a9 United States
a2 Patent Application Publication (o) Pub. No.: US 2005/0246506 A1l

US 20050246506A1

Ukai (43) Pub. Date: Nov. 3, 2005
(54) INFORMATION PROCESSING DEVICE, (30) Foreign Application Priority Data
PROCESSOR, PROCESSOR CONTROL
METHOD, INFORMATION PROCESSING Apr. 30, 2004 (JP) cvvevveverercrcrecrsecaeinne 2004-135875
DEVICE CONTROL METHOD AND CACHE
MEMORY Publication Classification
(75) Inventor: Masaki Ukai, Kawasaki (JP) (51) Int. CL7 oo, GO6F 12/00
52y US.CL .. 711/152
Correspondence Address: (57) ABSTRACT

(73)

@D
(22

STAAS & HALSEY LLP

SUITE 700 In a method for controlling a processor which accesses
1201 NEW YORK AVENUE, N.W. information of a storage device through cache memory,
WASHINGTON, DC 20005 (US) when reading information stored in a target address or an

address range of the storage device, it is monitored whether

Assignee: FUJITSU LIMITED, KAWASAKI (JP) there is an update access to the address or address range

from another processor, and also the processor is entered

Appl. No.: 10/937,253 into a suspense status, which is released using the occur-
rence of the update access to the storage device from another
Filed: Sep. 10, 2004 processor as a trigger.

IN THE CASE OF THE

PRESENT INVENTION

SUSPEND WITHOUT DOING
ANYTHING DURING THIS PERIOD

FAILED TO OBTAIN LOCK <4 :-=--—-=-—- -»
54 12a
CPU1 \\ CHECK LOCK — EXECUTE A SUBSEQUENT
CAS[A] LLKUP[A] SUSPEND INSTRUCTION
: : SUSPEND---------- ¥ RESUME
: : START MONITORING _______________
\ 2 4 ! |
T P TIME
v
EXECUTE STORE
A
CPU2 P> ST [A]

HOLDING THE LOCK RELEASE THE LOCK

Patent Application Publication Nov. 3, 2005 Sheet 1 of 23 US 2005/0246506 A1

// COMMENTS
try: :
mov [ID], %IO // MOVE THE MEMORY CONTENTS OF [ID] TO A REGISTER
%10.

cas [lock], %20, %I0 // COMPARE THE MEMORY CONTENTS OF [LOCK] WITH THE
VALUE OF A ZERO REGISTER %0.

// |\F THEY COINCIDE WITH EACH OTHER, [LOCK] AND THE
VALUE OF %10 ARE EXCHANGED.

tst %10 // CHECK WHETHER THE VALUE OF THE REGISTER %10 IS O.

bne rty // \F THE CHECK RESULT OF TST IS NOT 0, THE
EXECUTION POINT IS BRANCHED TO TRY:. HOWEVER,

// EXECUTE AN INSTRUCTION IMMEDIATELY AFTER (DELAY
INSTRUCTION PROCESS) REGARDLESS OF THE
EX1STENCE/NON-EX!STENCE OF A BRANCH.

nop // AN INSTRUCTION TO DO NOTHING. DUE TO THE DELAY
' INSTRUCTION PROCESS OF BNE ABOVE

out:
I Lock held //SUCCEEDED IN LOCKING

FIG. 1

Patent Application Publication Nov. 3, 2005 Sheet 2 of 23 US 2005/0246506 A1

loop:

try:

- out:

Id

tst
bne
nop

mov
cas
tst

_bne

nop

[lock],

%10

loop

[inl.
[lock],
%10
loop

%10 // LOAD THE MEMORY CONTENTS OF [LOCK] ONTO THE
ZERO REGISTER %10.

%10
%e0, %10

! Lock held

FI1G. 2

//SUCCEEDED IN LOCKING

Patent Application Publication Nov. 3, 2005 Sheet 3 of 23 US 2005/0246506 A1

IN THE CASE OF THE PRESENT INVENTION

SUSPEND WITHOUT DOING
ANYTHING DURING THIS PERIOD

FAILED TO OBTAIN LOCK <« = —-=--- ->
54 12a
CPU1 \~, CHECK LOCK — EXECUTE A SUBSEGUENT
CAS[A] LLKUP[A] SUSPEND INSTRUCTI ON
: : SUSPEND---------- - RESUME

i START MONITORING

FIG. 3A Y V¥

—» TINE
v
EXECUTE STORE
A
:Lfss
CPU2 p ST [A]
HOLDING THE LOCK RELEASE THE LOCK
IN THE CASE OF THE RELATED ART
A LONG PERIOD—USELESSLY CHECKS SEVERAL TIMES
4— T T _>
FAILED TO OBTAIN LOCK CHECK LOCK OTAIN LOCK
CPUT
CAS[A] LD[A]LD[AILD[A] LD{A] LD[A] LD[A) CAS[A]
SUTEY-SN N
vy v v vy vy vy
> TIME
EXECUTE STORE
A
i
CPU2 p ST [A]

HOLDING THE LOCK RELEASE THE LOCK

Patent Application Publication Nov. 3, 2005 Sheet 4 of 23 US 2005/0246506 A1

54 12a
~ —
CPU1 LLKUP[A] - SUSPEND EXECUTE A SUBSEQUENT INSTRUCTION
SUSPEND -------- » RESUNME

START MONITORING ------------------- .

P TIME

EXECUTE STORE

tjfss

CPU2 ST [A]

FIG. 4

Patent Application Publication Nov. 3, 2005 Sheet 5 of 23 US 2005/0246506 A1

54 12a
~ —
CPU1 LLKUP[A] SUSPEND EXECUTE A SUBSEQUENT INSTRUCTION
SUSPEND -------- » RESUME
START MONITORING -------- >(NULLIFY THE CACH@
/\ » TIME
%6 —~_ OBTAIN AN EXCLUSIVE RIGHT
CPU2 ST [A] EXEGUTE STORE

FIG. 5

Patent Application Publication Nov. 3, 2005 Sheet 6 of 23 US 2005/0246506 A1

54 . 12a
CPU1 LLKUP[A] SUSPEND EXECUTE A SUBSEQUENT INSTRUCTION

DOES NOT SUSPEND

START
N | TR ING = b(:NULLIFY THE CACHE:>
> TINE
56 OBTAIN AN EXCLUSIVE RIGHT
CPU2 ST [Al EXECUTE STORE

FIG. 6

Patent Application Publication Nov. 3, 2005 Sheet 7 of 23 US 2005/0246506 A1

Id [lock], %I0
id [lock]. %10 -
Id [lock], %10

FIG. 7

Patent Application Publication Nov. 3, 2005 Sheet 8 of 23 US 2005/0246506 A1

id

mov
cas
|d
id
|d

[1ock].

(1D],

[lock],
[lock],
[lock],
[lock],

%10
%10

%20,

%10
%10
%10

%10 //%0 1S ALWAYS O REGISTER

FIG. 8

Patent Application Publication Nov. 3, 2005 Sheet 9 of 23

mov [ID],

cas [lock],
Id [lock],
Id [lock],
Id [lock],

FIG.

%10

%0,

%10
%10
%10

9

%10

US 2005/0246506 A1

Patent Application Publication Nov. 3,2005 Sheet 10 of 23 US 2005/0246506 A1

cas [lock]. %g0. %!0O
Ild [lock], %10

FIG. 10

Patent Application Publication Nov. 3, 2005 Sheet 11 of 23 US 2005/0246506 A1

cas [lock], %g0, %I0
cas [lock], %g0, %I0O
cas [lock]., %g0, %i0

FIG. 11

Patent Application Publication Nov. 3, 2005 Sheet 12 of 23 US 2005/0246506 A1

loop:
Ilkup [lock]l, %10
tst %10
bne,a loop // |F BRANCH CONDITIONS ARE MET, “SUSPEND"
IMMEDATELY AFTER |S EXECUTED.
suspend _ // |F THEY ARE NOT MET, “SUSPEND” IMMEDI!ATELY
AFTER IS NOT EXECUTED.
try:

mov (ip], %o
cas [lock], %g0, %10

tst %10
bne loop
nop

out: .
1 Lock held //SUCCEEDED N LOCKING

FIG. 12

US 2005/0246506 A1

Nov. 3, 2005 Sheet 13 of 23

Patent Application Publication

014

(3HOYO ANVY3dO)
JHOVD AMYWIHd

01907 HOLINOK

_A.......

viva v

srersosassnnessessntsesnsinsissnssnsens o

Y1va 3Ov40Ad00
/MOYE-3L 1 UM

183n03Y v1Iva

ezs BEG

el
< .
VIVO HOL3d
(Znd0) >
Y1VO 3401
11NN T0H1NOD >
NOLLOMMISNI | NOILONYLSNI SS300Y AMONIN ¥ 3nSS|
<
ALIIGISS0d H0LS 193130
n (§8) (816) (19) 8 £ %
\ |/ |
<
LINN BN100030 \ YIva HoL34 \
—p
(1nd0)
11NN T04INOD \ V1V0 3401S
NOI LONHLSNI —>

135 NOI1ONULSNI

NOILONYLSNI SS300Y AUOWIN ¥ 3INSSI
<

ALITI91SS0d F¥0LS 103130

(3HOYD QNVY3IdO)

JHOYO AYVIIYd

31907 HO1INOW

viva v

v P

YL1Ya %Ova0Ad00
/HOVE-3L 14

senesetasctcasentrinacarrsnnrsrnras P
153n03y v1va

AMOWIN NIV
Ho
3FHOVD AUVANOD3S

AN

(qzl) ol
(ez)

94

77

ov

0¢

US 2005/0246506 A1

Patent Application Publication Nov. 3, 2005 Sheet 14 of 23

AR

lll

<-- >

elRQ 8YoRY

ov1L 8yoep

Pee 9¢¢ qce BZ¢C

A

038 ssadppy [:::NOQ%:i:| sniels

US 2005/0246506 A1

Patent Application Publication Nov. 3, 2005 Sheet 15 of 23

ALIT191SS0d 340LS 193134

98

1974

L '©9I4

147

013 °19/1d0
‘INJWI0VId3Y
‘1S3n03Y¥ A41TINN

47

\

<9:€9> ssalipy

108

a

Sm_

Ss3y¥aav

J\g

NOILONYLSNI dnyy|

Patent Application Publication Nov. 3,2005 Sheet 16 of 23 US 2005/0246506 A1

| lkup address Bl address(1) Bl address(2) 64

| kup [1 ~
51a
Address — XxOC XY X o=
N) - — 4
Address reg K> X ¢
. 55
CPI/BI [] * _
56
pr. store r__] —

NON-MATCHED MATCHED
DETECT STORE POSSIBILITY

FIG. 16

US 2005/0246506 A1

Nov. 3, 2005 Sheet 17 of 23

Patent Application Publication

o114

(3HOVYD QONYY3dO)

JHOVO Auvilldd

21907 ¥OLINOW

yiva v
O SR—

v1va %ova0Ad0d
/MOYE-31 1M

cereee s >
1S3n034 vivad

AHOW3W NIVN
40
JHOVD A¥VANOO3S

L1l
<
Y1YQ HOL34
(Zndd) >
VLVO 3401S
11NN TOYLNOD >
NO!LONLSNI NOILONYLSNI SS3D0V ANOWIW V 3nSS|
¢
ALITIBISSOd M0LS 153130
mm_\ (85) (¥S) (e1g) 1§
£g 2
PR
\ Y1Ya HOL34 \
(1ndD) : >
_ Y1Va 34018 \
LINN TO4LINOD >
NOTLONYLSNI NOILONYLSN SSIOOV AMOWAW Y NSS!
¢
\ ALITIEISSOd 3¥0LS 193130

\\

vol

96

w

0¢

\

o€

US 2005/0246506 A1

Nov. 3, 2005 Sheet 18 of 23

Patent Application Publication

81

‘OT1 4

(JHOYD QONVY3dO)

0z
o_,//, I ///, | Om./// AMOWIN NTVM
NO LONULSN| JHOVD ANV I ¥d 40
JHOYD A¥YAN0D3IS
P oy —] 01907 doLINOM | g)
LS 95
el ™~ Y
N
19~_ :
AL17181SS0d 3¥01S 193130 :
159 |« :
0 :
> :
25 13 puadsng 31N93X3 :
€9 1 AA|_ :
: ~
e eeeesetessenesasyassenentensnn.snnenttnntsnn.an.taanesonsentinsennennennrnnd
\\\ LINN TOYLNOD DNIAYS ¥3mod 013 ‘1d
09 : SY HONS '39¥n0S

ATddNS 3007

Patent Application Publication Nov. 3,2005 Sheet 19 of 23 US 2005/0246506 A1

7

: 5
exec. suspend J—

pr.store |_| ,—26
() | L
i
gated clock __l_‘_ﬂ_ﬂ_ﬂ_ﬂ l—l_ﬂ'/na

FIG. 19

US 2005/0246506 A1

Nov. 3, 2005 Sheet 20 of 23

Patent Application Publication

3SN34SNS 340439 @3104134
SI ALITIGISSOd F¥0LS

£9 29

1394Y1 ONIAYS
¥amod v 0L
¥010 Y 1ndIN0

000

=L|
(=]
7<)

89

0O¢ OI4

89

\

9

19

puadsng 40 NOILNOIX3 JHL INIUNG

BLG

L9

ALITIA1SS0d 301S 103130
~ |

95
LS
1Y |« f
—0 pusdsng 31193X3
135 |
dny || msomxu/
8\ o A pg

US 2005/0246506 A1

Patent Application Publication Nov. 3, 2005 Sheet 21 of 23

__ _ _ _ _ __ _ _ _ _ __ _ _ __ _ _ _ _ _‘ _ _ Y000 pajed Flﬁgng

NS EpEupupaapupspupiy

—

—

Lo
—
]

L]

diL¢ 914

%0012 Td
puansds 40

NO11n93X3
3H1 ONI¥nd

@ 19

8.103s ud

o 99
puadsns "09xa

dny| |

—

BlL

/G

L]

N

LI

7

L

7

s

[
§

V912’9

L]

_ _ _ __ _ _ _ __ ¥o0[o pajes
i

%0010 714
pusnsds 40

NO11n03X3
JHL ONIY¥Na

® 19
a40]s "ud

® 99
puadsns ‘o8xa

dnyj |

US 2005/0246506 A1

Patent Application Publication Nov. 3, 2005 Sheet 22 of 23

¢ 914
" "
" 43151534 !
" $S34a0Y ! "
m (35Y3T3Y N1dS 103130) m
! (1SY) &8 | $S3400Y
| & m
= _
" 2 * !
— _ Ll
_ 086 |
88 .\“\; (8 28 \ m \;\
“ ses . | (ON100030)
“ (NI1dS 193130) ®r8 — L NOILONYLSN| 40
! 98— | 31| NOILYL3dYAINI

1§
(LINN T041INGD
NO1LONYLSN! WO¥4)
NO I LONHLSNI
SS300Y AHOWIN

Patent Application Publication Nov. 3,2005 Sheet 23 of 23 US 2005/0246506 A1

58
cas [] ~ i
Id 1 2
Address XX X MDD D60 ek
—\ —\ 81
Address reg S Y X XY=
8
spin | | ' ,_/8
' . 86a
rel.spin —

FIG. 23

US 2005/0246506 A1l

INFORMATION PROCESSING DEVICE,
PROCESSOR, PROCESSOR CONTROL METHOD,
INFORMATION PROCESSING DEVICE CONTROL

METHOD AND CACHE MEMORY

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention

[0002] The present invention relates to an information
processing technology, and more particularly relates to the
instruction processing technology of a system with shared
memory, such as a symmetrical multi-processor (SMP) in
which a plurality of processors are combined, cc-non-uni-
form memory architecture (cc-NUMA) and the like.

[0003] 2. Description of the Related Art

[0004] In a shared memory system by a multiprocessor, as
a method for securing an exclusive right, a lock method,
mutex-lock and the like are known. A spin loop is one of the
typical methods for obtaining lock. In this case, a “lock
variable” is provided for main memory, and each processor
repeats the reference/update trial of the “lock variable” and
spin loop (no-load running waiting) in order to secure lock.
If lock is obtained, the lock is displayed only during lock. If
the lock is released, lock release is displayed. Thus, an
exclusive right can be secured among a plurality of proces-
SOrs.

[0005] An example of a conventional spin loop instruction
string is described below. An address block (4 bytes) indi-
cated by the “lock” of the main memory corresponds to the
above-mentioned “lock variable”. If the contents are 0, it is
indicated that the process is in a lock-release status. If the
contents are its own ID (contents of ID to which each
process belongs), it is indicated that the process is being
locked.

[0006] Although in the following example, description is
made using a SPARC V9 instruction set, the description is
not peculiarly applied to a specific instruction set, but is
common to all instruction sets.

[0007] As the simplest spin loop, the instruction string
shown in FIG. 1 can be used.

[0008] In FIG. 1, the function of each instruction is
described on its right side as comments. In an instruction
string structured as shown in FIG. 1, since in a cas instruc-
tion, there is always a possibility that an access to the main
memory of another processor (store) may occur, the proces-
sor always operates to obtain a cache block exclusive right.
In this case, a plurality of processors tries to obtain the same
lock variable and competition among a plurality of segments
of cache becomes tough, which is a problem.

[0009] FIG. 2 shows an example of an instruction string
by which this problem is solved. In FIG. 2, the cache is kept
in a shared status unless the lock variable is rewritten (as
long as a processor that obtained lock maintains the lock).
Therefore, there is no above-mentioned cache competition.

[0010] In such a configuration, the loop must be always
executed and checked. However, since the recent high-speed
tendency of processors is faster than the high-speed ten-
dency of memory system, the difference in speed between a
processor and a memory system is getting large.

Nov. 3, 2005

[0011] In such a situation, although instruction strings are
interpreted and executed by a great number of idle running
by a spin loop, substantially no job is made and power is
uselessly consumed, which is a problem. More particularly,
in a large-scale SMP system, a specific lock variable is often
collectively scrambled for. In this case, equipment other than
a specific CPU does no useful job, and the power cost of
system operation increases, which is a problem.

[0012] In a processor core adopting a multi-thread pro-
cessing method, if this spin loop occurs in a specific thread
processing part, idle running due to a spin loop process with
no substantial job hinders the progress of other thread
processes of the processor core, which is also a problem.

[0013] The same problem occurs in other processes using
a lock variable, such as barrier synchronization, a processor
synchronization process (synchronization waiting), general
processor synchronization, I/O synchronization, an idle loop
and the like.

[0014] As conventional exclusive control and synchro-
nous control technologies in a multi-processor system,
Patent References 1, 2 and 3 are known.

[0015] Specifically, in Patent Reference 1, a mechanism
for realizing exclusive control by storing a shared variable in
main memory and collectively monitoring processors on the
main memory, is disclosed. In a recent processor with cache
memory, rewriting in the cache is not promptly reflected on
the main memory. More particularly, in a write-back cache
method, it usually takes a fairly long time to reflect rewrit-
ing. Since in a recent processor with write-through cache,
memory latency is very short and reflection loss is long.
Accordingly, performance degrades.

[0016] Therefore, as in Patent Reference 1, the above-
mentioned spin loop problems cannot be solved simply by
collectively monitoring a plurality of segments of main
memory. Therefore, a method for solving them within cache
memory, which does not affect memory latency, is desired.

[0017] In Patent Reference 2, a technology for realizing
the exclusive control of shared memory among CPUs by
providing an access control signal wire (pin) for the exclu-
sive control among CPUs in addition to a system bus shared
by a plurality of the CPUs, is disclosed. Recently, since
connection between processors (for example, the number of
input/output pins of an LSI) has been costly, the use of one
pin as a data line is more effective in performance improve-
ment than the exclusive use of one pin for the purpose of
exclusive control. Otherwise, the deletion of even one pin
can contribute to the reduction of CPU manufacturing cost
more. Therefore, a method for realizing exclusive control
among CPUs without increasing the number of pins, is
demanded.

[0018] In Patent Reference 3, a synchronous control cir-
cuit used to control synchronization between a processor and
a co-processor, which are in the relationship between a
master and a servant, is disclosed. However, it is difficult to
apply the circuit to a system in which each processor equally
handles shared memory.

[0019] Specifically, a processor can voluntarily catch the
operation status of a co-processor since the processor is in a
position to issue instructions to the co-processor. However,
since in an SMP system, each processor does not logically

US 2005/0246506 A1l

store information about the operation statuses of other
processors, it is difficult to apply the technology of Patent
Reference 3 in order to solve the above-mentioned prob-
lems.

[0020] The present invention is made to solve such prob-
lems. The present invention can also be applied to a co-
processor system.

[0021] Patent Reference 1: Japanese Patent Laid-open
Application No. 3-164964

[0022] Patent Reference 2: Japanese Patent Laid-open
Application No. 61-229150

[0023] Patent Reference 3: Japanese Patent Laid-open
Application No. 2002-41489

SUMMARY OF THE INVENTION

[0024] Tt is an object of the present invention to reduce the
waste of power consumption and processor resources due to
a spin loop for exclusive control among a plurality of logical
and physical processors.

[0025] 1t is another object of the present invention to
prevent the performance degradation of other logical pro-
cessors due to the spin loop of one logical processor in a
multi-processor system where one physical processor is
provided with a plurality of hardware threads and which can
be operated as if there were a plurality of logical processors.

[0026] 1t is another object of the present invention is to
realize an exclusive control mechanism in which the rewrit-
ing from the existing program can be easily made and to
which software can be ported with a low cost.

[0027] In the present invention, the above-mentioned
problems can be solved by predicting the possibility of the
rewriting of a lock variable for the exclusive control of
memory access and suspending the processor or thread
located in a part where conventionally a spin loop occurs due
to release waiting.

[0028] Specifically, in the present invention, a processor
can be suspended and resumed by providing both a new load
instruction to set the monitor start trigger of a memory
block, including a memory block to be loaded (hereinafter
called “LOAD-WITH-LOOKUP instruction”) and a writing
detection function to monitor a memory block, and by
executing/releasing a suspense instruction, such as a SUS-
PEND instruction and the like, in accordance with both the
LOAD-WITH-LOOKUP instruction and the detection result
of the writing detection function, in order to realize the
possibility prediction of the rewriting of a lock variable.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] FIG. 1 shows an instruction string in the conven-
tional exclusive control;

[0030] FIG. 2 shows an instruction string in the conven-
tional exclusive control;

[0031] FIGS. 3A and 3B compare the control method of
the information processing device with the conventional
one;

[0032] FIG. 4 shows an example of the function of the
information processing device, which is one preferred
embodiment of the present invention;

Nov. 3, 2005

[0033] FIG. 5 shows an example of the function of the
information processing device, which is one preferred
embodiment of the present invention;

[0034] FIG. 6 shows an example of the function of the
information processing device, which is one preferred
embodiment of the present invention;

[0035] FIG. 7 shows an example of an instruction string
to be handled in the control method of the information
processing device of the present invention;

[0036] FIG. 8 shows an example of an instruction string
to be handled in the control method of the information
processing device of the present invention;

[0037] FIG. 9 shows an example of an instruction string
to be handled in the control method of the information
processing device of the present invention;

[0038] FIG. 10 shows an example of an instruction string
to be handled in the control method of the information
processing device of the present invention;

[0039] FIG. 11 shows an example of an instruction string
to be handled in the control method of the information
processing device of the present invention;

[0040] FIG. 12 shows an instruction string including a use
example of a LOAD-WITH-LOOKUP instruction provided
for the information processing device of the present inven-
tion;

[0041] FIG. 13 conceptually shows a configuration of the
information processing device executing the control method
of the information processing device, which is one preferred
embodiment of the present invention;

[0042] FIG. 14 conceptually shows in detail a part of the
configuration of the information processing device shown in
FIG. 13, as an example;

[0043] FIG. 15 is the circuit diagram showing a configu-
ration of a store monitor logic provided for the information
processing device shown in FIG. 13;

[0044] FIG. 16 is a timing chart showing the function of
the store monitor logic shown in FIG. 15;

[0045] FIG. 17 conceptually shows a variation of the
information processing device, which is one preferred
embodiment of the present invention;

[0046] FIG. 18 is a circuit diagram showing a configura-
tion of a power-saving control unit provided for the infor-
mation processing device, which is one preferred embodi-
ment of the present invention of the present invention;

[0047] FIG. 19 is a timing chart showing the operation of
the power-saving control unit shown in FIG. 18;

[0048] FIG. 20 is the circuit diagram of a variation of the
power-saving control unit provided for the information
processing device, which is one preferred embodiment of
the present invention;

[0049] FIGS. 21A and 21B are timing charts showing the
operation of the power-saving control unit shown in FIG.
16;

[0050] FIG. 22 is a circuit diagram showing a configura-
tion of a spin loop discrimination unit provided for the

US 2005/0246506 A1l

information processing device, which is one preferred
embodiment of the present invention; and

[0051] FIG. 23 is a timing chart showing the operation of
the spin loop discrimination unit shown in FIG. 22.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0052] The preferred embodiments of the present inven-
tion are described in detail below with reference to the
drawings.

[0053] As shown in FIG. 3B, conventionally, when
obtaining the lock of a lock variable [A] on a storage device,
a useless spin loop repeating LD[A] after the failed acqui-
sition by CAS[A] and checking the change of the lock
variable [A] (release from other processors) is executed.

[0054] However, in the present invention, as shown in
FIG.3A, a CPU 1 issues a LOAD-WITH-LOOKUP instruc-
tion after the failed acquisition by CAS[A] and monitors
store to lock variable [A] (possibility of release from another
CPU 2). Simultaneously, the CPU 1 is entered into a
suspense status by a SUSPEND instruction. Then, the CPU
1 can be restored using the detection of the store possibility
of the lock variable [A] by another CPU 2 as a trigger, and
the re-acquisition of the lock variable [A] can be attempted.
Thus, no useless spin loop occurs.

[0055] Specifically, as shown in FIG. 4, generally the
CPU 1 starts monitoring a target lock variable [A] by a
LOAD-WITH-LOOKUP instruction and then enters into
SUSPENSE (suspense status). If the CPU 1 detects an
access for the release of the lock variable [A] by the other
CPU 2, the CPU 1 is restored from the suspense status and
starts executing a subsequent instruction.

[0056] The present invention analyzes the instruction
string of the existing program, predicts the generation area
of a spin loop and suspends/resumes the processor. Specifi-
cally, the present invention executes the step of detecting an
instruction string that will become a spin loop used to detect
the possibility of rewriting a lock variable from the existing
instruction string and the step of suspending the relevant
processor or hardware thread instead of the conventional
spin loop.

[0057] However, since the recent processor is usually
provided with cache, it is very difficult to monitor main
memory without any process. Therefore, the present inven-
tion is provided with a writing detection function to monitor
and detect the possibility of rewriting a lock variable in
cache memory.

[0058] In other words, as shown in FIG. 5, in order to
detect the possibility of rewriting a lock variable [A], the
nullification on the cache memory of the lock variable [A]
by the locked CPU 2 is used as a detection trigger, and the
CPU 1 is restored from the suspense status.

[0059] As shown in FIG. 6, there is a possibility of
detecting the nullification (release) on the cache memory of
the lock variable [A] before the CPU 1 enters into the
suspense status after the issuance of a LOAD-WITH-
LOOKUP instruction. In that case, the CPU 1 does not enter
into a suspense status and continues to access the lock
variable [A] without any process.

Nov. 3, 2005

[0060] The higher the detection accuracy of the possibility
of rewriting a lock variable is, the higher the utilization
efficiency of a processor becomes. The situation in which
detection is not possible although in reality there is rewrit-
ing, must be avoided so that there may not be unreasonable
hang-up.

[0061] Sometimes a suspense method for permitting
resumption only by the conventional offering without
address monitor, is required. Therefore, it is convenient if
this can be selected.

[0062] Sometimes an instruction cannot be added to the
existing instruction set. Sometimes a program cannot be
revised (or it is difficult to revise a program) from old
instruction codes. In such cases, no benefit can be obtained
by instruction addition. Therefore, a solution method with-
out instruction addition is desired.

[0063] As described above, in a typical lock chain, when
lock cannot be secured, a memory access instruction as
shown in FIG. 7 can be observed in the execution range of
several tens of instructions. Even if it is unlucky, it can be
observed as shown in FIG. 8.

[0064] Alternatively, in the example shown in Appendix
J.6 of SPARC-V9 Manual, a method in which a try routine
and a loop routine are reversely arranged (if a trial fails, first
of all a loop is executed) is introduced. In this case, it can be
observed as shown in FIG. 9.

[0065] A common fact is that if two instructions accessing
the same address is issued closely, as shown in FIG. 10,
when lock acquisition fails, the processor falls into a spin
loop. In other words, if there are a function to detect the
approach of these two instructions, a function to suspend the
instruction when detecting it and a function to start moni-
toring at the time point of cas and to recognize the rewriting
by another system, a method for solving the conventional
problems in which LOAD-WITH-LOOKUP and SUSPEND
instructions are almost combined, can be obtained.

[0066] A basic example is shown in FIG. 11. However, it
can also be applied to a series of cas instructions to the same
address. Alternatively, it can also be applied to a series of 1d
instructions to the same address.

[0067] There can be a case where such a hardware supple-
mentary mechanism operates as unexpected (for example,
there is a possibility that it may be mistaken for a spin loop
since even a semaphore mechanism uses cas). Therefore,
even an expected operation must be prevented in order to
remove an unexpected operation or reduce its frequency.

[0068] In order to truly improve it, it is preferable to add
a LOAD-WITH-LOOKUP instruction and to explicitly des-
ignate it using an additional instruction. In other words,
although both a method for adding a LOAD-WITH-
LOOKUP instruction and a method for analyzing the exist-
ing instruction string can be improved, it is the best to
combine them.

[0069] The conventional spin loop problem can be
improved by using the LOAD-WITH-LOOKUP (llkup)
instruction of the present invention. One of the improvement
methods is shown in FIG. 12. Specifically, firstly, a lock
variable [lock] is loaded onto a register %10 by an llkup
instruction, and simultaneously the monitor of store possi-
bility of the lock variable [lock] is started. Then, the contents

US 2005/0246506 A1l

of the register %10 are evaluated by a tst instruction. If the
contents are not 0 (another processor obtains its exclusive
right), the execution point attempts to be branched to loop:.
However, since an SUSPEND instruction that is restored by
the detection of store possibility to the lock variable [lock]
is executed, immediately the processor enters into a waiting
status, and the processor attempts to access the lock variable
[lock] again by a cas instruction or the like using the
detection of the store possibility as a trigger. Thus, the
processor can wait to obtain the lock variable [lock] without
falling into a spin loop.

[0070] As described above, the fact that the rewriting
frequency of the existing codes is very few is also one of the
great advantages of the present invention.

[0071] FIG. 13 conceptually shows a configuration of the
information processing device executing the control method
of the information processing device, which is one preferred
embodiment of the present invention.

[0072] The information processing device of the preferred
embodiment comprises a plurality of instruction control
units 10, a storage device 30 storing data accessed by these
instruction control units and cache memory 20 which is
inserted between this storage device 30 and each instruction
control unit 10, temporarily storing data to be transmitted/
received between them and capable of accessing data faster
than the storage device 30.

[0073] Specifically, both the cache memory 20, such as
(primary operand) cache and the like, and the storage device
30 as the lower-order memory of the secondary cache, main
memory or the like are connected to the instruction control
unit 10 as followers. The storage device 30 is shared by he
plurality of instruction control units 10.

[0074] In this case, each instruction control unit 10 is in
charge of the interpretation/execution of instructions and
operation. Each instruction control unit 10 comprises a
register. Each instruction control unit 10 also issues a
memory access instruction 51 and an address 5la to the
cache memory 20, outputs store data 52 to be stored to the
storage device 30 and inputs fetch data 53 read from the
storage-device 30 through the cache memory 20.

[0075] Information, such as a data request 51b issued from
the cache memory 20 to the storage device 30, write-back/
copy-back data 52a used to reflect data in the cache memory
of the storage device 30, data 53a read into the cache
memory 20 from the storage device 30 and the like, are
transmitted/received between the cache memory 20 and the
storage device 30.

[0076] This preferred embodiment further comprises a
control interface, such as a LOAD-WITH-LOOPUP instruc-
tion 54 (hereinafter called “llkup instruction 547), which is
described later, a nullify request 55 to designate the nulli-
fication of specific data in the cache memory 20 and the like,
as an memory access instruction 51.

[0077] In other words, the instruction set 12 of the instruc-
tion control unit 10 of this preferred embodiment includes an
Ilkup instruction 54. The instruction set 12 also includes a
specific SUSPEND instruction 12a to restore the processor
from the suspense status using the detection of a store
possibility detection signal 56, which is described later, and

Nov. 3, 2005

aregular SUSPEND instruction 125 to permit its resumption
by the conventional offering, which are properly used as
requested.

[0078] As shown in FIG. 14, the cache memory 20
comprises a cache data unit 21 temporarily storing data to be
transmitted/received between the instruction control unit 10
and the storage device 30, for example, in units of lines or
the like, and a cache tag unit managing data stored in this
cache data unit 21. In the cache tag unit 22, a status 224, an
address 22¢ of the storage device 30, other management
information 22d are set for each data storage unit, such as a
line in the cache data unit 21.

[0079] Furthermore, in this preferred embodiment, the
cache memory 20 comprises store monitoring logic 40. This
store monitoring logic 40 monitors whether data in the cache
memory 20, corresponding to the access area of the storage
device 30, of the relevant llkup instruction 54 is rewritten by
another instruction control unit 10 different from the instruc-
tion control unit 10 that issued the relevant llkup instruction
54, and transmits a store possibility detection signal 56 to the
instruction control unit 10 in response to it.

[0080] In this preferred embodiment, the operand cache
part of the cache memory 20, such as a primary cache and
the like, is important, and it can handle the target memory
access of a load instruction (fetch instruction) and the like,
regardless of which the cache configuration is, unified or
separate, that is, whether or not instruction cache and
operand cache (data cache) are separated. Although the
cache memory 20 can be write-back (store-in) cache or
write-through (store-through) cache, here the description is
made assuming that the cache memory 20 is write-back
cache.

[0081] The operation principle of this preferred embodi-
ment is described below. In a shared memory system, such
as SMP, cc-NUMA or the like, store order is restricted so
that there will be no inconvenience when handling shared
memory among processors (instruction control units 10),
and cache coherency is also maintained.

[0082] As to store order, there are order provisions called
“TSO” in SPARC V9 of Sun Micro-System Corporation
(although there are other order provisions, in reality only this
is used). In short, in store provisions, a processor is specified
to move so that other observers may observe it in stored
order (although it is not limited to that).

[0083] If cache coherency is maintained in this status, a
processor which performs store when the store should be
performed must obtain an exclusive right to the memory
area to be stored (it can also be called “writing right”, that
is, a status where no other processor than the processor has
its memory area on the cache. Therefore, when storing, the
store provisions can be observed).

[0084] As the status 22a of the cache tag unit 22, a
configuration in which cache statuses, such as MCI (modi-
fied, clean and invalid), MESI (modified, exclusive, sharable
and invalid), MOEDI (modified, owned, exclusive, sharable
and invalid) and the like, are stored, is known. Essentially,
there are three statuses; “shared (C) (equivalent to no
exclusive right since only the relevant processor may share
it)”, “monopolized (M)” and “invalid (I)”, and MESI and
MOSEI are obtained simply by adding an auxiliary status to
each of them, which are described later with reference to

US 2005/0246506 A1l

MCI. As to MESI and MOESI, E and M are statuses having
an exclusive right, and O and S are shared statuses. There-
fore, they can be similarly handled.

[0085] In order to maintain cache coherency, the cache
memory 20 of the execution processor obtains an exclusive
right to the relevant memory area when performing store.
When the exclusive right is obtained, the corresponding
memory areas of other processors enter into “invalid” sta-
tuses.

[0086] Therefore, when there is memory rewriting (store),
the storing right to the relevant memory area is released
(nullified) in cache memory 20 other than one to be rewritten
if it has the memory area. In this preferred embodiment,
access to the relevant lock variable in exclusive control by
the update of data, such as a lock variable or the like, set in
a storage device 30 shared by a plurality of instruction
control units 10 is controlled utilizing the control mecha-
nism of this cache memory 20.

[0087] Specifically, a llkup instruction 54 (LOAD-WITH-
LOOKUP instruction 54) is newly set between an instruction
control unit 10 and cache memory 20 as described above,
according to the basic control principle of this cache
memory. Then, if this llkup instruction 54 is executed, the
following control operations are performed.

[0088] (1) Data is loaded onto a designated memory
area.

[0089] (2) The data is registered in its own cache
memory 20 accompanying item (1) above (usually
shared (C)).

[0090] (3) The store monitoring logic 49 monitors this
memory area, and also the instruction control unit 10
executes a special SUSPEND instruction 12a to enter
into a suspense status.

[0091] (4) If a memory area designated by the llkup
instruction 54 cannot be held for some reason, it is
regarded that there is a store possibility and a store
possibility detection signal 56 is returned to an instruc-
tion control unit 10 that issued the llkup instruction 54.

[0092] (5) The instruction control unit 10 is restored
from the suspense status using the reception of this
store possibility detection signal 56 as a trigger.

[0093] The monitoring of a memory area by the store
monitoring logic 40 can be realized on a cache tag or a
register.

[0094] A method for realizing it on a cache tag is shown
in FIG. 14. As described above, usually, the cache tag unit
22 is paired with data, and includes a cache status (one of the
above-mentioned M, C, I, etc.) indicated by a status 224, an
address 22¢ and other management information 224 (privi-
lege flag, context, etc.). LOOK flag information is provided
here. Specifically, in this preferred embodiment, the cache
tag unit 22 is provided with a LOOK flag 225 for the 1lkup
instruction 54 for each data storage unit.

[0095] At the time of cache registration usually generated
when executing a regular load, this LOOK flag 22b is not
set. If the llkup instruction 54 is executed, the following load
process is performed accompanying the registration the
Ilkup instruction 54.

Nov. 3, 2005

[0096] (1) If corresponding data is stored in the cache
data unit 21, the LOOK flag 22b of the relevant line of
the cache tag unit 22 is set.

[0097] (2) If corresponding data is not stored in the
cache data unit 21, the LOOK flag 22b of the relevant
line is set in the cache tag unit 22 when registering the
data of the relevant line.

[0098] The store possibility of other processors is deter-
mined by the nullification of a cache line in which this
LOOK flag 22b is set. It is generally determined by the
following events.

[0099] (1) A cache line becomes a replacement target.

[0100] (2) A nullify request comes from another pro-
cessor than the relevant processor by an obtain request
for an exclusive right from another processor or the
like. Since nullification equals to entry of a cache status
(status 22a@) from M or C (in another cache status
indication method, S, O, E are also possible; in any
way, from all storing statuses) to I, the rewriting of the
cache tag unit 22 is limited to the above-mentioned
cases. At this moment, the store monitoring logic 40
checks the LOOK flag 22b. If the flag is set, it means
a monitor status. Since this is the detection target of
store possibility, it is regarded that store possibility was
detected, and a store possibility detection signal is
returned to the instruction control unit 10 that issued
the llkup instruction 54.

[0101] The cache method includes several methods, such
as a write-through/write-back method in store management,
an association method (set associative method for cache hit
rate improvement), an address management method (virtu-
ally indexed physically tagged (VIPT), physically indexed
physically tagged (PIPT)) and the like. However, in the
present invention, their different combination can also be
similarly realized without bad influences.

[0102] The circuit configuration in which a register real-
izes the store monitoring logic 40 and the timing chart of its
operation are shown in FIGS. 15 and 16, respectively.
Specifically, a register 41 is provided instead of providing
the cache tag unit 22 with a LOOK flag 225, and an address
51a is set by executing the llkup instruction 54. When cache
nullification is performed by a nullify request 55, the address
is compared with the contents of the set register 41 by a
comparator 42, and the output of the AND by a logic control
circuit 43, of a comparison result outputted from the com-
parator 42 and the nullification request 55, is returned to the
instruction control unit 10 as a store possibility detection
signal 56.

[0103] By combining the issuance of a llkup instruction 54
and the return of a store possibility detection signal 56 thus,
the spin loop of the instruction control unit 10 can be
avoided in exclusive control by the reference/update of a
shared variable (lock variable) in the storage device 30.

[0104] More accurately, an address range can also be set in
the register 41. For example, if a target fetch size is an llkup
instruction 54 of four bytes, it can be recorded that the
designated address is four bytes. If a plurality of llkup
instructions 54 is executed, the range can be recorded.

[0105] In this example, a cache line size is used for the
range, for convenience’ sake. Even if a cache line size is

US 2005/0246506 A1l

four-byte fetch, its target address range is regarded to be 64
bytes (there is no problem at all if cache is not shared by a
plurality of processors. More particularly it is in a case
where the cache is shared by a plurality of processors that a
small address range has a meaning).

[0106] As shown in FIG. 17, a method in which an
address range of four bytes can be used, such as a global
buffer storage (GBS) method, a chip multi-processor (CMP)
method and a hardware multi-thread method (a processor
that executes one hardware thread in this case is called
“logical processor”) has an important meaning in a configu-
ration such that one segment of cache memory 20 can be
shared by a plurality of (logical) processors (instruction
control units 10A and 10B). If an address range is used,
address range determination by store executed by a shared
logical processor is added to address matching determina-
tion accompanying the above-mentioned nullification. There
is not always a need to limit the range, and it can also be
address matching determination by a cache line. The differ-
ence is whether highly accurate determination is required or
easy possibility determination is sufficient, which is also a
trade-off with cost.

[0107] An example of restoration (resumption) from sus-
pense by using a store possibility detection means, such as
the above-mentioned store monitoring logic 40, LOOK flag
22b or the like, is described below. A simple method for first
of all entering a processor into a suspense status is to
generate a SUSPEND instruction to instruct the processor to
enter into a suspense status and to execute the instruction.
Namely, if there is an instruction, suspense can be realized
by interpreting and executing the instruction. Typically, the
clock control system (power-saving control unit 60) is
configured as shown in FIG. 18, and is operated according
to the timing chart shown in FIG. 19.

[0108] Specifically, in a clock control system for supply-
ing an operation clock 71 to the instruction control unit 10,
cache memory 20 and storage device 30 from a clock supply
source 70, a power-saving control unit 60 is inserted in the
supply route of the operation clock 71 to the instruction
control unit 10. This power-saving control unit 60 comprises
a flip-flop circuit 61 using a suspense execution signal 57
from the instruction control unit 10 and a store possibility
detection signal 56 from the store monitoring logic 40 of the
cache memory 230 as set input (SET) and reset input
(RESET), respectively, and an AND circuit 63 generating an
operation clock 71a by the AND of a signal obtained
logically inverting the Q output of the flip-flop circuit 61 by
a logic inversion circuit 62, and the operation clock 71, and
inputting the clock to the instruction control unit 10.

[0109] Thus, as shown in the timing chart of FIG. 19, the
clock supply of the execution control unit can be suspended
at the time of suspense, and the clock supply can be resumed
at the time of the detection of store possibility. Alternatively,
the existing suspense/resumption methods can be combined.

[0110] Since the order of the execution of a SUSPEND
instruction and the store possibility detection signal 56 is not

guaranteed, the following execution order can be expected
(FIG. 5).

[0111] 1. Execution of an llkup instruction through
monitor start

Nov. 3, 2005

[0112] 2. Execution of a SUSPEND instruction
[0113] 3. Detection of store possibility

[0114] However, in reality, there is a possibility that the
order is reversed (FIG. 6) as follows.

[0115] 1. Execution of an llkup instruction through
monitor start

[0116] 2. Detection of store possibility
[0117] 3. Execution of a SUSPEND instruction

[0118] More particularly, the larger the set number of
monitor targets is, the higher the reverse possibility
becomes. Therefore, control which takes this into consider-
ation is needed. The power-saving control unit 60A shown
in FIG. 20 and the timing chart shown in FIG. 21 realize
this.

[0119] In the power-saving control unit 60A, both a flip-
flop circuit 66 using the execution signal of the llkup
instruction 54 as the suspense execution signal 57 as set
input (SET) and reset input (RESET), respectively, and a
logic inversion circuit 67 inverting the Q output of the
flip-flop circuit 66 are disposed in the reset input route of the
flip-flop circuit 61 shown in FIG. 18. Furthermore, both a
logic inversion circuit 64 inverting the Q output of the
flip-flop circuit 61 and an AND circuit 65 calculating the
AND of the output of the logic inversion circuit 64 and a
suspense during-execution signal 57a which always
becomes true during suspense execution are inserted
between the flip-flop circuit 61 and logic inversion circuit
62.

[0120] Thus, if a store possibility detection signal 56 is
regularly detected after suspense execution as shown in
FIG. 21A, the input of the operation clock 71a to the
instruction control unit 10 is suspended during suspense
execution. However, if a store possibility detection signal 56
is detected before suspense execution as shown in FIG. 21B,
the input of the operation clock 714 to the instruction control
unit 10 is not suspended during suspense execution and the
instruction control unit 10 continues to operate.

[0121] In the power-saving control unit 60A, the Q output
of the flip-flop circuit 61 can be used as an early store
detection signal 68 for detecting that a store possibility
detection signal 56 was detected before suspense execution,
as requested.

[0122] As described above, the useless power consump-
tion due to the idle-running waiting of the instruction control
unit 10, such as the conventional spin loop, can be avoided
by monitoring the change of a shared variable for exclusive
control due to the access of another instruction control unit
10, using the issuance of an llkup instruction 54 as a trigger,
and also entering the instruction control unit 10 into a
suspense (operation clock suspense) status by a special
suspend instruction 12a and restoring the instruction control
unit 10 using the input to the power-saving control unit 60
of a store possibility detection signal 56 as a trigger, if the
change of the shared variable is anticipated.

[0123] So far the effects of this preferred embodiment
have been described from the viewpoint of power saving.
However, in a configuration where a plurality of logical
processors is mounted on one physical chip, the idle-running
waiting of each logical processor means the suspense of

US 2005/0246506 A1l

other processors sharing the hardware. Therefore, the appli-
cation of the technology of this preferred embodiment, for
precisely suspending a processor that falls into an idle-
running waiting status can contribute not only to power
saving but also to the effective utilization of the throughput
(resources) of each logical processor.

[0124] In other words, if the present invention is applied
to a processor corresponding to a hardware multi-thread,
improving throughput by pretending as if a plurality of
logical processors were mounted on one physical chip, not
only power saving but also the effective utilization of
processor throughput (processor resources) can be realized.

[0125] For example, although in a vertical multi-thread
(VMT) method, a thread process is time-divisionally per-
formed, in this preferred embodiment, a thread (logical
processor) is suspended instead of idle-running waiting for
exclusive control. Therefore, when the thread is suspended,
its instruction processing can be suspended and another
thread process can be performed with priority. This also
applies to a simultaneous multi-thread (SMT) method.

[0126] The realization of a similar function by detecting a
spin loop or the like without an llkup/suspend instruction or
without using the instruction is described below. A similar
function can be realized by operating a processor according
to the result of spin-loop detection, instead of setting a
LOOK flag 22b by an llkup instruction 54 as described
above. Therefore, description is omitted after flag setting.

[0127] As to how to detect a spin loop, as described above
in FIGS. 7 through 9, cache access (instruction string)
which is characteristic of a status that easily falls into a spin
loop is detected. The features are shown in FIGS. 7 through
9, and an example of a spin loop discrimination unit 80
catching the features is shown in FIG. 22.

[0128] Specifically, the spin loop discrimination unit 80
comprises a register 81 storing an address 51a accompany-
ing a memory access instruction 51, an OR circuit 82
calculating the OR of a load instruction detection signal 58a
outputted from the decoding unit 11 of the instruction
control unit 10 and a compare/swap instruction detection
signal 58¢, a comparator 83 comparing the stored contents
of the register 81 with the address 51a, an AND circuit 87
calculating the AND of the output of the comparator 83 and
the output of the OR circuit 82 and outputting the AND as
a spin detection signal 874, a logic inversion circuit 84
inverting the output of the comparator 83, an AND circuit 85
calculating the AND of the output of the logic inversion
circuit 84 and the output of the OR circuit 82, an OR circuit
86 calculating the OR of the output of the AND circuit 85
and the store instruction detection signal 58b of the decoding
unit 11 and outputting the OR as a spin release signal 86a,
and a counter 88 which is counted up by the spin detection
signal 87a and is reset by the spin release signal 86a.

[0129] Then, according to the timing chart shown in FIG.
23, the address Sla is taken in the register 81 when a
compare/swap instruction detection signal 58¢ is detected.
Then, if the contents of the register 81 coincide with the
address 5la accompanying the load instruction when the
load instruction detection signal 58a is detected, the spin
detection signal 87a is outputted. If the address S1a does not
coincide with the contents of the register 81 at the time of the
detection of the store instruction detection signal 58b or at

Nov. 3, 2005

the time of the detection of the load instruction detection
signal 58a or a compare/swap instruction detection signal
58c, the spin release signal 86a is outputted.

[0130] Then, the counter 88 is counted up by the spin
detection signal 874, and if the count reaches a specific value
(1 acceptable), the then ld/cas instruction is regarded to be
equivalent to an llkup instruction. If the counting continues
and the count exceeds the specific value, the processor is
suspended after the then 1d/cas instruction is completed. If
the spin release signal 86a is detected, mis-detection can be
suppressed by resetting the counter 88. Once the processor
is suspended, the counter 88 is reset. Otherwise, when
restoring from the suspense, the processor promptly enters
into the next suspense status.

[0131] By providing such a spin loop discrimination unit
80, a spin loop can be detected regardless of whether or not
an llkup instruction 54 is mounted. Power saving can also
controlled regardless of whether or not there is a suspend
instruction.

[0132] As described above, according to the preferred
embodiment of the present invention, the bad influence on
other thread processes of a processor core can be eliminated
by removing the useless idle running of a spin loop. By
suspending a processor while waiting for lock acquisition
and reducing the useless operation, such as idle-running
waiting and the like, both power cost and operation cost can
be suppressed. Furthermore, when porting software to a
processor provided with a LOAD-WITH-LOOKUP instruc-
tion, a program written in the existing instruction codes can
be easily rewritten, and accordingly the porting cost of
software can be suppressed.

[0133] In other words, the wasteful operation cost of a
processor can be suppressed, and performance can be
remarkably improved. Since the present invention can be
applied to any information processing device, its applicable
scope is wide. Furthermore, a program written in the exist-
ing instruction codes can be easily rewritten by a LOAD-
WITH-LOOKUP instruction, which is useful.

[0134] According to the present invention, the waste of
both power consumption and processor resources which are
due to a spin loop for exclusive control among a plurality of
logical or physical processors can be reduced.

[0135] In a multi-processor system in which one physical
processor core is provided with a plurality of hardware
threads and which can operate as if it were provided with a
plurality of logical processors, the performance degradation
of other logical processors due to the spin loop of one logical
processor can also be prevented.

[0136] In the multi-processor system, since the existing
program can be easily rewritten, an exclusive control mecha-
nism with the low porting cost of software can be realized.

[0137] The present invention is expressed as follows from
a different viewpoint.

[0138] Note 1:

[0139] A method and architecture for monitoring memory
blocks including a memory block to be loaded in an instruc-
tion set architecture having a load instruction to read a value
from main memory mounted on an information processing
device with cache memory.

US 2005/0246506 A1l

[0140] Note 2:

[0141] A method and architecture with a load instruction
(LOAD-WITH-LOOKUP instruction) with a function to
monitor memory blocks including a memory block to be
loaded.

[0142] Note 3:

[0143] A process method and an information processing
device with a means for detecting store possibility (of other
logical processors, I/O devices and the like) in the memory
block monitoring range set forth in note 2.

[0144] Note 4:

[0145] A method and a device for providing the detection
means, more particularly a cache tag, set forth in note 3, with
a flag indicating a during-monitor status and monitoring a
cache line with the flag.

[0146] Note 5:

[0147] A method and a device for providing the detection
means, more particularly one or more registers, setting a
monitor address and monitoring by checking an address
range, based on this set address.

[0148] Note 6:

[0149] A process method and a device with cache memory
for storing the data of an address to be monitored by the
cache as the detection means set forth in note 3, in the cache,
and determining store possibility when receiving a cache
line nullify instruction (Buffer Invalidate or Copy-back and
invalidate).

[0150] Note 7:

[0151] A process method and a device with cache memory
for storing the data of an address to be monitored by the
cache as the detection means set forth in note 3, in the cache,
and determining store possibility when there is replacement.

[0152] Note 8:

[0153] A method and architecture provided with an
instruction to suspend a logical processor (logical CPU-
)(bereinafter called “SUSPEND instruction”), capable of
restoring the processor from the suspense by the store
possibility detection means set forth in note 3, as a means for
restoring the processor from the suspense.

[0154] Note 9:

[0155] The method and device according to note 8, for
preventing the processor from resumption by address moni-
tor by providing a means for instructing the SUSPEND
instruction not to monitor an address in order to temporarily
suspend without address monitor.

[0156] Note 10:

[0157] A method and a device for restoring the processor
immediately after suspense entry or interpreting a SUS-
PEND instruction as a non-operation instruction when
detecting store possibility before suspense.

[0158] Note 11:

[0159] A store possibility detection means according to
note 3, with a mechanism for detecting a case where a
specific logical processor writes data in the memory block
monitoring range set forth in note 2, of shared cache in a

Nov. 3, 2005

configuration where one segment of cache can be shared by
a plurality of logical processors, such as shared cache (GBS
method), a processor in which one physical chip includes a
plurality of processor cores (CMP method) and a processor
in which one physical processor core is provided with a
plurality of hardware threads (strand) and which can operate
as if there were a plurality of logical processors (such as, MT
method HMT, SMT, VMT, etc.).

[0160] Note 12:

[0161] The method and device according to note 1, which
operates regarding the set of a fetch/store instruction to
operate the same address block (such as a cas instruction, an
instruction to atomically load data from memory and store
memory) and a load instruction as an monitor/suspend
instruction, instead of the LOAD-WITH-LOOKUP/SUS-
PEND instruction set forth in note 2 (can also be provided).

[0162] Note 13:

[0163] The method and device according to note 1, for
regarding the fetch/store instruction of the set set forth in
note 12 to be equivalent to a LOAD-WITH-LOOKUP
instruction, instead of the SUSPEND instruction set forth in
note 8 (can also be provided).

[0164] Note 14:

[0165] The method and device according to note 1, for
regarding the load instruction set forth in note 12 to be
equivalent to an SUSPEND instruction, instead of the SUS-
PEND instruction set forth in note 8 (can also be provided).

[0166] Note 15:

[0167] The method and device according to note 1, which
operates regarding a plurality of fetch/store instruction in the
neighborhood to operate the same address block (such as cas
instruction, etc.) as an instruction to memory blocks, instead
of the LOAD-WITH-LOOKUP/SUSPEND instruction set
forth in note 2(can also be provided).

[0168] Note 16:

[0169] The method and device according to note 1, for
regarding the first fetch/store instruction of the set set forth
in note 12 to be equivalent to a LOAD-WITH-LOOKUP
instruction, instead of the SUSPEND instruction set forth in
note 8 (can also be provided)

[0170] Note 17:

[0171] The method and device according to note 1, for
regarding the second fetch/store instruction of the set set
forth in note 15 to be equivalent to a load-with-lookup
instruction, instead of the suspend instruction set forth in
note 8 (can also be provided)

What is claimed is:

1. A method for controlling a processor which accesses
information of a storage device through cache memory,
comprising:

a first step of reading information stored in a target
address or an address range of the storage device and
monitoring whether there is an update access to the
address or the address range from another processor;

a second step of entering the processor into a suspense
status; and

US 2005/0246506 A1l

a third step of releasing the suspense status using the
occurrence of the update access as a trigger.
2. The processor control method according to claim 1,
wherein

if the occurrence of the update access is detected between
said first and second steps, the execution of said second
step is suppressed.
3. The processor control method according to claim 1,
wherein

part of cache management information for managing the
cache memory comprises discrimination information
for discriminating the storage area of the cache memory
corresponding to the specific storage area of the storage
device, and

in said first step the storage area of the cache memory,
corresponding to the address or address range of the
storage device accessed is designated as a monitor
target by attaching the discrimination information, and

in said third step the suspense status is released using the
occurrence of the nullification or rewriting of the
information about the storage area of the cache memory
as a trigger.
4. The processor control method according to claim 1,
wherein

in said second step, the clock supply to the processor is
suspended, and

in said third step, the clock supply is resumed.

5. A method for controlling a processor which accesses
information of a storage device through cache memory,
comprising:

a first step of detecting an instruction string composed of
at least one of a first instruction to collectively read and
update information in a target address or an address
range of the storage device and a second instruction to
read information about the address or address range;

a second step of monitoring whether there is an update
access to the address or the address range from another
processor and also entering the processor into a sus-
pense status using detection of the instruction string as
a trigger; and

a third step of releasing the suspense status using the
occurrence of the update access to the address or
address range from another processor as a trigger.

6. The processor control method according to claim 5,

wherein

part of cache management information for managing the
cache memory comprises discrimination information
for discriminating the storage area of the cache memory
corresponding to the specific storage area of the storage
device, and

in the first step, the storage area of the cache memory,
corresponding to the address or address range of the
storage device accessed is designated as a monitor
target by attaching the discrimination information, and

in said third step, the suspense status is released using the
occurrence of the nullification or rewriting of the
information about the storage area of the cache memory
as a trigger.

Nov. 3, 2005

7. The processor control method according to claim 5,
wherein

in said second step, the clock supply to the processor is
suspended, and

in said third step, the clock supply is resumed.
8. An information processing device, comprising:

an instruction control unit;

cache memory inserted between the instruction control
unit and a storage device;

a load instruction to read information from the storage
device into the instruction control unit; and

a monitor trigger setting function to set the monitor start
trigger of a specific storage area of the storage device,
including a target access area of the load instruction.

9. An information processing device, comprising:

an instruction control unit;

cache memory inserted between the instruction control
unit and a storage device;

a load instruction to read information from the storage
device into the instruction control unit; and

a writing detection function to monitor a specific storage
area of the storage device, including a target access area
of the load instruction and to detect a possibility that
information may be written into the specific storage
area.

10. The information processing device according to claim

9, wherein

part of cache management information for managing said
cache memory comprises discrimination information
for discriminating the storage area of said cache
memory corresponding to the specific storage area of
the storage device, and the storage area of the cache
memory, to which the discrimination information is
attached, is designated as the monitor target of said
writing detection function.

11. The information processing device according to claim

9, wherein

said writing detection function comprises at least one
register, and

a monitor address indicating the specific storage area is
set in said register, and the specific storage area is
monitored by comparing the monitor address with an
access address to all segments of cache memory.

12. The information processing device according to

claims 9, wherein

if there is an instruction to nullify or rewrite information
stored corresponding to the specific storage area of said
cache memory, it is determined that there is a possi-
bility of writing into the specific storage area.

13. An information processing device, comprising:

an instruction control unit;

cache memory inserted between the instruction control
unit and a storage device;

a load instruction to read information from the storage
device into the instruction control unit; and

US 2005/0246506 A1l

a suspense instruction to enter the instruction control unit
into a suspense status and to release the suspense status
using detection of a possibility of writing the informa-
tion into the specific storage area of the storage device,
including a target access area of the load instruction as
a trigger.

14. The information processing device according to claim

13, further comprising

a clock supply control function to suspend and resume
clock supply to said instruction control unit in synchro-
nization with entry to the suspense status by said
suspense instruction and release from the suspense
status.

15. An information processing device provided with an
exclusive control mechanism for exclusively controlling
access to shared memory of a plurality of instruction control
units by rewriting specific information in a specific area of
the shared memory, comprising

a clock supply control function to suspend clock supply to
the relevant instruction control unit while one of the
plurality of instruction control units is waiting for
rewriting of the specific information by another instruc-
tion control unit as a trigger.

16. An information processing device, comprising

a plurality of logical or physical instruction control units;

cache memory which is inserted between each of the
instruction control unit and a storage device and is
shared by the plurality of instruction control units; and

a writing detection function to notify other instruction
control units of a fact that one of the plurality of
instruction control units has written information into a
specific storage area of the storage device.

17. The information processing device according to claim

16, wherein

each of said instruction control units comprises

a suspense instruction to enter the relevant instruction
control unit into a suspense status and to release the
suspense status using notification from said writing
detection function as a trigger.

18. A processor with an instruction set, said instruction set
comprising:

aload instruction to access a storage device through cache
memory and to read information from the storage
device; and

a specific instruction to set the existence/non-existence of
writing in a specific storage area of the storage device,
including a target access area of the load instruction as
a monitor start trigger.

Nov. 3, 2005

19. An information processing device which accesses
information of a storage device through cache memory,
comprising:

a first function to detect an instruction string composed of
at least one of a first instruction to collectively read and
update information in a target address or address range
of the storage device and a second instruction to read
information about the address or address range; and

a second function to monitor whether there is an update
access to the address or address range from another
processor and also to enter the information processing
device into a suspense status, using detection of the
instruction string as a trigger; and

a third function to release the suspense status using the
occurrence of the update access to the address or
address range from another processor as a trigger.

20. Cache memory which is inserted between an instruc-
tion control unit and a storage device and temporarily stores
information transmitted/received between the storage device
and the instruction control unit, comprising

a writing detection function to detect a possibility that
information may be written into the specific storage
area of the storage device, including a target access area
of a load instruction to read the information from the
storage device into the instruction control unit.

21. The cache memory according to claim 20, wherein

part of cache management information for managing said
cache memory comprises discrimination information
for discriminating the storage area of said cache
memory corresponding to the specific storage area of
the storage device, and the storage area of the cache
memory, to which the discrimination information is
attached, is designated as the monitor target of said
writing detection function.

22. The cache memory according to claim 20, wherein

said writing detection function comprises at least one
register, and

a monitor address indicating the specific storage area is
set in said register, and the specific storage area is
monitored by comparing the monitor address with an
access address to all segments of cache memory.

