\qquad
\qquad
TEST DATE: \qquad

Chapter 10

Atomic Structure and The Periodic Table

Atomic number

Page

Average atomic mass_	Page
Chemical symbol_	Page
Dot diagram	Page
Electron cloud	Page

Electrons

\qquad

Groups	Page
Isotopes	Page

Mass number_

Page

Metalloids

Page

Metals

Page

Neutrons_ Page
Nonmetals__Pare Page

Nucleus

Page

Periodic table

Page

Periods

Protons

Quarks

Aim: Describe the present model of the atom.
Chemical symbol: \qquad

Some chemical symbols: Al, Ca, C, Cl, Cu, F, Au, H, He, I, Fe, Mg, and K

Atoms are the basic building blocks of matter. Atoms are made of three smaller particles.

Particles in an Atom					
Particle	Symbol	Location	Charge	Mass (amu)	

Protons and neutrons are made of smaller particles called

Atomic number \qquad
--_-__. The number of electrons is equal to the number of protons in an atom.

A model helps us understand something we cannot see. The model of the atom has evolved throughout the years. The electron cloud model is the best one so far.

Number of Electrons in energy levels	
Energy Level	Maximum Number of Electrons
1	
2	
3	
4	

*The energy levels get very large and overlap each other. Therefore, they sometimes hold fewer than their maximum.

Make a model of a Carbon atom:

Assignment

1. STUDY GUIDE "Structure of the Atom"
2. REINFORCEMENT "Structure of the Atom"
\qquad

Chapter 10

Structure of the Atom

Find the words chemical and symbol in the word search below. The following is a list of some chemical symbols:
$A g, A u, C, C a, C l, C u, F e, N e, ~ O, P b$, and Sn. Find the name of the element for each of these chemical symbols in the word search. Words can be up, down, forward, backward, or on a diagonal.

Look for the word model in the word search. Write the missing words in the blanks in the following paragraph about the model of the atom. Then look for these words in the word search.

The model of the atom includes a positively charged center, or \qquad which contains two particles, the \qquad and the \qquad . The number of protons is the
\qquad of an atom. A third particle, the \qquad , is found in a \qquad
outside the nucleus. An \qquad in the electron cloud is similar to a shelf on a refrigerator.

The \qquad of an electron is so small that it is impossible to describe exactly where it is in an atom.

\mathbf{K}	\mathbf{L}	\mathbf{W}	\mathbf{A}	\mathbf{N}	\mathbf{E}	\mathbf{O}	\mathbf{N}	\mathbf{I}	\mathbf{W}	\mathbf{R}	\mathbf{U}
\mathbf{N}	\mathbf{E}	\mathbf{U}	\mathbf{T}	\mathbf{R}	\mathbf{O}	\mathbf{N}	\mathbf{A}	\mathbf{Z}	\mathbf{O}	\mathbf{S}	\mathbf{N}
\mathbf{A}	\mathbf{D}	\mathbf{N}	\mathbf{W}	\mathbf{S}	\mathbf{L}	\mathbf{R}	\mathbf{F}	\mathbf{L}	\mathbf{A}	\mathbf{Y}	\mathbf{E}
\mathbf{L}	\mathbf{O}	\mathbf{O}	\mathbf{E}	\mathbf{D}	\mathbf{U}	\mathbf{J}	\mathbf{T}	\mathbf{O}	\mathbf{H}	\mathbf{M}	\mathbf{G}
\mathbf{C}	\mathbf{M}	\mathbf{T}	\mathbf{L}	\mathbf{R}	\mathbf{R}	\mathbf{E}	\mathbf{R}	\mathbf{C}	\mathbf{C}	\mathbf{B}	\mathbf{Y}
\mathbf{H}	\mathbf{A}	\mathbf{O}	\mathbf{R}	\mathbf{E}	\mathbf{G}	\mathbf{O}	\mathbf{L}	\mathbf{A}	\mathbf{E}	\mathbf{O}	\mathbf{X}
\mathbf{E}	\mathbf{G}	\mathbf{R}	\mathbf{P}	\mathbf{S}	\mathbf{M}	\mathbf{Y}	\mathbf{L}	\mathbf{C}	\mathbf{H}	\mathbf{L}	\mathbf{O}
\mathbf{M}	\mathbf{I}	\mathbf{P}	\mathbf{B}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{L}	\mathbf{O}	\mathbf{U}	\mathbf{D}	\mathbf{E}
\mathbf{I}	\mathbf{O}	\mathbf{V}	\mathbf{S}	\mathbf{O}	\mathbf{I}	\mathbf{D}	\mathbf{A}	\mathbf{E}	\mathbf{L}	\mathbf{N}	\mathbf{I}
\mathbf{C}	\mathbf{R}	\mathbf{S}	\mathbf{Q}	\mathbf{U}	\mathbf{N}	\mathbf{S}	\mathbf{I}	\mathbf{L}	\mathbf{V}	\mathbf{E}	\mathbf{R}
\mathbf{A}	\mathbf{T}	\mathbf{O}	\mathbf{M}	\mathbf{I}	\mathbf{C}	\mathbf{N}	\mathbf{U}	\mathbf{M}	\mathbf{B}	\mathbf{E}	\mathbf{R}
\mathbf{L}	\mathbf{P}	\mathbf{E}	\mathbf{N}	\mathbf{I}	\mathbf{R}	\mathbf{O}	\mathbf{L}	\mathbf{H}	\mathbf{C}	\mathbf{S}	\mathbf{L}

Use the clues to complete the puzzle.

Across

3. Scientist who developed the planetary model of the atom
4. Element 105
5. Region surrounding the nucleus which is occupied by electrons
6. Atomic number of fluorine (spelled out)
7. Center of atom
8. Symbol for sodium
9. Symbol for silver
10. Fe is the symbol.
11. Name of element used in fluorescent signs
12. Atom of an element with a different number of neutrons
13. Sum of protons and neutrons
14. Only element with atoms which do not have neutrons

Down

1. Element often made into electrical wire
2. Number of protons in an atom
3. Name of element whose symbol is Ru
4. Negatively charged particle
5. Mixture of mostly nitrogen and oxygen
6. $1 / 12$ the mass of a carbon- 12 atom
7. Helps us understand something that we cannot see directly
8. These are like shelves where electrons can be found.
9. Equal in number to the number of protons
10. A particle with approximately the same mass as a proton
11. Element used in balloons
12. Element name of radioactive gas that can accumulate in houses
13. Positively charged particle in nucleus
14. The building block of matter

Aim: Compute the atomic mass and mass number of an atom.
The mass of protons and neutrons is measured in a unit called the atomic mass unit (amu).

1 amu = \qquad -

The mass of a proton is 1 amu. The mass of a neutron is also 1 amu.

The mass number of an atom is the sum of the number of protons and the number of neutrons in an atom.

6 C Carbon 12.011	The mass number of carbon is 12. $6 p^{+}+6 n^{0}=12$
2,4	

Isotopes

\qquad

Isotopes of Boron	
Boron-10	Boron-11
Mass number	
\# of protons	
\# of neutrons	
\# of protons	

The average atomic mass

Assignment

1. STUDY GIUDE "Masses of Atoms"
2. REINFORCEMENT "Masses of Atoms"

Use the terms in the box to complete the following paragraph about atomic mass. Terms may be used more than once. | number | standard | neutron(s) | proton(s) | mass |
| :--- | :--- | :--- | :--- | :--- |

The electron has very little mass compared to the \qquad or
\qquad . The mass of the atom depends on the nucleus and how many
\qquad and \qquad it has. The sum of the protons and neutrons is the
mass \qquad of an atom. The number of neutrons in an atom can be found by subtracting the atomic number from the \qquad number. The mass of the atom is so small that there is a measure called the atomic \qquad unit with a symbol of " μ."

Use the terms in the box to complete the following paragraphs about isotopes. Terms may be used more than once.

many element	mixtures one	protons isotopes	neutrons six protons	between electrons	number

The nuclei of all atoms of a given element always have the same number of \qquad They will also have the same number of \qquad around the nucleus. Some atoms may have more or fewer \qquad than will other atoms of the same element. Atoms of the same element with different numbers of neutrons are called \qquad . Hydrogen has three isotopes. A hydrogen atom may contain zero, one, or two \qquad . Every atom of carbon must contain \qquad , but some contain six neutrons and others have eight neutrons. Some elements have only \qquad natural isotope; however, other elements may have
\qquad isotopes.

One way of showing the difference between isotopes of an element is to put the mass
\qquad after the name of the element. The second way of showing an isotope is to write the mass number and the atomic number with the symbol of the \qquad . In nature, most elements are \qquad of isotopes. In chlorine gas, there are two isotopes and the average mass of this element is \qquad the two.

REINFORCEMENT Masses of Atoms

Chapter 10
Text Pages 250-254

Isotopes

Answer the following questions on the lines provided.

1. Define isotopes. \qquad
\qquad
\qquad
2. How many isotopes can an element have? \qquad
\qquad
\qquad
3. What is the average atomic mass of an element? \qquad
\qquad
\qquad
4. Compare and contrast the atomic structure of the chlorine- 35 and chlorine- 37 isotopes.
5. Suppose that a newly discovered element called centium has three isotopes that occur in nature. These are centium200, centium-203, and centium-209. Assume that these isotopes occur in equal amounts in nature. What will be the average atomic mass of this element? \qquad
\qquad
\qquad
\qquad

Aim: Describe the periodic table of elements.
The periodic table of elements is an arrangement of elements according to repeated changes in properties.

Groups or families: \qquad
--_-_-_. The number of electrons in the outer energy level determines the group an element belongs to and the properties of the element.

A dot diagram uses the symbol of the element and dots to represent the electrons in the outer energy level.

Some dot diagrams

Lithium	Carbon	Oxygen	Neon
Sodium	Silicon	Sulfur	Argon

Periods: Horizontal rows on the periodic table are called periods. Elements on the left side of a period are more metallic. Elements on the right side are more nonmetallic. Elements next to the stair-step line are metalloids, and have properties of both metals and nonmetals.

Assignment

1. STUDY GUIDE "The Periodic Table"
2. ENRICHMENT "The Periodic Table"

Chapter 10

The Periodic Table

Text Pages 255-260
Use the periodic table in your reference tables as needed to answer the following questions. Place your answers on the lines after the questions.

1. List two types of information that are given in each box of this periodic table.
a.
b. \qquad
2. In this table, where are the metals located?
3. Where are the nonmetals located? \qquad
4. What are the elements in groups 3 through 12 called?
5. What are the elements called that are next to the stair-step-shaped line on the right side of the table? \qquad
\qquad
6. What do we call the letter or group of letters that represents an element? \qquad
7. How many elements are included in the modern periodic table? \qquad
8. What name is given to the elements in group 18 ? \qquad
9. What name is given to all vertical columns in this table? \qquad
10. What name is given to each horizontal row in this table? \qquad

ENRICHMENT

The Periodic Table

PREDICTING AN ELEMENT'S GROUP AND PERIOD

Several scientists, including Newlands, Meyer, and Mendeleev worked on classification systems that grouped elements according to their properties. They found that these properties repeated in a regular or periodic manner.
Scientists used this fact to predict properties of undiscovered elements.
Review electron arrangement from your textbook.
In Table 1, write the maximum number of electrons that can fill each energy level on the blanks in the table heading. Write the total number of electrons for each element in the first column labeled Total. For each element, assign the correct number of electrons to each energy level.

Complete Table 2 by using the information from the six elements studied.
Table 1

Element	Electrons			
	Total	Level 1	Level 2	Level 3
Argon				
Carbon				
Helium				
Lithium				
Silicon				
Sodium				

Table 2

Element	Energy level of outer electrons	Located in period	Number of outer electrons	Located in group
Ar				
C				
He				
Li				
Si				
Na				

1. How is the element's period related to the number of energy levels over which its electrons are spread? \qquad
2. How can you predict an element's group and period? \qquad
\qquad
\qquad
\qquad

Element Name_
Number of Protons
Number of Neutrons
Number of Electrons

Element Name__
Number of Protons_
Number of Neutrons
Number of Electrons

