

ADDIS ABABA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

SCHOOL OF INFORMATION SCIENCE

FEATURE EXTRACTION AND CLASSIFICATION
SCHEMES FOR ENHANCING AMHARIC BRAILLE

RECOGNITION SYSTEM

SHUMET TADESSE

JUNE 2011

ADDIS ABABA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

SCHOOL OF INFORMATION SCIENCE

FEATURE EXTRACTION AND CLASSIFICATION
SCHEMES FOR ENHANCING AMHARIC BRAILLE

RECOGNITION SYSTEM

A Thesis Submitted to the School of Graduate Studies of Addis
Ababa University in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Information Science

By

SHUMET TADESSE

JUNE 2011

ADDIS ABABA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

SCHOOL OF INFORMATION SCIENCE

FEATURE EXTRACTION AND CLASSIFICATION
SCHEMES FOR ENHANCING AMHARIC BRAILLE

RECOGNITION SYSTEM

By

SHUMET TADESSE

Name and signature of Members of the Examining Board

Name Title Signature Date

 Ato Henock Liuelseged Chairperson ____________ ________________

 Dr. Million Meshesha Advisor, ____________ ________________

 Dr. Dereje Teferi Examiner, ____________ ________________

i

Dedicated to my mother

ii

ACKNOWLEDGEMENT

First and foremost, I am ever grateful to the omnipresent God who made things possible

to accomplish the two-year program at AAU. I am also heartily thankful to my advisor,

Dr. Million Meshesha, whose encouragement, guidance and support from the initial to

the final level enabled me to develop an understanding of the subject. His sage advice,

insightful criticisms, and patient encouragement aided the writing of this thesis in

innumerable ways. Besides his expertise, I really appreciate his patience and thank him

for his concern and perspective advice through my thesis work as well as course of

Master’s program.

My greatest gratitude also goes to Mekelle University (MU) for granting me study leave

with the necessary benefits, without which I could not have been able to join my M.Sc.

study here in AAU. I also extend my sincere thanks to academic and administrative staffs

of Department of Computer Science (MU).

My utmost gratitude is extended to my friends especially to Adane L., Belete B., Dereje

Y., Esubalew K., Fentaw F., Kindie A., Minillik H., Tariku A., Tadele A. and Zewedie

M. whose friendship, hospitality, knowledge, and valuable assistance have supported me

in one way or another in the preparation and completion of this study.

I would like to thank AAU and all School of Information Science community

(instructors, students and administrative staffs) who have a significant contribution in one

way or another during my research work.

Last but not least, my sincere thanks also forwarded to my family. I am thankful to my

mother, whom I dedicate my work, her love and best wishes, despite of her physical

absence with me, have helped me in the successful completion of my study at AAU. It is

a pleasure to express my gratitude wholeheartedly to my sisters and brothers, Aynalem,

Birtukan, Fasil and Mekonnen for their inseparable support and care.

Shumet Tadesse

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ...ii

LIST OF FIGURES ... vii

LIST OF TABLES ...viii

ABSTRACT ... xi

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1. Background ... 1

1.1.1. Braille Writing System ... 2

1.1.2. Braille Recognition ... 3

1.2. Statement of the Problem and Justification ... 6

1.3. Objectives of the Study .. 8

1.3.1. General Objective ... 8

1.3.2. Specific Objectives ... 9

1.4. Methodology ... 9

1.4.1. Literature Review ... 9

1.4.2. Data Collection ... 10

1.4.3. Design and Development of Amharic Braille Character Representation 10

1.4.4. Implementation Tools ... 10

1.4.5. Testing Procedure ... 11

1.5. Scope and Limitation of the Study ... 12

1.6. Significance of the Study ... 12

1.7. Organization of the Study .. 13

CHAPTER TWO... 14

LITERATURE REVIEW ... 14

2.1. Overview ... 14

2.2. Amharic Writing System ... 14

2.2.1. Amharic Characters .. 15

2.2.2. Amharic Numerals and Punctuation Marks ... 16

2.3. Amharic Braille ... 16

iv

2.3.1. Amharic Braille Evolution .. 16

2.3.2. Amharic Braille Code Characters .. 18

2.3.2.1. Amharic Braille Character for Core Letters 19

2.3.2.2. Amharic Braille Character for Numerals ... 21

2.3.2.3. Amharic Braille Character for Punctuation Marks 21

2.3.3. Braille Writing and Reading System ... 22

2.3.3.1. Braille Writing .. 22

2.3.3.2. Braille Reading ... 23

2.3.3.3. Nature of Amharic Braille Embossed .. 24

2.4. Features and Challenges of Braille Documents .. 24

2.5. Optical Braille Recognition System Overview ... 27

2.5.1. Image Acquisition/Digitization ... 27

2.5.2. Image Pre-processing.. 28

2.5.3. Segmentation .. 29

2.5.4. Feature Extraction .. 30

2.5.5. Classification .. 32

2.6. Review of Related Works .. 33

2.6.1. Optical Braille Recognition System for English Characters 33

2.6.2. Optical Braille recognition System for Spanish Characters.................... 38

2.6.3. Optical Recognition of Braille Writing Using Standard Equipment 39

2.6.4. Image Processing Techniques for Braille Writing Recognition.............. 41

2.6.5. Optical Braille Recognition System for Arabic Characters 42

2.6.6. Optical Braille Recognition System for Amharic Characters 43

CHAPTER THREE .. 46

BRAILLE RECOGNITION TECHNIQUES ... 46

3.1. Design of Amharic OBR system .. 46

3.2. Image Acquisition/Digitization .. 46

3.3. Feature Extraction.. 48

3.3.1. Fixed Cell Measures ... 49

3.3.2. Horizontal and Vertical Projection .. 50

3.3.3. Grid Construction ... 51

v

3.4. Classification ... 53

3.4.1. General Approaches for Solving a Classification Problem 54

3.4.2. Decision Tree Classifier .. 56

3.4.2.1. Design of a Decision Tree Classifier ... 57

3.4.2.2. Design issues of Decision Tree Induction .. 58

3.4.2.3. Methods for Expressing Attribute Test Conditions 60

3.4.2.4. Measures for Selecting the Best Split .. 61

3.4.2.5. Algorithm for Decision Tree Induction ... 62

3.4.2.6. Model Over-fitting .. 68

3.4.3. Support Vector Machines (SVMs) .. 69

3.4.3.1. Kernel Trick and Functions ... 71

3.4.3.2. SVM Algorithms .. 72

3.5. Tools used ... 73

3.5.1. WEKA: Machine Learning Software .. 73

3.5.2. Python .. 74

CHAPTER FOUR ... 75

EXPERIMENTATION ... 75

4.1. Dataset Preparation .. 75

4.2. Feature Extraction Techniques ... 78

4.2.1. Fixed Cell Measures ... 79

4.2.2. Horizontal and Vertical Projection .. 81

4.2.3. Grid Construction ... 82

4.2.4. Performance Evaluation for Feature Extraction Techniques 88

4.3. Amharic Braille Character Classification and Recognition 89

4.3.1. Training the Decision Tree and SVM ... 90

4.3.1.1. Classifiers’ Performance Evaluation on Model Building 91

4.3.2. Testing the Decision Tree and SVM Performance 93

4.4. Performance Evaluation of the Amharic OBR System 95

4.5. Discussion and Challenges ... 97

vi

CHAPTER FIVE ... 100

CONCLUSION AND RECOMMENDATION .. 100

5.1. Conclusion... 100

5.2. Recommendation ... 101

REFERENCE .. 103

APPENDIX .. 110

I. The First Version Amharic Braille (1917 E.C) ... 110

II. The Second Version Amharic Braille (1945 E.C) ... 111

III. The Third Version Amharic Braille (1949 E.C) .. 113

IV. The Fourth Version Amharic Braille (1993 E.C) .. 114

V. Visual C++ Code for Feature Extraction .. 116

VI. Sample ARFF File for Training J48 and SMO in WEKA 121

VII. Mapping between Number Class Labels and Amharic Characters 122

VIII. Python Code for Translation .. 123

IX. Sample Recognized Amharic Braille Characters .. 125

vii

LIST OF FIGURES

Figure1. 1The Dots that represent Braille symbols ... 2

Figure2. 1 Amharic Punctuation Marks .. 16

Figure3. 1 Block Diagram of Amharic Braille Recognition System 47

Figure3. 2 Cell measures .. 49

Figure3. 3 Example of atoms in a six-dot Braille cell .. 53

Figure3. 4 Classification as the task of mapping an input set into class label 54

Figure3. 5 General approaches for building a classification model 55

Figure3. 6 Example of a general decision tree ... 58

Figure3. 7 SVM for two class problem .. 70

Figure4. 1 Sample scanned Braille image .. 76

Figure4. 2 Braille dot positions using fixed cell measures .. 80

Figure4. 3 Visual C++ code for feature extraction based on fixed cell measures 80

Figure4. 4 Braille dot positions based on projections .. 81

Figure4. 5 Visual C++ code for feature extraction using projection 82

Figure4. 6 Examples of atoms in a six-dot Braille cell ... 83

Figure4. 7 Visual C++ code for feature extraction using grid construction 83

Figure4. 8 Visual C++code to detect Amharic characters .. 86

Figure4. 9 Sample Braille image to check consonants and vowels 86

Figure4. 10 Misclassified characters on real life document .. 97

Figure4. 11 Sample segmented Braille image .. 99

Figure V. 1 Visual C++ Code for Feature Extraction ... 116

Figure VIII. 1 Sample Python code for translation ... 123

viii

LIST OF TABLES

Table1. 1 Total number of Braille documents collected ... 10

Table2. 1 Amharic core characters with seven orders... 15

Table2. 2 Amharic labialization characters .. 16

Table2. 3 Ethiopic numerals ... 16

Table2. 4 Amharic Braille code for core characters ... 20

Table2. 6 Amharic Braille code for punctuation marks .. 21

Table2. 5 Amharic Braille code for numerals ... 21

Table3. 1 Confusion matrix for a 2-class problem ... 56

Table4. 1 Summary on Amharic Braille documents collected for this study 76

Table4. 2 Basic Amharic characters one cell representation .. 84

Table4. 3 Braille to print mapping for the “ሀ” Amharic character variants 85

Table4. 4 Sample extracted features represented in 12 bits .. 88

Table4. 5 Performance comparisons for feature extraction techniques 89

Table4. 6 Default parameters for J48 and SMO classifiers .. 90

Table4. 7 Training model performance for DTC and SVM .. 92

Table4. 8 Performance of J48 and SMO on test data set ... 94

Table4. 9 Error types in validating DTC and SVM classifiers .. 95

Table4. 10 Performance rates for the system on real life documents 96

Table4. 11 Sample test result on real life document ... 97

Table4. 12 Performance comparison between related works ... 98

Table I. 1 List of vowels for Amharic Braille characters in the first version 110

Table I. 2 List of first variant Amharic Braille characters in the first version................ 110

Table II. 1 List of vowels for Amharic Braille characters in the second version 111

Table II. 2 List of first variant Amharic Braille characters in the second version 111

Table II. 3 List of the sixth variant Amharic Braille characters in the second version ... 112

Table III. 1 List of vowels for Amharic Braille characters in the third version 113

Table III. 2 List of basic Amharic Braille characters in the third version 113

Table IV. 1 List of punctuation marks ... 114

Table IV. 2 List of numerals .. 115

Table VII. 1 Mapping between Amharic characters and class labels 122

Table IX. 1 Sample recognized Braille images .. 125

ix

LIST OF ALGORITHMS

Algorithm 3. 1 Feature extraction algorithm based on fixed cell measures 50

Algorithm3. 2 Feature extraction algorithm based on horizontal and vertical projection. 51

Algorithm 3. 3 Feature extraction algorithm based on grid construction......................... 53

Algorithm 3. 4 A skeleton of decision tree induction algorithm 64

Algorithm 3. 5 J48 decision tree classifier algorithm ... 68

x

ACRONYMS

AAU Addis Ababa University

ANN Artificial Neural Network

AOBR Amharic Optical Braille Recognizer

ARFF Attribute Relation File Format

ASCII American Standard Code for Information Interchange

DTC Decision Tree Classifier

OBR Optical Braille recognition

OCR Optical Character Recognition

SMO Sequential Minimal Optimization

SVM Support Vector Machine

UNESCO United Nations Educational, Scientific and Cultural Organization

WEKA Waikato Environment for Knowledge Analysis

WHO World Health Organization

xi

ABSTRACT

Information in written form plays an undeniably important role in our daily lives.

Recording and using information encoded in symbolic form is essential. Visually

impaired people face a distinct disadvantage in this respect. To address their information

need, the most widely adopted writing convention among visually impaired people is

Braille. Since its inception in 1829, significant developments have taken place in the

production of Braille and Braille media as well as in the transcription of printed material

into Braille. Braille is understandable by visually impaired people; however vision people

need not be able to understand these codes. The need to understand Braille documents by

vision society and the production of huge amounts of Braille documents motivated the

development of OBR for different languages (such as English, Arabic, etc.) across the

world. The development of OBR for Amharic Braille has been started in recent years.

However, OBR for Amharic Braille is still an area that requires the contribution of many

research works. In this study an attempt has been made in exploring feature extraction

and classification techniques for Amharic Braille recognizer.

To extract valid Braille dots from a Braille image and to group them into Braille cells,

three feature extraction algorithms based on: fixed cell measures, horizontal and vertical

projections, and grid construction are tested. The experimental result shows that feature

extraction based on fixed cell measures performs well. To build classification models for

prediction of Amharic characters from Braille cell representation J48 decision tree and

the support vector machine (SVM) classifiers are investigated. Based on experimental

results SVM outperforms decision tree classifier in predicting unseen extracted Braille

features.

The explored feature extraction and classification techniques are integrated to the

Amharic OBR system and are tested on real life Braille documents, in which 90.67%

accuracy, on the average, is registered. This shows a promising result to design an

applicable system. Handling noisy real-life Braille documents is the future research

direction that needs an integration of generic segmentation and noise removal techniques.

1

CHAPTER ONE

 INTRODUCTION

1.1. Background

Nowadays, the problem of vision has been an obstacle to access large printed contents in

the information society. Globally, an estimated 40 to 45 million people are blind and 135

million have low vision according to the World Health Organization (WHO) [53].

Statistical census of 2007 indicates that there are over 500,000 blind people in Ethiopia.

But those visually impaired people are part of the society and play a significant role in the

society. So far, there are different means and systems created for those who are visually

impaired people to reach what the world has in printed document [32]. One of the most

valuable and indispensable system is through the use of Braille. Braille is a writing

system with a series of dots that enables visually impaired people to read and write

through touch using their fingers [1][2][65].

Braille is a tactile format of written communication for people with low vision and

blindness worldwide since its inception by Louis Braille in 1829. It is a system of writing

that uses patterns of raised dots to inscribe characters on paper [1]. Therefore, it allows

visually-impaired people to read and write using touch instead of vision. Also it is a way

for blind people to participate in a literate culture.

According to UNESCO’s report reviewed in [10] Braille was not the first, or by any

means the only method of touch reading. The earnest desire of the blind to find access to

literature and of their sighted friends to open the door for them, led to many experiments

in a variety of media. Even after Braille's invention, other forms of embossed symbols

were planned and used; some employing lines and dots, others having the form of

simplified Roman capitals.

Braille was more compact than any system which preceded or followed it. It was

outstandingly versatile, equally able to express the languages and scripts of Europe, Asia

2

and Africa, and, as we have seen, readily adaptable to mathematics, musical notation and

other purposes. Its main advantages, however, lay in the fact that, unlike the other

embossed types, it is simple and easily used by the blind for transcribing their idea [51].

1.1.1. Braille Writing System

The Braille system includes symbols using which, the blind are able to review and study

the written words. It provides a vehicle for literacy and gives a blind the ability to

become familiar with spelling, punctuation, paragraphing, footnotes, bibliographies and

other formatting considerations. Braille cell consists of 6 dots, 2 across and 3 down, is

considered the basic unit for all Braille symbols. For easier identification, these dots are

numbered downward 1, 2, 3 on the left, and 4, 5, and 6 on the right, as shown in

Figure1.1.

Figure1. 1The Dots that represent Braille symbols

A Braille character (or Braille cell), is a rectangular array of six points which makes up

to sixty four (26) possible combinations of different character set or sequence of

characters using 1 to 6 dots [31][37]. Each of the points in a cell can be either raised or

flat. A raised point will be referred to as a dot. On the document, the Braille characters

are embossed from left to right and from top to bottom, much like characters in ordinary

documents. Though most countries adopt and/or define their Braille code so as to fit their

local language characters and have their own set of defined dot pattern, in general Braille

systems that are used worldwide currently are categorized into two levels [2]: Grade 1

Braille and Grade 2 Braille.

Grade 1 Braille represents each print character as one Braille cell which is a form of

shorthand where group of letters may be combined in to a single Braille cell. On the other

hand, Grade 2 Braille is embossed (processes of writing Braille code) by hand and/or

3

with a machine (Braille embosser) on a thick paper, and is read with fingers moving

across on top of the dots [2].

Braille contractions represent groups of letters or whole words that appear frequently in a

language. This is usually referred to as Grade 2 Braille. The use of contractions permits

faster Braille reading and helps reduce the size of Braille books, making them somewhat

less cumbersome [2].

As discussed in Ritchings et al. [45] a Braille document can either have the dots

embossed on one side or on both. The latter is also called inter-point Braille when the

positions of the dots from one side lie between the positions of the dots on the other side.

This is designed to reduce the bulk of the document and to save on materials, given that a

page of Braille is quite thick and heavy compared with ordinary paper. There are

standards for the production of Braille that determine the height (protrusion) and diameter

of a dot, the spacing between dots and between characters.

Modern touching education for visually impaired people in Ethiopia has started by the

end of August 1924 [49]. Later, in 1934 Braille in Ethiopia was introduced by

missionary and was designed by taking the 26 English characters pattern and 8 newly

added patterns (Nebyeluel (1954), cited by [49]).

In Ethiopia, mainly in Addis Ababa, there are different education centers, such as AAU,

Misrach Center, Entoto Blind people school, for visually impaired people at primary,

secondary and tertiary levels. As a result, there has been a massive Braille documents (i.e.

educational) produced and used by visually impaired people. But there is a gap in

communication through documents between vision and visually impaired people.

1.1.2. Braille Recognition

Information in written form plays an undeniably important role in our daily lives. From

education and leisure to casual note taking and information exchange, recording and

using information encoded in symbolic form is essential [4]. In order to address this need

the most widely adopted writing convention among visually impaired people is Braille.

4

However, although the production of Braille documents is relatively easy now, the

problem of converting Braille documents into a computer-readable form still exists. This

is a significant problem for two main reasons [4]. First, there is a wealth of books and

documents that only exist in Braille that are deteriorating and must be preserved

(digitized). Second, there is an everyday need for duplicating (the equivalent of

photocopying) Braille documents and for translating Braille documents for use by non-

Braille users.

OCR system involves reading scanned bitmap images of machine printed or handwritten

text and translates the images into a form that the computer can manipulate. OCR

examines and translates the characters into ASCII or Unicode text files that can easily be

edited and manipulated [2]. As an extension to OCR, optical Braille recognition (OBR)

offers many benefits to Braille users and people who work with them. A Braille optical

character recognizer is interesting due to the following reasons [36]:

 It is an excellent communication tool for sighted people (who do not know

Braille) with the blind writing.

 It is a cheap alternative to Braille copy machine instead of the current complex

devices which use a combination of heat and vacuum to form Braille impressions.

 Braille writing is read using the finger which necessitate touching the document,

for this reason the book after many readings is possibly has been deteriorated.

OBR enables to preserve such valuable documents.

 It is interesting to store a lot of documents of blind authors which were written in

Braille and were never converted to digital information so that it can be used by

the public at large.

There are two types of OCR systems with respect to the way the input is provided to the

system [54]: on-line and off-line OCR. In on-line OCR the recognition task is performed

parallel with the writing process, where as in off-line OCR the recognition process is

performed after the whole text entered to the OCR engine. OBR is more of an off-line

recognition process.

5

According to Ng et al. [11], the Braille recognition system consists of six operations:

scene constraints, image acquisition, image pre-processing, segmentation, feature

extraction and interpretation.

Scene constraints is the first operation of the Braille OCR system in which it exploits and

imposes the environmental constraints to reduce the complexity of all of the subsequent

operations to a manageable level. There are two principal aims of this operation [11]:

maximize the use of a prior knowledge of the scene by exploiting existing knowledge;

and trivialize the problem of image analysis as far as possible by effective imposition of

constraints.

Image acquisition is the most important step in any pattern recognition system. In Braille

recognition systems data is provided to the system in the form of images of Braille

embossed pages. The process of acquiring these images digitally can be achieved by

using a number of different equipments such as scanners or digital cameras, both of

which have been used by developers and researchers [31].

Image pre-processing is an essential step to detect and eliminate noise, deformation, bad

illumination or blurring. Image pre-processing can be used for image enhancement by

reducing noise, sharpening images, or rotating a skewed page. The preprocessing step has

to deal with also binarization. Since Braille pages contains dots (foreground) and page

(background) only, analysis of a binarised image is much simpler than that of gray-scale

images [11]. For a simple global threshold, where the image histogram has easily

identifiable peaks and valleys, the selection of the threshold value is straightforward.

However, when the digitized Braille page images are noisy, and there are considerable

spreads in gray level values, the selection of threshold value is problematic [18].

In the image segmentation stage the regions in the image corresponding to Braille dots

are identified. Each dot in a scanned Braille image is composed of light and dark areas

separated by background. In a gray-level image a dot is represented by a combination of a

dark and a light region. Braille dots manifest themselves in the image as white/black

region pairs.

6

Feature extraction is a representational mechanism of the Braille image. The function of

feature extraction is to extract the Braille dots from the image and group them into cells.

Extracting features from sub images that come from segmentation stage helps to simplify

the recognition process.

Interpretation converts the Braille cells into their corresponding language text. At this

stage, an orthogonal, binary image without noise is obtained [11]. The work of this phase

is to group the Braille dots into cells and converts them into their equivalent characters.

Recently, the application of OCR technology has been the focus of many researchers

[2][4][12][23][52][64] in an attempt to recognize Braille in the processes of making it

accessible and computable to support visually impaired people. These days OBR systems

can translate a variety of Braille documents in languages such as Arabic [1][2],

English[12][45], Chinese [28], Spanish [23].

1.2. Statement of the Problem and Justification

There are more than half a million visually impaired individuals throughout the regions

of Ethiopia that are ranging from student to teacher, artist to lawyer and their professional

area may be politics, economics, language, history and other social fields [79]. In general,

there are many visually impaired employees’ who have been working in governmental

and non-governmental organizations. These visually impaired individuals in their

position and professional areas use Braille as the only means to codify their knowledge.

Since the introduction of Amharic Braille, there have been massive Braille documents

that have been produced and found at different parts of the country. Their knowledge is

accessed only by those who can read and write Braille systems.

According to Nebyeluel [56], unless there is a smooth information flow from visually

impaired people to sighted people and vice versa people do not have the necessary

information about visually impaired people. The work of many visually impaired people

would have remained buried. This would create a wide generation gap between the

visually impaired and vision society.

7

Amharic language is the official language of Ethiopia and working language for most

regional states (such as Amhara, Southern Nations Nationalities and People). According

to Million [33] the present writing system of Amharic is taken from Geez which was

brought to highlands by immigrants from south Arabia in the first century A.D.

Currently, Amharic language consists of 33 core characters of which each occurs in seven

orders, representing syllable combinations consisting of a constant and following vowel.

There are a number of attempts made on Amharic language to apply OCR technology

[14][17][33][54][80][81]. In extending the OCR technology, there are also efforts done

on Amharic Braille OCR system [16][49]. As a pioneer research, Teshome [49] tried to

design an OBR system that applies global thresholding for binarization, mesh-grid

technique for segmentation, counting black pixels at the cross-point of horizontal and

vertical mesh grid lines for feature extraction and artificial neural network for recognition

and prediction. He trained the system with 267 Amharic Braille characters and tested on

features extracted from clean Braille documents and attained 92.5% accuracy. Based on

his findings, Teshome recommends that to enhance the recognition accuracy for Amharic

OBR system it is important to adopt different noise removal techniques and feature

extraction algorithms that are insensitive to noise.

As a continuation of Teshome’s effort, Ebrahim [16] further explored the possibility of

designing Amharic Braille recognizer that works with degraded documents. This is done

with the aim of enhancing the efficiency of the system by controlling the effect of noise

through noise removal techniques. He incorporated the noise removal techniques with the

previously adopted system to test the performance on real life Amharic Braille documents

and registered an average accuracy of 86.63% on real life Braille documents. Based on

his finding, since artificial neural network classifier commits substitution error in the

characters and since Amharic Braille has fixed feature representation, Ebrahim [16]

recommends incorporating a classifier with more generalization capability or rule based

classifiers instead of artificial neural network to improve the performance of the system.

When the researchers investigated Braille writing system it gives consistently distinct

combination of dots for each Amharic character representation. But noises and image

8

impurities are created mostly as a result of being repeatedly used, bent and scratch on

Braille documents which generate unusual combination of dots which requires better

feature extraction method. In addition, Amharic Braille characters have a hierarchical

fixed feature representation; hence, there is a need to apply classifiers that can clearly

provide information for each character class.

This study, therefore, aims to experiment feature extraction and classification techniques

with the intent of designing a generic feature extraction algorithm that is insensitive to

noise in real-life documents and also a suitable classification technique for Amharic

OBR.

Towards solving this problem, this research attempts to answer the following basic

research questions.

 Is there any consistent characters representational pattern in Amharic Braille

writing system?

 Which feature extraction technique is more effective to extract all valid dots

within Braille images for character representation?

 Which classifier is suitable for designing a generic model that enables Amharic

optical Braille recognition system to register better performance in real life Braille

documents?

1.3. Objectives of the Study

In line with the above statement of the problem the following general and specific

objectives are formulated to clarify the intent of the present research.

1.3.1. General Objective

The general objective of this study is to design better feature extraction and classification

schemes, in an attempt to improve the performance of the Amharic Braille OCR in real

life Braille documents.

9

1.3.2. Specific Objectives

In order to achieve the above general objective the following specific objectives are

drawn.

 To review related works in OCR specially in Braille recognition so as to

understand the domain area and asses different feature extraction and

classification algorithms for Braille recognition

 To analyze distinct features and patterns of Amharic Braille code style for each

characters in Amharic writing system

 To design algorithms required for feature extraction and select based on their

performance for Amharic Braille images representation.

 To create a classification model using suitable classifier in Amharic Braille

recognition

 To evaluate the performance of the model integrated to Amharic OBR using real

life Amharic Braille documents

 To report findings based on which further research issues are recommended so as

to enhance the performance of Amharic OBR.

1.4. Methodology

As a matter of fact, methodology provides information that is helpful in understanding

concepts, theories and principles for conducting, organizing and developing a research

design. To undertake this research work, the following methods have been used.

1.4.1. Literature Review

Reviewing previous researches are important to share their idea in identifying what has

been done and needs to be done in the area [16]. Related literature in the area of optical

Braille recognition has been reviewed from various sources including: books, journal

articles, conference papers, magazines, and the Internet. This is done to understand

different OCR technologies, to map techniques and algorithms so far identified in

addressing related problem domain for other languages.

10

1.4.2. Data Collection

Amharic Braille documents for training and testing the recognizer are collected from

AAU Kennedy Library, Misrach Center and Entoto Blind School. Among these, AAU

Kennedy Library offered most of the data. Table1.1 depicts the number of Braille

documents collected for the study.

Source No of Braille Documents

AAU-Kennedy library 16

Misrach Center 5

Entoto Blind School 3

Total 24

Table1. 1 Total number of Braille documents collected

1.4.3. Design and Development of Amharic Braille Character Representation

The collected Braille documents are digitized to create Braille images. Braille images are

then preprocessed to reduce noise in the image and binarization is applied to convert

gray-scale image into binary image. Once the image is preprocessed, it is segmented to

identify Braille dots and features are extracted to group Braille dots into cells and create

models for recognition.

Different models has been built using WEKA for both decision tree and support vector

machine classifiers and the best models are selected based on training and predictive

capacity on new features. As classification algorithm, J48 decision tree learning

algorithm and SMO implementation of SVM are selected. To come up with a better

representational scheme for Braille cells, various feature extraction algorithms are

explored, including fixed cell measure, horizontal and vertical projection and grid

construction.

1.4.4. Implementation Tools

Since this research is a continuation of the previous studies done by Teshome [49] and

Ebrahim [16], visual C++ programming language is used to extract features from Braille

11

images and WEKA tool has been used to create models using the classification

algorithms. WEKA is chosen because, WEKA:

 is freely available under the General Public License (GNU)

 is very portable because it is fully implemented in the Java programming

language and thus runs on almost any computing platform

 contains a comprehensive collection of data preprocessing and modeling

techniques, and

 is easy to use by a novice user due to the graphical user interfaces it contains

To map predicted classes and Amharic characters python programming language, which

is suitable for text processing, has been used.

1.4.5. Testing Procedure

Testing is an important step to evaluate the performance of a given system. In the present

study testing has been done on collected Amharic Braille documents and the performance

of the feature extraction techniques and classification methods are measured using

accuracy. Accuracy is the ratio of correctly predicted instances to the total number of

instances.

The collected documents are first scanned using a flat-bed scanner and then fed to the

preprocessing module designed by Ebrahim[16]. Then, the preprocessed Braille

documents are submitted to the feature extraction algorithms and extracted features are

generated. Based on these extracted features, the performance of the feature extraction

techniques have been tested with decision tree classifier; this is done because decision

tree is found to be simple to generate prediction results. After feature extraction technique

has been selected based on the accuracy they register, features are also extracted using

the selected feature extraction technique and the performance of the classification models

have been tested. At this stage a classifier with better accuracy has been selected. Finally,

based on the selected feature extraction and classification techniques the performance of

the system has been tested with real life Braille documents and then the accuracy of the

12

system is measured by comparing the expected results with the system output which

generates correctly classified and misclassified characters.

1.5. Scope and Limitation of the Study

This study is the continuation of previous works in the area. The main focus of this

research is investigating different feature extraction and classification algorithms to

design a generic Amharic Braille recognizer that can handle the various artifacts in

Braille documents. To this end, different feature extraction and classification algorithms

are investigated and suitable techniques are integrated to the Amharic OBR system. This

is followed by creating classification models on training data sets and test with real life

optically scanned Braille documents to report the performance of the system.

Braille can be plastic and/or paper sheet and the documents produced can be either

manually produced or typewritten. In the present study typewritten documents have been

used. Since the intensity of pixels in Braille image varies from one color to another,

which affects the noise level, documents with gray level have been selected.

In Amharic Braille writing one to three cells are used. In the present study, however, we

consider only one and two Braille cells by including 238 basic Amharic characters, 20

numerals and 23 punctuation marks. Though, writing in Amharic Braille is being

embossed on both sides, this study is delimited in converting single side Braille Amharic

characters, rather than double-side Braille.

Since there is no organized Braille document image corpus for training and testing the

Amharic OBR system, in this research we used limited number of datasets organized

from clean Braille documents to high level noisy documents.

1.6. Significance of the Study

The outcome of this study has significant contribution to bridge the communication gap

between visually impaired people and vision people in different professions and work

areas.

13

In addition, Amharic OBR offers many benefits to Braille users and those who work with

them, facilitating communication, reducing storage space, and preserving out-of-print

Braille texts. Everyone who works with visually impaired people and does not read

Braille will benefit from using the Amharic OBR. For example: parents, teachers and

public organizations communicating with blind individuals. All people in workplaces

where Braille is used can read Braille easily by using Amharic OBR.

It also provides significance contribution in converting Braille documents to digital

format in order to preserve and share, and also facilitate text-to-speech conversion.

1.7. Organization of the Study

This study is organized into five chapters. The first chapter provides an overview of the

general background, the present research problem, objectives of the study and

methodologies adopted. In chapter two an attempt has been made to review literatures in

Amharic writing system, features of Amharic Braille character and characteristics of

Braille recognition. Review of related research works in Braille problem domain along

with the techniques used is also discussed.

Chapter three provides the techniques and algorithms used to develop the current system.

It also provides the overall architecture of OCR for the recognition of Amharic Braille

documents. The various decision tree and SVM learning approaches incorporated in the

classification processes are described.

Chapter four deals with the experimentation activity undertaken to implement the

methods and techniques described in chapter three. Experimental results are presented to

show the applicability of the classifier and the feature extraction algorithm for Amharic

Braille document image collections. It also shows the successes and difficulties faced

while trying to implement the technique to the problem domain of interest is presented. It

also presents the recognition rate achieved for different test cases after the design and

training of the decision tree and SVM. Finally, in chapter five concluding remarks and

recommendations for future research are forwarded.

14

CHAPTER TWO

LITERATURE REVIEW

2.1. Overview

These days massive amounts of documents are available in different forms, such as

printed, digital and Braille, throughout the entire world. However, printed and digitized

documents are not convenient to access by visually impaired people and on the other side

Braille documents may not be understandable by vision society [8]. Therefore, there

should be a means to build two way communications among vision and visually impaired

people. Designing Braille document recognizer, optical Braille recognition system, is one

means for solving the specified problem [2][11][16][49].

Optical Braille recognition (OBR) system allows visual people to read Braille documents

with the help of flatbed scanner and optical character recognition (OCR) software [2].

OBR system can design for either single side Braille or both single side and double side

Braille. In case of double side Braille a slight diagonal offset prevent the dots from

interfering each other and this makes recognition very difficult [11].

Many attempts have been made to bridge the communication gap between visually

impaired society and the vision society by developing Optical Braille Recognition

systems (OBR) which are capable of converting Braille documents to printed characters.

OBR system had been developed for Braille documents written in different languages,

such as English, Arabic, Chinese and European languages.

2.2. Amharic Writing System

Amharic is a Semitic language that has been used for centuries. According to Million

[33], Amharic is the second most-spoken Semitic language in the world, after Arabic, and

the official working language of the Federal Democratic Republic of Ethiopia. Thus, it

has official status and is used nationwide. Amharic is also the official or working

language of several of the states within the federal system, including the Amhara regional

state and the multi-ethnic Southern Nations, Nationalities, and Peoples regional state,

15

among others. Amharic has been the working language of government, the military, and

of the Ethiopian Orthodox Tewahedo Church throughout medieval and modern times and

is also spoken in a number of other countries outside Ethiopia, particularly in Eritrea,

Egypt, Israel and Sweden [6].

According to [7] [33], the present writing system of Amharic is taken from Ge’ez which

was indigenous and born in Axum. By the time Ge’ez was replaced by Amharic all the 26

symbols of Ge’ez were adopted in the Amharic writing system. In addition Amharic has

created eight additional symbols to represent sounds not found in the Ge’ez script [7]

[33]. This integration has increased the total basic symbols used in Amharic writing

system to 34. Accordingly, since Amharic language has its own scripts, understanding the

characteristics and distinct features of the scripts is important in the feature extraction

phase of the Braille recognition system.

2.2.1. Amharic Characters

Before the Amharic language characters (ፊደል) have got their existing shape and number

of symbols, they pass through a series of changes by adopting and using Ge’ez script over

a period of time [7] [33]. Currently, Amharic consists of 33 core characters shown in

Table2.1 and 1 special character (ቨ) which occurs in seven orders representing syllable

combinations of a consonant followed by vowel.

ሀ ሁ ሂ ሃ ሄ ህ ሆ
ለ ሉ ሊ ላ ሌ ል ሎ
ሐ ሑ ሒ ሓ ሔ ሕ ሖ
መ ሙ ሚ ማ ሜ ም ሞ
ሠ ሡ ሢ ሣ ሤ ሥ ሦ
ረ ሩ ሪ ራ ሬ ር ሮ
ሰ ሱ ሲ ሳ ሴ ስ ሶ
ሸ ሹ ሺ ሻ ሼ ሽ ሾ
ቀ ቁ ቂ ቃ ቄ ቅ ቆ
በ ቡ ቢ ባ ቤ ብ ቦ
ተ ቱ ቲ ታ ቴ ት ቶ
ቸ ቹ ቺ ቻ ቼ ች ቾ
ኀ ኁ ኂ ኃ ኄ ኅ ኆ
ነ ኑ ኒ ና ኔ ን ኖ
ኘ ኙ ኚ ኛ ኜ ኝ ኞ
አ ኡ ኢ ኣ ኤ እ ኦ
ከ ኩ ኪ ካ ኬ ክ ኮ

ኸ ኹ ኺ ኻ ኼ ኽ ኾ
ወ ዉ ዊ ዋ ዌ ው ዎ
ዐ ዑ ዒ ዓ ዔ ዕ ዖ
ዘ ዙ ዚ ዛ ዜ ዝ ዞ
ዠ ዡ ዢ ዣ ዤ ዥ ዦ
የ ዩ ዪ ያ ዬ ይ ዮ
ደ ዱ ዲ ዳ ዴ ድ ዶ
ጀ ጁ ጂ ጃ ጄ ጅ ጆ
ገ ጉ ጊ ጋ ጌ ግ ጎ
ጠ ጡ ጢ ጣ ጤ ጥ ጦ
ጨ ጩ ጪ ጫ ጬ ጭ ጮ
ጰ ጱ ጲ ጳ ጴ ጵ ጶ
ጸ ጹ ጺ ጻ ጼ ጽ ጾ
ፀ ፁ ፂ ፃ ፄ ፅ ፆ
ፈ ፉ ፊ ፋ ፌ ፍ ፎ
ፐ ፑ ፒ ፓ ፔ ፕ ፖ
ቨ ቩ ቪ ቫ ቬ ቭ ቮ

Table2. 1 Amharic core characters with seven orders

16

In addition to the above 238 characters, Amharic consists of 44 other characters called

labialization which are depicted in Table2.2.

Table2. 2 Amharic labialization characters

2.2.2. Amharic Numerals and Punctuation Marks

Amharic writing system uses both Ethiopic and Hindu-Arabic numerals. The Ethiopic

numbers shown in Table 2.3, when put in numeral form, are written on top and bottom

frame. This helps to uniquely identify the numerals from textual character set. The

Ethiopic number system does not contain symbols for zero, negative numbers, decimal

points and mathematical operators for performing arithmetic operations.

፩

1

፪

2

፫

3

፬

4

፭

5

፮

6

፯

7

፰

8

፱

9

፲

10

፳

20

፴

30

፵

40

፶

50

፷

60

፸

70

፹

80

፺

90

፻

100

Amharic writing system has also punctuation marks listed in Figure2.1 and uses other

Latin-based symbols like question mark(?), exclamation mark(!), quotes(“”) and

parenthesis().

Figure2. 1 Amharic Punctuation Marks

2.3. Amharic Braille

2.3.1. Amharic Braille Evolution

Braille, a touch-reading system for the blind, was first introduced in 1829 by a French

scientist Louis Braille [1] [4]. According to [10] Braille was not the first, or by any means

ኰ ኲ ኵ ኳ ኴ

ጐ ጒ ጕ ጓ ጔ

ቈ ቊ ቊ ቋ ቌ

ኈ ኊ ኍ ኋ ኌ

ሏ ሟ ሯ ሷ ሿ

ቧ ቷ ቿ ኗ ኟ

ኧ ዟ ዧ ዷ ጇ

ጧ ጯ ጿ ፏ ቯ

Table2. 3 Ethiopic numerals

17

the only method of touch reading. The earnest desire of the blind to find access to

literature and of their sighted friends to open the door for them, led to many experiments

in a variety of media. Even after Braille's invention, other forms of embossed symbols

were planned and used-some employing lines and dots [10]. The most famous system

that is based on touching is Braille system.

The Braille format used by visually impaired people worldwide today is the Louis’s

Braille format [28]. It uses a character set made up of different combinations of raised

dots in a 3-by-2 (3 rows and 2 columns) arrangement to represent different characters or

sequences of character [1]. Nowadays the system is being extended to four rows so that

each cell can represent 128 different characters [32].

According to UNESCO’s 1951 report reviewed in [10], in the past years Braille alphabets

were arranged for at least a dozen African tribal tongues. Missionaries were their chief

authors, although more recently other voluntary organizations in co-operation with

Departments of Education and Social Welfare of the country have been increasingly

active.

 UNESCO’s 1951 report reviewed in [10] states that three languages, which are neither

tribal nor linguistically African, used in Africa have their Braille forms. They are Arabic,

to which Braille was adapted in 1878; Amharic, with a Braille of comparatively recent

date, used in the American Mission, Western Ethiopia; and Afrikaans, to which the first

adaptation was made in 1923. With the exception of Arabic and Amharic, all the Brailles

of Africa were built from the traditional European symbols; but, as the adaptations were

made variously from English, French, Norwegian and Dutch backgrounds, and, still

further, as the Latin alphabets created for tribal writing followed different phonetic

patterns, complete uniformity between them was lacking.

In Ethiopia Braille as a means of education for visually impaired people was introduced

in 1923 by an American missionary. Before gaining its current representations, different

improvements have been done on Amharic Braille [56]. There had been different reasons

proposed for each improvement.

18

The first Amharic Braille was comprehensive and complete though it did not work for

Ge’ez characters [56]. As a result an amendment was performed in 1952 on two aspects:

the first was to eliminate the redundant Amharic characters like (ሀ፣ሐ፣ኀ), (አ፣ዐ),

(ሰ፣ሠ) and the second was to replace Amharic numerals with Arabic numerals. The

second improvement was made in 1956, when, Sir. Cluth Mecanize (chairperson of the

world blind society) came to Ethiopia for visit, to further reduce the variants of Amharic

characters.

In 2001 the Amharic Braille was subjected to change for the third time, on the third

version. The reason for the amendment at that time was previous version of the Braille

designed by the American missionary did not consider many issues set by the world blind

association. Some of these rules and procedures which were considered in adopting

Braille to local language are the following [56]:

 Different languages should have similar Braille code. This is aims in simplifying

the international publication, to avoid difficulties for those who are blind and

interested to study different languages, and to create common understanding

among blind society in the world.

 Languages that have the same sound or related languages that are similar in

sound, in character number and type should have similar Braille code structure.

The early Amharic Braille characters adopt the English character which does not

represent the right sound and hence different improvements have been made. An

amendment was made on the third version to make the Braille suitable for the blind child

and to minimize the difficulties present as a legal document. After the last amendment the

fourth version of Amharic Braille has been used throughout the country since 2001. For

this study the focus is on the fourth version of Amharic Braille character.

2.3.2. Amharic Braille Code Characters

The Amharic Braille characters composed of three parts: core and special letters,

numerals and punctuation marks.

19

2.3.2.1. Amharic Braille Character for Core Letters

In Braille, printed text is represented by Braille characters. Each character is constructed

as a set of six points arranged in two columns of three called a Braille cell. The cell has

been set according to the tactile resolution of fingerprints of persons. The position of each

point in a cell is identified by a number and can be either raised or flat. A raised point is

also called Braille dot. As a result Amharic printed symbols also represented by a set of

Braille characters forming a Braille dot.

In Braille there are about 64 possible combinations of dots which can be formed in a

single Braille cell. Since Amharic characters are huge, it is difficult to represent them by

a combination of dots in a single Braille cell. Consequently, most of the Amharic

characters are represented by two Braille cells.

As mentioned earlier Amharic has core and special characters. Each Amharic character

has seven variants. Except the 6th variant, the remaining six sounds add the particular

vowel code to get the required sound in character. Table 2.4 shows Amharic Braille

characters for the fourth version of Amharic Braille.

In the fourth version of Amharic Braille for Amharic symbols the 6th form of a character

is used as root for its variants. The other variants are formed using the form of their 6th

variant and additional Braille cell consists of vowels for the given form. The 1st form

includes a vowel at 2:6, the 2nd at 1:3:6, the 3rd at 2:4, the 4that 1, the 5th at 1:5 and the 7th

at 1:3:5. For example: given characters ረ ሩ ሪ ራ ሬ ር ሮ, the representation of

character ር is used as a root for its variants. If the required character is “ረ” it can be

written as (1:2:3:5, 2:6); where 1:2:3:5 is “ር” where as 2:6 is a vowel for the 1st form.

Similarly ሩ can be written as (1:2:3:5, 1:3:6) where 1:3:6 is a vowel for the 2nd form, ሪ

as (1:2:3:5, 2:4) where 2:4 is a vowel for the 3rd form, ራ as (1:2:3:5, 1), ሬ as (1:2:3:5,

1:5) where 1:5 is a vowel for the 5th form and ሮ as (1:2:3:5, 1:3:5) where 1:3:5 is a

vowel for the 7th form.

20

1
st
 form 2

nd
form 3

rd
form 4

th
form 5

th
 form 6

th
 form 7

th
 form

 ሀ ሁ ሂ ሃ ሄ ህ ሆ

 ለ ሉ ሊ ላ ሌ ል ሎ

 ሐ ሑ ሒ ሓ ሔ ሕ ሖ

 መ ሙ ሚ ማ ሜ ም ሞ

 ሠ ሡ ሢ ሣ ሤ ሥ ሦ

 ረ ሩ ሪ ራ ሬ ር ሮ

 ሰ ሱ ሲ ሳ ሴ ስ ሶ

 ሸ ሹ ሺ ሻ ሼ ሽ ሾ

 ቀ ቁ ቂ ቃ ቄ ቅ ቆ

 በ ቡ ቢ ባ ቤ ብ ቦ

 ተ ቱ ቲ ታ ቴ ት ቶ

 ቸ ቹ ቺ ቻ ቼ ች ቾ

 ኀ ኁ ኂ ኃ ኄ ኅ ኆ

 ነ ኑ ኒ ና ኔ ን ኖ

 ኘ ኙ ኚ ኛ ኜ ኝ ኞ

 አ ኡ ኢ ኣ ኤ እ ኦ

 ከ ኩ ኪ ካ ኬ ክ ኮ

 ኸ ኹ ኺ ኻ ኼ ኽ ኾ

 ወ ዉ ዊ ዋ ዌ ው ዎ

 ዐ ዑ ዒ ዓ ዔ ዕ ዖ

 ዘ ዙ ዚ ዛ ዜ ዝ ዞ

 ዠ ዡ ዢ ዣ ዤ ዥ ዦ

 የ ዩ ዪ ያ ዬ ይ ዮ

 ደ ዱ ዲ ዳ ዴ ድ ዶ

 ጀ ጁ ጂ ጃ ጄ ጅ ጆ

 ገ ጉ ጊ ጋ ጌ
 ግ ጎ

 ጠ ጡ ጢ ጣ ጤ ጥ ጦ

 ጨ ጩ ጪ ጫ ጬ ጭ ጮ

 ጰ ጱ ጲ ጳ ጴ ጵ ጶ

 ፀ ፁ ፂ ፃ ፄ ፅ ፆ

 ጸ ጹ ጺ ጻ ጼ ጽ ጾ

 ፈ ፉ ፊ ፋ ፌ ፍ ፎ

 ፐ ፑ ፒ ፓ ፔ ፕ ፖ

Table2. 4 Amharic Braille code for core characters

21

2.3.2.2. Amharic Braille Character for Numerals

Amharic uses two types of numerals: Arabic and Ethiopic. The amendment of the fourth

version of Amharic Braille also touched numerals. Accordingly, the combination of dots

(1:2:3:4:5:6) are used to indicate Ethiopic numbers, while the combinations of dots

(3:4:5:6) are used to indicate Arabic numbers. Table 2.5 shows the representations of

each Arabic and Ethiopic numbers used in Amharic Braille.

2.3.2.3. Amharic Braille Character for Punctuation Marks

The Amharic Braille also consists of different punctuation marks. Most of the

punctuation marks in the Amharic Braille code are taken from English. For sample

Amharic punctuation marks, their representation is shown in Table 2.6.

Table2. 6 Amharic Braille code for punctuation marks

Numeral Corresponding Amharic Braille Representation

Ethiopic

፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱ ፲

Arabic

1 2 3 4 5 6 7 8 9 0

Punctuation → ← ↑ ↓ * . () [] …

Braille code

Punctuation ፡ “ - — /

Amharic

Braille code

Table2. 5 Amharic Braille code for numerals

22

2.3.3. Braille Writing and Reading System

Braille is a writing system that enables visual people to read and write through touch

using a series of raised dots to be read with their fingers [1]. Braille is a system of touch

reading and writing in which raised dots represent the letters of the alphabet. Braille also

contains equivalents for punctuation marks and provides symbols to show letter

groupings. Therefore, it allows visually-impaired people to read and write using touch

instead of vision.

2.3.3.1. Braille Writing

Writing on Braille materials is made by, moving fingertips from right to left, physically

pressing the dots into the paper so that they show up on the other side of the Braille sheet

[45]. Braille writing devices have evolved into some very sophisticated pieces of

equipment [51]. Braille sheet is a thick paper or plastic material designed to withstand the

pressure while one write and read the Braille code. The size of the paper varies between

documents produced by different means. In addition, the color of the paper varies, as it

does not play any role in conveying the written information. The majority of Braille

sheets are either buff colored or white [1].

There are a number of different methods for personal Braille writing that can result in

tactile output. The writing devices most significant for early Braille literacy are those like

pencil and paper--couple writing and reading by tying the writing process directly to the

production of hard copy output. These devices include the slate and stylus as well as

mechanical and electronic Braille [46] [48]. One can write:-

 Manually using a handheld stylus (to make the impressions) and slate (to hold the

paper) by physically pressing each dot into Braille sheet. Writing Braille with a slate

and stylus compares to write with a pen or a pencil. The stylus used to push the dots

down through the paper, while the slate serves as a guide. The speed of writing

Braille with the slate and stylus is about the same as the speed of writing Braille with

a pen or pencil. However, the speed and accuracy would depend both on the skill and

experience of the user, and the frequency of the use.

23

 Mechanically with the Braille typewriter. This has one key for each of the six dots in

a Braille cell.

 Electrically using Braille printer that attached to computer system. Increasingly,

electronic Braille embossers are being used in governmental departments,

organizations, schools and other education institutions to produce material in Braille.

Although there are several models of electronic Braille embossers, the focus is based

on the following points[16] :

o The speed of the embossers in characters per second

o Whether the embossers allow for independent operation by users who are

blind

o Whether the embossers have voice output menus

o Whether the embossers are able to produce large volumes of Braille

o Whether the embossers have the facility to produce graphic.

2.3.3.2. Braille Reading

Braille is designed to be read by moving fingertips from left to right across the lines of

dots. Both hands are usually involved in the reading process, and reading is generally

done with the index fingers.

According to Robert [46], people that have already learned to read print have mastered

the “reading process” skills; however, they must develop the following skills associated

with reading using their fingers.

 Tactual Discrimination--The ability to discriminate discrete tactual differences is

essential to efficient Braille reading. The noticeable shape or arrangement of dots

is the most critical variable in Braille reading.

 Finger Dexterity--The effective Braille reader will have “curious” fingers that

move quickly, with ease. Many readers use all four fingers of each hand. This

speeds up the reading process by allowing the reader a view of a series of symbols

rather than a single cell.

 Hand and Finger Movement--Most good Braille readers use two hands. A skilled

two handed reader begins reading a line of Braille by placing both hands at the

24

beginning of a line. At approximately the middle of the line, the right hand

continues to read to the end of the line while the left hand moves in the opposite

direction to locate the beginning of the next line. The right hand finishes reading

the first line, the left hand then reads the first words on the next line, and the right

hand quickly joins the left hand on the second line.

 Light Finger Touch--Beginning readers may have a heavy touch; however, to be

good two hand readers one must acquire a light touch.

 Page Turning--Braille readers should be instructed to turn the page quickly with

the right hand when the left hand cannot find another line.

2.3.3.3. Nature of Amharic Braille Embossed

The Amharic Braille like any other Braille documents is formed by embossing the dots

on the back side of the medium sheet so that they can be read from the facing side. There

are also different sized Braille sheet; the size of the page varies between documents

produced by different means. The Braille characters are embossed in lines from the top of

the document to the bottom like printed documents. Braille documents can have the dots

embossed on one side or both side. As the volume of the Braille documents become

large, it is advantageous to use both sides of the sheet; however, this is not widely

practiced with Amharic Braille [16][49].

2.4. Features and Challenges of Braille Documents

Braille is a particular system of representing information in tactile form. As such, Braille

documents are formed by groups of protruding “dots” representing characters and various

symbols (including music). The meaning of each Braille character depends on the type of

Braille encoding used [4]. In Grade 1 Braille there is a one-to-one correspondence

between printed characters and their Braille representation. Braille contractions

representing groups of letters or whole words that appear frequently in a language. This is

usually referred to as Grade 2 Braille. The use of contractions permits faster Braille

reading and helps reduce the size of Braille books, making them somewhat less

cumbersome [2].

25

A sheet of printed Braille will have a series of cells embossed on thick paper and passing

one’s forefinger over each line of embossed cells can sense the embossing. A standard

sheet of Braille has about forty cells per line and may contain 20 or more lines [62]. The

nature of Braille has direct implications on the physical characteristics of documents. The

thickness of the page material (most commonly card) and the added thickness introduced

by the protrusions result in very bulky documents, in comparison to printed documents

containing the same information (a dictionary can occupy a whole bookcase).

The dimensions of a Braille dot have been set according to the tactile resolution of the

fingertips of person. The horizontal and vertical distance between dots in a character, the

distance between cells representing a word and the inter-line distance are also specified

by the Library of Congress. Dot height is approximately 0.02 inches (0.5 mm); the

horizontal and vertical spacing between dot centers within a Braille cell is approximately

0.1 inches (2.5 mm); the blank space between dots on adjacent cells is approximately

0.15 inches (3.75 mm) horizontally and 0.2 inches (5.0 mm) vertically [2][22]. A

standard Braille page is 11 inches by 11.5 inches and typically has a maximum of 40 to

43 Braille cells per line and 25 lines. It is not possible to vary the size of the letters, to

write between the lines, or to scribble in the margins, as those who write prints so often

do [51].

Due to the size of a Braille cell, a page of normal size, about 11 inches wide by 11 or 12

inches high, can hold not more than 1000 characters [12]. Braille paper must also be thick

enough to withstand a certain amount of pressure for tactile sensing. Therefore, printed

Braille documents are very bulky. To mitigate this problem somewhat, most Braille

documents are printed in “inter-point”, that is with the embossing done on both sides of

each page, with a slight diagonal offset to prevent the dots on the two sides from

interfering with each other [12][4]. This makes the translation process more difficult as

the recognition technique employed by the translation system is based on the visual

perception of the Braille document, but not tactile sensing as used by the visually

impaired users.

26

An obvious, perhaps, but significant characteristic of Braille documents is the absence of

any information visible in a color contrasting the background [4]. The only information

recorded on a Braille page is in terms of the protrusions created by embossing the card

(under uniform illumination a Braille document page appears blank). The fact that Braille

documents are not intended to convey any visual information also has repercussions on

the quality of card used to produce them. It is not uncommon for the card to be of low

(visual) quality, with visible grain and imperfections (dark and light regions). This fact

can affect the recognition of Braille documents by visual means (the objective of any

realistic automated conversion system).

Since its inception in 1829, Braille has been a very effective means of written

communication for the blind and the partially sighted people and significant

developments have taken place in the production of Braille and Braille media as well as

in the transcription of printed material into Braille. However, although the production of

Braille documents is relatively easy now, the problem of converting Braille documents

into a computer-readable form still exists. This is a significant problem for two main

reasons [4]. First, there is a wealth of books and documents that only exist in Braille that,

as with other rare/old documents, are deteriorating and must be preserved (digitized).

Second, there is an everyday need for duplicating (the equivalent of photocopying)

Braille documents and for translating Braille documents for use by non-Braille users.

Since manual transcription is tedious and costly, there is a significant need for a system to

recognize Braille documents. The automated recognition of Braille documents is not

straightforward due to the special characteristics of the documents themselves and the

constraints of the application domain. More specifically, in addition to the natural

expectations for high efficiency demanded from a document conversion application, a

Braille recognition system must also be easy to use by visually impaired people (it should

not require complicated setup etc.) and cost-effective (should only use commercially

available standard equipment).

27

2.5. Optical Braille Recognition System Overview

Optical Character Recognition (OCR) is the process of converting scanned images of

machine printed or handwritten text into a computer processable format [58]. The basic

steps in Braille recognition process can be broadly broken down into five stages:

1. Image Acquisition/Digitization

2. Pre-processing

3. Segmentation

4. Feature extraction

5. Classification

The image capturing stage captures a Braille page and converts it into a graphical image

for further processing. The preprocessing stage is a collection of operations that apply

successive transformations on an image. It takes in a raw image, reduces noise and

distortion, removes skewness and there by simplifying the processing of the rest of the

stages. The segmentation stage takes in a page image and separates the different logical

parts, like text from graphics, lines of a paragraph, and characters of a word. The feature

extraction stage analyzes a text segment and selects a set of features that can be used to

uniquely identify the text segment. The selection of a stable and representative set of

features is the heart of pattern recognition system design. The classification stage is the

main decision making stage of an OCR system and uses the features extracted in the

previous stage to identify the text segment according to preset rules.

2.5.1. Image Acquisition/Digitization

Image Acquisition captures a Braille page and converts it into a digitized image array.

This operation is concerned with the process of translation from light stimuli falling onto

the sensing elements of a capturing device to digital values [11]. The capturing device

can be either scanner or digital camera.

As shown and has been verified by the authors in [32] a scanning resolution of between

80dpi and 200dpi is the most appropriate for Braille documents.

28

2.5.2. Image Pre-processing

Preprocessing is a technique used to prepare isolated character for recognition. Most of

time the image captured in image acquisition phase is not widely in digital form rather it

is in scanned form. As a result scanning introduces noise into the images even at high

resolution. At this stage the image is converted into Gray scale to reduce noise. In

addition preprocessing modifies and prepares the pixel values of the digitized image for

subsequent operations. The preprocessing stage is a collection of operations that apply

successive transformations on an image. This includes gray-scale conversion, geometric

adjustment, brightness adjustment, noise removal, biniarization and edges sharpening of

the Braille dots.

Full-color to Grayscale Conversion: Gray scale images are made up of only one bit

value. They lack the chromatic information. They are also called as monochromatic

images. Image pixel values range from 0 to 255. It shows only the luminance

information. The conversion algorithm from full-color image to grayscale image is not

unique, and each algorithm has its own applications [60].

Image Geometry Correction: The image acquired by scanner may be rotated or

translated. Geometric correction aims to eliminate such effects and bring all scanned

Braille document image to a common reference point.

Image Brightness Adjustment: Local dark or bright areas can occur, due to non-

uniform illumination of scanner, or part of the surface of the document being uneven.

Left untreated, these areas can cause classification errors in later stage.

Noise Removal/filtering: Noise is the error occurred during the image acquisition

process that results in pixel values that do not reflect the true intensities of the real scene.

This noise generally manifests itself as random fluctuations in gray-level values

superimposed upon the “ideal” gray-level value, and it usually has a high spatial

frequency.

29

 Digital images are prone to be corrupted by a variety of types of noises. Common types

of noises include salt and pepper noise and Gaussian noise [39]. Salt and pepper noise

contains randomly distributed occurrences of both black and white impulses. Gaussian

noise contains intensity variations that are drawn from a Gaussian distribution and is a

very good model for many kinds of sensor noises caused by camera electronics errors

[39]. Noise filtering aims to reduce the noise generated during the image capture process.

Researchers attempt to design different types of noise detection and removal techniques

in order to reduce the effect of degradation during the recognition process. Among these

a Gaussian filter is applied by many researchers. Gaussian filter is a low-pass spatial filter

which seeks to attenuate the high spatial frequency noise from the image while at the

same time preserving the detailed edge information of the Braille dots [57].

Edge Sharpening/enhancement: Edge enhancement is performed to enhance or

strengthen the edge of the Braille dots. According to [12] edge enhancement mainly

focuses to sharpen the fine details of the image that has been blurred.

 Image binarisation: Image binarization or thresholding is performed to distinguish the

Braille dots from the background. Image thresholding/binarization transfers a grayscale

image into its binary version representing objects and background [2]. The quality of the

binarization step is critical for subsequent analysis. If poorly binarized images are used,

document understanding would be difficult or even impossible.

Thresholding or binarization of documents can be categorized in to two main classes [16]

[61]: global and local thresholding. Global thresholding techniques use a single threshold;

on the other hand local thresholding techniques compute a separate threshold based on

the neighborhood of the pixels.

2.5.3. Segmentation

Segmentation is a process of separation of dots from Braille image that can further be

grouped into a cell [16]. These cells are further grouped into character, words of any

30

strokes in Braille. The low level of abstraction to be extracted in the Braille recognition is

the single dot that could have six alternative positions in a cell.

Since Braille pages contains dots (foreground) and page (background) only, analysis a

binarised image is much simpler than that of gray-scale images [11][36]. However, the

digitized Braille page images are noisy, and there are considerable spreads in gray level

values, the selection of threshold value is problematic. At this stage, the regions in the

image corresponding to Braille dots are identified. In a binary image, dots can be

identified as small connect components. This situation is valid when single-sided Braille

documents are encountered [18].

There are different segmentation techniques particularly applied in Braille images such as

mesh-grid and local measure. Local measure works using the difference dot pixel

intensity level as a threshold value. Because dots produce different color level at the top

and bottom. On the other hand mesh grid work based on constructing a vertical and

horizontal grid on strictly arranged Braille cells. It is applicable and widely used in

Braille because Braille cells arranged strictly following vertical and horizontal layout of

the document.

2.5.4. Feature Extraction

Feature extraction is a representational mechanism of the Braille image. According to

[12] feature extraction is the representation of Braille dots to extract Braille dots from the

binarised image and group them to cells.

The above three stages (image capturing, preprocessing and segmentation) aim to make

the image suitable for different feature extraction algorithms. Some feature extraction

algorithms only deal with the contours of the image while some algorithms calculate

every pixel of the image. On the other hand, the initial image may be noise affected, or

blurred by other reasons.

The dimension of Braille dots have been according to the tactile recognition of fingertips

of a person. The horizontal and vertical distance between cells representing a character

31

and the inter-line distance between dots within a cell are also specified by the Library of

Congress [52]. It was also indicated in [59] that the average dot height is 8 pixels. Each

dot is composed of a bright and a dark region with a small space between them.

Knowing both vertical and horizontal indentations and spacing, we are able to locate and

detect the dots in the image. As indicated in [64] it is easier to detect the vertical

parameters of the Braille image since the spacing is usually much larger compared with

the horizontal ones. Horizontally it is more likely to have the undesired situation that

adjacent dots would overlap.

As the dots are embossed on both sides of a Braille page, dots on the front page are raised

above the page and those on the back side made holes on the front side. According to [12]

these convex and concave characteristics of the dots reflect the illumination light in two

different angles, creating an illuminated hole at the left side of the captured dot image for

those front face Braille dots and at the right side for those back face dots. Using this

illumination characteristics, the position of the illuminated hole can be used as the feature

to distinguish the front face and back face dots. The dots on the back side must be

removed before further processing.

Sometimes the image features are not directly or obviously associated to any part of the

image. Detectable means the extraction algorithm corresponding to the feature must exist,

otherwise the feature is useless. Different features are associated with different extraction

algorithms that output collections of the feature descriptors. Good image features should

satisfy the following conditions [63]:

a. robust to transformations – the image features should be as invariant as possible

to image transformations including translation, rotation, and scaling, etc.

b. robust to noise – the image features should be robust to noises and various

degraded situations.

c. feature extraction efficiency – image features can be computed efficiently.

d. feature matching efficiency – the matching algorithms should only require a

reasonable computational cost.

32

Extraction of good features is the main key to correctly recognize an unknown character.

A good feature set contains discriminating information, which can distinguish one object

from other objects. It must also be as robust as possible in order to prevent generating

different feature codes for the objects in the same class. The selected set of features

should be a small set whose values efficiently discriminate among patterns of different

classes, but are similar for patterns within the same class. Features can be classified into

two categories [58]:

a. Local features, which are usually geometric (e.g. concave/convex parts, number of

endpoints, branches, joints).

b. Global features, which are usually topological (connectivity, projection profiles,

number of holes, etc) or statistical (invariant moments).

The selection of image features and corresponding extraction methods is probably the

most important step in achieving high performance for an OCR system [39]. At the same

time, the image feature and the extraction method also decide the nature and the output of

the image-preprocessing and segmentation steps. Some image features and the extraction

algorithms work on color images, while others work on gray level or binary images.

Moreover, the format of the extracted features must match the requirements of the

classifier [39]. Some features like the graph descriptions and grammar-based descriptions

are well suited for structural and syntactic classifiers. Numerical features are ideal for

statistical classifiers. Discrete features are ideal for decision trees. As mentioned in [34]

there are different methods used to extract features. Some are highly language specific

like profiles, structural descriptors and transform domain representations and others

consider the entire image as the feature.

2.5.5. Classification

As mentioned in [34] feature extraction and classification are the heart of OCR.

Classification is a mechanism which takes feature of objects as its input and then label to

which class the object belongs to. The classification stage is the main decision making

33

stage of an OCR system and uses the features extracted in the previous stage to identify

the text segment according to preset rules.

 Training and testing are the two basic phases of any pattern classification problem.

During training phase, the classifier learns the association between samples and their

labels from labeled samples. The testing phase involves analysis of errors in the

classification of unlabelled samples in order to evaluate classifier’s performance. It is

desirable to have a classifier with minimal test error [34].

2.6. Review of Related Works

There has already been a lot of research done in the area of Braille recognition for

Amharic, English, and other languages. The researcher tried to summarize some of them

as follows:

2.6.1. Optical Braille Recognition System for English Characters

Several researchers have made efforts to recognize English Braille documents. The work

of Ritchings et al. [45] is one of the first approaches to use commercially available flat-

bed scanner to English Braille document recognition. It applied for both single and

double-sided Braille documents, scanned at 100dpi at 16 grey levels.

The system proposed by Ritchings et al. [45] follows a series of four steps: image

acquisition, identification of Braille dots, segmentation and recognition of characters.

After the Braille document is scanned, the system proceeds to identify the locations of the

protrusions and the depressions. This can be achieved by exploiting the differences in

grey levels in the image. These arise during scanning from the reflected light and the

shadows created by the protrusions and the depressions on the document surface. It uses

simple rules to distinguish between Braille dots on the two different sides. Then, the dots

of each side are grouped together to form characters which are then recognized and

encoded [45].

According to Ritchings et al. [45] it is possible to see distinct zones in the represented

points, as this is a partial scanned test image. One zone is brilliant, above the point, and

34

the other zone is darker, under the point [45]. This is due to the emboss of the points,

illuminated by the oblique light source from the scanner. This discrepancy has to be

enhanced to locate the points more precisely, reducing the probability to detect false

points, introduced by eventual noise in the image.

 In the segmentation module of Ritchings et al. [45] characters are identified based on the

location of the lines of the Braille character and average height of the text line. Having

located the lines of the Braille, segmentation is performed based on the analysis of the

horizontal spacing between columns within dots. The segmented characters are then

recognized base on the features extracted [45].

The proposed system in Ritchings et al. [45] performs few image-based operations and it

is relatively flexible to skew as it identifies Braille characters based on character-region

search. Results reported for double-sided Braille documents were of just over 98.5% of

the protrusions and 97.6% of the depressions on average. As indicated in Ritchings et al.

[45] the errors that occurred in the experimentation are mainly due to the following three

factors: the existence of naturally occurring reflections and shadows other than those

created; the identification of dots can be influenced by the size of merged regions in the

image of inter-point Braille; the position of the dots of a character in the image.

The authors recommend that Braille characters do not have between them distinct

differences in shape does not enhance recognition (as in the case of OCR). If there are

one or more dots at valid positions then the corresponding character will be recognized. It

is difficult to assess whether there is an extra dot or whether a dot is missing. Hence, on a

single character basis, it is not possible to assess the correctness of the recognition result.

However, it is possible to recover from some errors by performing contextual analysis.

In addition, the majority of the errors can be attributed to the quality of the image of the

Braille document. Also, it should be pointed out that the quality of the Braille document

itself is important. Very old documents with some of the protrusions flattened due to

heavy use will give rise to more incorrectly recognized characters. Experiments include

scanning at different resolutions and greater grey level ranges are important to improve

35

the performance of the system. Also considered is scanning of both sides of an inter-point

Braille document and correlation of results.

In 1999 Ng. et al. [12] proposed a system that translates Braille characters to their

equivalent English characters. The proposed translation system consists of four major

steps: image capturing, image preprocessing, feature extraction and translation. In Ng et

al. [12] shape from shading illuminating method for image capturing was considered.

This method helps to handle the shadows of embossed dots from one side which fall on

dots of the other side for double sided Braille documents. Digital camera was used as a

device for capturing the Braille pages.

In Ng. et al. [12] preprocessing consists of two sub operations: noise filtering and edge

enhancement. Noise filtering is achieved via a low pass Gaussian filter. According to [12]

Gaussian is a low-pass spatial feature which seeks to attenuate the high spatial frequency

noise from the while at the same time preserving the detailed edge information of the

Braille dot. Edge detection is achieved using convolution Sobel kernels. Edge

enhancement is used to sharpen fine details of the image that has been blurred [12].

For feature extraction purpose, authors [12] used Chain Code algorithm to detect

boundary coordinates. Feature extraction is used to extract Braille dots from the binarised

image. The system proposed by the authors has four distinct activities of feature

extraction: boundary detection to highlight the dots; back-face removal to remove the

dots embossed on the back side; centeroid determination to locate the central point of the

dots and dot alignment to align the extracted dots with the coordinate system.

For translation purposes, authors [12] determined centroid distances between each dot

and its four possible neighbors. Dots are then grouped into cells; within each cell the dot

pattern is determined and represented by a bit string. The bit strings of the cells are

searched against the Braille dictionary and the retrieved characters are grouped into

words. Based on boundary coordinates, information and illumination characteristics, two

standard templates were then constructed to represent the front-face dots and back-face

dots.

36

The system proposed by Ng. et al. [12] takes the advantage of regular spacing between

Braille dots within a cell, and the regular spacing between cells. Results were

encouraging: 100% accuracy for single-sided and 97% accuracy for double-sided Braille

pages was registered. The system is also capable in handling documents which can be

embossed on a range of media with different specifications.

Apostolos et al. [4] developed a system that works on both single-sided and inter-point

(double-sided) Braille documents. In the case of double-sided documents, the Braille

characters on both sides are recognized from the image of only one side of the page. The

system comprises: image acquisition, pre-processing, grid formation, Braille dot

recovery, Braille character recognition, Braille character interpretation and character

correction.

The approach in Apostolos et al. [4] used an inexpensive flat-bed scanner to capture an

image of a Braille document page. The system uses context at different levels (from the

pre-processing of the image through to the post-processing of the recognition results). A

preprocessing step has been conducted to reduce the grey levels in the image and then the

image is thresholded so that only three classes of regions exist: dark, light and

background. Having labeled each of the different types of regions, an initial identification

of Braille dots is performed. A flexible grid of possible dot locations is then constructed

and any dots that were not previously detected are recovered. Braille characters are

subsequently recognized and they are translated into the equivalent printed text. Finally,

using the interpretation, post-processing is performed to correct wrongly recognized

Braille characters.

Based on experimental results the authors reported that a scanning resolution between

80dpi and 200dpi is the most appropriate for Braille documents and the authors tested

their system with images in the full range. Over 99% accuracy reported on both single

and double-sided documents of average quality.

The paper presented by Wong et al. [28], in 2004 at University of Auckland, New

Zealand, proposed an OBR system that is capable of recognizing a single sided Braille

37

page. In addition the system preserves the format of the original document in the

produced text file as well as the efficiency and accuracy of the recognition algorithm. The

algorithm processes the image one row at a time reducing the computation time

significantly. The proposed system consists of three major steps: half-character detection

to determine the where about of the character by detecting the possible dot positions;

half-character recognition to determine the half character that the dots represented by

using a probabilistic neural network and grid determination using transcription algorithm

to produce a Braille text file where the format is preserved.

The half-character detection module in [28] is capable of handling one row at a time

rather than as a whole image. During this process the row of pixels is changed into a two-

tone image to distinguish the pixels that are likely to be part of the shadows of the dots

from the others. The authors pointed out that when a row of pixels is found that contains

one or more characters, it was buffered until the entire pixels from that row of characters

are stored in the buffer. At this stage, the columns of the buffered image will be

processed in a similar manner to determine the position of the half-characters. The result

from this process will be two-tone images and the position of the character [28].

The recognition module in [28] is designed to work with thresholded images resulting

from the half-character detection module. The half-characters are processed and classified

as one of seven possible arrangements. The seven arrangements come from having three

possible dot positions in each half-character, without considering “empty half character”.

The classification process is carried out using a probabilistic neural network.

After the half-characters detected the position of the original parent whole characters is

determined in the text file transcript module [28]. This stage uses the fact that Braille

format has very strict rules on the spacing between dots within a character and between

neighboring characters; these rules can be used to help determine the positions of the

characters in the document. By looking at the distances between the dots, a grid of all

possible positions was determined by the authors to calculate the position of the

characters in the document.

38

The results of the experiment made by Wong et al. [28] were 99%, which were

promising. The fact that the recognition algorithm does not involve convolution of a

mask of any kind has shortened the processing time required to pre-process the image

before the recognition phase. The authors also suggest that the recognition rate for the

half-character recognition has room for improvement. One way to improve it is to

implement a syntactic spell check algorithm for post processing.

2.6.2. Optical Braille recognition System for Spanish Characters

The system, OCR for the Braille code, developed by Hermida’s et al. [23] passed through

five major tasks: scanner control to get the input images; processing of the scanned

images to locate the positions of the points that make up the Braille text; processing of

the found points to get the lines and columns in the text; application of Braille alphabet to

convert the located points into an ASSIC text and finally design of user interface.

Hermida’s et al. [23] system employed thresholding before the image is passed on to the

Braille dot extraction module. The scanned images contain mountains that had a brilliant

zone above the point and a dark zone below it. Their algorithm converts a digital image

of a scanned Braille page into one consisting mainly of black and white spots denoting

the dots. The thresholds used were adaptively calculated from the histogram of the input

image. These threshold values are found as points that leave above/below a given percent

of the total area of the histogram.

The localization and extraction algorithm developed by Hermida et al. [23] takes a

threshold image consisting of couples of white spots above and black spots below, where

each couple denotes a single Braille dot. Though this method is easy and quick, it suffers

from two problems: some legitimate points are lost and false ones are produced. These

errors may arise due to spots that are very near to each other and that get joined after the

threshold process. To solve these problems two strategies were suggested by the authors:

mesh detection and intuitive method of working with the spots in proving other pattern

recognition methods.

39

The mesh detection algorithm proposed by Hermida et al. [23] used to detect the

positions and directions of the lines and columns of the text. These positions make up the

Braille mesh. If we have N characters, the distance between them is normalized. This

algorithm detects the entire mesh by going over it and inspects the presence of spots near

each potential point. With this algorithm it is also possible recovering the lost points. The

first stage of the algorithm is the detection of the skew angle afterwards the algorithm

chooses a starting point and goes moving the standard distances to construct the entire

mesh. Hermida et al. [23] considered that the key fact at this stage is to avoid choosing a

false point as the starting one. The false points are points that don’t observe the distance

rules. Another important issue is to detect the relative position of the starting point in its

character. Their algorithm assumes all the possible positions and then use the method of

maximal counts (explained above): first determine to which column the point belongs to

and then to which row. The final stage is the construction of the entire mesh beginning

from the starting point. This movement is accomplished in an adaptive fashion.

The translator presented by Hermida et al. [23] takes as an input the image produced from

the dot extraction module, where characters are represented as a group of dots, each dot is

in turn represented by a single bit, with 1 or 0 values. Using this representation, the

Braille-to-ASCII conversion is accomplished.

2.6.3. Optical Recognition of Braille Writing Using Standard Equipment

An attempt was made by Mennens et al. [32] to develop a system that run on

commercially available scanners that are of moderate cost and easy to maintain (standard

equipment) for both single- and double sided-character recognition. The authors

addressed the problem of false shadows in the image caused by the fact that Braille pages

are never perfectly flat due to the tension in the paper’s surface, by subtracting a locally

averaged image from the original. To align the calculated grid with the main axes of the

text the authors rotate skewed images by using the deviation over a vertical projection of

the image. They employed this strategy because it has certain advantages in the

organization of the data [32].

40

The authors also used deviation over the sum of rows rather than Discrete Fourier

Transform (DFT) to calculate the rotation angle. Their reason is the fact that image’s

structure causes important and recognizable data peaks in the DFT image to lie too close

to the origin and this gives an error on the calculated rotation angle. In the case of

deviation over the sum of rows, the image was slanted over an angle. Each time the

image is slanted one pixel in the vertical direction, deviation over the sum of rows is

calculated and a maximum was obtained when dots are aligned horizontally.

The approach adopted by Mennens et al. [32], represents dots in the digitized Braille

page, with light and dark areas by making a three value image. For extracting Braille dots

their approach is based on several assumptions, one of which is that a single dot is

represented by two gray level intensities, a light area right above a dark one. Dots are

located using image-based operations (performing correlation with a particular mask) and

this mask is an absolute simplification of a Braille dot. On their approach the vertical size

of the mask depends on the size of Braille dots and equals the distance between the center

of the dark and light area of an average. Also their system is designed to recognize recto

and verso dots (double-sided Braille page). As a result two vertically neighboring dots of

the same side may produce false core regions (ghost points) for the other side.

To identify Braille characters, a grid is placed on the image where Braille dots are

expected to be. To calculate grids Mennens et al. [32] approach searches grid lines by

making histograms of rows and columns in five value ranges (-2,-1,0,1,2). To reduce

computer time and provide extra protection against other disturbances first histograms for

rows calculated and followed by calculating histograms for columns.

Mennens et al. [32] adopted Binary Braille cell sets as basis for their classifier, which is

grouping the dots and representing each dot by a bit position. They tested algorithms on

both single-sided and double-sided Braille, printed on carriers with different textures and

colors. Results reported are 99.75% correct Braille character recognition on documents

without major defects but the approach fails when distortions are present (due to the fixed

grid).

41

Mennens et al. [32] suggested that to convert a text containing Braille characters

containing Braille characters at maximum speed it is better to use commercially available

scanner and a set of fairly calculation methods. Moreover, they pointed out that the most

important characteristics of all their work is to work on local basis without losing contact

with the global context and try to postpone complex calculations until the data set has

been significantly reduced.

2.6.4. Image Processing Techniques for Braille Writing Recognition

Nestor [36] creates a database which contains both single and double sided documents.

They acquired the Braille image using a flat-bed scanner with images of different

resolution than 100 dpi since it uses interpolation methods to resize the input image.

During image pre-processing the following tasks were performed in Néstor [36]: dynamic

thresholding, pattern detection, Braille grid creation and dot recovery using Braille grid.

They also apply iterative thresholding algorithms for classifying the gray scale image

into black and white and an adaptive algorithm in order to make mesh from the detected

dots. The adaptive algorithm builds columns in a first stage: since distances between

points are normalized [36], the process begins searching for groups of dots in the same

vertical plane that respect these distances. Based on this the protrusion and depression

areas are identified.

To determine skew angle of the scanned documents the authors in [36] apply horizontal

histograms and mass center calculations. Additionally to identify dots that are missed in

the identification of protrusions and depressions, they adopted mesh grid algorithm. After

mesh building, all valid Braille positions are known. Those intersections between rows

and columns define a valid position for a Braille dot [36].

In addition the system [36] checks the potential positions of dots and recovers original

dots that belong to correct Braille positions and discriminate false dots that are out of the

valid places for Braille dots. Based on the mesh the finalized image is analyzed and text

is segmented in rows and characters. Every character is then converted into binary

number according to the active dots in the image. This way of Braille text binarization

42

makes the global system independent of the language of the document and easily

configurable for different alphabet [36].

The developed system in [36] used global image processing algorithm which is very fast

and robust. Results of the system are encouraging and perform an accuracy of 99.9% for

double sided Braille documents.

2.6.5. Optical Braille Recognition System for Arabic Characters

AbdulMalik et al. [2] attempt to develop algorithms to recognize image of Arabic Braille

embossed on both single-sided and double-sided material obtained by regular flat-bed

scanner. Two main tasks are performed: the first is recognition of the printed Braille cell

and the second is converting the Braille in to a text with simple one-to-one mapping. The

proposed Arabic OBR system comprises the following stages: Image acquisition,

converting the image to gray level, cropping the image frame, image thresholding, image

de-skewing, dot part detection, Braille cells recognition and correcting the feature layout.

The study in [2] tried to minimize the effect of black or white frame in the image on

thresholding by cropping the image frame. For cropping purpose average gray level of

the whole image is calculated and 15% of the whole image above or below of the average

gray level was considered an indication for deletion. Based on the threshold values of the

cropped image the Braille pages are classified into foreground (dark) and background

(white), to do this, the average gray level is calculated for the whole image and then for

each of the rows and columns separately,. A binary search algorithm was developed and

used to correct skew in tilted scanned document images. De-skew image tilted 4 degree

from left or right is recognized.

AbdulMalik et al. [2] preferred the detection of Braille dot parts than the whole dot. In

addition, they discussed recto dot-bright comes at the top of the dark and the contrary

results as verso dot. They suggest two strategies for correcting errors that arise at this

step: local measure and global measure. For dot detection global measure showed better

results.

43

Having all possible dots, AbdulMalik et al. [2] defines the region containing all the dots

by adding row and column in the array separately. In doing so, two algorithms are

evaluated. The one which does not depend on fixed length for cells heights and distance

between them is selected. In addition for correcting reversed paper layouts the authors [2]

have used alphabet determination percentage on each page, 85 % and above showed the

page is on the right layout but below 45% showed the page is on the reverse layout.

The proposed system in [2] is tested using several Braille documents -- skewed, reversed

or worn-out-, written in Arabic language and scanned with different scanners. For both

single-sided and double sided documents 99% of the dots on the Braille documents are

correctly recognized.

2.6.6. Optical Braille Recognition System for Amharic Characters

Even though there are a number of attempts made to facilitate two way communication

and knowledge transfer between visually impaired and vision society on different

languages, only two attempts are made to developed Amharic OBR systems for Amharic

Braille documents. Both researchers developed Amharic Braille recognizer only for

single-sided Braille documents using neural network classifier.

The system proposed by Teshome [49] is the first attempt to develop Amharic Braille

recognizer. The researcher collected both manual and typewritten single-sided Braille

documents. The Braille documents are digitized using a flat-bed regular scanner with 200

dots per inch for both colored and gray scaled Braille images. His research adopted

different Braille image recognition techniques: image acquisition, binariazation,

segmentation, feature extraction and recognition for recognition of Braille characters and

neural network classifier had been trained with Amharic character to translate the Braille

character to printable character.

The binariazation technique is used in identifying the foreground (black color) or content

from the background (white color) [49]. In doing so for global threshold a single

threshold calculated from the total intensity and local threshold is calculated by taking

into account the pixel of sub-images area. Even if both local and global threshold are

44

used for identification purpose, only global threshold were used due to computational

expensiveness of the local threshold. The threshold value had been set on the color

frequency through experimentation. The result of binarization has the feature that the

foreground is represented by black color and background with white color.

The image segmentation operation separates dots from the Braille image that can further

be grouped into a cell. These cells also grouped to form characters, words or any storks in

the Braille document. Segmenting the Braille image can be performed in two ways: grid

mesh construction and display the dot with single white pixel on black background. The

researcher [49] prefers mesh-grid for segmentation purpose; this is because of the fact

that Braille cells arranged strictly following vertical and horizontal layouts of the

documents. The segmentation is performed in two steps: first gridlines mesh was

constructed and then dots are searched following the grids mesh with thresholding. Both

global and adaptive mesh techniques had been tested for segmentation purpose.

Feature extraction and recognition process identifies the representation mechanism of

Braille image. For feature extraction, Teshome [49] adopted modified region based

approach. Each character described in terms of dot positions and the six possible

positions of the dots are known for each individual Braille character in the image. Then

content analysis is performed to recognize the cells as part of Braille character based on

rules defined. MATLAB implementation of the feed forward artificial neural network

had been trained on the extracted features to create a model which can be used for Braille

characters recognize.

Experimental results show that the system developed by Teshome [49] registers 92.5%

recognition performance as a model for the system among the three models. The

performance of the system is decreased with increase in the test set.

The author recommended that since the current system sets threshold for binarzation with

trial and error, it is important to devise automatic thresholding system that may work with

different image color. Further effort is also important towards creating Braille digital

library, retrieval system and Braille dictionary. The other way to improve the

45

performance of the system is applying the neural network in proceeding steps such as

future extraction.

The other effort made on Amharic Braille recognition system is the work of Ebrahim [16]

which is an extension of [49]. The work of Ebrahim was aimed at exploring different

noise detection and removal algorithm in order to enhance the performance of the

Amharic Braille recognition system (designed by [49]) in real life Braille document

images.

Pre-processing of document images is used specifically for noise reduction and

smoothing of background area of the Braille document. According Ebrahim the pre-

processing operation consists of four steps: histogram equalization, noise filtering, image

binarization/threshold and morphological operations.

Ebrahim [16] used Gaussian filtering for noise reduction introduced at time of

acquisition. The Image binariazation pre-processing operation converts gray scale images

into a binary image aiming to distinguish text areas from background areas. For image

binariazation sub operation global threshold had been used by the author. To remove

some noise dots that are crated at the time of binariazation and to have better recognition

performance morphological operations was performed.

Ebrahim [16] integrated the preprocessing scheme (Gaussian noise filtering followed by

morphological operations) to the previously designed OBR system by Teshome [49].

Then he tested the performance of the proposed OBR system on real life Amharic Braille

documents. Accordingly, the performance rate for clean Braille, small noisy Braille,

medium level noisy Braille and high level noisy Braille using Gaussian filtering

technique are 95.5%, 95.5%, 90.5%, 65.5%, respectively. The performance of the system

shows that the accuracy decreases as level of noise in Braille documents increase. This

initiates to design a feature extraction and classification scheme that tolerate the

challenge posed by real life Braille images. It is therefore the objective of the present

study to explore feature extraction and classification algorithms suitable for Amharic

Braille document images.

46

CHAPTER THREE

BRAILLE RECOGNITION TECHNIQUES

The process of identifying and recognizing Braille characters is to some extent of

different nature than that of reading printed characters. Yet, there are many interesting

parallels that can be drawn. Braille documents occupy considerably greater volume than

printed ones (40 to 60 % more) for recording the same information. This is because the

thickness of the material, the length of the protruding dots and the low information

recording density resulting from the relatively large spatial distribution of Braille

characters [52]. The process of Braille document recognition passes through many stages

starting from Braille acquisition to recognition of characters.

3.1. Design of Amharic OBR system

This research is concerned with designing different Braille image recognition techniques

for Amharic Braille documents. The overall architecture of Amharic Braille recognition

system is shown in Figure 3.1. In translating Amharic Braille code characters to their

equivalent Amharic representation a series of steps are required. As depicted in

Figure3.1, Braille recognition techniques labeled with double rectangle are the main

focuses of this study.

3.2. Image Acquisition/Digitization

In optical Braille recognition (OBR), digitization enables to produce a digital image of

the scanned document in the form of bitmap. In optical Braille recognition (OBR),

digitization enables to produce a digital image of the scanned document in the form of

bitmap. Acquiring images from Braille documents can be done using scanner or digital

camera [2][4][11]. The mechanism used for image acquisition in this study is a flat-bed

scanner instead of digital camera. This is because flat-bed scanner is a cheap alternative

which can be used for so many other applications and easy and quick to use. The system

is also able to work with images of different resolution ranging from 100 to 600 dpi.

47

Figure3. 1 Block Diagram of Amharic Braille Recognition System

Image acquisition

Feature Extraction

 Digitized
 Image

Preprocessing Binarized

 Image
Segmentation

 Sub images

 Important

 Features

Classification

Model Recognized Amharic Characters

Output

Input Braille
Documents

Printed Amharic
Documents የደም ናሙና ከመሠጠቱ በፊት የምክክር

አገልገሎት ነዉ፡፡ ይህም ግለሠቡ ቫይረሡን

ግንዛቤ በመረዳት ትክክለኛ መረጃ እንዲያገኝ

ያደርጋል፡፡ ምርመራዉ ለምን እነደሚያሥፈልግ

እንዲዳረሥ ይረዳል፡፡

Printed Amharic
Documents

Recognized Amharic Characters

Printed Amharic
Documents

Recognized Amharic Characters

Printed Amharic
Documents

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Preprocessing

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Image acquisition

Preprocessing

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Image acquisition

Preprocessing

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Segmentation Image acquisition

Preprocessing

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Segmentation Image acquisition

Preprocessing

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Segmentation Image acquisition

Preprocessing

Classification

Recognized Amharic Characters

Printed
Amharic

Segmentation Image acquisition

Preprocessing

Classification

Recognized Amharic Characters

Printed Amharic
Documents

Segmentation Image acquisition

Preprocessing

Classification

Recognized Amharic Characters

Printed Amharic
Documents

48

3.3. Feature Extraction

Feature extraction is a representational mechanism of the Braille image [49]. The main

function of this process is to extract the Braille dots from the binarised image. The image

capturing, preprocessing and segmentation stages aim to make the image be suitable for

different feature extraction algorithms. Some feature extraction algorithms only deal with

the contours of the image while some algorithms calculate every pixel of the image. On

the other hand, the initial image may be noise affected, or blurred by other reasons.

Extraction of good features is the key to correctly recognize an unknown character. A

good feature set contains discriminating information, which can distinguish one object

from other objects. It must also be as robust as possible in order to prevent generating

different feature codes for the objects in the same class. The selected set of features

should be a small set whose values efficiently discriminate among patterns of different

classes, but are similar for patterns within the same class.

The selection of image features and corresponding extraction methods is probably the

most important step in achieving high performance for an OCR system [39]. At the same

time, the image feature and the extraction method also decide the nature and the output of

the image-preprocessing and segmentation steps. Some image features and the extraction

algorithms work on color images, while others work on gray level or binary images.

Moreover, the format of the extracted features must match the requirements of the

classifier [26]. Some features like the graph descriptions and grammar-based descriptions

are well suited for structural and syntactic classifiers. Numerical features are ideal for

statistical classifiers. Discrete features are ideal for decision trees. As mentioned in [34]

there are different methods used to extract features. Some are highly language specific

like profiles, structural descriptors and transform domain representations and others

consider the entire image as the feature.

There are different feature extraction algorithms for Optical Braille recognition system.

The feature extraction algorithms implemented in this study are described in the

following sub sections.

49

3.3.1. Fixed Cell Measures

 This algorithm assumes that the average line and column width shown in Figure 3.2

below. Having decided the average line and column width, it is important to determine

the number of rows and columns in the defined region. To calculate the number of rows

and columns the following two equations are used:

linNum = (yMax - yMin) / 50 (3.1)

colNum = (xMax – xMin) / 30 (3.2)

Then we can reach the beginning of any cell by using the line and column number, as in

the following equations:

i = yMin + (lin-i) * 74 (3.3)

j = xMin + (col-j) * 44 (3.4)

In order to convert the cell to binary code, the region within one row and column (a cell)

is divided into six regions as in Figure3.2 (b). Then taking each region separately, if the

sum of its elements is more than the average Braille dot pixels then it assigns the number

1, otherwise it assigns 0. The detail of this technique is shown in Algorithm3.1 below:

74 50

14 30

44

10 10

10

10

(a) average cell measures (b) one cell measures

Figure3. 2 Cell measures

1

2

3

4

5

6

50

3.3.2. Horizontal and Vertical Projection

This algorithm does not depend on fixed lengths for cells heights and distances between

them. To work on this algorithm, first it is important to identify all valid Braille dots by

adding each row and column in an array separately. Having identified all possible valid

Braille dots, the system defines the region containing all the dots such that no dots exist

outside this region. For the valid Braille dots it is important to determine the horizontal

projection and the vertical projection. After determining the horizontal and vertical

projections, we can reach any cell by considering any consecutive 3 rows and 2 columns

as a cell. The steps involved in this technique are described as follows in Algorithm3.2:

Algorithm3. 1 Feature extraction algorithm based on fixed cell measures

1. while j< the beginning of the cell plus the cell width measure do

2. while i< the beginning of the cell plus the cell length measure do

3. for p=i to i+α do

4. for s=j to j+ α do

5. if there is black pixel at (s,p) then

6. dotcount++

7. End if

8. End for

9. End for

10. if dotcount>=β then

11. dd 1 to array

12. else

13. add 0 to array

14. End if

15. End while

16. End while

51

3.3.3. Grid Construction

Braille writing cannot be processed with standard optical character recognition (OCR)

software. This is due to the fragment nature of the character and hence a different

approach has to be considered. Using the property that Braille characters are always

positioned on a fixed matrix, the authors in [11][49] first tried to build a grid consisting

of horizontal and vertical lines that run through all the dots and then they checked if

Algorithm3.2 Feature extraction algorithm based on horizontal and vertical

projection

1. Identify all valid Braille dots in the image and add each row and column in the

array separately

2. Determine the horizontal projection array (DotHorProj[])

3. Determine the vertical projection array (DotVerProj[])

4. While DotHorProj[j]) do

5. While(DotVerProj[i]) do

6. for w=i to i+2 do

7. for h=j to j+3 do

8. val=FALSE

9. While valid Braille dot array

If valid Braille dot row value equal to the

horizontal projection and valid Braille

dot column value equal to the vertical

projection then

10. Add 1 to the array
11. val=TRUE;
12. End if
13. End while
14. If val==FALSE then
15. Add 0 to the array
16. End if
17. End for
18. End for
19. End while
20. End while

52

there is a dot present on each of the intersection point. The grid construction must be

flexible because there are cases where it can be deformed or irregular.

Although Braille dots are placed on a fixed matrix, certain Braille production techniques

cause this matrix irregular. Two major types of deformation problems can be

distinguished [11].

a. Deformation of the Braille cell

 Spacing between the dots and the cells may vary in both directions

 Degradation of the dots

b. Deformation of the grid where Braille characters are positioned

 The page went askew while the text was being typed

 The text’s layout sometimes causes large gaps in the text, and as a

consequence, in the calculated grid

To handle the above two problems the following strategy is proposed. First it is

conceivable to create a mask for a standard Braille dots. This mask could then be

convolved with image, resulting in peaks on the position of the Braille dots. These peaks

then have to be grouped in cells to convert them to characters. This means that we also

have to find the grid on which dots are positioned.

Using a very simple mask, we first try to find the position of the grid lines. In order to

cope with problem 2, the image is divided in sub-images and grids will be calculated for

each sub image separately (local linearization of the deformations). Grids of horizontally

and vertically adjacent sub-images are then taken together in horizontal and vertical

strips: horizontal strips contain vertical grid lines; vertical strips contain horizontal grid

lines. The lines in a strip will then be grouped in atoms. An atom is a group of lines that

belongs to a single Braille cell. The grouping in atoms has to be flexible because lines are

not at fixed distance (problem 1). Finally, the relationship between the strips is restored

and at the cross sections of horizontal and vertical atoms Braille characters can be found.

The details of this algorithm are summarized in Algorithm3.3 below.

53

Figure3. 3 Example of atoms in a six-dot Braille cell

One pair of lines is called 1-atom; two pairs of lines are called a 2-atom.

3.4. Classification

Classification can be described as a supervised learning algorithm in the machine

learning process [66][69]. It assigns class labels to data objects based on prior knowledge

of class which the data records belong. Classification, which is the task of assigning

objects to one of several predefined categories, is pervasive problem that encompasses

many diverse applications.

Algorithm 3. 3 Feature extraction algorithm based on grid construction

1. Get each sub-images in the form of arrays

2. while(col[h][2]) do// for each 2-atom

3. while(line[w][1]) do //for each 1-atom

4. for d=line[w][i] to line[w][i]+α do

5. for g=col[h][j] to col[h][j]+α do

6. if GetPixel(d,g) is black pixel then

7. dotcount++
8. End if
9. End for
10. End for
11. if dotcount>=β then
12. add 1 to an array
13. Else
14. add 0 to an array
15. End if
16. End while
17. End while

54

As shown in Figure3.4 below, classification is the task of learning a target function f that

maps each attribute set to one of the predefined class labels. The target function is also

known as a classification model.

In classification, a given set of data records is divided into training and test data sets [[19]

[20]. The training data set is used in building the classification model, while the test data

record is used in validating the model. The model is then used to classify and predict new

set of data records.

Supervised learning algorithm (like classification) is preferred to unsupervised learning

algorithm (like clustering) because its prior knowledge of the class labels of data records

makes feature/attribute selection easy and this leads to good prediction/classification

accuracy [29]. Some of the common classification algorithms used in data mining and

decision support systems are: decision tree classifier, rule-based classifier, neural

networks, support vector machines and naïve Bayes classifier. Among these classification

algorithms decision tree algorithms is the most commonly used because it is easy to

understand and cheap to implement. It provides a modeling technique that is easy for

human to comprehend and simplifies the classification process [50].

3.4.1. General Approaches for Solving a Classification Problem

A classification technique (or classifier) is a systematic approach to build classification

models from an input data set. The model generated by a learning algorithm should both

fit the input data well and correctly predict the class labels of records it has never seen

before. Therefore, a key objective of the learning algorithm is to build models with good

generalization capability; i.e., models that accurately predict the class labels of previous

unknown records.

Classification

model
Input

attribute
set

Output

class label

Figure3. 4 Classification as the task of mapping an input set into class label

55

Figure3.5 shows a general approach for solving classification problems. First, a training

set consisting of records whose class labels are known must be provided. The training set

is used to build a classification model, which is subsequently to the test set, which

consists of records with unknown class labels.

 Training Set

Testing Set

Figure3. 5 General approaches for building a classification model

Evaluation of the performance of a classification model is based on the counts of test

records correctly and incorrectly predicted by the model. These counts are tabulated in a

table known as a confusion matrix. Table 3.1 depicts the confusion matrix for a binary

classification problem. Each entry fij in this table denotes the number of records from

class i predicted to be of class j. For instance, f01 is the number of records from class0

incorrectly predicted as class1. Based on the entries in the confusion matrix, the total

TId Attrib1 Attrib2 Attrib3 Class

 1 Yes Large 125k No

2 No Medium 100k No

3 No Small 70k No

4 Yes Medium 120k No

 5 No Large 95k Yes

6 No Medium 60k No

7 Yes Large 220k No

8 No Small 85k Yes

9 No Medium 75k No

10 No Small 90k Yes

TId Attrib1 Attrib2 Attrib3 Class

 11 No Small 55k No

12 Yes Medium 80k No

Learning

Algorithm

Learn
Model

Apply

Model

Model

Induction

Deduction

56

number of correct predictions made by the model is (f11 + f00) and the total number of

incorrect predictions is (f10 + f01).

 Predicted Class

Class=1 Class=0

Actual Class
Class=1 f11 f10

Class=0 f01 f00

Table3. 1 Confusion matrix for a 2-class problem

Although a confusion matrix provides the information needed to determine how well a

classification model performs, summarizing this information with a single number would

make it more convenient to compare the performance of different models. This can be

done using a performance metric such as accuracy, which is defined as follows [55][67]:

00011011

0011

ffff

ff

preditionsofnumberTotal

spredictioncorrectofNumber
Accuracy




 (3.5)

Equivalently, the performance of a model can be expressed in terms of its error rate,

which is given by the following equation:

00011011

0110

ffff

ff

predctionsofnumberTotal

spredictionwrongofNumber
rateError




 (3.6)

Most classification algorithms seek models that attain the highest accuracy, or

equivalently, the lowest error rate when applied to the test set.

3.4.2. Decision Tree Classifier

Decision tree is a hierarchical structure consisting of nodes and directed edges [43][55].

The tree has three types of nodes: A root node that has no incoming edges and zero or

more outgoing edges; internal nodes, each of which has exactly one incoming edge and

two or more outgoing edges; leaf or terminal nodes, each of which has exactly one

incoming edge and no outgoing edges. In a decision tree, each leaf node is assigned a

57

class label. The non-terminal nodes, which include the root and other internal nodes,

contain attribute set conditions to separate records that have different characteristics.

Decision tree classification technique is performed in two phases: tree building and tree

pruning. During tree building the tree is recursively partitioned till all the data items

belong to the same class label [24]. Tree pruning is used to improve the prediction and

classification accuracy of the algorithm by minimizing over-fitting (noise or much detail

in the training data set) [30]. Over-fitting in decision tree algorithms result in

misclassification error. Tree pruning is less tasking compared to the tree growth phase as

the training data set is scanned only once.

Decision Tree Classifier (DTC) is used successfully in many diverse areas such as radar

signal classification, character recognition, remote sensing, medical diagnosis, expert

systems, and speech recognition, to name only a few. Perhaps, the most important feature

of DTC is its capability to break down a complex decision-making process into a

collection of simpler decisions, thus providing a solution which is often easier to interpret

[43].

3.4.2.1. Design of a Decision Tree Classifier

The main objectives of decision tree classifiers are: to classify correctly as much of the

training sample as possible; generalize beyond the training sample so that unseen samples

could be classified with as high of an accuracy as possible; be easy to update as more

training sample becomes available (i.e., be incremental) ; and have as simple a structure

as possible. The design of a DTC can be decomposed into the following tasks [5][35]:

The appropriate choice of the tree structure; the choice of feature subsets to be used at

each internal node and the choice of the decision rule or strategy to be used at each

internal node.

58

-- depth 0

 node t

--- ----- • • • ---------------------------.depth 1

 • • • •

 • • •

 • • • ••

 ------ --- depth(m-1)

terminals (class labels)

Figure3. 6 Example of a general decision tree

C(t) - subset of classes accessible from node t

F(t) - feature subset used at node t

D(t) - decision rule used at node t

3.4.2.2. Design issues of Decision Tree Induction

A learning algorithm for inducing decision tree must address the following two issues

[55].

a. How should the training records be split? Each recursive step of the tree-growing

process must select an attribute test condition to divide the records into smaller subsets.

To implement this step, the algorithm must provide a method for specifying the test

condition for different attribute types as well as an objective measure for evaluating the

goodness of each test condition.

C(t), F(t),

D(t)

 root

i

j

k

59

b. How should the splitting procedure stop? A stopping condition is needed to

terminate the tree-growing process. A possible strategy is to continue expanding a node

until either all the records belong to the same class or all the records have identical

attribute values. Although both conditions are sufficient to stop any decision tree

induction algorithm, other criteria can be imposed to allow the tree-growing procedure to

terminate earlier.

Some of the common optimality criteria for tree design are [43]: minimum error rate,

min-max path length, minimum number of nodes in the tree, minimum expected path

length, and maximum average mutual information gain. The various heuristic methods

for construction of DTC can roughly be divided into four categories: Bottom-Up

approaches, Top-Down approaches, the Hybrid approach and tree Growing-Pruning

approaches.

In bottom-up approach [21] one starts with the information classes and continues

combining classes until one is left with a node containing all the classes (i.e., the root). In

a bottom-up approach, a binary tree is constructed using the training set. Using some

distance measure, pair-wise distances between a priori defined classes are computed and

in each step the two classes with the smaller distance are merged to form a new group.

The mean vector and the covariance matrix for each group are computed from the

training samples of classes in that group, and the process is repeated until one is left with

one group at the root. In a tree constructed this way, the more obvious discriminations are

done first, near the root, and more subtle ones at later stages of the tree. It is also

recommended [21] that from a processing speed point of view, the tree should be

constructed such that the most frequently occurring classes are recognized first.

In top-down approach, where starting from the root node using a splitting rule, classes are

divided until a stopping criterion is met. In this approach, the design of a DTC reduces to

the following three tasks: the selection of a node splitting rule; the decision as to which

nodes are terminal; the assignment of each terminal node to a class label. Of these three

tasks, the class assignment problem is by far the easiest [43]. Basically, to minimize the

misclassification rate, terminal nodes are assigned to the classes which have the highest

60

probabilities. These probabilities are usually estimated by the ratio of samples from each

class at that specific terminal node to the total number of samples at that specific terminal

node. Then this is just the basic majority rule; i.e., assign to the terminal node the label of

the class that has most samples at that terminal node.

In Hybrid approach one uses both bottom-up and top-down approaches sequentially. The

rational for the proposed method is that in a top-down approach such as hierarchical

clustering of classes, the initial cluster centers and cluster shape information are

unknown. It is also well known that the proper choice of initial conditions could

considerably influence the performance of a clustering algorithm and this information can

be provided by a bottom-up approach.

Tree growing-pruning approach used in order to avoid some difficulties in choosing a

stopping rule; one grows the tree to its maximum size where the terminal nodes are pure

or almost pure, and then selectively prunes the tree.

3.4.2.3. Methods for Expressing Attribute Test Conditions

Decision tree induction tree algorithm must provide a method for expressing an attribute

test condition and its corresponding outcomes for different attribute types [55]: binary

attributes, nominal attribute, ordinal attributes and continuous attributes.

The test condition for binary attribute generates two potential outcomes. Nominal

attributes can have many values and its test condition can be expressed in two ways: for a

multi-way split, the number of outcomes depends on the number of distinct values for the

corresponding attribute. On the other hand, some decision tree algorithms produce only

binary by considering 2k-1-1 ways of creating binary partitions of k attribute values.

Ordinal attributes can also produce binary or multi-way splits. Ordinal attribute values

can be grouped as long as the grouping does not violate the order property of the attribute

values. For continuous attributes, the test condition can be expressed as a comparison test

(A < v) or (A ≥ v) with binary outcomes, or a range query with outcomes of the form

vi≤A<vi+1, for i=1,…, k. for the binary case, the decision tree algorithm must consider all

61

possible split positions v, and it selects the one that produces the best partition. For the

multi-way split, the algorithm must consider all possible ranges of continuous values.

3.4.2.4. Measures for Selecting the Best Split

There are many measures that can be used to determine the best way to split the records.

These measures are defined in terms of the class distribution of the records before and

after splitting. Let p(i|t) denote the fraction of records belonging to class i at a give node t.

In a two-class problem, the class distribution at any node can be written as (p0, p1), where

p1=1- p0.

The measures developed for selecting the best split are often based on the degree of

impurity, of the child nodes. The smaller the degree of impurity, the more skewed the

class distribution [55]. For example, a node with class distribution (0, 1) has zero

impurity, whereas a node with uniform class distribution (0.5, 0.5) has the highest

impurity. Examples of impurity measure include [43] [55]:







1

0

2)|(log)|()(
c

i

tiptiptEntropy (3.7)







1

0

2|)|(|1)(
c

i

tiptGini (3.8)

 )|(max1)(tiptErrortinClassifica
i

 (3.9)

Where c is the number of class and p (i|t) is the relative frequency of class i at node t.

To determine how well a test condition performs, we need to compare the degree

impurity of the parent node (before splitting) with the degree of impurity of the child

(after splitting). The larger their difference means the better the test condition. The gain is

a criterion that can be used to determine the goodness of a split:





k

j

j

j
vI

N

vN
parentI

1

)(
)(

)((3.10)

Where I (parent) is the impurity measure of a given node, N is the total number of records

at the parent node, k is the number of attribute values, and N(vj) is the number of records

62

associated with the child node, vj. Decision tree induction algorithm often chooses a test

condition that maximizes the gain, Δ. Since I(parent) is the same for all test conditions,

maximizing the gain is equivalent to minimizing the weighted average impurity measures

of child nodes. Finally, when entropy is used as impurity measure in equation 3.10, the

difference in entropy is known as the information gain, Δinfo.

Impurity measures such as entropy and Gini index tend to favor attributes that have a

large number of distinct values [55]. Even in a less extreme situation, a test condition that

results in a large number of outcomes may not be desirable because the number of

records associated with each partition is too small to enable us to make any reliable

predictions. There are two strategies for overcoming this problem. The first strategy is to

restrict the test conditions to binary splits only. This strategy is employed by decision tree

algorithm such as CART. Another strategy is to modify the splitting criterion to take into

account the number of outcomes produced y the attribute test condition. For example, in

the C4.5 decision tree algorithm, a splitting criterion known as gain ratio is used to

determine the goodness of a split. This criterion is defined as:

)(log)(21

inf

i

k

i i

o

vpvp
RatioGain

 



 (3.11)

Here, k is the total number of splits. For example, if each attribute value has the same

number of records, then
k

vpi i
1)(:  and the split information would be equal

to k2log . This example suggests that if an attribute produces a large number of splits, its

split information will also be large, which in turn reduces its gain ratio.

3.4.2.5. Algorithm for Decision Tree Induction

Decision tree algorithm is a data mining induction techniques that recursively partitions a

data set of records using depth-first greedy approach [24] or breadth-first approach [47]

until all the data items belong to a particular class. In principle, there are exponentially

many decision trees that can be constructed from a given set of attributes. While some of

the trees are more accurate than others, finding the optimal tree is computationally

infeasible because of the exponential size of the search space. Nevertheless, efficient

63

algorithms have been developed to induce a reasonably accurate decision tree in a

reasonable amount of time. These algorithms usually employ a greedy strategy that grows

a decision tree by making a series of locally optimum decisions about which attribute to

use for partitioning the data. One such algorithm is Hunt’s algorithm, which is the basis

of many existing decision tree induction algorithms, including ID3, C4.5 and CART.

In Hunt’s algorithm, a decision tree is grown in recursive fashion by partitioning the

training records into successively purer subsets. Let Dt be the set of training records that

are associated with node t and y= {y1, y2…, yc} be the class labels. The following is a

recursive definition of Hunt’s algorithm.

Step1: if all the records in Dt belong to the same class yt, then t is a leaf node labeled as

yt.

Step2: if Dt contains records that belong to more than one class, an attribute test

condition is selected to partition the records into smaller subsets. A child node is

created for each outcome of the test condition and the records in Dt are distributed

to children based on the outcomes. The algorithm is then recursively applied to

each child node.

A skeleton of decision tree algorithm called TreeGrowth is shown in Algorithm 3.4. The

input to this algorithm consists of the training record E and the attribute set F. the

algorithm works by recursively selecting the best attribute to split the data (step 7) and

expanding the leaf node of the tree (step 11 and 12) until the stopping criterion is

met(step1). The details of Algorithm3.4 are explained below:

1. The createNode() function extends the decision tree by creating a new node. A node

in the decision tree has either the test condition, denoted as node.test_cond, or a class

label, denoted as node.label.

2. The find_best_split() function determines which attribute should be selected as test

condition for spitting the training records. As previously noted, the choice of test

condition depends on which impurity measure is used to determine the goodness of a

split. Some widely used measures include entropy, the Gini index, and 2 statistic.

64

3. The Classify() function determines the class label to be assigned to a leaf node. For

each leaf node t, let p(i|t) denote the fraction of training records from class i

associated with the node t. in most cases, the leaf node is assigned to the class that has

the majority number of records:

 leaf)|(maxarg. tiplabelf
i



Where the argmax operator returns the argument i that maximizes the expression

p(i|t). Besides providing the information needed to determine the class label of a leaf

node, the fraction p(i|t) can also be used to estimate the probability that a record

assigned to the leaf node t belongs to class i.

4. The stopping_cond() function is used determine the tree-growing process by testing

weather all the records have the same class label or the same attribute values.

Another way to terminate the recursive function is to test whether the numbers of

records have fallen below some minimum threshold.

Decision tree algorithms can be implemented parallel or serial ways [29]. Parallel

implementation tends to be scalable, fast and disk resident and can be implemented in

computer architecture with many processors [47]. Serial implementation on the other

Algorithm3.4 A skeleton of decision tree induction algorithm

TreeGrowth(E,F)
1: if stopping_cond(E,F)= true then
2: leaf=createNode().
3: leaf.label=Classify(E).
4: return leaf.
5: else

6: root=createNode().
7: root.test_cond=find_best_split(E,F).
8: let V={v|v is a possible outcome of root.test.cond}.
9: for each vV do
10: Ev={e|root.test_cond(e)=v and eE}.
11: child=TreeGrowth(Ev,F).
12: add child as descendent of root and label the edge (root child) as v.
13: end for

14: end if

15: return root.

65

hand is fast, memory resident and easy to understand. There are various commonly used

decision tree algorithms as discussed below:

IDE3 (Iterative Dichotomiser 3) decision tree algorithm: IDE3 algorithm was

introduced in 1986 by Quinlan Ross [42] [43]. It is based on Hunt’s algorithm and it is

serially implemented. Like other decision tree algorithms, the tree is constructed in two

phases; tree growth and tree pruning. Data is sorted at every node during the tree building

phase in-order to select the best splitting single attribute [47]. IDE3 uses information gain

measure in choosing the splitting attribute. It only accepts categorical attributes in

building a tree model [42] [43].

IDE3 does not give accurate result when there is too-much noise or details in the training

data set, thus an intensive pre-processing of data is carried out before building a decision

tree model with IDE3.

C4.5 algorithm: This algorithm is an improvement of IDE3 algorithm [44]. It is based on

Hunt’s algorithm and also like IDE3, it is serially implemented. Pruning takes place in

C4.5 by replacing the internal node with a leaf node thereby reducing the error rate [38].

Unlike IDE3, C4.5 accepts both continuous and categorical attributes in building the

decision tree. It has an enhanced method of tree pruning that reduces misclassification

errors due to noise or too-much details in the training data set. Like IDE3 the data is

sorted at every node of the tree in order to determine the best splitting attribute. It uses

gain ratio impurity method to evaluate the splitting attribute [44].

CART (Classification and regression trees): This algorithm was introduced by

Breiman [9]. It builds both classifications and regressions trees. The classification tree

construction by CART is based on binary splitting of the attributes. It is also based on

Hunt’s model of decision tree construction and can be implemented serially [9]. It uses

gini index splitting measure in selecting the splitting attribute. Pruning is done in CART

by using a portion of the training data set [38]. CART uses both numeric and categorical

attributes for building the decision tree and has in-built features that deal with missing

attributes [27]. CART is unique from other Hunt’s based algorithm as it is also use for

66

regression analysis with the help of the regression trees. The regression analysis feature is

used in forecasting a dependent variable (result) given a set of predictor variables over a

given period of time [9].

SLIQ (Supervised Learning In Ques): SLIQ was introduced by Mehta et al [30]. It is a

fast, scalable decision tree algorithm that can be implemented in serial and parallel

pattern. It is not based on Hunt’s algorithm for decision tree classification. It partitions a

training data set recursively using breadth-first greedy strategy that is integrated with pre-

sorting technique during the tree building phase [30]. With the pre-sorting technique

sorting at decision tree nodes is eliminated and replaced with one-time sort, with the use

of list data structure for each attribute to determine the best split point [30][47]. In

building a decision tree model SLIQ handles both numeric and categorical attributes. It

uses Minimum Description length Principle (MDL) in pruning the tree after constructing

it. MDL is an inexpensive technique in tree pruning that the least amount of coding in

producing tree that are small in size using bottom-up technique [3][30].

SPRINT (Scalable Parallelizable Induction Tree): This decision tree algorithm was

introduced by Shafer et al [47]. It is a fast, scalable decision tree classifier. It is not based

on Hunt’s algorithm in constructing the decision tree; rather it partitions the training data

set recursively using breadth first greedy technique until each partition belong to the

same leaf node or class [3][47]. It is an enhancement of SLIQ as it can be implemented in

both serial and parallel pattern for good data placement and load balancing [47]. Like

SLIQ it uses one time sort of the data items and it has no restriction on the input data size.

Unlike SLIQ it uses two data structures: attribute list and histogram which is not memory

resident making SPRINT suitable for large data set, thus it removes all the data memory

restrictions on data [47]. It handles both continuous and categorical attributes.

CART, SLIQ, and SPRINT use the gini index to derive the splitting criterion at every

internal node of the tree.

J48: J48 is a decision tree induction algorithm which is an improved version of the C4.5

algorithm [71]. This algorithm generates decision trees using an information theoretic

67

methodology. The basic algorithm for decision tree induction is a greedy algorithm that

constructs decision trees in a top-down recursive divide-and-conquer manner. The goal is

to construct a decision tree with minimum number of nodes that gives least number

of misclassifications on training data. According to [70] J48 decision tree algorithm is a

predictive machine-learning model that decides the target value (dependent variable) of a

new sample based on various attribute values of the available data. It can be applied on

discrete data, continuous or categorical data.

The decision tree induction algorithm used in this study for classifying extracted Braille

features is J48 algorithm. J48 decision tree can serve as a model for classification as it

generates simpler rules and remove irrelevant attributes at a stage prior to tree induction.

It is important to understand the variety of options available when using an algorithm, as

they can make a significant difference in the quality of results. In several cases, it was

seen that j48 decision trees had a higher accuracy than other algorithms [69]. J48 offer

also a fast and powerful way to express structures in data.

J48 employs two pruning methods [69]: sub tree replacement and sub tree raising. In sub

tree replacement nodes in a decision tree may be replaced with a leaf -- basically

reducing the number of tests along a certain path. This process starts from the leaves of

the fully formed tree, and works backwards toward the root. In the case of sub tree raising

a node may be moved upwards towards the root of the tree, replacing other nodes along

the way. Sub tree raising often has a negligible effect on decision tree models. Many

algorithms attempt to "prune", or simplify, their results. Pruning produces fewer, more

easily interpreted results. More importantly, pruning can be used as a tool to correct for

potential over fitting.

68

3.4.2.6. Model Over-fitting

After building the decision tree, a tree-pruning step can be performed to reduce the size

of the decision tree. Decision trees that are too large are susceptible to a phenomenon

known as over-fitting. Pruning helps by trimming the branches of the initial tree in a way

that improves the generalization capability of the decision tree.

The errors committed by a classification model are generally divided into two types [55]:

training errors and generalization errors. Training error, also known as resubstitution

error or apparent error, is the number of misclassification errors committed on training

records, whereas generalization error is the expected error of the model on previously

unseen records.

 A good classification model must not only fit the training data well, it must also

accurately classify records it has never seen before. In other words, a good model must

have low training error as well as low generalization error [55]. This is important because

a model that fits the training data too well can have a poorer generalization error than a

model with a higher training sample. Such a situation is known as model over-fitting

[55][72][73].

Algorithm3.5 J48 decision tree classifier algorithm

a. For training instances
1. Tree is constructed in top down recursive divide and conquer manner

2. Feature that is having the highest information gain is selected as root

node of the decision tree.

3. Select the attribute that gives us the next highest information gain.

4. Repeat step 2 and 3 until reach from the root node to the leaf node

b. For test instances

1. Classify the new instance based upon this decision tree

Stopping criteria

1. All sample for a given node belong to the same class

2. If there is no remaining attribute for further partitioning

69

The training and test error rates of the model are large when the size of the tree is very

small. This situation is known as model under-fitting [55][72][73]. Under-fitting occurs

because the model has yet to learn the true structure of the data. As a result, it performs

poorly on both the training and the test sets. As the number of nodes in the decision tree

increases, the tree will have fewer training and test errors. However, once the tree

becomes too large, its test error rate begins to increase even though the training error rate

continuous to decrease. This phenomenon is known as model over-fitting. Over-fitting

and under-fitting are two pathologies that are related to the model complexity.

Models that make their classification decisions based on small number of training records

are also susceptible to over-fitting. Such models can be generated because of lack of

representative samples in the training data and learning algorithms that continue to refine

their models even when few training records as available.

 Tree pruning is done to improve the prediction and classification accuracy of the

algorithm by minimizing over-fitting (noise or much detail in the training data set) [30].

3.4.3. Support Vector Machines (SVMs)

SVMs are a set of related supervised learning methods used for classification and

regression. It is a classification technique that seeks to find a hyper plane that partitions

the data by their class labels and at the same time avoid over fitting the data by

maximizing the margin of the separating hyper plane. It makes a binary classification

based on a separating hyper plane on a remapped instance space. As mentioned in [33]

SVM has effective training and testing algorithms that are suitable for OCR problems

with high dimensional input data.

SVMs learn from labeled examples from a training set including both positive and

negative samples. A hyper plane which classifies the positive and negative data in the

training set is found based on the attributes of data in the training set. Many such hyper

planes which separate the data exist. The one that achieves maximum separation needs to

be chosen and only one such hyper plane exists [47]. The data points nearest to the

margin on both sides are called support vectors. From the data and its labels the SVMs

70

learn a mapping function. A kernel function, which is a dot product, is used in finding the

hyper plane by remapping input feature vectors. Once the hyper plane is found, unlabeled

examples from the test are classified based on the support vectors.

In Figure3.7 above, a hyper plane classifies two classes of training data which is two

dimensional. The two classes of data are represented by squares and circles. The bold

line, which is separated from the closest training vectors by distance γ is the hyper plane.

The classification of triangle, which is an unknown sample, is done by determining which

side of the hyper plane it falls. In this example, the prediction for the unknown sample

would be square.

The goal of SVM is to find the best boundary that separates the positive and negative

samples, where ‘best’ means the boundary separates the negative and positive samples

with the largest margin or ‘distance’. The decision boundary must classify all points

correctly and should prevent data points from falling into the margin. Let n be the

dimension of the feature vector and {x1,…, xn } be the representation of a sequence x and

let yxɛ{1,-1} be the class label of x. The feature vectors of the training set are used to

build the classifier. Weight vector w is of the same dimension as the feature vector and it

is represented as w = {w1,…,wn}. The label of the sequence is predicted as 1 if wx + b ≥1

and it is predicted as -1 if wx + b< 1 where, b is a threshold.

Figure3. 7 SVM for two class problem

71

Therefore,

i) if yx = 1;wx + b ≥ 1

ii) if yx = -1;wx + b < 1

The equation of the margin γx is given by

γx = yx(wx + b)

The value of γ determines the accuracy of SVMs in predicting the label of the sequence.

If γ is positive, it implies that the prediction is correct and a negative value of γ implies

that the prediction is incorrect. The values of the weight vector w and threshold b are

updated every time there has been an incorrect prediction. After the optimal separating

hyper-plane is obtained, we can then use it to determine whether new data belongs to

positive or negative group, a process called SVM testing.

3.4.3.1. Kernel Trick and Functions

Kernel Trick: A separating hyper plane is used in the classification of linear data.

However, in real world problems the data sets are mostly non-linear. In such cases,

kernels are used to non-linearly map the input data to a high-dimensional space. The new

mapping is then linearly separable. The space xi are in is called the input space and the

space of ф (xi) after transformation is called feature space. As discussed in [74] linear

operation in the feature space is equivalent to non-linear operation in input space [74].

The training set is linearly separable in the feature space. This is called the “Kernel trick”

[76].

Kernel Functions: The idea of the kernel function is to enable operations to be

performed in the input space rather than the potentially high dimensional feature space.

Hence the inner product does not need to be evaluated in the feature space. We want the

function to perform mapping of the attributes of the input space to the feature space. The

kernel function plays a critical role in SVM and its performance [77].

72

The four types of Kernel Functions usually used with SVM are:

1. Linear Kernel K(x, x') = (x,x' + 1)

2. Polynomial Kernel K(x, x') = (kx .y + c)p

3. Sigmoid Kernel K(x, x') = tan h(kx.y + c)

4. Radial Basis Kernel K(x, x') = e-γ||x-y||2

Simple linear SVM is used in this study because it provides good generalization accuracy

and is fast to learn [78].

3.4.3.2. SVM Algorithms

Despite its advantages for global solution, good generalization and having common

ground for linear and non linear solutions, SVM has a remarkable drawback in the fact

that it implies solving a large constrained quadratic programming (QP) problem, its size

making often standard solvers impractical as memory requirements are quadratic in the

number of patterns [75]. This has given rise to a great deal of SVM specific training

algorithms, which nearly always not solve the original SVM problem but an equivalent

formulation in the dual space. As a result, the solution hyper plane can be expressed as a

linear combination of the patterns associated with non-zero multipliers (support vectors).

There are two main classes of training algorithms: Decomposition and Geometry-based

algorithms. The decomposition algorithms for training SVM rely on the idea of not

solving the whole dual quadratic programming problem, but on solving iteratively (with a

specific quadratic programming solver or another SVM algorithm) for a subset of

multipliers. The common decomposition algorithms are: chunking, SMO and SVM-

Light.

The chunking algorithm started with arbitrary subset or ‘chunk’ data. Then, the support

vectors remain in the chunk while other points are discarded and replaced by a new

working set. In chunking, the size of the working set tends to grow with time, though it

73

can occasionally shrink. The SMO is an original implementation for the SVM classifier

designed to avoid the likely large quadratic programming optimization problem that

appears as part of the SVM model. The idea behind SMO is that the quadratic

programming problems can be broken up into a series of the smallest possible quadratic

programming problems and solved analytically by optimization. SVM-Light is more

general than SMO and the working set size is set in advance to a fixed number with the

constraint that this number is even. The main contribution of SVM-Light, apart from its

numerous computational tricks that make it very fast, is the way to select the multipliers

for the working set

On the other hand, geometry-based algorithms exploit the geometric reinterpretation of

SVM classifiers. These algorithms are often referred in the literature with the generic

name of nearest point algorithms (NPA). These are iterative algorithms that

asymptotically approximate either the closest point of a convex hull to the origin, either

the closest points belonging to two different convex hulls, or the closest points belonging

to two different reduced convex hulls, depending on the SVM reformulation exploited.

In this study sequential minimal optimization (SMO) method is employed to learn the

vector of feature weights, w


. Once the weights are learned, new items are classified by

computing xw

 where, w


is the vector of learned weights, and x


 is the binary vector

representing a new document.

3.5. Tools used

3.5.1. WEKA: Machine Learning Software

WEKA stands for Waikato Environment for Knowledge Analysis and was developed at

the University of Waikato in New Zealand [69]. It is an open source machine learning

suite written in Java which provides an interface to various machine learning algorithms.

It supports pre-processing of data sets and helps in evaluating performances of learning

algorithms. WEKA has a graphical user interface, called the WEKA Explorer, and a

command line interface is also available. Both the WEKA’s Explorer as well as the

command line interface were used in this study.

74

Training schemes that perform classification are used to classify the preprocessed data.

Many classification schemes like decision trees, rule learners, naive Bayes, decision

tables, locally weighted regression, SVMs, instance based learners, logistic regression,

and multi-layer perceptrons are supported by WEKA. To build classification model and

to predict unknown class labels WEKA’s J48 decision tree and SMO SVM

implementation have been used in this study.

3.5.2. Python

Python is defined as an object-oriented scripting language. It is an object oriented

programming language which is often used for scripting purposes. Here, python is used

to map number class labels and equivalent Amharic characters. The data structure

Dictionaries have been extensively used. Dictionaries are nothing but associative arrays.

75

CHAPTER FOUR

EXPERIMENTATION

Information in written form plays an undeniably important role in our daily lives.

Recording and using information encoded in symbolic form is essential. Visually

impaired people face a distinct disadvantage in this respect. To address their need, the

most widely adopted writing convention among visually impaired people is Braille.

Different attempts have been made to recognize Braille writing system for different

languages. To recognize Amharic Braille documents an attempt has also been made by

Teshome [49] and Ebrahim [16]. As a continuation, this study explores feature extraction

and the classification modules of Amharic Braille recognizer. This is because of the fact

that the performance of the recognizer depends mainly on the feature extraction and

classification schemes. In this study we experiment various feature extraction and

classification algorithms, in an attempt to select suitable once to enhance the performance

of Amharic OBR.

As depicted in Figure 3.1, the Amharic OBR system works as follows. First single sided

Amharic Braille documents are scanned using flatbed scanner at a resolution of 200 dpi;

this creates digitized images. Then Braille images are preprocessed and segmented into

Braille dots. The segmented bunch of Braille dots are passed to the feature extraction

module where features of Braille dots are extracted and grouped into Braille cells. The

extracted features are used for training the classifier and create classification model.

Finally the recognition module converts Braille images into their equivalent textual

Amharic characters.

4.1. Dataset Preparation

Braille documents have been collected mainly from AAU-Kennedy library. The collected

documents are single-sided typewritten Braille documents with the standard Braille size

of 11×11.5 inch, which is the standard in Braille writing. The details of sample Braille

documents used in this study are summarized in Table 4.1.

76

Braille document property Description

Braille sheets 24

Total number of characters 9306

Average number of characters per sheet 387

Resolution 200 dpi

Digital format Gray scale

Image size 11 X 11.5 inches

Braille type Single sided

Image format Bitmap(bmp)

Main document source AAU-Kennedy library

Table4. 1 Summary on Amharic Braille documents collected for this study

After Braille documents have been collected, scanning was performed. In OBR scanning

Braille documents enables us to perform digitization which produces a digital image of

the scanned Braille document. A flat-bed scanner has been used for digitization process.

This is because it has been found as a cheap alternative to scan Braille images. Scanning

has been performed with horizontal and vertical resolution of 200 dpi, which is

recommended to get quality images [16][49] and the images are stored in bitmap format.

Using this configuration Braille documents that are collected from different sources are

scanned and prepared for subsequent processes. The image shown in Figure 4.1 is sample

scanned Braille document image using flat-bed scanner with 200 dpi resolution.

Figure4. 1 Sample scanned Braille image

(a) gray scale (b) binarized

77

This Braille document images are used for training and testing the system. To train the

classifiers three training data sets are prepared with the following proportion:

Training dataset 1: contains 238 instances of basic Amharic alphabets with 12 bits pattern

sequence and corresponding class values.

Training dataset 2: contains 258 instances consisting of 238 basic Amharic alphabets and

20 numerals with 12 bits pattern sequence and corresponding class values.

Training dataset 3: contains 281 instances consisting of 238 basic Amharic alphabets, 20

numerals and 23 punctuation marks with 12 bits pattern sequence and

corresponding class values.

For measuring the performance of the classification model, test datasets from real life

Braille documents have been prepared with the following proportion.

Test set1: contains a total of 2406 characters taken from clean Braille documents.

Test set2: contains a total of 1705 characters taken from Braille documents with small

level noise.

Test set3: contains a total of 1257 characters taken from Braille documents with medium-

level noise.

Test set4: contains a total of 1301 characters taken from Braille documents with high-

level noise.

 The training file consists of the sequence patterns (bit representation) for Amharic

Braille alphabets, numerals and punctuation marks as well as the class for each sequence.

Before making decisions on output nodes it is worth to mention that all Amharic Braille

characters class values are represented in numbers. To come up with uniform mapping

the characters are assigned index value from 1 to 281; 1 is for “ሀ”, 2 is for “ሁ” (the

detail appears in Appendix VII).

78

The input files for training set are prepared for 281 Amharic characters and trained with

J48 decision tree classifier and SMO implementation of SVM. Now, again the testing file

is prepared from the extracted feature in the form of ARFF file format with missing class

label represented with “?”. The test is performed using testing set and predicted class

labels are produced by the classifiers.

The input data for training is fed to WEKA machine learning tool in the form ARFF file

format. The ARFF file structured to train the classifier is described in Appendix VI. The

name of the relation appears at the beginning of the file; @relation declaration associates

a name with the dataset. Here, the name of the relation is “Braille" and it is represented as

@relation Braille. Following the name of the relation is a block defining the attributes;

@attribute declaration specifies the name and type of an attribute. There are 13 attributes

consisting of 12 cells and one class; all of them take nominal value. Finally, @data

section specifies feature values extracted for each Braille character. Except class value

which takes numbers 1 to 281, other attributes assigned either 0 or 1 value depending on

their positional information in the Braille.

4.2. Feature Extraction Techniques

A Braille character is made up of six dots arranged in two columns and three rows. Dots

on the six possible places can be raised or flat to create a Braille character. The feature

extraction techniques help us to group Braille dots of OBR in to cells. In Amharic Braille

writing system one cell (6 dots), two cells (12 dots) and three cells (18 dots) may be used

to represent the corresponding Amharic characters, numerals and punctuation marks.

However, in this study we consider the most commonly used 238 Amharic characters,

Arabic numerals, basic Ethiopic numerals and frequently used punctuation marks. To

make the representation uniform all Amharic characters, numerals and the selected

punctuation marks are represented in two cells (12 dots).

Braille character is described as a region in the image and this region is divided into six

equal compartments (two across, three down) in which searching for dot is performed. To

group the possible valid Braille dots in cells three feature extraction techniques, such as

79

fixed cell measures, horizontal and vertical projections and grid construction, are

implemented in this study. In each technique the extracted dots are grouped as one and

two cells to prepare different patterns for the classifier. To do this, each algorithm scan

one cell at a time and the first cell may define the basic Amharic Braille character

(prefix), number mode or punctuation; and the next cell (next six Braille dots) defines the

corresponding vowel, number or punctuation mark for a particular Braille character.

4.2.1. Fixed Cell Measures

To extract Braille dots in a cell this technique assumes that the average cell height and

width are to be fixed. Based on these measures the algorithm divides the Braille image in

certain number of rows and columns and then it moves through each column and row.

To extract dots and group them in a cell, the algorithm begins from the first row and the

first column then it divides the image into sub images using cell height and cell width.

The average cell height is found to be 50 and average cell width is 30 through

experimentation. Then each sub image is divided into sub images of 10 X 10. In each sub

image the code searches a Braille dot: If the number of pixels is greater than or equal to

10 then it considers as a Braille dot and it stores 1 with an array (BTemp[m++]=1)

otherwise 0 is stored in an array (BTemp[m++]=0). To get the next possible dot position

it moves horizontally until it reaches to the end of the Braille width. After it reaches to

the Braille width it increments the height of the Braille image and it searches all possible

Braille dots until it reaches to the Braille height. The visual C++ code for this technique

is depicted in Figure4. 3. To illustrate the situation we can consider the Braille image

given in Figure4. 2, which indicates the possible Braille dot positions in fixed cell

measures.

80

 Figure4. 2 Braille dot positions using fixed cell measures

There is a challenge encountered during implementing this techinque. The challenge is

that when there is skewness the technique is incapable of extracting all valid Braille dots.

The Visual C++ implementation of this technique is described in Figure4.3. Here, the

variables x,y,m, i and j are initialized with 0. The variables i and j are used to move to the

beginning of a cell horizontally and vertically respectively.

Figure4. 3 Visual C++ code for feature extraction based on fixed cell measures

 k=i;

while(k<=i+30){

 n=j;

 while(n<=j+50){

 for(int p=n;p<n+10;p++){

 for(int s=k;s<k+10;s++)

 if(pDC->GetPixel(s,p)==0)

 {dotcount++;}}

 if(dotcount>=10){BTemp[m++]=1;}

 else{BTemp[m++]=0;}

 dotcount=0;

 n+=20;}}

 k+=20;}x++;}y++;}

Possible Braille dot positions within a

cell using fixed cell measures

Linnum/row

Colnum/colum

81

4.2.2. Horizontal and Vertical Projection

Grouping of dots in a cell in this technique is based on horizontal and vertical projection

of Braille dots. First, the position for all valid dots is detected using horizontal and

vertical grid lines. Following the horizontal and vertical grid lines the position of active

dot is stored in an array. Similarly the positions of all valid dot positions are also stored in

array using vertical and horizontal projections. As a result all possible dot positions on

the same horizontal projection have the same “y” coordinate value and dot positions on

the same vertical projection have the same “x” coordinate value. To identify valid dots in

a cell this technique checks the position of the projection values stored in an array against

the coordinate values of the active dots position. If the horizontal projection as well as the

vertical projection matches the positions of active dots, then it is a valid dot; otherwise it

is a background. To illustrate the situation horizontal and vertical projection of Braille

dots are shown in Figure 4.4.

Since the segmentation is not flexible enough and the dots are not always aligned

horizontally and vertically, this technique encounters a problem when there are

differences in dots size and skewness. The Visual C++ code for this technique is

described in Figure 4.5. Here, the variables i, j,p and u are initialize with zero.

Figure4. 4 Braille dot positions based on projections

In active dot position

vertical
projection
of Braille
dots

Active dot

position

Horizontal projection of Braille dots

82

Figure4. 5 Visual C++ code for feature extraction using projection

4.2.3. Grid Construction

As described in [4] the placement of dots within Braille character is regular. The space

between adjacent characters in the same character line and between adjacent character

lines is also regular. Therefore, one could construct a grid whose intersections determine

the possible position of dots on the image. Tehome [49] also adopted it using global mesh

construction but in a fixed way that does not account for possible variations in character

positioning in different lines. The grid construction technique described here constructs a

relatively flexible grid by allowing variations in the positions of characters between

different lines (i.e., the Braille characters need not be aligned in the vertical direction).

In order to group Braille dots in a cell, this technique uses the grid lines constructed for

Braille dots horizontally and vertically. Using a very simple array, we first try to find the

position of the grid lines. Then the image is divided in to sub-images in order to calculate

grids for each sub image separately (local linearization of the deformations). Grids of

horizontally and vertically adjacent sub-images are then taken together in horizontal and

while(DotHorProj[j])

 {

 while(DotVerProj[i])

 {for(int w=i;w<i+2;w++)

 {for(int h=j;h<j+3;h++)

 {u=0;val=FALSE;

 while(dot[u][0]){

 if((dot[u][1]==DotHorProj[h])&&(dot[u][0]==DotVerProj[w]))

 {BTemp[p++]=1;

 val=TRUE;}

 u++;}

 if(val==FALSE)

 {BTemp[p++]=0;

 }}}j+=3;}i+=2;}

83

vertical strips: horizontal strips contain vertical grid lines; vertical strips contain

horizontal grid lines. The lines in a strip are then grouped in atoms. An atom is a group of

lines that belongs to a single Braille cell. The representation for 1-atom and 2-atom is

described in Figure 4.6. Finally, the relationship between the strips is restored and at the

cross sections of horizontal and vertical atoms Braille characters can be found and

searching pixels near the cross section is performed. If a Braille character is found then 1

is restored in the array, otherwise 0 is restored in the array.

Figure4. 6 Examples of atoms in a six-dot Braille cell

The challenge here is the presence of noise at the edge of scanned Braille image causes

the construction of the grid to be incorrect. The Visual C++ code for this algorithm is

presented in Figure 4.7. Here, the variables w, h, and r are initialized with zero.

Figure4. 7 Visual C++ code for feature extraction using grid construction

while(col[h][2])

 { while(line[w][1])

 { for(int i=0;i<2;i++)

 {for(int j=0;j<3;j++)

 {for(int d=line[w][i];d<line[w][i]+10;d++)

 {for(int g=col[h][j];g<col[h][j]+10;g++)

 {if(pDC->GetPixel(d,g)==0)

 {dotcount++;}

 } }

 if(dotcount>=10){BTemp[k++]=1;}

 else{BTemp[k++]=0;}

 }}w++;} h++;}

2-Atom

1-Atom 1-Atom 1-Atom 1-Atom

84

Having grouped Braille dots in a cell, context analysis is performed to determine the

status of dots in a cell. Based on the contextual analysis result the cell can be recognized

as Braille character alone or part of a Braille character. This is because depending on the

context a Braille character may have one or two cells. Based on the analysis if the cell

content gives the required Amharic Braille character then the content of the cell is

registered with six additional 0s because this cell can make Amharic Braille character

alone. On the other hand, if the cell content requires the second cell to make the Braille

character or is part of a Braille character then the contents of the two Braille cells are

restored as a twelve bit representation for a particular Braille character.

During contextual analysis the content of a cell has been checked for three conditions:

Braille vowel, numerals and punctuation. In order to make contextual analysis for

Amharic Braille core characters, numerals and punctuation marks we define first the

criteria for each condition. Amharic Braille core characters’ contextual analysis is done in

two ways: all the basic forms (the 6th form of a given character), which are 34 in number,

are represented with one Braille cell and the rest (34*6) requires two Braille cells (the

first cell is their basic form and the second cell is the vowel for one of the six forms). To

illustrate sample basic characters are given in Table 4.2 with Braille code representation,

dot position representation in bits and equivalent Amharic characters.

Braille

code

Dot

positions

Representation Amharic

character d1 d2 d3 d4 d5 d6

125 1 1 0 0 1 0 ህ

134 1 0 1 1 0 0 ም

146 1 0 0 1 0 1 ሽ

16 1 0 0 0 0 1 ች

12356 1 1 1 0 1 1 እ

1356 1 0 1 0 1 1 ዝ

245 0 1 0 1 1 0 ጅ

12346 1 1 1 1 0 1 ፅ

Table4. 2 Basic Amharic characters one cell representation

85

Further Amharic core characters other than basic characters are represented using two

cells; the first cell defines the basic character for that variant and the second cell defines

the vowel. To make the representation clear consider the characters “ሀ” and “ሁ”. The

basic character for the two characters is the same which is “ህ” represented using

“110010”. Their difference lies on the vowel representation: “ሀ” uses “010010” as vowel

where as “ሁ” uses “101001” to its vowel. The vowel representation for other variants is

done in similar way: the vowels are “010100”, “100000”, “100010”, “101010”, for the

third, fourth, fifth and seventh variants. Table 4.3 shows one to one mapping between

Braille to print Amharic characters for “ሀ” variants. The dot position within a cell are

represented with d1, d2, d3, d4, d5 and d6 and the presence of a dot at a given cell in one

of the six possible dot positions is represented by 1 where as the absence of a dot is

represented by 0.

Table4. 3 Braille to print mapping for the “ሀ” Amharic character variants

The contextual analysis for Amharic Braille core characters is done using the visual C++

code depicted in Figure 4.8. In analyzing Amharic Braille core characters the vowels are

stored in an array and whenever the content of a Braille cell matches these vowels the

vowels are restored as the suffix of the previous cell; otherwise the consonants are

restored in the current array and their corresponding next six bits are set to 0.

Braill

e code

Dot

position

 Representation Amharic

character
cell1 cell2

d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

125 and 26 1 1 0 0 1 0 0 1 0 0 0 1 ሀ

125 and 136 1 1 0 0 1 0 1 0 1 0 0 1 ሁ

125 and 24 1 1 0 0 1 0 0 1 0 1 0 0 ሂ

125 and 1 1 1 0 0 1 0 1 0 0 0 0 0 ሃ

125 and 15 1 1 0 0 1 0 1 0 0 0 1 0 ሄ

125 1 1 0 0 1 0 0 0 0 0 0 0 ህ

125 and 135 1 1 0 0 1 0 1 0 1 0 1 0 ሆ

86

Figure4. 8 Visual C++code to detect Amharic characters

To make the concept clear (the code in Figure4.8) consider the Braille image given in

Figure 4.9. The first cell contains the consonant 101100, then it restores in the array and

it searches for a vowel. Since the second cell matches one of the vowels then it restores as

suffix of the previous cell. In the figure below the consonant represents “ም”. Since the

vowel is representation of the first form of the alphabet, instead of restoring “ም” it

restores “መ” and registers 101100010001 to an array.

Figure4. 9 Sample Braille image to check consonants and vowels

 if(consonant(BTemp)==0)

{

 if(BCount-1>=0)

 {int temp=BCount-1;

 for(int a=0;a<6;a++)

 {ABChar[temp].vd[a]=BTemp[a]; }}

 else

 {for(int a=0;a<6;a++){

 ABChar[BCount].d[a]=0;

 ABChar[BCount].vd[a]=BTemp[a];

 }BCount++;}}

 else if(consonant(BTemp)==1)

 {for(int a=0;a<6;a++){

 ABChar[BCount].d[a]=BTemp[a];

 ABChar[BCount].vd[a]=0;}

 BCount++;}

Cell for consonant

Cell for vowel

87

In addition to Amharic core characters, Amharic Braille has a representation mechanism

for numerals. Amharic Braille uses both Ethiopic and Arabic numerals. Both numerals

are represented in two Braille cells. Their difference lies on the numeral mode that

precedes the numbers. The numeral mode for Ethiopic number is “111111”, while

“001111” used for Arabic numbers. Accordingly the first cell in numerals defines the

numbers mode (Ethiopic or Arabic) and the second cell defines the numbers 0-9 for

Arabic and ፩-፲ for Ethiopic numbers. To illustrate the situation the representational

mechanism and the mapping for Arabic and Ethiopic Braille numerals are given in

Appendix IV.

Amharic Braille also has a representation for different punctuation marks which are used

in Amharic writing system. In Amharic Braille punctuation marks can be represented in

one, two or three Braille cells. The mapping between Amharic Braille punctuation marks

and their corresponding punctuation marks in print for sample punctuation marks with

one Braille cell and two Braille cells are given in Appendix IV.

Similarly contextual analysis is made on Amharic Braille punctuation marks since their

representation is based on either one or two Braille cells. To handle the situation

punctuation marks with one cell and punctuation marks with two cells are defined

separately. If the content of a Braille cell matches one of the punctuation marks with one

cell then the first array restores the defined punctuation mark representation and the

second cell is filled with 0s. Those punctuation marks which require two Braille cells are

represented in punctuation prefix and suffix. If the punctuation prefix is found in the first

cell then the second cell is considered as the suffix of that punctuation mark.

Moreover to give room for some Braille characters that does not considered in this study;

such as the remaining punctuation marks and extra Amharic characters, all other cells that

fail to meet the above criteria are labeled as others cell content. The full Visual C++ code

for feature extraction is given in Appendix V.

To prepare patterns input for the classifiers, the extracted features from Braille images are

represented in twelve bits and class labeled with “?”. At this stage dots in a cell are

88

converted to a binary digit, 1 indicates the presence of dots whereas 0 represents the

absence of dots in the corresponding dot position as shown in Table4.4. The extracted

features are then fed to the J48 decision tree classifier and SMO implementation of SVM

to predict their class label.

c1d1 c1d2 c1d3 c1d4 c1d5 c1d6 c2d1 c2d2 c2d3 c2d4 c2d5 c2d6 class

1 1 0 0 0 0 0 0 0 0 0 0 ?

0 1 1 1 1 0 0 0 0 0 0 0 ?

0 0 1 1 0 1 0 1 0 0 0 1 ?

1 0 1 1 1 1 0 0 0 0 0 0 ?

1 1 1 1 1 0 0 0 0 0 0 0 ?

0 0 0 0 0 0 0 0 0 0 0 0 ?

0 1 1 1 1 0 1 0 0 0 0 0 ?

1 1 0 1 1 1 0 1 0 0 0 1 ?

0 0 1 1 0 1 0 1 0 0 0 1 ?

0 1 0 1 1 1 1 0 0 0 0 0 ?

1 1 1 0 0 0 0 1 0 0 0 1 ?

0 1 0 0 1 0 0 0 0 0 0 0 ?

0 1 0 0 1 1 0 0 0 0 0 0 ?

Table4. 4 Sample extracted features represented in 12 bits

4.2.4. Performance Evaluation for Feature Extraction Techniques

The feature extraction techniques discussed so far and the feature extraction technique

(i.e. intersection of mesh grid lines) employed in the previous study are used to extract

and group Braille dots into cells. Here, Braille characters are given for each technique to

analyze its performance. The total numbers of Braille characters, which are extracted

from clean Braille images, used for testing are 437. The extracted features are then fed to

the J48 decision tree classifier to measure the accuracy for each technique. J48 decision

tree classifier is used to compare the performance of each technique because J48 is found

to be simple, as compared to SMO, to build model and generate predictions easily. The

accuracy of each algorithm is then measured by dividing correctly extracted Braille

characters to the total number of characters given. Table4.5 depicts the performance

(accuracy) of the feature extraction techniques employed in this study.

89

Feature Extraction

Technique

Total number of

characters

Correctly Extracted

Braille Characters
Accuracy (%)

Fixed Cell Measures 437 432 98.85

Horizontal and Vertical

Projection

437 399 91.30

Grid Construction 437 419 95.88

 Intersections of grid

lines (previous study)
437 397 90.85

Table4. 5 Performance comparisons for feature extraction techniques

As can be seen in Table4.5, the feature extraction algorithm with fixed cell measures

shows better results in extracting Braille dots and grouping them into cells but the

algorithm based on intersection of grid lines performs least. Since Braille characters are

represented by six points, 3 per column and 2 per row, and have standard distance

between them, the performance of fixed cell measures feature extraction algorithm is

reasonable. But the algorithm based on intersection of grid lines performs least. The

reason is that all Braille dots could not found at the intersection point of the grid lines.

Hence, Braille dots in cells near at the intersection of mesh grid lines (above or below)

are not extracted well in the previously adopted feature extraction technique.

4.3. Amharic Braille Character Classification and Recognition

The classification and recognition module relies on the results of the feature extraction

module and predicts the target class values for extracted features based on the training

model. The overall task of the classification and recognition module is to be able to

classify extracted input Braille characters into one of the possible Amharic characters.

The feature patterns that are extracted from the Braille image, as shown in Table4.4, are

stored in a file with 12 bits sequence that can be either 1 or 0 and their class value with

“?”.

For Amharic Braille characters a training dataset is created. To train and classify test data

sets, to their respective class labels, WEKA tool is used. Supervised machine learning

algorithms J48 decision tree and Sequential Minimal Optimization (SMO)

90

implementation of SVM are used in this study for training the classification model and to

generate rules. The trained decision tree and SVM models contain a set of rules for

predicting class label. When predicting the class labels for a given sequence of features,

the most probable class label for each Braille feature is predicted using the respective

trained model. Both decision tree and SVM are suitable for hierarchical problem;

decision tree works better in linearly separable problems but SVM works in complex and

non-linear separable problems.

4.3.1. Training the Decision Tree and SVM

To train the classifiers, different parameters are specified. In this study default values for

each parameter are accepted. The reason is that the default values perform some pruning.

The selected parameters for the decision tree classifier and SVM classifier are depicted in

Table4.6.

Using training instances it is possible to generate a classification model which can be

used in classifying new instances. The advantage of building a model and storing it is that

it can be applied at any time to different sets of unclassified feature patterns. To generate

the classification model both the GUI and command line versions of WEKA are used in

this study.

Parameters
Classifier

J48 default value SMO default value

Confidence factor 0.25 -

minNumObjects 2 -

Cross validation 10-folds 10-folds

Complexity constant - 1.0

Epsion - 1.0E-12

Kernel - PolyKernel -C 250007 -E 1.0

Tolerance parameter - 0.0010

Table4. 6 Default parameters for J48 and SMO classifiers

91

To generate models in WEKA’s command line interface the following lines of instruction

are used. The first line of instruction is for J48 decision tree classifier whereas the second

is for SMO SVM implementation.

Where the options,

 -C is the confidence factor used for pruning whose default value is 0.25 for J48

and the complexity constant whose default value is 1.01 for SMO

 -M is the minimum number of instances per leaf whose default value is 2

 -L is the tolerance parameter whose default value is 0.0010

 -N is option to specify whether to 0=normalize/1=standardize/2=neither, default

value is 0=normalize

 -t option specifies that the next string is the full directory path to the training file

(in this case “Braille.arff”).

 directory-path is the full directory path where the training file resides.

 -d directory-path option specifies the name (and location) where the model will

be stored.

4.3.1.1. Classifiers’ Performance Evaluation on Model Building

At this point whether the classifiers can recognize the character set used for training is

analyzed. To see whether the classifiers can learn all the character sets used for training,

the three datasets prepared for training have been fed to the decision tree and the SVM

classifier independently. Moreover, each training set contains three iterations. In the first

iteration each instance has one value, in the second iteration two repeated values and

similarly in the third iteration each instance has three duplicate values.

java weka.classifiers.trees.J48 -C 0.25 -M 2 -t directory-path\Braille.arff -d directory-

path \Braille.model

java weka.classifiers.functions.SMO –C 1.01 -L 0.0010 -N 0 -t directory-

path\Braille.arff -d directory-path \SMO.model

92

The classification accuracies of the models created using the three training sets, with

three iterations, for J48 decision classifier and SMO implementation of SVM are depicted

in Table 4.7. To build models on training datasets for both J48 and SMO are run using

10-fold cross validation as evaluation approach.

As can be seen in Table4.7, analysis of experiments show that the models created using

training dataset 1, 2 and 3 results 100% accuracy in iteration2 and iteration3. This

indicates that both the J48 decision tree and SMO SVM implementation learn (fully

recognizes) all Amharic alphabets and numerals. However, the classification accuracy of

the model created using J48 decision tree in for all trainings in iteration1 is around 43%:

this indicates that J48 decision tree learns all characters when we increase the training

record.

Dataset

(Unique

instances)

Iteration

 (total

records)

Classifier

Decision Tree (J48) SVM (SMO)

Accuracy (%) Time
1
 (sec) Accuracy (%) Time (sec)

Training

dataset 1

(238)

1 (238) 42.86 0.22 100 215.96

2 (476) 100 0.04 100 102.96

3(714) 100 0.05 100 242.43

Training

dataset 2

(258)

1 (258) 42.63 0.03 100 252.5

2 (516) 100 0.06 100 549.52

3(774) 100 0.04 100 577.26

Training

dataset 3

(281)

1 (281) 43.06 0.11 100 142.1

2 (562) 100 0.11 100 148.41

3(843) 100 0.11 100 436

1 Time taken to build a mode in seconds

Table4. 7 Training model performance for J48 and SMO

93

From the above models, the models created using training set 3, iteration 3 for both the

decision tree and the SVM, have been selected as a model for testing new extracted

features. The rationale behind is that the models at this training set are built using all the

characters that are in other training sets plus additional punctuation marks. Generally,

Evaluation on the performance of the models with the training set indicates that for all

training sets almost the same level of performance is achieved by both the decision tree

and SVM. However, in terms of time to build a model SVM is very expensive.

4.3.2. Testing the Decision Tree and SVM Performance

Once the decision tree (J48) and SVM (SMO) classifiers are trained, it is required to test

the performance of the models with different test cases. For the test cases input patterns

are extracted from Braille images using fixed cell measures technique, which is found to

be the better feature extraction technique. These patterns or features are prepared and fed

to the J48 decision tree and SMO SVM classifiers. Since the extracted features have

missing class label, it is necessary to predict the class label for each pattern sequences

using the classification models built earlier. The prediction on class label for extracted

features is done in two ways. The first one is using the GUI version of WEKA and the

second is using the command line version of WEKA.

To test new extracted features, commands for J48 and SMO are given below respectively.

In the above commands, the -l options specifies the directory path and name of the model

file, the -T option specifies the name (and path) of the test data. In this case, the test data

is extracted features stored in a file “Braille-newfeature.arff”. The option –p 0 indicates

prediction and > option is used to redirect (write) to a file called file name.

java weka.classifiers.trees.J48 -l directory-path\Braille.model -T directory-path

\Braille-newfeature.arff -p 0 > directory-path\filename

java weka.classifiers.functions.SMO -l directory-path\Braille.model -T directory-

path \Braille-newfeature.arff -p 0 > directory-path\filename

94

The performance of the classifiers is tested on datasets taken from clean Braille image

(test set1) and noisy Braille images (test set2 and test set3). Table 4.8 presents test results

obtained using models created by J48 decision tree and SOM SVM.

Table4. 8 Performance of J48 and SMO on test data set

As can be seen in Table4.8, SMO implementation of SVM and J48 decision tree

classifiers register, on the average, 97.25% and 98.25% accuracy respectively. The

performance of both the J48 decision tree and SMO SVM implementation is similar for

test set1. This indicates that both classifiers are suitable in classifying Braille characters

extracted from clean Braille documents. For test set2, which is strategically selected from

noisy documents, SMO implementation of SVM outperforms J48 decision tree classifier

in predicting unseen features. This indicates that as the noise level increases (for testing

on real life documents) SMO implementation of SVM registers better results. In general,

as the level of noise increases the performances of both classifiers decrease. Hence, noise

removal technique is required to improve the performance of the classifiers.

To illustrate Table4.9 shows sample characters that are misclassified in test set1 and test

set 2 for both classifiers. As can be seen in Table4.9, some characters are incorrectly

classified by both classifiers whereas some are correctly classified by SMO but

incorrectly classified by J48. For example, the character “ሀ” which is represented in

110010010001 (dot position፡ 125 and 26) is replaced by character “ረ”, which is

represented in 111010010001 (dot position: 1235 and 26). Here, addition of a dot at

position 3 is committed by J48. On the other hand, both J48 and SMO replaced the target

Test set
Total Characters

given to the classifier

Classifier

J48 SMO

Correctly

classified

Accuracy

(%)

Correctly

classified

Accuracy

(%)

Test set 1 402 399 99.25 399 99.25

Test set 2 400 381 95.25 389 97.25

Average 390 97.25 394 98.25

95

character “ፆ”, which is represented in 1110101101010 (dot position: 12346 and 135),

with character “ዞ”, which is represented in 101011101010 (dot position: 1356 and 135).

Here, deletion on dot position 2 and substitution of dot position 4 by dot position 5 is

performed.

Table4. 9 Error types in validating DTC and SVM classifiers

Even though SVM takes much time to build a model, once the model has built it

generates prediction results in minimal time. In addition, SVM has been more suitable

for noisy documents as compared to decision tree. Hence, SVM has been used to measure

the performance of the system: in the next section in order to measure the performance of

the system fixed cell feature extraction technique and SMO SVM implementation has

been used as a feature extraction and classification techniques respectively.

4.4. Performance Evaluation of the Amharic OBR System

The performance of the system, prediction accuracy of SMO, is tested with test sets

extracted from real life Braille documents using fixed cell measure feature extraction

technique. This test helps to measure the performance of the SVM classifier on real life

Braille documents. The real life documents are grouped into four noise levels as Ebrahim

[16] did: clean, small noise level, medium noise level and high noise level Braille

documents. In measuring the performance of the classifier four test sets have been

Test set Input Dot representation
Expected

Predicted

J48 SMO

Test set1

1 1 1 1 1 1 0 1 0 1 0 0 ኢ ፱ ቂ

1 0 1 1 1 1 1 0 0 0 0 0 ያ ፦ ኛ

1 0 0 0 1 1 0 0 0 0 0 0 ኅ ች ፡

Test set2

1 1 1 0 1 1 0 1 0 0 0 1 አ ጰ አ

1 0 1 1 1 1 1 0 0 0 0 0 ያ ማ ማ

0 1 1 1 1 1 0 1 0 1 0 0 ጢ ፡፡ ዊ

1 1 0 0 1 1 1 0 1 0 1 0 ፆ ዞ ዞ

1 1 0 0 1 0 0 1 0 0 0 1 ሀ ረ ሀ

96

prepared with a total of 5867; 2004 for clean characters, 1462 small noise level

characters, 1100 for medium noise level characters and 1301 for high noisy level

characters.

Accordingly, test set1, test set2, test set3 and test set4 have been submitted for

recognition. The system is tested with Braille images filtered with the proposed noise

removal technique, Gausian filtering, by Ebrahim [16]. The performance of the system is

depicted in Table4.10.

Test set Test size Prediction accuracy (%)

Test set1 2004 98.5

Test set2 1462 97.26

Test set3 1100 94.36

Test set4 1301 72.56

Average 90.67

Table4. 10 Performance rates for the system on real life documents

As can be seen in Table 4.10, the performance of the system for clean Braille documents

(test1), small-level noise Braille documents (test2) and medium-level noise Braille

documents (test3) is more comparable and better than high level noise Braille documents

(test4). This indicates that the proposed feature extraction and classification techniques,

handles small and medium noises encountered in Braille images. On the other hand, the

performance of the system decreases significantly for documents with high noise level.

The rationale behind is that since high noise levels created due to repetitive use, bend and

highly connected Braille dots, in attempt to reduce noises in documents the noise removal

technique also adds and deletes Braille dots. To illustrate consider the examples given

Table4.11.

97

Braille Document Translation

scanned

Experts’:

ብትጠይቅ

ታገኘዋለህ::

preproc

essed

System’s:

ብትኘይቅ

ታሰኘዋለ፥::

Table4. 11 Sample test result on real life document

As can be seen in Table 4.11, there are differences between the experts and system

translation: character “ጠ” is replaced with “ኘ”, “ገ” with “ሰ” and “ህ” with “፥”. The

rationale is that during preprocessing Braille dots are deleted or added. The detail for

each misclassification is shown below.

Figure4. 10 Misclassified characters on real life document

In addition, the mesh grid segmentation is not capable of handling large dots found at the

edge of the Braille image. As a result, to improve performance of the system with high

level noise documents a noise removal technique that can clearly separates the noise with

the content is required besides an effective segmentation algorithm that is insensitive to

noise.

4.5. Discussion and Challenges

As a continuation of the previous researches in the area, the present study explores

feature extraction and classification schemes for Amharic OBR system. In this study,

Deletion at position2

“ጠ” replaced by “ኘ”

Combine 2 and 5, and
addition at position 6

“ገ” replaced by “ሰ”

Deletion at position1

“ህ” replaced by“፥”

98

during experimentation the feature extraction technique with fixed cell measures and

SVM classifier have been found to work very well in Amharic OBR system. The results

of the present system with the proposed feature extraction and classification techniques,

and the previous researches [49][16] are depicted in Table 4.12.

Table4. 12 Performance comparison between related works

As can be seen in Table 4.12, the performance of the Amharic OBR system is improved

in the present study by integrating better feature extraction and classification schemes.

There is also an improvement on the performance of the system for real life documents

(for small noise level, medium noise level and high noise level documents). However, the

performance of the system decreases with an increase in the noise level of Braille

documents. The rationale is that the noise removal technique (Gaussian) removes highly

connected dots without separating the content and dots. Hence, it is better to integrate

advanced noise removal technique for high noise level documents.

Besides to correctly recognize Braille documents with many artifacts, an algorithm that

correctly segments the Braille images into cells is crucial in Braille recognition.

Resear

ches

Trainin

g size

Feature

extraction

technique

Classif

ier

Noise

removal

Performance on real life

documents (%)

Clean small

noise

medium

noise

high

noise

[49]

(2009)

267 Count black

pixels at

intersection of

mesh grid lines

ANN - 92.5 - - -

[16]

(2010)

267 Count black

pixels at

intersection of

mesh grid lines

ANN Gaussian 95.5 95.5 90.5 65.5

Presen

t study

281 Fixed cell

measures

SVM Gaussian 98.5 97.26 94.36 72.56

99

However, the segmentation algorithm encounters challenges that are created by real life

documents. The variation of the Braille dots size greatly affects the construction of grid

lines and in some Braille documents Braille dots segmented incorrectly. To illustrate

consider the example given in Figure4.11.

(a) mesh grid construction for segmentation

(b) Segmented Braille image

Figure4. 11 Sample segmented Braille image

100

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1. Conclusion

The Braille system is a tactile method widely used by visually impaired people to read

and write. Braille documents contain lines consisting of a series of characters. Each

character has six dots arranged in three rows and two columns and each dot can either be

raised or be flat according to the corresponding symbol the character represents. Braille

is understandable by visually impaired people; however, vision people need not be able to

understand these codes. The development of Braille recognition systems can bridge the

communication gap between visually impaired and vision people. A lot of effort has been

made world-wide by different researches to bridge this gap. In this study an attempt has

been made on the feature extraction and classification modules of Amharic Braille

recognizer which are the two main components to improve the performance of the

system.

After collecting Braille documents from different sources, they are scanned, preprocessed

and segmented to identify a collection of Braille dots which represents Amharic

characters. From the Braille dots features are extracted using fixed cell measure,

horizontal and vertical projection, and grid construction feature extraction techniques.

Test results show that, among the feature extraction techniques explored in this study,

fixed cell measure performs well in terms of grouping valid Braille dots to Braille cells.

This technique takes advantage of the regular spacing between Braille dots within a cell,

and the regular spacing between cells. The algorithm scans a Braille cell once and checks

the context to determine on cell alone or two cells as a Braille character. From this

information, the dots are grouped into cells and the dot patterns are determined and

represented by a bit string.

101

Having grouped dots in a cell, contextual analysis is made to determine the status of dots

in a cell. Based on the result the cell can be recognized as Braille character alone or part

of a Braille character. This is because depending on the context a Braille character may

have one or two cells. Amharic Braille characters use one, two and three cells to

represent the corresponding Amharic character. For this study one cell and two cells

Braille characters are considered and to get uniform representation for one and two

Braille, one cell Braille characters are converted to two cells by filling their second cell

with 0s. The bit strings of the cells are then stored in a file and then fed to the WEKA

J48 decision tree and SMO implementation of SVM classifier models to predict the class

labels for each twelve bit sequences.

The classification models have been trained with three different datasets in order to get

better prediction results. After training and building classification model have been

completed, testing has been performed to evaluate the performance of the classifiers. Test

results show that SVM outperforms decision tree in terms of predicting class labels for

features extracted from real life documents.

Finally, the performance of the system has been tested with four test sets based on the

level of noises in Braille documents. In addition the system has been tested using

Gaussian noise removal technique. The results are 98.5%, 97.26%, 94.36% and 72.56%

for clean, small noise, medium noise and high noise Braille documents respectively.

The majority of the misclassification errors are attributed to the challenges faced by the

segmentation and noise removal techniques from poor quality Braille document images.

Very old documents with some of the protrusions flattened due to heavy use give rise to

more incorrectly recognized characters.

5.2. Recommendation

Based on the investigation and findings of the study, the following recommendations are

forwarded for further research.

1. The segmentation algorithm adapted to Amharic Braille recognizer is not flexible to

handle Braille dots with different sizes. Hence, future works should adopt different

102

flexible segmentation algorithms to extract different dot sizes effectively.

2. In removing noises from real life Braille documents Gaussian filtering with

morphological operations works well for clean, small noise and medium noise Braille

documents. However, this noise removal technique cuts highly connected Braille dots

in high noise documents. Therefore, to improve the performance of the system on

high level noise documents future works need to integrate advanced noise removal

techniques that clearly separate noises from content in high noise level documents.

3. In the Amharic OBR after all valid dots are extracted they passed to the classifier and

then recognition has been made. To enable the Amharic OBR system more effective

and robust it is necessary to incorporate post processing techniques (with the help of

dictionary, thesaurus and grammar) that can automatically correct grammatical and

spelling errors in the recognized words.

4. In this study the classification model has been built based on 281 Amharic Braille

characters. Diaphones, punctuation marks with three cells and some Ethiopic

numbers, multiples of 10 and multiples of 100 such as ፳,፴,፻,፳፻ are not included. As

a result, to realize full-fledged Amharic OBR future works should consider the whole

Amharic Braille character set.

5. In this study properly scanned documents have been used. The slanting of Braille

affects the mesh grid construction. As a result future work should investigate

skewness detection and correction techniques.

6. In considering color variation gray level documents have been tested. However,

Braille documents with different color images can be produced. Since the intensity

level of pixel in Braille image varies from one color to another color, future work

should include Braille documents with different colors.

7. A Braille document can either have the dots embossed on one side or on both. The

latter is also called inter-point Braille when the positions of the dots from one side lie

between the positions of the dots on the other side. This is designed to reduce the bulk

of the document and to save on materials, given that a page of Braille is quite thick

and heavy compared with ordinary paper. In this study only single sided Braille

documents have been considered. As a result future work needs to consider double

sided Braille documents.

103

REFERENCE

[1]. M. Abdallah, Abualkishik, and Khairuddin Omar, “Quranic Braille system”,

International Journal of Human and Social Sciences, vol. 4, no.8, pp.600-606,

2009.

[2]. AbdulMalik Al-Salman, Yosef AlOhali, Mohammed AlKanhal and Abdullah

AlRajih, “An Arabic Optical Braille Recognition System”, Proceedings of the

First International Conference in Information and Communication Technology

and Accessibility(ICITA 2007), Hammamet, Tunisia, pp.81-87,2007

[3]. M. Anyanwu and S. Shiva, “Application of enhanced decision tree algorithm to

churn analysis”, 2009 International Conference on Artificial Intelligence and

Pattern Recognition (AIPR-09), Orlando Florida, 2009.

[4]. Apostolos Antonacopoulos and David Bridson, “A robust Braille recognition

system”, Pattern Recognition and Image Analysis group, S. Marinai and A.

Dengel (Eds.): DAS 2004, LNCS 3163, 2004, pp. 533–545.

[5]. A. V. Kulkarni and L. N. Kanal “An optimization approach to hierarchical

classifier design”, Proc. 3rd Int. Joint Conf. on Pattern Recognition, San Diego,

CA, 1976, pp. 459-466.

[6]. Baye Yimam, “Ethiopian writing system (Feedel)”, (Translated by Samuel Kinde

and Minga Negash)

Available:http://hageregziabher.wordpress.com/2010/08/18/ethiopian-writing-

system-feedel [Accessed: January 11, 2011].

[7]. M. L. Bender, J. D Bowen, R. L. Cooper, and C.A. Charles, “Language in

Ethiopia”, London, Oxford University, pp.371-380, 1976.

[8]. P. Blenkhorn, “A system for converting Braille into print”, IEEE Transactions on

Rehabilitation Engineering, vol.3, no.2, pp. 215-221, 1995.

[9]. L. Breiman, J. Friedman, L. Olshen and J. Stone, Classification and Regression

trees. Wadsworth Statistics/Probability series, CRC press Boca Raton, Florida,

USA, 1984.

[10]. Cluth Mackenzie, “World Braille usage: A survey of efforts towards Uniformity

of Braille notation”, UNESCO PUBLICATION MC, 1953.

104

[11]. C.M. Ng, Vincent Ng and Y. Lau, “Regular feature extraction for recognition of

Braille”, In proceeding of Third International Conference on Computational

Intelligence and Multimedia applications, ICCIMA, pp. 302-306, 1999.

[12]. C.M. Ng, Vincent Ng and Y. Lau, “Statistical Template Matching for Translation

of Braille”, In Proceedings of the Spring Conference on Computer Graphics

(SCCC 1999) , 1999, pp.197-200.

[13]. D. E. Gustafson, S. B. Gelfand, and S. K. Mitter, “A nonparametric multiclass

partitioning methods for classification,” in proc. 5
th

 int. conf. pattern Recognition,

1980, pp.654-659.

[14]. Dereje Teferi, “Optical character recognition of typewritten text”, M.Sc. Thesis,

School of Information Studies for Africa, Addis Ababa University, Addis Ababa,

1999.

[15]. Dirk Wilking and Thomas Rofer, “Real time object recognition using decision

tree learning”, in RoboCup2004, Lecture notes in Artificial Intelligence, Springer,

pp.556-563, 2005.

[16]. Ebrahim Chekol, “Recognition of Amharic Braille documents”, M.Sc. Thesis,

Faculty of Informatics, Addis Ababa University, Addis Ababa, June 2010.

[17]. Ermias Abebe, “Recognition of formatted Amharic text using optical character
recognition”, M.Sc. Thesis, School of Information Studies for Africa, Addis
Ababa University, Addis Ababa, 1998.

[18]. F. Zahedi and R. Thomas, “Hybrid image segmentation within a computer vision
hierarchy”, IJEEE, vol. 30, pp.57-64, 1993.

[19]. M. Garofalakis, D. Hyun, R. Rastogi and K. Shim, “Efficient algorithms for
constructing decision trees with constraints”, Proceedings of the sixth ACM

SIGKDD international conference on Knowledge discovery and data mining,
2000, pp. 335-339.

[20]. J. Gehrke, R. Ramakrishnan, V. Ganti, “RainForest - a framework for fast
decision tree construction of large datasets”, Proceedings of the 24th VLDB

conference, New York, USA, 1998, pp.416-427.

[21]. G. Landeweerd, T. Timmers, E. Gelsema, M. Bins and M. Halic, “Binary tree
versus single level tree classification of white blood cells”, Pattern Recognition,
vol. 16, pp.571-577, 1983.

105

[22]. Hamid Reza, Shahbazkia Telmo, Tavares Silva, and Rui Guerreiro, “Automatic
Braille code translation system”, CIARP 2005, LNCS 3773, pp. 233–241, 2005.

[23]. X. F. Hermida, Andrés Corbacho, Fernando Martín, “A Braille O.C.R. for Blind
People”, Proceedings of ICSPAT-96, Boston (U.S.A.), October 1996.

Available:
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.7727&rep=rep1&type=p
df [Accessed: December 23, 2010]

[24]. E.B. Hunt, Marin and P.J. Stone, Experiments in induction. Academic Press,
NewYork, 1996.

[25]. S. I. Ibrahim and Abuhaiba, “Efficient OCR using simple features and decision
trees with backtracking”, the Arabian Journal for Science and Engineering,
vol.31, no,2B, pp.223-243, October 2006.

[26]. K. S. Fu, Syntactic pattern recognition and application. Prentice Hall, 1982.

[27]. R. J. Lewis, “An introduction to classification and regression Tree (CART)
analysis”, 2000 Annual Meeting of the Society for Academic Emergency

Medicine, Francisco, California, 2000.

[28]. Lisa Wong, Waleed Abdulla and Stephan Hussmann, “A software algorithm

prototype for optical recognition of embossed Braille”, Proceedings of the 17
th

International Conference on Pattern Recognition (ICPR’04), pp.23-26, August

2004.

[29]. N. Matthew, Anyanwu and G. Sajjan, “Comparative analysis of serial decision

tree classification algorithms” International Journal of Computer Science and

Security (IJCSS), vol. 3 , no.3, pp. 230-240, 2009.

[30]. M. Mehta, R. Agrawal and J. Rissanen, “SLIQ: a fast scalable classifier for data

mining”, In EDBT96, Avignon, France, 1996.

[31]. J. Mennens, “Optical recognition of Braille writing”, IEEE, 1993, pp.428-431.

[32]. J. Mennens, L. Tichelen, G. François and J. J. Engelen, “Optical recognition of

Braille writing using standard equipment”, IEEE transactions of rehabilitation

engineering, vol.2, no.4, pp.207-211, December 1994.

[33]. Million Meshesha, “A generalized approach to character recognition of Amharic

texts”, M.Sc. Thesis, School of Information Studies for Africa, Addis Ababa

University, Addis Ababa, 2000.

106

[34]. Million Meshesha, “Recognition and retrieval from document image collections”,

PhD Dissertation, International Institute of Information Technology Hyderabad

500 032, India, August 2008.

[35]. M. W. Kurzynski, “Decision rules for a hierarchical classifier,” Pattern

Recognition Lett, vol.1, pp.305-310, 1983.

[36]. Néstor Falcón, M. T. Carlos, B. A. Jesús, and A. F. Miguel, “Image Processing

Techniques for Braille Writing Recognition”, EUROCAST, LNCS3643, pp. 379 –

385, 2005.

[37]. Y. Oyama, T. Tajima, and H. Koga, “Character recognition of mixed convex-
concave Braille points and legibility of deteriorated Braille points”, System and
Computer in Japan, vol.28, no. 2, 1997.

[38]. V. Podgorelec, P. Kokol, B. Stiglic, I. Rozman, “Decision trees: an overview and
their use in medicine”, Journal of Medical Systems Kluwer Academic/Plenum

Press, vol. 26, no. 5, pp. 445-463, 2002.

[39]. Qing Chen, “Evaluation of OCR algorithms for images with different spatial
resolutions and noises”, M.Sc. Thesis, School of Information Technology and
Engineering Faculty of Engineering, University of Ottawa, 2003.

[40]. J. R. Quinlan, “Induction of decision trees”, Machine Leaning, vol.1, pp.81-106,
1986.

[41]. J. R. Quinlan, “Simplifying decision trees”, International Journal of Machine
Studies, no. 27, pp. 221-234, 1987.

[42]. J. R. Quinlan, C45: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

[43]. Rasoul Safavian and David Landgrebe, “A Survey of Decision Tree Classifier
Methodology”, Reprinted from IEEE Transactions on Systems, Man, and
Cybernetics, IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3,
pp 660-674, May 1991.

[44]. R. Rastogi and K. Shim, “PUBLIC: a decision tree classifier that integrates

building and pruning”, Proceedings of the 24th VLDB Conference, New York,

1998, pp. 404-415.

[45]. R. T. Ritchings, A. Antonacopoulos and D. Drakopoulos, “Analysis of scanned
Braille documents”, Document Analysis Systems: World Scientific Publishing
Company, 1995, pp. 413–421.

107

[46]. R. Robert, J. Gotwals,” BRL: Braille through Remote Learning”

Available: http://www.brl.org/intro/session11/teaching.html [Accessed: December
25, 2010]

[47]. J. Shafer, R. Agrawal and M. Mehta, “Sprint: a scalable parallel classifier for
data mining”, Proceedings of the 22nd international conference on very large data
base. Mumbai (Bombay), India, 1996, pp. 1-12.

[48]. A. Taylor, “Choosing your Braille embosser”, The Braille Monitor44, vol.44,
no.9, October 2001.

[49]. Teshome Alemu, “Recognition of Amharic Braille”, M.Sc. Thesis, Department

of Information Science, Addis Ababa University, Addis Ababa, March 2009.

[50]. P. Utgoff, and C. Brodley, “An incremental method for finding multivariate splits

for decision trees”, Machine Learning: Proceedings of the Seventh International

Conference, 1990, pp.58-65.

[51]. UNESCO, World Braille usage: national library service for the blind and

physically handicapped library of congress. Washington D.C., USA, 1990.

[52]. Vidyashankar, Hemantha Kumar, P. Shivakumara,“Rotational invariant histogram
feature for recogntion of Braille symbols”,University of Mystroe, Karnataka,
India, 2004.

[53]. WHO Available at: http://www.who.int Active on April 1st, 2005.

[54]. Wondwossen Mulugeta , “OCR for special type of handwritten Amharic text

(“YEKUM TSIFET”), M.Sc. Thesis, Department of Information Science, Addis

Ababa University, Addis Ababa, 2004.

[55]. Tan, Steinbach and Kumar, Introduction to data mining. Addison Wesley, 2006.

 [56]. ነብየ ልዑል ዮሃንስ ዘመነ ብርሃን አዲስ አበባ ብርሃንና ሰላም ማተሚያ ቤት 1954፡፡

[57]. T. Agui and T. Nagao, Computer image processing and recognition. Tokyo:

Shoho-do, 1994.

[58]. Lehal G,S. and Chandan Singh, “Feature extraction and classification for OCR of

Gurmukhi script”, vol.12, no.2: pp. 2-12 ,1999.

108

[59]. T. W. Hentzschel and P. Blenkhorn, “An optical reading systems for embossed

Braille characters using a twin shadows approach”, Journal of Microcomputer

Applications, 1995, pp. 341-345.

[60]. Jie Li and Xiaoguang Yan, “Optical Braille character recognition with Support-

vector machine classifier”, International Conference on Computer Application

and System Modeling (ICCASM 2010), vol.12, pp.219-222, 2010.

[61]. K. Jithesh, K. G. Sulochana and R. Kumar, “Optical character recognition for

Malayalam”,

Available:http://www.cdactvm.in/OPTICAL%20CHARACTER%20RECOGNITI

ON%20FOR%20MALAYALAM.pdf [Accessed: February 8, 2011]

[62]. Omar Khan Durrani and K. C. Shet, “A new architecture for Brailee transcription

from optically recognized Indian languages”, 3rd International CALIBER - 2005,

Cochin 2-4 February, pp.22-31, 2005.

[63]. Y. Rui, A. C. She, and T. S. Huang, “Modified fourier descriptors for shape
representation–a practical approach,” Available:
http://citeseer.nj.nec.com/296923.html [Accessed: January 7, 2011]

[64]. Zhenfei Tai, Samuel Cheng, and Pramode Verma, “Braille document parameters
estimation for optical character recognition”, ISVC 2008, Part II, LNCS 5359, pp.
905–914, 2008.

[65]. Amany Al-Saleh, Ali El-Zaart and AbdulMalik AlSalman, “Dot detection of
optical Braille images for Braille cells recognition”, ICCHP 2008, LNCS 5105,
pp. 821–826, 2008.

 [66]. J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan
Kaufmann, 978-1-55860-901-3, San Francisco, 2006.

[67]. Farhan Abdel-Fattah and Zulkhairi Md, “Distributed and cooperative hierarchical
Intrusion detection on MANETs”, International Journal of Computer Applications
(0975 – 8887), vol.12, no.5, pp. 32-40, 2010.

[68]. M. Gandhi and K. Srivats, “Classification algorithms in comparing classifier
categories to predict the accuracy of the network intrusion detection- a machine
learning approach”, Research India Publications ,ISSN 0973-6107, vol.3, no.3,
pp. 321–334, 2010.

[69]. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, Second edition, 2005.

109

[70]. Kusm Bhart, Shweta Jain and Sanyam Shukla, “Fuzzy k-mean clustering via J48
for intrusiion detection system”, Kusum Bharti International Journal of Computer
Science and Information Technologies (IJCSIT) , vol. 1, no.4, pp 315-318 , 2010.

[71]. Georgios Paliouras, Vangelis Karkaletsis and Constantine Spyropoulos,

“Learning rules for large-vocabulary word sense disambiguation: a comparison of

various classifiers”, Proceedings of the 2nd International Conference on Natural

Language Processing (NLP) 1835, pp. 383 – 394, Springer, 2000.

[72]. D. Han, L. Chan , and N. Zhu, “Flood forecasting using support vector machines”,

IWA Publishing 2007 journal of Hydroinformatics, vol.9, no.4, pp.267-276, 2007.

[73]. Alex Freitas, “Understanding the crucial differences between classification and
discovery of association rules – a position paper”, SIGKDD Explorations, vol. 2,
no.1, July 2000.

[74]. K. Cheung, J. Kwok and C. Tsui, “Mining customer product ratings for
personalized marketing” Decision Support System, vol.35, no.2, pp. 231-243,
2003.

[75]. E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for support
vector machines”, Proc. 1997 IEEE Workshop, 1997, pp.276-285.

[76]. K. Cnrs, Y. Kodratoi and S. Moscatelli, “Machine learning for object recognition

and scene analysis” Internationa Journal of Pattern recognition and AI, vol.8,

pp.8-11, 1994.

[77]. R. Rosipal and L. Trejo, “Kernel partial least squares regression in reproducing
kernel hilbert space” J. Machine learning Learn, vol. 2: pp.97-123, 2002.

[78]. M. A. Hearst, “Support vector machines,” IEEE Intelligent Systems, vol.13, pp.18-
28, 1998.

[79]. Berihun Girma, The educational situation of the blind: center for educational staff
development, 1994.

[80]. Yaregal Assabie, “Optical character recognition of Amharic text: an integrated
approach”, M.Sc. Thesis, School of Information Studies for Africa, Addis Ababa
University, Addis Ababa, 2002.

[81]. Worku Alemu, “The application of OCR techniques to the Amharic script,” M.Sc.
Thesis, School of Information Studies for Africa, Addis Ababa University, Addis
Ababa, 1997.

110

APPENDIX

I. The First Version Amharic Braille (1917 E.C)

Vowel

Character variant 1st 2nd 3rd 4th 5th 6th 7th

Table I. 1 List of vowels for Amharic Braille characters in the first version

Braille code Amharic character Braille code Amharic character

ሀ

ኸ

ለ

ወ

 ሐ

ዐ

መ

ዘ

ሠ ዠ

ረ

የ

ሰ

ደ

ሸ

ጀ

ቀ

ገ

በ

ጠ

ተ

ጨ

ቸ

ጰ

ኀ

ፀ

ነ

ጸ

ኘ

ፈ

አ

ፐ

ከ

Table I. 2 List of first variant Amharic Braille characters in the first version

111

II. The Second Version Amharic Braille (1945 E.C)

Vowel none

none

Character variant 1st 2nd 3rd 4th 5th 6th 7th

Table II. 1 List of vowels for Amharic Braille characters in the second version

Braille code Amharic character Braille code Amharic character

ሀ

ኸ

ለ

ወ

Not apply ሐ Not apply ዐ

መ

ዘ

ሠ

ዠ

ረ

የ

Not apply ሰ

ደ

ሸ

ጀ

ቀ ገ

በ

ጠ

ተ

ጨ

ቸ

ጰ

Not apply ኀ

ፀ

ነ Not apply ጸ

ኘ

ፈ

አ

ፐ

ከ

Table II. 2 List of first variant Amharic Braille characters in the second version

112

Table II. 3 List of the sixth variant Amharic Braille characters in the second version

Braille code Amharic character Braille code Amharic character

 ህ

ኽ

ል

ው

Not apply ሕ Not apply ዕ

ም

ዝ

ሥ

ዥ

ር

ይ

Not apply ስ

ድ

ሽ

ጅ

ቅ ግ

ብ

ጥ

ት

ጭ

ች

ጵ

Not apply ኅ

ፅ

ን Not apply ጽ

ኝ

ፍ

እ

ፕ

ክ

113

III. The Third Version Amharic Braille (1949 E.C)

Vowel

None

Character variant 1st 2nd 3rd 4th 5th 6th 7th

Table III. 1 List of vowels for Amharic Braille characters in the third version

Table III. 2 List of basic Amharic Braille characters in the third version

Braille code Amharic character Braille code Amharic character

ህ

ኽ

ል

ው

Not apply ሕ Not apply ዕ

ም

ዝ

ሥ

ዥ

ር

ይ

Not apply ስ

ድ

ሽ

ጅ

ቅ ግ

ብ

ጥ

ት

ጭ

ች

ጵ

Not apply ኅ

ፅ

ን Not apply ጽ

ኝ

ፍ

እ

ፕ

ክ

114

IV. The Fourth Version Amharic Braille (1993 E.C)

Braille code Dot position Representation Punctuation mark

- 000000000000 ባዶ ቦታ

3 001000000000 ∙

6 and 3 000001001000 ፡

5 and 2 000010010000 /

36 001001000000 ፦

36 and 36 001001001001 _

2 010000000000 ፣

45 000011000000 $

256 010011000000 ።

2356 011011000000 ()

356 and 6 001011000001 ?

4 000100000000 ’

235 and 5 011010000010 !

35 and 35 001010001010 *

456 and 35 000111001010 ↑

456 and 25 000111010010 ↓

356 and 3 001011001000 ”

25 010010000000 ፥

23 011000000000 ፤

46 and 46 000101000101 —

34 001100000000 እና/ወይም

6 and 2356 000001011011 [

3 and 2356 001000011011]

Table IV. 1 List of punctuation marks

115

Braille code Dot position Representation Numeral

3456 and 245 001111010110 0

3456 and 1 001111100000 1

3456 and12 001111110000 2

3456 and14 001111100100 3

3456 and 145 001111100110 4

3456 and 15 001111100010 5

3456 and124 001111110100 6

3456 and 1245 001111110110 7

3456 and 125 001111110010 8

3456 and 24 001111010100 9

3456 and245 001111010110 10

123456 and1 111111100000 ፩

123456 and12 111111110000 ፪

123456 and14 111111100100 ፫

123456 and145 111111100110 ፬

123456 and15 111111100010 ፭

123456 and124 111111110100 ፮

123456 and1245 111111110110 ፯

123456 and 125 111111110010 ፰

123456 and 24 111111010100 ፱

123456 and 245 111111010110 ፲

Table IV. 2 List of numerals

116

V. Visual C++ Code for Feature Extraction

void CABOCRView::FeatureExtraction(CDC* pDC)//module to extract feature and
write to .xls file

{ CString msg;msg="Feature Extraction has completed!!!!!!!";

FILE *BFeature=fopen("Bfeature.xls","w");

CClientDC dc(this);FILE* feature=fopen("future.txt","w");

FILE* ch=fopen("normal.txt","w");

int h=0,w=0,BCount=0,k=0,n=0;bool val=FALSE,num_m=0;

int i=0,j=0,x=0, y=0,dotcount=0,u=0,m=0,p=0,r=0;

struct BCode

{int d[6];//for consonont int vd[6];//for vowel};

BCode ABChar[2000];

int BTemp[6];//to hold valid braille dots

//Algorithm 1

int xmin=DotWAry[0]; int ymin=DotHAry[0]; int xmax=bm.bmWidth;

int ymax=bm.bmHeight; int linnum=(ymax-ymin)/50; int colnum=(xmax-xmin)/30;

while(y<linnum)//for(int y=0;y<linnum;y++){

 x=0; j=ymin+y*74;

 while(x<colnum) {

 m=0; i=xmin+x*44;

 if(i+30<bm.bmWidth) { k=i;

 while(k<=i+30) {

 if(j+50<bm.bmHeight) { n=j;

 while(n<=j+50) {

 for(int p=n;p<n+10;p++){

 for(int s=k;s<k+10;s++){

 if(pDC->GetPixel(s,p)==0)

 {dotcount++;} }

 if(dotcount>=10) {BTemp[m++]=1;}

Continued in the next page…

Figure V. 1 Visual C++ Code for Feature Extraction

117

 else {BTemp[m++]=0;}

 dotcount=0; n+=20; }} k+=20; }}

//Algorithm 2

while(DotHorProj[j]) { i=0;

 while(DotVerProj[i]) { p=0;

 for(int w=i;w<i+2;w++){

 for(int h=j;h<j+3;h++){

 u=0; val=FALSE;

 while(dot[u][0]) {

 if((dot[u][1]==DotHorProj[h])&&(dot[u][0]==DotVerProj[w])) {

 BTemp[p++]=1; val=TRUE; }

 u++; }

 if(val==FALSE) { BTemp[p++]=0; }}}

/Algorithm 3

while(col[h][2]) { w=0;

 while(line[w][1]) { k=0; r=0;

 for(int i=0;i<2;i++) {

 for(int j=0;j<3;j++){

 for(int d=line[w][i];d<line[w][i]+10;d++){

 for(int g=col[h][j];g<col[h][j]+10;g++){

 if(pDC->GetPixel(d,g)==0) {

 dotcount++;}}};

 if(dotcount>=10) {BTemp[k++]=1;}

 else {BTemp[k++]=0;}

 dotcount=0; }}

 if(consonant(BTemp)==0) {

 if(BCount-1>=0) {

 int temp=BCount-1; Continued in the next page…

118

 for(int a=0;a<6;a++){

 ABChar[temp].vd[a]=BTemp[a];}}

 else{ for(int a=0;a<6;a++){

 ABChar[BCount].d[a]=0;

 ABChar[BCount].vd[a]=BTemp[a];

 }BCount++;}}

 else if
((numberMode(BTemp)==1)||(PunctuationMarkPfix(BTemp)==1)||(puncMark(BTem
p)==1)) { for(int a=0;a<6;a++){

 ABChar[BCount].d[a]=BTemp[a];

 ABChar[BCount].vd[a]=0;

 } BCount++;}

else if((BCount-1)>=0 &&
(numberMode(ABChar[BCount1].d)==1)||(puncMark(ABChar[BCount-1].d)==1))
 { int temp=BCount-1; for(int a=0;a<6;a++){

 ABChar[temp].vd[a]=BTemp[a]; }}

else if(consonant(BTemp)==1) {for(int a=0;a<6;a++){

 ABChar[BCount].d[a]=BTemp[a];

 ABChar[BCount].vd[a]=0; }

 BCount++;}

else if(consonant(BTemp)==0 && PunctuationMarkPfix(BTemp)==0)

 {int temp=BCount-1; for(int a=0;a<6;a++){

 ABChar[temp].vd[a]=BTemp[a]; }}

else{ for(int a=0;a<6;a++){

 ABChar[BCount].d[a]=2;

 ABChar[BCount].vd[a]=2; } BCount++;}

 w+=2;//w++;//i+=2;//x++;} h+=3;//h++;//j+=3;//y++;

 }

 int Count=0,c=0;

Continued in the next page…

119

fprintf(BFeature,"%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t","c1d1","
c1d2","c1d3","c1d4","c1d5","c1d6","c2d1","c2d2","c2d3","c2d4","c2d5","c2d6","cla
ss"); fprintf(BFeature,"\n","");

while(ABChar[Count].d[0]==0 ||ABChar[Count].d[0]==1 || ABChar[Count].d[0]==2)
{

fprintf(BFeature,"%d\t%d\t%d\t%d\t%d\t%d\t",ABChar[Count].d[0],ABChar[Count]
.d[1],ABChar[Count].d[2],ABChar[Count].d[3],ABChar[Count].d[4],ABChar[Count]
.d[5]);

fprintf(BFeature,"%d\t%d\t%d\t%d\t%d\t%d\t%s\t",ABChar[Count].vd[0],ABChar[C
ount].vd[1],ABChar[Count].vd[2],ABChar[Count].vd[3],ABChar[Count].vd[4],ABC
har[Count].vd[5],"?"); fprintf(BFeature,"\n",""); Count++;

}fprintf(BFeature,"Total Braille Character=%d",BCount);

fclose(BFeature); AfxMessageBox(msg); }

bool CABOCRView::numberMode(int BTemp[])

{int const numMode[2][6]={0,0,1,1,1,1, 1,1,1,1,1,1}; bool val=FALSE;

 for(int a=0;a<2;a++){

 for(int b=0;b<6;b++){ val=FALSE;

 if(numMode[a][b]==BTemp[b]) { val=TRUE; }

 else return 0; }}

 return 1; }

bool CABOCRView::puncMark(int BTemp[]){

int const Punc[10][6]={0,0,0,0,1,0, 0,0,1,0,0,1, 0,0,1,0,1,1, 0,0,1,0,1,0, 0,0,0,0,0,1,
0,0,1,0,0,0, 0,0,0,1,1,1, 0,1,1,0,0,1, 0,0,0,1,0,1, 0,1,1,0,1,0}; bool val=FALSE;

 for(int a=0;a<10;a++) {

 for(int b=0;b<6;b++){ val=FALSE;

 if(Punc[a][b]==BTemp[b]) { val=TRUE; }

 else return 0; }

 return 1; }}

bool CABOCRView::consonant(int BTemp[]){

 bool val=TRUE; int const vowel[6][6]={0,1,0,0,0,1,1,0,1,0,0,1,0,1,0,1,0,0

 ,1,0,0,0,0,0,1,0,0,0,1,0,1,0,1,0,1,0};

Continued in the next page…

120

 for(int a=0;a<6;a++){ val=FALSE;

 for(int b=0;b<6;b++){

 if(vowel[a][b]==BTemp[b]){ val=TRUE;}

 else { val=FALSE;break; }}

 if(val) return 0; }

 return 1; }

bool CABOCRView::PunctuationMarkPfix(int BTemp[]){bool val=FALSE;

int const PuncMarkS[10][6]={0,0,1,0,0,0, 0,1,0,0,0,0, 0,0,1,1,0,0, 0,1,1,0,1,1,

0,0,0,1,1,0, 0,0,1,1,0,0, 0,1,0,0,1,1, 0,1,1,0,0,0, 0,1,0,0,1,0, 0,0,0,1,0,0 };

for(int a=0;a<10;a++){ val=FALSE;

 for(int b=0;b<6;b++){

 if(PuncMarkS[a][b]==BTemp[b])

 val=TRUE;

 else { val=FALSE;break; }}

 if(val) return 0; } return 1; }

121

VI. Sample ARFF File for Training J48 and SMO in WEKA

@relation Braille

@attribute cell1d1 {0,1}

@attribute cell1d2 {0,1}

@attribute cell1d3 {0,1}

@attribute cell1d4 {0,1}

@attribute cell1d5 {0,1}

@attribute cell1d6 {0,1}

@attribute cell2d1 {0,1}

@attribute cell2d2 {0,1}

@attribute cell2d3 {0,1}

@attribute cell2d4 {0,1}

@attribute cell2d5 {0,1}

@attribute cell2d6 {0,1}

@attribute character

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,2

5,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,

47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68

,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,9

0,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,

109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,1

25,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,14

1,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157

,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,

174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,1

90,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,20

6,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222

,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,

239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,2

55,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,27

1,272,273,274,275,276,277,278,279,280,281}

@data

1,1,0,0,1,0,0,1,0,0,0,1,1

1,1,0,0,1,0,1,0,1,0,0,1,2

1,1,0,0,1,0,0,1,0,1,0,0,3

1,1,0,0,1,0,1,0,0,0,0,0,4

1,1,0,0,1,0,1,0,0,0,1,0,5

1,1,0,0,1,0,0,0,0,0,0,0,6

1,1,0,0,1,0,1,0,1,0,1,0,7

1,1,1,0,0,0,0,1,0,0,0,1,8

1,1,1,0,0,0,1,0,1,0,0,1,9

1,1,1,0,0,0,0,1,0,1,0,0,10

1,1,1,0,0,0,1,0,0,0,0,0,11

1,1,1,0,0,0,1,0,0,0,1,0,12

1,1,1,0,0,0,0,0,0,0,0,0,13

1,1,1,0,0,0,1,0,1,0,1,0,14

1,1,0,0,0,1,0,1,0,0,0,1,15

1,1,0,0,0,1,1,0,1,0,0,1,16

1,1,0,0,0,1,0,1,0,1,0,0,17

1,1,0,0,0,1,1,0,0,0,0,0,18

1,1,0,0,0,1,1,0,0,0,1,0,19

1,1,0,0,0,1,0,0,0,0,0,0,20

1,1,0,0,0,1,1,0,1,0,1,0,21

1,0,1,1,0,0,0,1,0,0,0,1,22

1,0,1,1,0,0,1,0,1,0,0,1,23

1,0,1,1,0,0,0,1,0,1,0,0,24

1,0,1,1,0,0,1,0,0,0,0,0,25

1,0,1,1,0,0,1,0,0,0,1,0,26

1,0,1,1,0,0,0,0,0,0,0,0,27

1,0,1,1,0,0,1,0,1,0,1,0,28

0,1,1,1,0,0,0,1,0,0,0,1,29

0,1,1,1,0,0,1,0,1,0,0,1,30

0,1,1,1,0,0,0,1,0,1,0,0,31

0,1,1,1,0,0,1,0,0,0,0,0,32

0,1,1,1,0,0,1,0,0,0,1,0,33

0,1,1,1,0,0,0,0,0,0,0,0,34

122

VII. Mapping between Number Class Labels and Amharic

Characters

ሀ 1 ሁ 2 ሂ 3 ሃ 4 ሄ 5 ህ 6 ሆ 7

ለ 8 ሉ 9 ሊ 10 ላ 11 ሌ 12 ል 13 ሎ 14

ሐ 15 ሑ 16 ሒ 17 ሓ 18 ሔ 19 ሕ 20 ሖ 21

መ 22 ሙ 23 ሚ 24 ማ 25 ሜ 26 ም 27 ሞ 28

ሠ 29 ሡ 30 ሢ 31 ሣ 32 ሤ 33 ሥ 34 ሦ 35

ረ 36 ሩ 37 ሪ 38 ራ 39 ሬ 40 ር 41 ሮ 42

ሰ 43 ሱ 44 ሲ 45 ሳ 46 ሴ 47 ስ 48 ሶ 49

ሸ 50 ሹ 51 ሺ 52 ሻ 53 ሼ 54 ሽ 55 ሾ 56

ቀ 57 ቁ 58 ቂ 59 ቃ 60 ቄ 61 ቅ 62 ቆ 63

በ 64 ቡ 65 ቢ 66 ባ 67 ቤ 68 ብ 69 ቦ 70

ተ 71 ቱ 72 ቲ 73 ታ 74 ቴ 75 ት 76 ቶ 77

ቸ 78 ቹ 79 ቺ 80 ቻ 81 ቼ 82 ች 83 ቾ 84

ኀ 85 ኁ 86 ኂ 87 ኃ 88 ኄ 89 ኅ 90 ኆ 91

ነ 92 ኑ 93 ኒ 94 ና 95 ኔ 96 ን 97 ኖ 98

ኘ 99 ኙ 100 ኚ 101 ኛ 102 ኜ 103 ኝ 104 ኞ 105

አ 106 ኡ 107 ኢ 108 ኣ 109 ኤ 110 እ 111 ኦ 112

ከ 113 ኩ 114 ኪ 115 ካ 116 ኬ 117 ክ 118 ኮ 119

ኸ 120 ኹ 121 ኺ 122 ኻ 123 ኼ 124 ኽ 125 ኾ 126

ወ 127 ዉ 128 ዊ 129 ዋ 130 ዌ 131 ዉ 132 ዎ 133

ዐ 134 ዑ 135 ዒ 136 ዓ 137 ዔ 138 ዕ 139 ዖ 140

ዘ 141 ዙ 142 ዚ 143 ዛ 144 ዜ 145 ዝ 146 ዞ 147

ዠ 148 ዡ 149 ዢ 150 ዣ 151 ዤ 152 ዥ 153 ዦ 154

የ 155 ዩ 156 ዪ 157 ያ 158 ዬ 159 ይ 160 ዮ 161

ደ 162 ዱ 163 ዲ 164 ዳ 165 ዴ 166 ድ 167 ዶ 168

ጀ 169 ጁ 170 ጂ 171 ጃ 172 ጄ 173 ጅ 174 ጆ 175

ገ 176 ጉ 177 ጊ 178 ጋ 179 ጌ 180 ግ 181 ጎ 182

ጠ 183 ጡ 184 ጢ 185 ጣ 186 ጤ 187 ጥ 188 ጦ 189

ጨ 190 ጩ 191 ጪ 192 ጫ 193 ጬ 194 ጭ 195 ጮ 196

ጰ 197 ጱ 198 ጲ 199 ጳ 200 ጴ 201 ጵ 202 ጶ 203

ፀ 204 ፁ 205 ፂ 206 ፃ 207 ፄ 208 ፅ 209 ፆ 210

ጸ 211 ጹ 212 ጺ 213 ጻ 214 ጼ 215 ጽ 216 ጾ 217

ፈ 218 ፉ 219 ፊ 220 ፋ 221 ፌ 222 ፍ 223 ፎ 224

ፐ 225 ፑ 226 ፒ 227 ፓ 228 ፔ 229 ፕ 230 ፖ 231

ቨ 232 ቩ 233 ቪ 234 ቫ 235 ቬ 236 ቭ 237 ቮ 238

. 239 ፡ 240 / 241 ፦ 242 -- 243 ፣ 244 $ 245

:: 246 () 247 [248] 249 _ 250 እና 251 ፤ 252

' 253 ፥ 254 * 255 ↑ 256 ↓ 257 ባዶ ቦታ 258 1 259
2 260 3 261 4 262 5 263 6 264 7 265 8 266
9 267 0 268 ፩ 269 ፪ 270 ፫ 271 ፬ 272 ፭ 273

፮ 274 ፯ 275 ፰ 276 ፱ 277 ፲ 278 ? 279 ! 280

” 281

Table VII. 1 Mapping between Amharic characters and class labels

123

VIII. Python Code for Translation

option=input(" Well Come to AOBR:\n Choose 1 or 2: 1 for CLI, 2 for GUI:")
if(option=='1'):

 file=input("Enter the file name:")

dict1={'1:1':"ሀ",'2:2':"ሁ",'3:3':"ሂ",'4:4':"ሃ",'5:5':"ሄ",'6:6':"ህ",'7:7':"ሆ",'8:8':"ለ",'9:9':"

ሉ",'10:10':"ሊ",'11:11':"ላ",'12:12':"ሌ",'13:13':"ል",'14:14':"ሎ",'15:15':"ሐ",'16:16':"ሑ",'

17:17':"ሒ",'18:18':"ሓ",'19:19':"ሔ",'20:20':"ሕ",'21:21':"ሖ",'22:22':"መ",'23:23':"ሙ",'2

4:24':"ሚ",'25:25':"ማ",'26:26':"ሜ",'27:27':"ም",'28:28':"ሞ",'29:29':"ሠ",'30:30':"ሡ",'31:

31':"ሢ",'32:32':"ሣ",'33:33':"ሤ",'34:34':"ሥ",'35:35':"ሦ",'36:36':"ረ",'37:37':"ሩ",'38:38':"

ሪ",'39:39':"ራ",'40:40':"ሬ",'41:41':"ር",'42:42':"ሮ",'43:43':"ሰ",'44:44':"ሱ",'45:45':"ሲ",'46

:46':"ሳ",'47:47':"ሴ",'48:48':"ስ",'49:49':"ሶ",'50:50':"ሸ",'51:51':"ሹ",'52:52':"ሺ",'53:53':"ሻ
",'54:54':"ሼ",'55:55':"ሽ",'56:56':"ሾ",'57:57':"ቀ",'58:58':"ቁ",'59:59':"ቂ",'60:60':"ቃ",'61:6
 list1=[]

 fname=open(file,'r')

 ftxt=open('D:/Thesis/Experiment/Amharic1.txt','w',encoding='utf-8')

 for line in fname.readlines():

 if line.isspace():

 Continue

 if ((not line.startswith('P'))| (not line.startswith(','))| (not line.startswith('i'))):

 columns = line.split(",")

 list1.append(columns[2].rstrip('\n'))

 fname.close()

 for i in range(0,len(list1)):

 for x in dict1.keys():

 if list1[i]==x:

 // print (dict1[x])

 ftxt.write(dict1[x])

 ftxt.close()

elif(option=='2'):

 f=input("GUI \n Enter the file name:")

dict2={'1':"ሀ",'2':"ሁ",'3':"ሂ",'4':"ሃ",'5':"ሄ",'6':"ህ",'7':"ሆ",'8':"ለ",'9':"ሉ",'10':"ሊ",'11':"ላ
",'12':"ሌ",'13':"ል",'14':"ሎ",'15':"ሐ",'16':"ሑ",'17':"ሒ",'18':"ሓ",'19':"ሔ",'20':"ሕ",'21':"

ሖ",'22':"መ",'23':"ሙ",'24':"ሚ",'25':"ማ",'26':"ሜ",'27':"ም",'28':"ሞ",'29':"ሠ",'30':"ሡ",'

31':"ሢ",'32':"ሣ",'33':"ሤ",'34':"ሥ",'35':"ሦ",'36':"ረ",'37':"ሩ",'38':"ሪ",'39':"ራ",'40':"ሬ",'4

1':"ር",'42':"ሮ",'43':"ሰ",'44':"ሱ",'45':"ሲ",'46':"ሳ",'47':"ሴ",'48':"ስ",'49':"ሶ",'50':"ሸ",'51':"

ሹ",'52':"ሺ",'53':"ሻ",'54':"ሼ",'55':"ሽ",'56':"ሾ",'57':"ቀ",'58':"ቁ",'59':"ቂ",'60':"ቃ",'61':"ቄ",

'62':"ቅ",'63':"ቆ",'64':"በ",'65':"ቡ",'66':"ቢ",'67':"ባ",'68':"ቤ",'69':"ብ",'70':"ቦ",'71':"ተ",'72':

"ቱ",'73':"ቲ",'74':"ታ",'75':"ቴ",'76':"ት",'77':"ቶ",'78':"ቸ",'79':"ቹ",'80':"ቺ",'81':"ቻ",'82':"

ቼ",'83':"ች",'84':"ቾ",'85':"ኀ",'86':"ኁ",'87':"ኂ",'88':"ኃ",'89':"ኄ",'90':"ኅ",'91':"ኆ",'92':
 lst=[]

 a=open(f,'r') Continued in the next page…

Figure VIII. 1 Sample Python code for translation

124

 file1=open('D:/Thesis/Experiment/Amharic.txt','w',encoding='utf-8')

 for lne in a.readlines():

 if lne.isspace():

 Continue

 if not lne.startswith('@'):

 column = lne.split(",")

 lst.append(column[12].rstrip('\n'))

 a.close()

 for j in range(0,len(lst)):

 for y in dict2.keys():

 if lst[j]==y:

 print (dict2[y])

 file1.write(dict2[y])

 file1.close()

else:

 print("enter the correct option")

125

IX. Sample Recognized Amharic Braille Characters

Braille code Amharic character

ጥንቃቄ

ክርሥቲያን

ማርያም

የምክክርና

ተዘጋ

ቀድሞ

መፅሀፍ

ኢትዮጵያ

ለህብረተሠብ

Table IX. 1 Sample recognized Braille images

Declaration

I declare that the thesis is my original work and has not been presented for a degree in

any other university.

 July 14, 2011

This thesis has been submitted for examination with my approval as university advisor.

Dr. Million Meshesha

