x regardless of the sample size n. Using a model 

where n is the most likely value of the number of nonconformities in a sample of size n “may be 

problematic” (p.765 ) state the authors.  They also add: “A casual user of the Bayesian methods 

might fail to notice the impact that the chosen values of   and   have on the predictive 

distribution and, thereby, miss the opportunity to improve the model by using alternative 

parameter values in the prior” (p. 765). 

When the values of   and   are both < 1, the shape of the predictive distribution is 

neither monotone increasing nor monotone decreasing, it is U-shaped.  The corresponding values 

of this predictive distribution have more meaningful interpretations.  This category falls into a 

special set of prior and predictive distributions where a particular example is the “non-

informative” Jeffreys prior with   =   = ½.  
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In the case where   =   =1, the shape of the predictive distribution is flat (constant). 

Many statisticians use these parameter values for the prior [18-23] including Bayes [23]. The 

purpose for using a “uniform” prior (where all the values of the random variable x from the 

predictive distribution are equally likely) is for a totally different set of circumstances and 

applications.  

In the case where both   and   are > 1, the shape of the original binomial distribution is 

preserved by the predictive distribution. Both are uni-modal and mound shaped.  This is very 

desirable since there is a maintained consistency in the overall behavior of the distributions and 

the interpretations values of the predictive distribution are meaningful.  

In the sequential Bayesian CCC methodology proposed in this dissertation, the shape of 

the predictive distribution is geometric, the same as the distribution of the original model.  

Therefore, no restrictions exist on the parameters of the prior of the Bayesian model. This is an 

important feature of the proposed model. 

This Bayesian methodology based on a geometric distribution performs better than, for 

example, a Bayesian methodology based on a binomial distribution.  This is due to at least one 

obvious reason:  The predictive distribution based on the geometric distribution has a geometric 

shape (even though not a closed form distribution), whereas the predictive distribution based on 

the binomial distribution is the beta-binomial distribution which does not preserve the shape of 

the binomial base distribution for all values of the parameters   and   .  As a result, restrictions 

are imposed on the parameters for meaningful Bayesian analyses and interpretations.  

 

3.1.6 More effective use of data. 

3.1.6.1. In data analysis 
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The effective use of data in the analysis is apparent from the fact that past observations 

are not forgotten but used in the updating of the prior (the counter is not reset at zero) to account 

for past observations.  Also, the good observations are not all added back in the mix when an 

observation is found to be out of control as is done in the phase I of the non-sequential traditional 

control charts.  Instead they are properly separated and reused.  Most importantly, the timed 

order of the observations is captured along with the variability among the observations.  In 

essence, this is what gives the procedure its edge in capturing process deterioration. 

 

3.1.6.2. In data gathering 

Not only is data used effectively in the analysis as is discussed in section 3.1.6 above but 

also in the manner it is gathered.  No more than necessary data is required to set the control 

limits and the knowledge embedded in the data is used to its fullest extend during the data 

analysis.  The fact that the sample size is not fixed in the sequential Bayesian approach, the fact 

that the estimate of the random variable p (representing the rate of nonconformance) with its 

deviation is updated with every new observation and the fact that the prior is updated with the 

“in-control,” i.e. good observations, all reflect the use of every observation to its fullest value.  

In essence, the methodology proposed here will prevent the use of the “double data”, will 

detect a small deterioration in the process, will provide timely feedback on the health of the 

process (and therefore the opportunity for a quick reaction), will give a dynamic and good 

estimate of the rate of nonconformance p and will make a highly effective use of every 

observation given, without forgetting the past ones, therefore preserving and optimizing the 

value of any information given, regardless of its size.  
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When the initial sample size used for the layout of traditional control chart is simply not 

available or has prohibitive costs, one is compelled to make good use of every observation given.  

The proposed model makes highly effective use of the observations.   

 

3.1.8. Model performance when the rate of nonconformance is not small 

The motivation behind this dissertation is to be able to solve the problem of detecting 

process deterioration when the rate of nonconformance is quite small. It turns out that the 

sequential Bayesian CCC methodology has an increased sensitivity in detecting process 

deterioration compared to classical and benchmark procedures when the rate of nonconformance 

is small and when the rate of nonconformance is not small. Its performance under a wider range 

of situations makes the Bayesian methodology even more advantageous and attractive. 

 

3.2 Steps involved in creating the Bayesian CCC charts 

3.2.1 Likelihood function of observations  

The likelihood function in this case is a geometric distribution with parameter p of the 

form : 

                                                  f(x/p) = (1-p)
x -1

p                          x=0,1,2,                               (13) 

where p represents the probability of nonconformance, and x represents the number of 

conformances up to the first nonconformance.  For example, if the probability of 

nonconformance is .01, the probability of seeing the 50 conformances up to the first 

nonconformance, i.e., the probability of seeing the first nonconformance after 49 conformances 

is f(50) = (1-.01)
50-1

(.01) = .0061  
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Throughout the dissertation, x, is referred to as an observation.  It is interpreted as the 

number of conformances up to the nonconformance.  In this case it is 50.  When indexed by i, it 

means the number of conformances (after the last i-1
rst

 nonconformance) up to the ith non-

conformance.  

 

3.2.2 Conjugate prior distribution for parameter p 

In this Bayesian approach, the parameter p, representing the probability of 

nonconformance, is a variable parameter to account for the variability or the uncertainty about its 

value.  That uncertainty is modeled by assigning to p a probability distribution called the 

conjugate prior distribution to the geometric one.  There is extensive literature about the 

appropriate conjugate priors of different distributions [24-25].  In the case of the geometric 

distribution, since it belongs to the family of exponential distributions, a natural and appropriate 

prior is the beta distribution with parameters σ and τ. The parameter p of the geometric 

distribution is now a gamma distributed random variable with parameters σ and τ. The form of 

the distribution is the following: 

                                          )( p =
),(

1

B
p 1 (1-p) 1                                                  (14) 

where σ >0, τ>0,  0<p<1 and B represents the beta function.  

Given the parameters σ and τ, the mean and the standard deviation of the beta can be 

computed since: 

                                             E(p) =





                                                                       (15) 

and 
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                                Variance (p) =
2))(1( 




                                                  (16) 

Conversely, given the mean and the variance of p, the estimates of the parameters σ and τ 

can be found using the method of moments.  The formulas for σ and τ are displayed in equations 

(17) and (18) below. 
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where p  represents the estimate of the mean of p and   represents the variance of the estimate.  

If no historic data is present, the first three observations, x1, x2 and x3 are used to find 

the mean and variance of the estimate of p. The mean and variance are then used in equations 

(17) and (18) to find the values of the parameter   and  . 

The expected value of the probability of nonconformance p in a binomial setting is found 

by the following: 

                                              


p = 
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1

xE
 = 

n

xi
n

i


1

1
                                                           (19) 

The variance of the p estimate is found by using the fact that the estimate follows a beta 

distribution. According to Gido and Clements (2006, p 186), the variance of a beta distributed 

random variable can be estimated by the following:  

                                       



 

 2)
6

()(
ac

pVariance                                                         (20) 

where c is the most pessimistic estimate of p (in our case the largest estimate) and a is the most 

optimistic estimate of p.  
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3.2.3 Use of historic knowledge to find the parameters of the prior 

Gido and Clements (2006, p 184) state that when three estimates are used to time 

an activity-the optimistic time called a, the pessimistic time called c and the most likely time 

called b-the assumption is that the three estimates follow a beta distribution.  According to the 

authors, the expected value of the random variable p that follows a beta distribution  

is: 

                                               
6

4
)(

cba
pMean


                                                       (21) 

and the variance of the random variable is already  formulated in equation (20).  Here, the values 

of a and c represent the optimistic and pessimistic estimates of the parameter respectively and b 

is the most likely one. 

The prior in our case is beta distributed. This means that the assessment is applicable in 

our case when the history of the behavior or past information about the random variable p 

(representing the probability of nonconformance) is available.  In particular, if the most 

pessimistic estimate of p, the most optimistic one and the most likely one can be quantified, then 

one can get the mean and standard deviation of p and therefore the parameter estimates   and   

of the prior beta distribution. These parameter values make it possible then to draw the first CL 

without the recourse to any observations. 

 

3.2.4 Use of Bayes theorem to find the predictive distribution  

The conditional distribution of p given x1…xn is the posterior distribution for p. From the 

definition of conditional distribution, it can be written in the form: 
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                                                        f(p / x1,… xn)=
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By using a form of the Bayes formula to rewrite the numerator, the equation can be rewritten as: 

                                                    f(p / x1,… xn) =
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Using the fact that the observations are independent, the posterior distribution can now be 

expressed as: 
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The numerator of the expression on the right hand side of equation (24) above can be expanded 

into: 
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and rewritten in the form: 
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Since the posterior distribution is proportional to the numerator of the expression on the right 

hand side of equation (24), it can be expressed as follows: 



 50

                                               f(p / x1,… xn)   p 
n+ 1  (1-p)





n

i

i nx

1

1

                                          (27) 

which is the pdf of a Beta distribution with parameters (n +  , 


n

i

ix
1

- n + ).  

The predictive distribution is the conditional distribution of the future n+1
rst

 observation, 

given the first n of them.  It is: 

 

                                        f(xn+1 / x1, … , xn) = 
1

0

f(xn+1 / p) f(p / x1,… xn) dp                               (28) 

 

where f(xn+1 / p) is the geometric distribution function of the form p(1-p) 1nx -1
and  

f(p / x1,… xn)  is the posterior beta probability distribution function given by equation (27) with 

parameters (n +  , 


n

i

ix
1

- n + ).  Plugging the extended form of the functions in (28) results in: 
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This is like averaging the original geometric density f(xn+1 / p), with weighting factors 

being the beta posterior distribution function f(p/ x1,… xn), with mean value 



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Note: Here the geometric distribution is of the form p(1-p)
x -1

.  It means that out of x  

trials, the x
th

  trial has the first nonconformity and 


n

i

ix
1

is the total number of observations.  An 

index n is registered when a nonconformance is observed.  So if initially 1999 conforming items 

are observed before a nonconforming one, then n=1 and x1 = 2000. If after that, 2500 items are 

found conforming before the next nonconforming item is observed, then n=2 and 


2

1i

ix = 2000+ 

2501 = 4501.  Note also that the posterior distribution for observation n-1 will be the prior 

distribution for n. 

 

3.2.5 Determination CL based on the predictive distribution 

This involves performing the following steps: 

1. To get the upper and lower control limits, add the upper and lower probability values of 

the predictive distribution displayed in equation (29) until the probabilities add up to the 

2/ value and then mark the corresponding 1nx  values.  The lower control limit 

represents a value of the predictive random variable from the low end of the predictive 

distribution.  The upper control limit represents a value of the random variable 1nx  from 

the tail end of the predictive distribution.  In a one-sided control limit (in our case the 

interest would be in the lower control limit for detecting process deterioration), the 

corresponding 1nx  value on the lower end of the probability distribution is set at  level.  

2. Check to see if the new observation 2xx falls inside the control limits set by the 

previous observations or information.  If it does, update the parameters of the predictive 

distribution and draw new control limits.  In the case of a one–sided lower control limit, 
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check if the new observation falls above the lower control limit.  If it does, update the 

parameters of the predictive distribution and draw a new lower control limit. 

3. If the new observation ( 2xx ) does not fall inside the control limits, check the process 

but discard the point.  Use all the previous points up to 1nx to compute a new prior and 

go back to step 1 to draw the control limits. 

4. Stop the process when the observations are exhausted. 

 

Note: In a process that is somewhat stable and/or there is a large amount of observations 

to be tested, steps 1 through 3 are repeated until the control limits become “close enough” to 

each other.  The last control limits (or one-sided lower control limit) can be used as fixed control 

limits in lieu of the control limits computed during the phase I of production and the incoming 

observations can be tested against them.  In this dissertation, the stopping criterion  used to 

establish when “close enough” is good enough is when the last two control limits are within .2% 

of each other. 

 

3.2.6 Determination of new prior 

When the prior distribution is updated with the flow of new information (or new 

observations), the control limits become more representative of the more current observations 

than the earlier ones.  This is similar in behavior to an exponentially weighted moving average 

(EWMA) where the later observations have more weight on the representation of the system than 

earlier ones.  This behavior is valuable in detecting process deterioration as is shown in section 

4.11.1.2 of this dissertation.  In the proposed methodology, in order to have a systemic 
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representation of a process where more weight is put on later observations than earlier ones, a 

guideline (introduced in the next two sections) is set-up for updating the prior distribution.  

 

3.2.6.1 On the absence an “out-of control” observation 

If within 10 tested observations none is found to be “out of control”, then a new prior is 

computed based on previous observations and the ten tested observations and the process 

continues.  If the first 10 tested observations are found to be “in-control”, then the adjusted prior 

is based on the first 10 observations and the initial three observations used to determine the 

original prior. This value 10 was based on simulations conducted on a range of values of p from 

10
-1

 to 10
-5

 to assess a proper shift of the weight from the distant to the more recent observations. 

 

3.2.6.2 In the presence of an “out of control” observation 

If an observation is found to be “out of control” within the 10 tested observations, then 

that observation is discarded and a new prior is computed based on the previous tested 

observations and the initial observations used to determine the original prior.  This guideline 

helps that the process is being continuously updated with new observations and that more weight 

is put on the most recent ones.  

 

3.2.7 Summary of steps 

Below is a summary of the steps taken to start and end the process of drawing CL based 

on the sequential Bayesian CCC chart procedure: 

1. Define the geometric function of observations with the parameter p, where p is the 

number of non-conformances up to the conformance. 
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2. Define the conjugate prior distribution of the random variable p, a beta distribution with 

parameters   and  .  

3. Define the predictive distribution from the prior beta distribution.  

4. Use the parameters of the prior based on historic data or the first three observations 

gathered to evaluate the original predictive distribution and corresponding CL n=0 

(indexed at n=0, i.e. before any observations are tested). 

5. Test the first observation against the CL n=0.  If “in-control”, use the observation to update 

the CL. The CL is now indexed by n=1 (CL n=1).  If the first observation is “out of 

control”, remove and test the next observation. 

6. If the first ten tested observations result in no ”out-of-control” observations, use the first 

ten tested observations (and the original observations used to determine the parameters of 

the beta distribution, if any) to update the prior.  The updated prior indexed at n=0 is now 

used to set the CL n=0 indexed at n=0.  In other words the counter is reset at zero, 

whenever the prior is updated.  If the last ten tested observations result in no “out-of-

control” observations, use all the previous observations, including the last ten to update 

the prior and reset the counter at zero and draw CLn=0 indexed at n=0. 

7. If the first “out-of-control” observation falls within the first ten tested observations, 

remove the “out-of-control” observation and update the prior based on all previous “in-

control” observations and the original three observations used to evaluate the initial prior.  

The updated prior is again used to set the counter at zero and draw CL n=0 indexed at n=0. 

If within the last ten observations one (or more) observation is “out-of-control”, then the 

observation is removed and all the previous observation are used to update the prior and 

reset the counter at zero and draw CLn=0 indexed at n=0.  As stated above, the counter is 
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reset at zero whenever the prior is updated.  The prior is updated whenever 10 successive 

observations are found to be in control or whenever one observation is found to be “out-

of control” and is removed.  The prior requires using all the previous” in-control” 

observations for its update along with the original three observations used to evaluate the 

original prior distribution. 

8. Continue updating the control limits until all observations are exhausted. 

9. When the number of observations is extensive, and when values of CL move very close 

enough together before all observations are exhausted (mainly true in a stable system), 

use the last CL as a fixed CL to test future observations.  In other words, when the CL 

values become close, then the converging CL can mimic in essence the CL determined in 

phase I of production and be used in testing phase II without using the sequential 

methodology in phase II. The guideline for using the stopping procedure (when the CL 

become close enough) is when the last two control limits fall within .2% of each other. 
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3.3 Flowchart 
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CHAPTER 4 

TESTING THE METHODOLOGY 

 

4.1 Use of Monte Carlo simulation 

In this section, a Monte Carlo (MC) simulation experiment is conducted to verify the 

proposed methodology. A hypothetical production process is utilized in this experiment. 

 

4.1.1 Initial Estimate of p based on past information  

It is assumed that from history, the most optimistic, pessimistic and most likely 

assessment of p are .0002, .0007 and .0005, respectively.  Finding the mean and standard 

deviation of the beta distributed random variable p (the probability of nonconformance) from 

equations (20) and (21) yield: 


p  = .00048333 and a variance of the estimate = 6.94444 × 10
-9

.  

Using the values of the mean and variance in equations (17) and (18) yield the estimated 

parameters   and  :  =33.6232 and  = 69531.7, respectively.  

MC simulation is performed next to get the values of the integral that defines the 

predictive distribution in equation (29) based on the computed values of the parameters   and . 

 

4.1.2 The MC simulation procedure 

At x=1, N values of random variable p from a uniform (0, 1) are generated. For each one 

of the values, the corresponding integrand is calculated. Then the average of all the N integrands 

is computed. That average represents the value of the predictive distribution at x=1. The process 
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is repeated for the whole range of x. When all the values of x are exhausted, the upper and lower 

control limits are computed. Figure 3 shows the Monte Carlo simulation of the probability mass 

function of the predictive distribution for x ranging from 1 to 50,000 and N =1000. The 

distribution in Figure 3 is based on n=0 (before any observations are taken), σ=33.6232, 

 =69531.7 and a range of x from 1 to 50,000.  
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Figure 3  Example of a MC simulation 

 

In Figure 3 the following points can be observed: 

1) The predictive distribution is also geometric, and this desired feature of the proposed 

sequential Bayesian CCC approach has already been discussed in Section 3.1.5.  

2) The range of x depends on the value of the p estimate. The smaller the p estimate is, the 

heavier tail the distribution has. 
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4.2 The time factor 

The term in the exponent of the expression (1-p)
21

1

 

 nxx n

n

i

i

 in equation (29) affects the 

simulation time the most because of the size of the exponent.  In particular, the following notes 

can be made: 

1) The simulation time is increased by an increase in the observation value x (a decrease in 

the estimate of p) 

2) The simulation time is increased with an increase in the   value.  The   value is 

determined by the estimated value of p and also by the spread of the observation values 

that together help form the original p and  estimates and therefore the values of  and   

values. 

3) The simulation time is also increased by an increase in N, the number of iterations used 

before an average is taken.  The average represents the distribution value at a particular 

value of x.  

4) The simulation time is increased by increasing the range of the x values.  The range is 

usually extended to cover all possible values of x for which the distribution adds up to 

one.  The smaller the estimate of p is, the wider the range of x is.  

 

4.3 Enhancing the simulation procedure 

The performance of the simulation is enhanced using Importance Sampling (IS) in the 

MC simulation procedure.  It can be demonstrated that IS increases both the speed and the 

accuracy of the estimation results.  A procedure developed in this dissertation called “skipping” 
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also increases the speed of the simulation.  Finally, truncating the simulation process after the 

LCL is obtained increases the simulation speed significantly.  

 

4.3.1 Increasing the simulation speed 

4.3.1.1 Skipping technique 

In Figure 3, the distribution flattens around the value of 15,000. Because the interest is 

mainly in process deterioration and therefore in the LCL, approximations are made to the UCL 

by allowing skips in the computations beyond the value of 15,000 of x; skipping through an 

equal range of values for x and assigning the same y values for y in that range as the one 

evaluated at the midrange of x.  The computational time is increased substantially after x=15,000 

because the value of y is computed only once in the skipping range.  In the example above, 

skipping through a range of 700 values cuts the number of iterations from 50,000 to 15,000 + 50 

(35000/700=50), where skipping occurs past observation 15,000.  Figure 4 below shows the 

result of a simulation run with the same parameters, range of x, and N as the one displayed in 

Figure 3 except there are skips in the observations past observation number 15,000. Note that 

when the values of x extend to 1,000,000, for example, skipping 1,000 values would cut the 

number of iterations significantly, from 1,000,000 to 15,000 +990 =15,990, a 98 % decrease.  

This translates into cutting the simulation time by almost that percentage.  The difference in time 

between the example displayed in Figure 3 and the example displayed in Figure 4 is the 

difference between 60 minutes and a little less than twenty minutes, a reduction in time of about 

70 percent. 
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Figure 4.  MC simulation run with skipping 

 

The Matlab code for skipping is the following: 

skip=700 

for x=15000:skip:50000; 

Sum=0; 

    for i=1:N; 

    Sum=Sum+intpre(rand(),x+skip/2); 

    end 

y(x+skip/2)=Sum/(N); 

y(x:x+skip/2-1)=y(x+skip/2)*ones(1,skip/2); 

y(x+skip/2+1:x+skip-1)=y(x+skip/2)*ones(1,skip/2-1); 
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end 

 

The simulation example displayed in Figure 3 without skipping gives similar LCL and 

UCL to the LCL and UCL displayed in Figure 4 when “skipping” is used.  At an 2/ value of 

.005, the UCL and LCL are 20 and 119106, respectively, when regular simulation is used and 18 

and 12422 when the “skipping” approach is used. Given the added randomness of simulations, 

these values are not very different, particularly for determining the LCL values. This skipping 

technique is generic and can be applied to other production processes.  

 

4.3.1.2 Importance sampling (IS) 

IS is an uncertainty reduction technique used to sample rare but “important” events.  The 

study of rare events is important because their occurrence sometimes can have catastrophic 

consequences. 

The premise of IS is to accurately estimate the probability related to rare events by 

accelerating (in our case through Monte Carlo simulation) the rate of their occurrence. Rare 

events are usually defined at the tail ends of probability density functions. It is often difficult to 

directly generate a large number of these rare events in a short simulation time period in order to 

make statistical inferences and draw meaningful conclusions.  The difficulty can be resolved by 

deliberately altering the distribution that defines their behavior – which then would allow the 

speeding up of the sampling process and then adjusting the output of sampled values 

appropriately to compensate for the alteration.  

IS is also called biased sampling because the sampling occurs not from the distribution of 

interest but from a biased distribution.  The main property of the biased distribution is that it 
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allows the sampling of “rare” events to occur more frequently, thus reducing the variance of the 

relevant estimates of interest.  The biased simulation outputs are then weighted to adjust for the 

use of the biased distribution.  Each weight is given by a likelihood ratio of the true underlying 

distribution with respect to the biased simulation distribution.  In the situation of our interest, the 

application of the IS technique is done through the scaling method. 

 

4.3.1.2.1 Mathematical background 

Let X be a random variable on the set S and let f be a probability measure on S.  Let G be 

the cumulative distribution of the random variable X and g(x) = G′(x) be its probability density 

function.  We consider estimating by simulation the probability ft of an event {X ≥ t} where the 

value of t is such that the event is rare. 

In IS, our interest is to find a biasing density function g*(x), such that it would allow the 

event {X ≥ t} to occur more frequently.  In that case we would have:  

 

                                             ft = { ( )}E I X t =
( )

( ) *( )
*( )

g x
I x t g x dx

g x
                              (30) 
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                     (32) 

 

W(·) is called the likelihood ratio and is usually referred to as the weighting function.  
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The IS procedure generates i.i.d. samples from g* and for each sample that exceeds t, the 

indicator function is multiplied by the weight W evaluated at the sample value. In the case where 

IS is done by scaling, the density g*(x) to be simulated is the density function of the scaled 

random variable aX, where a > 1 is used for tail probability estimation.  

When using a scaling transformation: 

                                                                   g*(x) = 
1 x

g
a a

 
 
 

                                               (33) 

The weighting function can be expressed as: 
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g x

W x a
x

g
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
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                                              (34) 

 

4.3.1.2.2 The use of IS in MC simulation 

IS is used to reduce the simulation time, and it is used also to increase the accuracy in the 

simulated values. Recall the way the Monte Carlo simulation is achieved: At x=1, N values from 

the uniform (0,1) distribution are generated. For each of the N values of p, the corresponding 

integrand (the value inside the integral) of the predictive distribution is calculated. Then the 

average of all the N integrands is computed. The average represents the value of the predictive 

distribution at x=1.  The process is repeated for all values on the range of x. In the case where p 

is very small, sampling from the uniform (0,1) distribution yields very few values of p that are 

around that small p. So the smaller the p, the larger the N value has to be in order for the 

simulation to capture enough of the small values of p and, as a result, make the value of the 

integral (or the average) more representative of the true behavior of the system. 
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The way the biasing occurs here for small p is that instead of generating the observations 

from the uniform (0,1), they are generated from the 
a

1
uniform (0,1), where a >1.  Instead of 

simulating so many observations that require much time and do not contribute much to the 

integral or the predictive distribution, the process is sped up significantly by sampling from a 

fraction of the uniform (0,1). To compensate for the fact that only a fraction of the uniform (0,1) 

is considered, the fraction is expanded by the factor a to cover the whole integral. 

The term (1-p)
21
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 

 nxx n

n

i

i

 in equation (29) affects the value of the predictive 

distribution y(x) the most since its exponent assumes very large values. If p is close to 1,           

(1-p)
21
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 nxx n

n

i

i

is close to zero since the value of 1-p is close to zero and the exponent is large, 

particularly if the value of   is also large.  Also, the exponent becomes increasingly larger due 

to the nature of 


n

i

ix
1

 which represents the cumulative value of geometric random variable x (the 

number of conformances up to the nonconformance) where p (the probability of a 

nonconformance) is very small and therefore x is very large, and where the index i represents the 

observation number.  So for a p value close to 1, the corresponding y is value is very close to 

zero, and therefore does not contribute to the information about the predictive distribution y.  If p 

is close to zero then 1-p is close to one and the exponent being very large would tend to 

contribute the most to the value of the predictive distribution y.  The larger   and 


n

i

ix
1

 are, the 

larger the factor a should be, i.e., the more it is desired that the simulated p value from uniform 

(0,1) is close to zero. This means that overall a smaller value of N or fewer number of  iterations 

are needed to get a representative average which in turn represents the predictive distribution 
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value at a particular value of x.  The fewer number of iterations translates into an increased 

simulation speed to get the predictive distribution.  

 

4.3.1.2.3 Testing speed results using IS 

One thousand simulation runs are performed at N=100,000 (sample size), and a=1 (i.e., 

do not use IS) and another one thousand runs are performed at N=100 ,a=1000 and x=1 (IS is 

applied). Four example Y values from each setting are given in rows three through six of Table I, 

and the sample mean and standard deviation of both sets of 1000 simulations are listed in the last 

row. 

 

 

Table I. Simulation results when IS is used  

N=100,000, x=1, a=1, no IS N=100, x=1, a=1000, IS 

Four typical samples Four typical samples 

Y=2.8295 × 10
-5

 Y=1.262 × 10
-5

 

Y=1.8938 × 10
-5

 Y=3.5812 × 10
-6

 

Y=3.5114 × 10
-6

 Y=2.243 × 10
-6

 

Y=4.557 × 10
-8

 Y=4.25 × 10
-5

 

Resulting sample statistics Resulting sample statistics 

Mean= 1.0682 × 10
-5

, 

SD=1.1072 × 10
-5

 

Mean= 1.0429 × 10
-5

, 

SD=3.0536 × 10
-6
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The results presented in Table I suggest that IS has a better performance in terms of 

variability but the computation times of the two approaches differ markedly.  Indeed, each 

observation in the first column took about six seconds, while each observation obtained from IS 

was virtually instantaneous.  The difference between N=100,000 and N=100 suggest that the 

speed is increased about 1,000 fold, or that the observations in the second column can be 

obtained 1000 times faster. 

When a=1000, for N=100, all 100 samples will be picked from the interval (0, 0.001).  

By increasing the IS factor from a=1 to a=1000, the number of iterations is reduced by a factor 

of 1000 (from 100,000 to 100), and it is in favor of reduced variability. 

 

4.3.1.3 Truncating the simulation 

Since the probability mass function used in defining the CL will approach zero, it is not 

necessary to run the simulation every time over the whole countable set of xj values, where the 

index j could get to a value over 1,000,000 for very small probability of nonconformance p. 

Furthermore, since the interest is only in process deterioration, it is enough to run the simulation 

until the LCL value is reached at the   significance level. When the simulation is truncated or 

when the LCL is reached, the process time is decreased by almost 100 percent (see example in 

Section 4.10.) 

 

4.4 Example using the Bayesian procedure 

In this example there are 23 observations (as is defined in the introduction section on 

page 2, an observation is defined as the number of conforming units up to the non-conforming 

one). A shift occured after observation 17, where the geometric distribution representing the 
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observations shifted from the parameter estimate of p (representing the probability of 

nonconformance) of .00001 to .0001 starting from the 18
th

 observation. A simulation was 

conducted to first extract 17 observations from a geometric distribution with p =.00001. The 

values are: 

128,797;  25,542;  214,715;  105, 614;  79,229;  95,106;  125,338;  26,673;  138,363;  49,082;  

503,939;  35,444;  118,245;  66,508;  32,200;  119,391;  241,047. 

Afterwards, the next 6 observations were obtained from a geometric distribution with the value 

of p =.0001, representing a deteriorative shift in the process. The 6 values are: 538;  29,041;  

246;  17,375;  12,153;  7,820.  

 

4.4.1 Generating the geometric observations 

The program used for generating the observations from the geometric distribution was 

developed as follows:  Function f = geo(p), where “geo” is the name of the function,  takes as 

input a value for p and as output a value of the random variable x. The random variable 

represents the number of conformances up to (and including) a nonconformance. The parameter 

p represents the probability of a nonconformance. Sampling from a uniform random distribution 

(0,1), every time the sampled value is greater than the inputted value of p, it is added to a counter 

that increases the number of conformances. Once the value sampled is less than p, the counter is 

stopped. The value at the final counter is the output value of the random variable x.  

The Matlab program is represented as follows: 

 

Function f=geo(p); 

sum=0; 
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f=-1; 

while f = = -1; 

x=rand( ); 

if x ≥ p; 

sum = sum +1; 

else; 

f=sum; 

end; 

end; 

 

4.4.2 Data analysis of the Bayesian procedure 

In this dissertation, an important aim of this new Bayesian procedure is to be able to 

detect process deterioration with more sensitivity than what is available through the traditional 

CCC methodology.  For that reason, the concentration is on the analysis on the LCL of the 

control chart.  In the table below, the process deterioration (from p = .00001 to p = .0001) takes 

place in the last 6 observations, from observation n=18 through n=23. 

The first 3 observations 128,797; 25,542 and 214,715 are used to compute the original 

parameters  and  of the predictive distribution listed under equation (29).  Using equation 

(19), the estimate of p is found by inverting the mean of the three observations and is equal to: 



p = 8.1288917069 x 10
-6

 

According to Gido and Clements (2006, p 186), the variance of the p estimate is 

evaluated from the most optimistic and most pessimistic estimates of p. Here we use the highest 

and lowest observation values of x to get the most optimistic and most pessimistic estimates of p. 
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They are 214715 and 25542, respectively. Using these two estimates in equation (20) yields a 

variance estimate of 3.0507432 × 10
-11

.  The values of  and   are then computed using 

equations (17) and (18) which yield the values of   = 1.99929 and   = 245947. 

MC simulation is performed to get the values of the integral of the predictive distribution 

defined in equation (29) based on the given parameters.  The values of x from both ends of the 

distribution that correspond to the cumulative y values of 2/  = .005 and 1- 2/ =.995 

represent the UCL and LCL, respectively.  

 

4.4.3 Analysis results of the Bayesian procedure 

The values of the UCL and LCL are presented in Table II.  The two-sided control limits 

are calculated at a confidence level of 2/  = .005.  The first 3 observations are used to obtain 

the values of  and   and in turn find the original control limits at n=0 (in the table, n=0 is 

labeled as nb, for base observation, before any observation is tested).  When the 18
th

 observation 

is tested, it falls below the lower control limit (538 is below 624) and therefore gets removed.  

The next step is to compute a new  and   values from the previous 17 observations.  Then the 

new parameters values are used in updating the prior and the predictive distribution and the 

corresponding control limits where the counter is reset at zero and n has a base value of nb=0.  

The 19
th

 observation is now tested against the control limits and the process continues.  

Observation number 20 is also below the control limit and therefore gets removed.  New  and 

  are reevaluated, the prior re-updated to get the corresponding control limits and the counter is 

reset again at zero. 

Note: The new LCL is computed from the predictive distribution based on a prior that 

uses all 17 observations to establish its parameters. The fact the value of the LCL at the base 
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value n=0 (622) is closer to the preceding LCL values than the distant ones is indicative that 

more weight is put on more recent observations than distant ones and that this new prior 

adequately represents the information from historical data. 

Table II. Bayesian upper and lower control limits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first three observations are used to get an estimate of p and a variance of the estimate 

but do not get tested against the computed control limits to avoid the “double-use of data”. After 

the 18
th

 observation or first observation from the “shifted” process is identified and removed, the 

2/  = .005 Bayesian LCL Bayesian UCL  

 

x1=128,797   

x2=25,542   

x3=214,715   

nb=0, 617 1136048 

n=1,x4=105,614 593 961005 

n=2, x5=79,229 533 899668 

n=3, x6=95,106 526 877415 

n=4,x7=125,338 539 921141 

n=5,x8=26,673 481 755560 

n=6,x9=138,363 485 776994 

n=7, x10=49,082 478 678230 

n=8,x11=503,939 699 857738 

n=9, x12=35,444 643 833737 

n=10,13=118,245 642 809486 

n=11, x14=66,508 617 772505 

n=12, x15=32,200 581 747217 

n=13,x16=119,391 584 753390 

n=14,x17=241,047 624 792480 

n=15,x18=538 below LCL  

nb=0, 622 1482319 

n=1, x19=29,041 446 1008328 

n=2, x20=246 below LCL  

nb=0, 595 1040548 

n=1, x21=17,375 415 918035 

n=2, x22=12,153 325 677592 

n=3, x23=7,820 267 536120 
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previous seventeen observations are used to compute the new estimate of p, the probability of 

nonconformance.  The estimate is:


p =

17

047,241...614,105...797,128

1


=8.07511567 x 10

-6
. 

The most optimistic and pessimistic values of the p estimates are now 1/503939 and 

1/25542.  They are used in equation (20) to get an estimate of the variance.  The variance 

estimate is 3.83714891122 x 10
-11

. The estimates of the mean and variance of p are used in 

equations (17) and (18) to get the values of  and : 1.69935 and 210441, respectively. These 

are the new parameter values of the updated prior.  At n=0, the LCL is 622, while at n=1 it is 

446. At n=2, observation 246 is below the LCL (446) set by observation n=1.  Observation 246 

is also discarded and a new updated prior with new parameters are generated, this time with 18 

observations. The new estimate of p is: 



p  =  

18

041,29047,241...614,105...797,128

1


=8.43378 x 10

-6
 but  the estimated variance 

is the same (at 3.83714891122 x 10
-11

).  The new values of the parameters   and are 1.85366 

and 219788, respectively. 

 

4.5 Example using the CCC procedure  

The estimate of p is


p = 

23

7820...614,105...797,128

1


= 1.05873 x 10

-5
 

From equation (5) and (6), the control limits at 2/  = .005 are: 

LCL= 

















^

)1ln(

)005.1ln(

p

+1 = 474 and UCL  = 















^

)1ln(

)005ln(.

p

 = 500439 
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4.5.1. Analysis results of the CCC procedure 

Only one observation value of 246 is below the LCL value of 474.  The observation value 

is removed and the new estimate of p reevaluated with the remaining 22 observations.  The new 

estimate of p is: 1.012167 x 10
-5

.  The LCL value is now 496.  The UCL also shifts to 523461.  

With the “out-of control” observation eliminated, the lower control limit value is now higher. 

Even with a higher value, no new shifted observations are detected. All the remaining 22 

observations are “in-control.” Table III below presents the results. 

 

Table III. UCL and LCL using the CCC procedure 

2/ =.005 LCL New LCL UCL New UCL 

n=1, x1=128797 474 496 500439 523461

n=2, x2=25542 474 496 500439 523461

n=3, x3=214715 474 496 500439 523461

n=4,x4=105,614 474 496 500439 523461

n=5, x5=79,229 474 496 500439 523461

n=6, x6=95,106 474 496 500439 523461

n=7,x7=125,338 474 496 500439 523461

n=8,x8=26,673 474 496 500439 523461

n=9,x9=138,363 474 496 500439 523461

n=10,x10=49,082 474 496 500439 523461

n=11,x11=503,939 474 496 500439 523461

n=12,x12=35,444 474 496 500439 523461

n=13,x13=118,245 474 496 500439 523461

n=14, x14=66,508 474 496 500439 523461

n=15, x15=32,200 474 496 500439 523461

n=16,x16=119,391 474 496 500439 523461

n=17,x17=241,047 474 496 500439 523461

n=18, x18=538 474 496 500439 523461

n=19,x19=29,041  474 496 500439 523461

n=20, x20=246     

below LCL     

n=21, x21=17,375  496  523461

n=22, x22=12,153  496  523461

n=23, x23=7,820  496  523461
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4.6. Example using a sequential CCC procedure 

Using a sequential methodology where the estimate of p is updated with every new observation, 

the UCL and LCL are no longer fixed but dynamic, changing with every observation.  The 

formulas for the UCL and LCL are based on the equations used in the CCC methodology and 

displayed under equations (5) and (6).  The estimate of p is 


p =
)(

1

xE
=

 

n

i ix

n

1

. Because that 

estimate, under a sequential procedure changes with the flow of observations, the LCL and the 

UCL are now of the form: 

                                           LCL = 
































)1ln(

)2/1ln(

1 i

n

i

ix

n


+1                                                           (35) 

                                             UCL = 






























)1ln(

)2/ln(

1

n

i

ix

n


                                                              (36) 

The value


n

i

ix
1

is the sum of the observations indexed by i and n represents the total number of 

observations.  The sequential methodology developed here is similar to the Bayesian 

methodology.  The observations are tested sequentially.  If an observation falls outside the 

control limits, it is removed and the previous tested observations are used to get a new estimate 

of the rate of nonconformance p. 
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4.6.1 Analysis results of the sequential CCC procedure 

In the sequential CCC chart, the same observations that were detected under the Bayesian 

methodology are detected also here.  They are the second and the fourth observations from the 

shifted six observations.  Table IV provides the two-sided control limits of the sequential CCC 

procedure at 2/ =.005 level  

 

Table IV. UCL and LCL using the simple sequential procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7 Comparison of the three procedures 

2/  = .005 Seq. LCL 

n=1, x1=128797 647 682405 

n=2,x2=25542 388 408866 

n=3,x3=214715 618 651786 

n=4,x4=105,614 596 628733 

n=5, x5=79,229 556 586942 

n=6, x6=95,106 543 573101 

n=7,x7=125,338 555 586098 

n=8,x8=26,673 503 530501 

n=9,x9=138,363 524 553010 

n=10, x10=49,082 496 523714 

n=11,x11=503,939 681 718834 

n=12, x12=35,444 639 674580 

n=13,x13=118,245 636 670881 

n=14, x14=66,508 615 648131 

n=15, x15=32,200 584 616296 

n=16,x16=119,391 585 617313 

n=17,x17=241,047 622 656126 

n=18, x18=538 below LCL  

remove x18   

n=19, x19=29,041 595 628223 

n=20, x20=246  

remove x20,   

n=21, x21=17,375 569 600003 

n=22, x2=22,153 543 573223 

n=23, x23=7,820 519 547899 



 76

Table V below shows the combined numerical results of the three procedures.  

 

Table V. Comparison of CL between Bayesian, CCC and Sequential procedures 

 

2/ = .005 Bay. 

LCL 

CCC 

LCL 

Seq. 

LCL 

Bay. 

UCL 

CCC 

UCL 

Seq. 

UCL 

n=1, x1=128,797  496 647  523461 682405

n=2, x2=25,542  496 388  523461 408866

n=3, x3=214,715  496 618  523461 651786

nb=0 617   1136048 523461  

n=4, x4=105,614 593 496 596 961005 523461 628733

n=5, x5=79,229 534 496 556 899668 523461 586942

n=6, x6=95,106 527 496 543 877415 523461 573101

n=7,x7=125,338 540 496 555 921141 523461 586098

n=8,x8=26,673 481 496 503 755560 523461 530501

n=9,x9=138,363 485 496 524 776994 523461 553010

n=10, x10=49,082 478 496 496 678230 523461 523714

n=11,11=503,939 699 496 681 857738 523461 718834

n=12, x12=35,444 643 496 639 833737 523461 674580

n=13,13=118,245 642 496 636 809486 523461 670881

n=14, x14=66,508 617 496 615 772505 523461 648131

n=15, x15=32,200 581 496 584 747217 523461 616296

n=16,x16=119,391 584 496 585 753390 523461 617313

n=17,x17=241,047 624 496 622 792480 523461 656126

n=18,x18=538 below 

LCL 

496 below 

LCL 

 523461  

nb=0 622   1482319   

n=19, x19=29,041 446 496 595 1008328  628223

n=20, x20=246 below 

LCL 

 below 

LCL 

 523461  

nb=0, 595   1040548 523461  

n=21, x21=17,375 415 496 569 918035 523461 600003

n=22, x22=12,153 325 496 543 677592  573223

n=23, x23=7,820 267 496 519 536120  547899

 

 

Since our interest is in process deterioration, the concentration is on the lower control 

limits. When looking at the lower control limits, the following observations are in point:  
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1. The local jumps are more extreme in the Bayesian LCL than in the sequential CCC since 

the Bayesian procedure incorporates information about the variance between the 

observations. For example, using Table V, a drop of 98,000 units between observation 

n=7 and n=8 corresponds to a drop in the Bayesian LCL of 59 units (540-481) versus a 

drop in the sequential CCC of 51 units (555-503). Alternately, a rise in the observation 

values from 49082 to 503939 (of 454857 units) causes a rise in the Bayesian LCL of 221 

units versus 184 units only in the CCC LCL. 

2. The variations or shifts in the LCL are more extreme at the earlier stages of the charting 

process than towards the later stages. In other words, for the same amount of 

observational shifts, earlier observational shifts translate into more variability in the LCL 

than later ones. For example, a drop of about 25thousand observational units between 

observation one and two causes a dip of almost 60 units in the Bayesian LCL. 

Subsequently, another drop between observation 11 and 12 of about 35 thousand units 

causes the lowering of the Bayesian LCL of only about 36 units.  This suggests a 

tightening of the control limits as more observations are plotted and the number of 

observations increases. 

3. In the Bayesian procedure, the order of the observations affects the LCL values and 

therefore the whole analysis. For example, the much better than expected performance of 

observation number 8 and value 503,939 carries the next four LCL to values higher than 

the respective sequential CCC LCL. This is because the Bayesian process also behaves as 

an exponentially weighted moving average process, where the later observations have 

more weight than the earlier ones.  
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4. The integration of the variance in the Bayesian methodology allows for a systemic shift 

in future observations to be easily detected - like the ones caused by deterioration due to 

machine wear or malfunction.  The fact that the variability among the observations is 

considered in the Bayesian methodology causes the ability to detect visually a shift in the 

process, contrasted to the sequential CCC methodology where the values of the shifted 

observations are diluted back into the average mix.  One can see the steep drop of the 

Bayesian LCL that corresponds to the deterioration represented by the last four 

observations (446,415, 325, and 267), compared to the last four LCL of the sequential 

CCC procedure (595, 563, 543 and 519).  These last observations of the sequential 

procedure are not much different in value of other lower control limit values, contrasted 

with the steep descent in values of the Bayesian LCL values, which makes the process 

deterioration easy to see.  

 

Figure 5 below is the visual display of the tabulated results.  One can see that: 

1. The first three observations are used in the Bayesian procedure to formulate parameters 

of the prior and are not tested. 

2. Observations 18 and 20 fell outside the lower control limits.  The gap is made visible by 

assigning them an arbitrary value of zero.  

3. Adding the UCL to the graph is not meaningful when assessing process deterioration 

4. In observations 12 through 17, only one line is visible because the blue and red lines 

merge together.  The observations on that range are very close.  
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Figure 5.  Comparisons of LCL between Sequential and Bayes procedures 

 

 

Note: Assumptions are made here in the analysis and the interpretation of a deteriorating 

process.  The first assumption is that a detection of an out of control observation (below the 

LCL) does not translate necessarily into deterioration detection.  Narrowing the source of 

variation might not be easy or evident. Breyfogle III (2003, p. 225) states regarding the out-of-

control points: ”These points should have an assignable cause for being outside the control 

limits.  However, in general, determining the real cause after some period of time may be 

impossible.”  Sometimes at the onset of process deterioration, it is not possible to immediately 

make the determination that a deterioration shift has taken place even when one or two 

observations are found to be out of control.  This is particularly true in cases related to epidemic 
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outbreaks.  To make a comparison between two sequential procedures to see which one has a 

lower type I error - lower false alarm rate, i.e. a better ability to detect an out-of control 

observation is moot in this setting not just because an out-of control observation does not 

translate into a deteriorated process necessarily, but because the two methodologies are very 

different in nature and not easily comparable. In the Bayesian approach, a control chart has an 

increased ability of detecting an out-of control observation when the system has been behaving 

better than expected (high levels of conformances push the future LCL to higher levels, as in a 

dynamic system.)  The changes in the LCL values in the sequential Bayesian CCC approach are 

strictly based on the observations encountered. In othe words, it is strictly data driven.  In the 

simple sequential procedure, the ability of the LCL to better detect an out-of-control observation 

depends on the methodology used.   

The interest in this dissertation is in settings where the cost of committing a type II error 

is devastatingly high (The probability of stating that no deteriorating shift has occurred when in 

fact one did occur.) For that reason, a guideline is devised to evaluate which sequential 

procedure mirrors best process deterioration when it occurs. The CCC LCL can be viewed as a 

benchmark LCL for both sequential processes and the values of the LCLs for both sequential 

procedures can be viewed as derived observations. Before deterioration occurs, both the 

sequential and the Bayesian LCL are above the CCC LCL line.  This translates into a non-

existent rate of false alarm about process deterioration.  At the onset of process deterioration, the 

observations of the simple sequential procedure are not affected by the deterioration shift 

whereas the observations of the sequential Bayesian procedure all fall below the benchmarked 

line.  Because of the dynamic nature of the sequential Bayesian CCC methodology, the future 

observations (not plotted) of a deteriorated process are also expected to fall below the CCC LCL 
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even if there is some fluctuation in the actual observations. As if the actual extreme observations 

give a dynamic pull to the derived observations.  The pull would me more extreme and the rate 

of decrease of the derived observations steeper if the out-of control observations are not removed 

from the computations, because they represent the most extreme (smallest) values.  

 

4.8 More on the sequential Bayesian CCC procedure 

The simple sequential methodology, despite its ability to capture an “out of control” 

observation, is not capable of detecting process deterioration.  In a setting where a change in 

environment, machine wear and tear or malfunction could cause deterioration in the process, 

immediate attention is required and a halting of the process is needed.  It becomes very critical 

then to be able to timely detect deterioration in the system as the production proceeds.  The 

ability of the Bayesian methodology to detect process deterioration makes it a very valuable tool.  

In the previous example where the three procedures are compared, the range of x is from 

1 to 12,000,000.  This is due to the small value of p tested (with the level of 10
-5

). This tested 

value is smaller than the rates of nonconformance often used or tested in the literature regarding 

high yield processes.  The smallest estimate of p used in the literature was in the order of 410
-4

.  

Skipping was conducted at a value of 700, N at 1000 and the value of a used in IS is 1000.  The 

time for getting the UCL and LCL from each distribution is about five hours (using a laptop with 

1.75 GB of memory and a 64 2 MB processor). 

 

4.9 Increasing speed by truncating the simulation  

Because our goal is to detect process deterioration, the UCL is not of our interest and is 

not to be considered in the Bayesian methodology. As discussed in Section 4.4.1.3 of this 
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dissertation, the simulation is truncated when the LCL is reached at the desired significance level 

 . The algorithm stops when the cumulative value of the predictive distribution reaches the 

value  . The time that takes to get the LCL is less than a minute as opposed to five hours to get 

both the LCL and the UCL. 

 

4.9.1 Comparison of LCL values 

Identical simulation runs are now performed with the same value of a, N, and the level of 

significance of .005 as the ones used in Section 4.5 except the simulation run here is allowed to 

stop when the lower significance level of .005 is reached, which indicates the level of the LCL is 

reached.   

Table VI presents the two sets of LCL values: one set is from Table II above (where the 

LCL are extracted from the whole distribution) and the other set is the result of this truncating 

approach. The two sets of values are almost identical. This is somewhat expected, because of the 

iterative nature of the computations, given the model is an appropriate one. The time to reach the 

LCL in this approach was less than twenty seconds, which is fairly fast.  

Considering the randomness in performing simulations, the sets of values are very close. 

This shows that by stopping the simulation when LCL values are reached, simulation can be 

hastened and the information of interest is not lost. Figure 6 is a visual display of these 

comparisons.  
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Table VI. Comparisons of LCL when full and truncated simulations are used. 

.005 LCL from whole dist. LCL from truncated dist. 

n=1, x1=128,797   

n=2, x2=25,542   

n3, x3=214,715   

nb=0 617 613 

n=4, x4=105,614 593 594 

n=5, x5=79,229 534 538 

n=6, x6=95,106 527 529 

n=7,x7=125,338 540 559 

n=8,x8=26,673 481 489 

n=9,x9=138,363 485 512 

n=10, x10=49,082 478 478 

n=11, x11=503,939 699 688 

n=12, x12=35,444 643 643 

n=13,13=118,245 642 643 

n=14, x14=66,508 617 605 

n=15, x15=32,200 581 587 

n=16, 16=119,391 584 586 

n=17, 17=241,047 624 630 

n=18, x18=538 below LCL below LCL 

nb=0 622 629 

n=19, x19=29,041 446 444 

n=20, x20=246 below LCL below LCL 

nb=0, 595 601 

n=21, x21=17,375 415 417 

n=22, x22=12,153 325 326 

n=23, x23=7,820 267 264 

 

 

Note: In Figure 6 below, the visibility of only one point at an observation (number 7 for 

example) means the two control limit lines are at an identical or almost identical locations.  In 

addition, the word “truncated,” for lack of a better word, means that only the values of interest 

are extracted through simulation.  For the purpose of the dissertation, only the LCLs are of 
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interest. The model has been validated and there is no need to run every simulation up to its full 

cumulative distribution value of one. 

full simulation data

truncated simulation data

 

Figure 6. Comparison of LCL between truncated and full simulation 

 

4.10. Extended application of the Bayesian procedure 

In the previous sections, the analysis was tested for small rate of conformance, at the 

level of 10
-5

. In this section the analysis will be tested for a rate of nonconformance “not very 

small”.  Furthermore, this section tests the situation when the prior is updated regularly (after 10 

tested observations are deemed to be “in control”) versus the situation when no updating occurs. 

 

4.10.1 When the rate of nonconformance is not small 
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To check if the sequential Bayesian CCC procedure works for larger and more generic 

values for the rate of nonconformance p, the methodology is tested for values of p varying from 

.01 to .05 to .1.  

 

4.10.1.1 No updating of prior in the absence of “out-of-control” observation 

The values of the tested rate of nonconformance here start at an estimated value of .01 

and drop incrementally to .05 and then to .1.  This translates into small number of conforming 

values between nonconforming ones.  Because the numbers are small (the values of the random 

variable x) and the deterioration rate is small, the generated values are assumed to come from a 

somewhat stable system, based on an average of 10 observations from the geometric distribution. 

Thirteen observation values of the random variable x are generated from a geometric distribution 

with an estimated rate of nonconformance p =0.01.  They are the following: 43, 167, 96, 101, 

118, 99, 125, 154, 39, 87, 80, 97 and 73.  Process deterioration occurs where the estimated rate 

of nonconformance is now at .05.  The process is simulated by generating nine observations from 

a geometric distribution with estimated p = .05.  The values are: 9, 22, 17, 18, 8, 19, 23, 10, and 

5. The last nine observations simulate further deterioration of the process to an estimated p= .1.  

The corresponding observation values of that further deteriorated process are: 3, 9, 8, 4, 7, 8, 6, 

5, 7.  

A Bayesian LCL “truncated” simulation analysis at a one-sided   = .05 is conducted for 

the first set of thirteen observations with an estimated p = .01.  The first three observations are 

taken from that set.  They are: 43, 167 and 96.  They are used to get the mean and variance of the 

estimate of p.  The mean and the variance of the estimated p are .0098 and 8.2826810
-6

, 

respectively.  The values of the initial parameters   and  of the beta distributed prior are 11.47 
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and 1159.12, respectively.  Using a high value of N =10,000 (the number of times the simulation 

from a uniform (0,1) is repeated before an average is taken) in the MC simulation yields tighter 

LCL (with not much random fluctuation when the MC simulation is repeated.)  Following the 

thirteen observations, the next nine observations from a deteriorating process are tested against 

the updated LCL.  There is a sharp decrease in the LCL values from 6 to5 and then to 4 that 

reflects the deterioration in the process. Here, because no observation value was found to be 

outside the LCL, no updating of the prior distribution would be performed.  Also, the parameters 

of the prior are not updated even after 19 observations are tested. This means that the same 

parameters of the prior are used in the evaluation of the LCL and in the testing of the incoming 

observations.  They are the same parameters computed using the first three observations.  There 

is more weight put on the earlier observations rather than on the most recent ones (the process 

might be behaving more like a moving average than an exponential moving average).  

In the next section, it will be demonstrated that by a regular updating of the prior 

parameters and therefore the prior distribution, more weight will be put on more recent 

observations and process deterioration will become much more visible. The numerical results are 

displayed in Table VII below.  

 

4.10.1.2 Updating of prior in the absence of “out-of control” observation 

Some guidelines are presented in this dissertation: If after 10 observations are tested, 

none of them falls outside the LCl, an updating is done based on all previous observations.  In 

the case of this example, using the 10 tested observations plus the original three give us thirteen 

observations to use for computing the updated values of   and  .  These updated   and   
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values are 9.52 and 927.2 respectively (the estimated updated nonconformance rate p is .0101642 

and the estimated updated variance of that rate is 1.072890210
-5

) 

 

Table VII. Process deterioration from .01 to .05 after n=13 

 =.05, Bayesian LCL 

n=1, x1=43  

n=2, x2=167  

n=3, x3=96  

nb=0, 6 

n=4, x4=101 6 

n=5, x5=118 6 

n=6,x6=99 6 

n=7,x7=125 6 

n=8,x8=154 6 

n=9,x9=39 6 

n=10,x10=87 6 

n=11,x11=80 6 

n=12,x12=97 6 

n=13, x13=73 6 

n=14, x14=9 5 

n=15, x15=22 5 

n=16, x16=17 5 

n=17, x17=18 5 

n=18, x18=8 5 

n=19, x19=19 5 

n=20, x20=23 4 

n=21, x21=10 4 

n=22, x22=5 4 

 

 

A better representation of the deterioration process represented by the last nine 

observations is visible through the LCL values. In this situation an updated prior is computed 

after 10 consecutively tested observations are deemed to be “in control”. A comparison of the 

values with an updated prior and without an updated one is displayed in Table VIII below. 
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Table VIII. Comparison of two Bayesian procedures for process deterioration detection 

 =.05 Bayes LCL 

with adjusted 

prior 

Bayes LCL 

without 

adjusted prior 

n=1, x1=43   

n=2, x2=167   

n=3, x3=96   

nb=0, 6 6 

n=4, x4=101 6 6 

n=5, x5=118 6 6 

n=6,x6=99 6 6 

n=7,x7=125 6 6 

n=8,x8=154 6 6 

n=9,x9=39 6 6 

n=10,x10=87 6 6 

n=11,x11=80 6 6 

n=12,x12=97 6 6 

n=13, x13=73 6 6 

nb=0 5 5 

n=14, x14=9 5 5 

n=15, x15=22 5 5 

n=16, x16=17 4 5 

n=17, x17=18 4 5 

n=18, x18=8 4 5 

n=19, x19=19 4 5 

n=20, x20=23 4 4 

n=21, x21=10 3 4 

n=22, x22=5 3 4 

 

The dipping of the control limits is more visible in the case where the prior distribution 

had updated parameters.  This example reinforces the findings discussed earlier which state that 

after the prior is updated, the control limit become more representative of the more recent 

observations than the earlier ones. This also validates even further the guideline used in this 

dissertation which calls for updating the information of the prior regularly. 

 

4.10.1.3 The sequential LCL 

Using the same observations, LCL are obtained through the sequential methodology. 
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Table IX. Sequential Process deterioration detection 

 =.05, Sequential LCL 

 

n=1, x1=43 3 

n=2, x2=167 6 

n=3, x3=96 6 

n=4, x4=101 6 

n=5, x5=118 6 

n=6,x6=99 6 

n=7,x7=125 6 

n=8,x8=154 6 

n=9,x9=39 6 

n=10,x10=87 6 

n=11,x11=80 6 

n=12,x12=97 6 

n=13, x13=73 6 

N=14, x14=9 5 

n=15, x15=22 5 

n=16, x16=17 5 

n=17, x17=18 5 

n=18, x18=8 4 

n=19, x19=19 4 

n=20, x20=23 4 

n=21, x21=10 4 

n=22, x22=5 4 

 

 

4.10.1.4 Comparison between Bayesian and sequential LCL 

The sequential methodology, a benchmark methodology used to test the Bayesian one, is 

compared here with the Bayesian methodology. Here again, with values of p not very small 

(estimated at .01) the sequential Bayesian CCC methodology outperforms the simple sequential 

CCC methodology in detecting process deterioration, even when process deterioration is small 

(from .01 to .05). The reason is that, in the sequential Bayesian methodology, the LCL mirrors 

the behavior of the observations, in terms of time order, variability and size. It also assigns more 

weight to the more recent observations than the distant ones.  It is not surprising that it performs 
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better even for small values of nonconformance rate p.  In the next section, comparisons between 

the two procedures are made when the estimate of p deteriorates from 0.01 to 0.1.  

 

Table X. Comparison of two procedures for process deterioration detection 

 =.05, 

p from .01 to .05 

Bayesian LCL Sequential LCL 

n=1, x1=43  3 

n=2, x2=167  6 

n=3, x3=96  6 

nb=0, 6  

n=4, x4=101 6 6 

n=5, x5=118 6 6 

n=6,x6=99 6 6 

n=7,x7=125 6 6 

n=8,x8=154 6 6 

n=9,x9=39 6 6 

n=10,x10=87 6 6 

n=11,x11=80 6 6 

n=12,x12=97 6 6 

n=13, x13=73 6 6 

nb=0 5  

n=14, x14=9 5 5 

n=15, x15=22 5 5 

n=16, x16=17 4 5 

n=17, x17=18 4 5 

n=18, x18=8 4 4 

n=19, x19=19 4 4 

n=20, x20=23 4 4 

n=21, x21=10 3 4 

n=22, x22=5 3 4 

 

 

4.10.1.5 When deterioration is more extreme 

In this example, the deterioration of the process is tested for a more extreme dip in the 

estimated rate of nonconformance p: from an estimate of 0.01 to 0.1.  After observation 13, the 

observations drop to the following simulated values: 3, 9, 8, 4, 7, 8, 6, 5 and 7.  Using the 
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Bayesian methodology, the first depressed observation valued at 3 is removed because it falls 

below the LCL value of 5 and an updated prior of the first 13 observations yields the same 

results for   and  (at 9.52 and 927.2, respectively) found in section 4.11.1.2 above.  The 

second and third observations from the deteriorated process are above the LCL but the fourth 

observation (valued at 4) is below the LCL.  After it is removed, a new updated prior based on 

the 15 observations is computed with parameter   and   valued at .325 and 27.75, respectively.  

Table XI below lists both sets of LCL, from the Bayesian and from the sequential procedure. 

Both procedures picked the same observations to be “out-of-control”; observations 

number 14 and 17 valued at 3 and 4.  Except the simple sequential procedure did not pick up any 

change in process deterioration when the estimate of p changed from .05 to 0.1.  The LCL are the 

same when the deterioration is from a rate of nonconformance of .01 to .05 as they are when the 

deterioration is from .01 to .1.  The Bayesian methodology shows a very sharp drop in the LCL, 

this time even more extreme than the earlier drop (from .01 to .05), mirroring here again the 

more extreme drop in the observation values and further validating the superiority of its 

performance. A visual graph of these comparisons is displayed in Figure 7 below. 

Note: For the purpose of clarity in the graph, a linear scale was used when drawing the 

LCL values. (Values of 1 are almost on the x axis line when the log scale is used.) The 

deterioration in the last nine observations is clearly mirrored by the gradual then sharp decrease 

in the Bayesian LCL. This is in sharp contrast with the gradual decrease in the sequential LCL. 

The rate of decrease in the sequential LCL is not different from when the deterioration was 

represented by a drop in the estimate of p from .01 to .05. This shows that the sequential 

procedure lacks the sensitivity to detect small process deterioration.  
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Table XI. Comparison of procedures when deterioration is more extreme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 =.05, 

p from .01 to .1 

Bayesian LCL Sequential LCL 

n=1, x1=43  3 

n=2, x2=167  6 

n=3, x3=96  6 

nb=0, 6  

n=4, x4=101 6 6 

n=5, x5=118 6 6 

n=6,x6=99 6 6 

n=7,x7=125 6 6 

n=8,x8=154 6 6 

n=9,x9=39 6 6 

n=10,x10=87 6 6 

n=11,x11=80 6 6 

n=12,x12=97 6 6 

n=13, x13=73 6 6 

n=14, x13=3, 

below both LCC 

5 5 

nb=0 5  

n=15, x15=9 5 5 

n=16, x16=8 5 5 

n=17, x17=4, 

below both LCL 

4 5 

nb=0 4  

n=18, x18=7 2 5 

n=19, x19=8 1 4 

n=20, x20=6 1 4 

n=21, x21=5 1 4 

n=22, x22=7 1 4 
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Figure 7.  Comparisons of LCL between sSequential and Bayesian procedures 

 

4.11 Example of a stable system 

To simulate a small example from a stable system, ten observations are obtained from the 

average of 100 values simulated from a geometric distribution at an estimated rate of 

nonconformance p valued at .00001. The following ten values are obtained:  101550,  92667, 

105310,  92420,  82364,  114980,  104960,  92216,  107650 and 103540. 

To get an initial  and  values it is assumed this time that there is knowledge of the 

system’s past behavior.  The assumption is that the most pessimistic estimate of the process is 

20,000, the most optimistic one is 200,000 and the most likely one is 100,000. From equation 12 

and 13, the mean and the standard deviation of the observations are calculated and from equation 
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9 and 10, the values of  and   are found.  They are :  =1.77775 and  =177,773. Table IVX 

gives the values of UCL and LCL for the system using all ten observations. 

The following is noted about the CL: There is an overall tightening of the CL values and 

a convergence pattern. In the UCL column values, there is a sharp decrease in the LCL values 

and a visible convergence pattern. In the LCL column values, there is a marked decrease in 

variability among the LCL values because the system is stable and the observation values are 

closer, but there is also a slight tightening in the LCL values. One notes that between n=1 and 

n=2, a drop of a little over 8,000 observational units causes a drop of 8 LCL units, whereas 

between n=9 and n=10 a drop of about 4,000 observational units causes a drop of only one LCL 

unit.  In a sustained stable system,  the last control limits at observation n=10 could be used in 

the same way that fixed control limits from phase I of a process are used to test future 

observations of phase II of the process. 

Table XII. Example of Bayesian UCL and LCL of a stable system 

 

 

 

 

 

 

 

 

 

 

005.2/   Bayes LCL Bayes UCL 

nb=0 504 1079181 

n=1,x1=101550 503 986510 

n=2, x2=92667 495 875182 

n=3, x3=105310 499 794131 

n=4,x4=92420 495 791787 

n=5,x5=82364 485 728048 

n=6,x6=114980 494 740302 

n=7, x7=104960 500 715547 

n=8,x8=92216 495 707084 

n=9, x9=107650 499 665385 

n=10,x10=103540 500 662948 
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Figure 8 is a graphic display of the behavior of the upper and lower control limits. 
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Figure 8. Plot of control limits from a stable system 

 

4.12 Example with a change in the original guess 

The original pessimistic, optimistic and most likely guess assumed for observed 

conformance value between nonconforming ones in section 4.12 changes slightly here. It is 

assumed now that the optimistic and pessimistic guesses are a little closer to the most likely 

value. Instead of a pessimistic estimate of 20,000 and an optimistic value of 200,000 for a 

conformance value between nonconforming ones, the guess is slightly less conservative: 30,000 

for the most pessimistic estimate and 180,000 for the most optimistic one with the most likely 

estimate observation value still at 100,000. These new values lead to new estimates of  and  at 

4.66552 and 466547, respectively. A comparison of the control limits with the two sets of  and  

  values show the control limits of the conservative guesses start wider but around observation 

number 5, both sets of control limits converge as more information is picked up from the 



 96

observation values themselves. At observation n=10, the CL are almost identical. Table XIII 

gives the results.  

 

Table XIII. Example of control limits behavior when the guess changes 

 

 

Figure 9 below is the visual display of the two different starting points and of the merging 

of the control limits with the number of observations. Data 1 comes from the slightly more 

conservative guess introduced in section 4.12 and data 2 comes from a slightly more accurate 

guess. Afterwards, the same observations are tested. The numbers from table VX and Figure 8 

shows that even when the original guess is somewhat “off target”, after few observations, the 

control limits tighten and merge with the control limits representing the more “on-target” guess. 

 

 

 =1.77775 

 =177,773 

Bayes 

lcl 

Bayes 

ucl 
 =4.66553

 =466,547 

Bayes 

LCL 

Bayes 

UCL 

nb=0, 504 1079181  501 818209 

n=1,x1=101550 503 986510  504 854243 

n=2, x2=92667 495 875182  501 777935 

n=3, x3=105310 499 794131  498 790254 

n=4,x4=92420 495 791787  496 716010 

n=5,x5=82364 485 728048  485 679018 

n=6,x6=114980 494 740302  493 663165 

n=7, x7=104960 499 715547  495 631990 

n=8,x8=92216 495 707084  495 628190 

n=9, x9=107650 499 665385  499 606152 

n=10,x10=103540 500 662948  500 640348 
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Figure 9.  Merging of control limits with different starting points. 

 

4.13 Guideline used in assessing process deterioration  

A guideline is used in detecting a process shift inspired from the guideline used in 

detecting process shifts in classical control charts 
2
except that the proposed guideline allows for 

deterioration shift detection as soon as three observations have shifted from the process.  The 

guideline is as follows: 

1. Any one observation within 15% deterioration or more from the previous observation.  

                                                 
2 In Breyfogle III (2003), three lines are drawn above the centerline to denote the 1σ, 2σ and 3σ regions with lines 

denoting the corresponding zones:  zone C, zone B and zone A respectively.  Shift is detected when one of the 

following occurs: 1) One point beyond zone A, 2) Two out of three points in zone A or beyond, 3) four out of five 

points on zone B or beyond and 4) eight points in zone C or beyond.  



 98

2. Any two out of three consecutive observations within 10% deterioration or more from 

their previous observation. 

3. Any three consecutive deteriorating observations with a percentage deterioration sum of 

20% or more 

4. Any three consecutive observations with 5% deterioration or more from their previous 

ones. 

4.13.1 Five examples of a deteriorated process  

The interest is in assessing the power of the sequential Bayesian CCC procedure in 

capturing process deterioration.  That power is defined by the ability of the procedure to detect 

process deterioration when indeed a deterioration shift occurs.  To assess process deterioration, 

the control limits are looked at as the derived observations.  For the given examples, the same 

parameters of the prior are used when the first three observations were simulated from a 

geometric distribution with the parameter value of p at 10
-5

 in section 4.4.2.  They are 

 1.99929 and  245947.  After the parameters of the prior are obtained, six observations are 

simulated from a geometric process with a rate of nonconformance p at 10
-5

 and the next four 

observations are simulated from a deteriorated process with a rate of nonconformance p at 10
-4

.  
 

Because the Bayesian methodology is data driven, in order to control the variability of the data, 

the first six observations remain fixed while the simulations of the deteriorated process are 

conducted.  First, the simulation is re-run with the values of   and  .  The LCL for the first 6 

observations (105,614;  79,229;  95,106;  125,338;  26673;  138,363 ) from a geometric process 

at p level of 10
-5

 are: 587, 539, 529, 547, 487 and 512.  

The results of five simulations of four deteriorated observations from a geometric 

distribution at a rate of 10
-4

 are obtained.  The first sample of four observations yields: 1022, 
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5780, 250 and 2227 with corresponding LCL of 437, 450, 386 and 364 respectively.  The first 

deteriorated observation (the 7
th

 observation) has LCL is at 437, a ((512-437)/512)) 14.6% 

decrease (rounded to 15%) from the LCL of the 6
th

 observation at 512.  The second LCL value of 

450 is at an increase of 3% from the previous LCL, the third LCL of 386 represents a decrease of 

14.2% from its previous value and the fourth LCL of 364 represents a decrease of 5.7% from its 

previous LCL.  The first deterioration (at 15%) meets guideline item number one. Also the 

deterioration of 15% and 14.2% meets guideline item number two.  Therefore, based on the 

given guideline, deterioration in this instance did occur.  Another simulation of four 

deteriorated observations yields four values of 2082, 3764, 21792 and 3950 from the geometric 

distribution at p = 10
-4

with corresponding LCL of 452, 406, 388 and 358 respectively and 

corresponding percentage deterioration decrease (from the previous LCL) at 11.7%, 10.2%, 4.4% 

and 7% respectively.  Here guideline item number two and three are met concurrently Therefore 

the shift is detected in this instance also.  The third set of four observations (13503, 5947, 8134 

and 16789) yields the LCL of 480, 432, 390 and 385 and the corresponding four deteriorations of 

6.25%, 10%, 9.7% and 1.3%.  Based on guideline item number two (or three or four), a 

deterioration shift did occur.  The fourth sample of four observations (17264, 2328, 21,317 and 

3014) yields the LCL values of 490, 409, 393 and 375 respectively and the corresponding 

percent deterioration at 4.3%, 16.5%, 3.9% and 5.6%.  Here guideline item number one is met 

and the conclusion is that deterioration did occur.  Finally for the last sample of observations 

(985, 406, 14059 and 6724) the corresponding LCL are 432, 402, 378 and 345 and the 

corresponding deterioration percentages are 15.6%, 7%, 6.7% and 8.7%.  Here again, based 

guideline item one (or three or four) the conclusion is that a deterioration in the process did 
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occur.  All five simulations of a deteriorated process were identified by the guideline as 

being indeed from a deteriorated process. 

 

4.13.2 The power curve 

Two hundred simulations of the 4 deteriorated observations are now performed.  Based 

on these 200 simulations of the 4 deteriorated observations, when the process shifts from 10
-5

 to 

10
-4

, the number of times the shift is detected using the stated guideline in section 4.13 is 168 

times out of 200.  This corresponds to a power of the test at 84% or .84.  The same number of 

simulations is repeated when deterioration is more extreme, at 10
-3

 from 10
-5

.  The power then is 

increased to .91. When the procedure is repeated for a deterioration level of 10
-2

 from 10
-5

, the 

power is at .985.  Figure 10 below represents the power curve. It is a visual interpretation of the 

power of the guideline in detecting process deterioration.  As expected, the power curve 

representing the deterioration detection power increases with the increase in deterioration.  The 

greater the level of deterioration , the higher the ability (or the power) of detecting it is. 
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Figure 10. Power curve at three deteriorating levels of p 
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CHAPTER 5 

CONCLUSION 

 

The sequential Bayesian CCC methodology proposed in this dissertation incorporates the 

different solutions related to high yield processes and the p and CCC control charts.  Xie and 

Goh (1992) use probability theory to translate the zero count in the CCC chart into a cumulative 

count which they argue is a better representation of the state of the process.  Yang et al. (2002) 

attribute the relative success of the RL chart and the RL CUMSUM chart in detecting process 

shift compared to the p-chart and the Poisson CUMSUM chart to the fact that the RL chart does 

not group the observations artificially, therefore gaining information attributed to the “timed 

order of the observations”.  Barry and Garcia-Donato (2005) note that any non-sequential 

procedure used in finding control limits cause “the double-use of the data.”  In the sequential 

procedure discussed by Tang and Cheong (2004), the benefits of using the sequential procedure 

were highlighted. In particular, updating the estimate means that the process does not depend on 

an estimated p in the upstream or phase I. This is desirable since the sampling procedure to find 

that estimate could be problematic, as it was discussed in this dissertation.  However, Tang and 

Cheong (2004) recognize that data used in updating the estimate p could come from a shifted 

process and thus suggest some imprecise guidelines to avoid that.  The guidelines include 

checking on new data before it is incorporated or stopping the process after a predetermined 

amount of time.  In essence, the authors concede that while the sequential procedure does take 

care of the problem of having to estimate p from a fixed sample size (making it possible to start 

production right away), it is unable to detect deterioration in the process.  In summary, “all the 
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charts considered are found to be unable to provide a timely feedback of an out-of control 

situation even for relatively large increases in p” (Chang and Gan, 2007, p. 874). 

The sequential Bayesian CCC chart proposed in this dissertation overcomes these 

drawbacks and proves to be a solid alternative to the p and the CCC control charts.  While 

preserving all the benefits of a sequential procedure, the proposed methodology also has the 

ability to detect process deterioration, which the simple sequential procedure fails to do. The 

sequential Bayesian CCC procedure preserves the “timed order of the observations” and does not 

reset the counter to zero as is the case with the CCC chart.  Instead, the count is cumulative in 

order to preserve all incoming and past information.  The sequential Bayesian CCC procedure 

eliminates the need for complicated or multiple tables and for the transformations of variables.  It 

allows for immediate reaction to process deterioration.  If and when an observation falls outside 

of the control limits, often times the observation is discarded and the process is allowed to 

continue.  But when the process deterioration becomes visible as soon as the observations are 

tested, the system is halted immediately and the cause is investigated.  The timely reaction to 

process deterioration can be crucial and valuable in terms of the ability of preserving the “health 

of the process.” 

One important advantage of the sequential Bayesian CCC chart is that no more than two 

or three observations are needed to start the procedure, and any good initial guess can get the 

process started.  A “better guess” will converge to a better estimate of the CL faster and a more 

conservative guess will take longer to converge.  A stable system will converge quite fast to CL 

representative of the state of the process.  These converging control limits can be used as fixed 

CL in lieu of sequential CL during phase II of production.  
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Moreover, the proposed procedure is also flexible and can be applied in many situations, 

among them:1)When attribute data is analyzed; 2)When p, the probability of a non-conformance 

is very small (in the order of parts per millions); 3) When p is large; 4)When the situation calls 

for short runs (not enough observations to be tested using a classical control chart); 5) When the 

situation calls for a self-starting procedure (a procedure that is starting from scratch); 6) When 

there is available prior information about the process; 7)When there is no available prior 

information about the process; 8) When the situation calls for 100% inspection; 9)When one is 

interested in detecting process deterioration visually and immediately; 8)When Phase I cannot be 

effectively used to determine the value of the parameters used in setting the control limits; 9) 

When observations are too expensive to be spared.  

An approach where each additional observation is viewed as the value of a random 

variable from a distribution that is updated with that additional observation is powerful in 

concept.  The updating is refined with the flow of information.  Using the observations as values 

of random variables instead of parameter estimates incorporates not only the observation values 

into the procedure, but also the variability contained in the observations.  This incorporated 

variability is essential in detecting process shift. 

The sequential Bayesian CCC chart proposed in this dissertation advances significantly 

procedures used in quality control.  Not only is it a powerful tool for dealing with high yield 

environments, but it is also just as effective in more traditional settings. 
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CHAPTER 6 

 

PLANS FOR FUTURE RESEARCH 

 

 

6.1 Applications 

6.1.1 Clinical surveillance signals 

 

The sequential Bayesian CCC chart can be used on systems that use surveillance of 

clinical data, where health data is collected, analyzed and interpreted.  After the data is sifted and 

health data incidence is identified as true positive, then analysis is conducted to determine if a 

shift happened in the health incidence.  Methodologies used have relied on CUMSUM 

procedures for signal shift detection. 

Although this field of study is recent in its emergence, its ultimate purpose is to increase 

the response rate to a health crisis.  A comparison between the sequential Bayesian procedure 

and the CUMSUM could be valuable, given all the added benefits of the sequential Bayesian 

methodology. 

 

6.1.2 Sensor surveillance signals 

Sometimes alarm signals are emitted in sensor surveillance of an area.  Radiation energy 

is emitted to a particular area under surveillance, and if the pattern formed is not identified as 

within a referenced pattern, an alarm is activated.  Log likelihood ratios and sequential 

probability ratio tests have been developed to validate an alarm signal.  Given the importance of 

this field and the value of a sensitive methodology, it would be worthwhile comparing the 

sequential Bayesian CCC procedure proposed in this dissertation to the e sequential probability 

ratio test procedures used in this domain. 

6.2 Other topics for future research 
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1. Develop a boundary line with a negative slope for the sequential Bayesian CCC 

procedure in order to better quantify process deterioration. 

2. Compare the slope described above to the slope developed under the CUMSUM 

methodology. 

3. Develop a sequential Bayesian cumulative quantity control (CQC) procedure for the 

CQC chart.  The CQC chart is the proposed alternative to the u and c chart.   

4. Apply the methodology to any rare event where the occurrence of the event would be 

very costly.  An example would be a in nuclear reactor plant where a malfunction could 

be highly devastating.  
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