
United States Patent

US007093122B1

(12) (10) Patent N0.: US 7,093,122 B1
Susser et a]. (45) Date of Patent: Aug. 15, 2006

(54) TECHNIQUES FOR PERMITTING ACCESS 5,768,385 A 6/1998
ACROSS A CONTEXT BARRIER IN A 5,781,723 A 7/1998
SMALL FOOTPRINT DEVICE USING 5,802,519 A 9/ 1998
SHARED OBJECT INTERFACES 5,894,550 A 4/1999

5,912,453 A 6/1999

(75) Inventors: Joshua Susser, San Francisco, CA 6’052’690 A 4/2000
(US); Mitchel B. Butler, Sunnyvale, (C t. d)
CA (U S); Andy Streich, Foster City, on mue
CA (Us) FOREIGN PATENT DOCUMENTS

(73) Assignee: Sun Microsystems, Inc., Santa Clara, DE 4126213 2/1993
CA S

(U) (Continued)
(*) Notice: Subject' to any disclaimer,~ the term of this OTHER PUBLICATIONS

patent 1s extended or adjusted under 35
U_S_C_ 154(1)) by 0 days_ Daniels, John et al., “Strategies For Sharing Objects In

Distributed Systems”, JOOP, Objects Designers Ltd., UK,
(21) Appl. No.: 09/235,159 PP- 27-36

(22) Filed: Jan. 22, 1999 (Continued)

(51) Int_ CL Primary ExamineriMajid Banankhah
H0417 9/00 (200601) (74) Attorney, Agent, or FirmiGunnison, McKay &
G06F 11/00 (2006.01) Hodgson, LLP

(52) US. Cl. 713/153; 713/159; 718/108;
719/315; 719/313 (57) ABSTRACT

(58) Field of Classi?cation Search 709/100,

709/101’ 102’ 103> 104; 713/200’ 201> 202> A small footprint device can securely run multiple programs
713/232’ 153: 159: 167; 380/45: 57> 255; from unrelated vendors by the inclusion of a context barrier
705/26: 27> 30; 718/100’ 101: 102: 103: isolating the execution of the programs. The context barrier

_ _ 718/104’ 108; 719/200’ 203; 315: 313 performs security checks to see that principal and object are
See aPPhCaUOn ?le for Complete Search hlstory- Within the same namespace or memory space or to see that

_ a requested action is authorized for an object to be operated
(56) References Clted upon. Each program or set of programs runs in a separate

U.S. PATENT DOCUMENTS

4,930,129 A 5/1990 Takahira 371/404

5,057,997 A 10/1991 Chang et a1. 364/200
5,204,663 A 4/1993 Lee 340/82534

5,481,715 A 1/1996 Hamilton et a1. 395/700

5,544,246 A 8/1996 Mandelbaum et a1. 380/23

5,594,227 A 1/1997 Deo
5,649,118 A 7/1997 Carlisle et a1. 395/241

5,721,781 A 2/1998 Deo et a1.
5,742,756 A 4/1998 Dillaway et al.

context. Access from one program to another program
across the context barrier can be achieved under controlled
circumstances by using shared interface objects. Shared
interface objects have a property that permits them to be
accessed across the context barrier regardless of security
restrictions that Would otherwise apply. Shared interface
objects, however, may enforce their oWn security rules
independently of the context barrier.

38 Claims, 12 Drawing Sheets

77

A
11

Con

Runhme Environment

// \ \\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\
A

Wrlucll Machine ~720

Interpreter
or

Native Implemen

N730

lotion

Runlime Syslem

Object
s lam

710
Operating System

US 7,093,122 B1
Page 2

US. PATENT DOCUMENTS OTHER PUBLICATIONS

6,092,202 A * 7/2000 Veil 61211. 713/201 Chan, “Infrastructure of Multi-Application Smart Card”,
6,094,656 A 7/2000 De Jong 707/100 httpr//h0mehkstancom/~alanchan/papers/multiAp

6,173,391 B1 1/2001 Tabuchi et a1. 712/200 plicationsmartcarw, 1111- 25, 2002

6,220,510 B1 4/2001 Everett et a1‘ __ 235/380 Cordonnier, et al., “The concept of suspicion: a neW security
6 233 683 B1 5/2001 Chan et a1‘ _ _ _ _ _ _ _ _ __ 713/172 model for identi?cation management in smart cards”, http://

6,233,688 B1 * 5/2001 Montenegro . 713/201 inforge-un?-°h/iSdSS97/PaPerS/48mm’ (1997)
6 292 874 B 1 90001 Barnett 711/153 Lee, Chan Y., “Detecting Out-Of-Range References”, http://

’ ’ . . iiiiiiiiiiiiiiiiiiiii " 127.0.0.1:8080/vtopic.isapi?action+VieW

6,308,317 B1 10/2001 Wlkl 131. 717/5
6 349 336 B1 2,2002 Si: J30“ e 709/227 &VdkVgWKev:%2E@2E%2Fdata%2F1i993%2F, Jul. 24,

, , 2002'

6,373,950 B1 * 4/2002 R 380/255

6 606 711 B1 * 8/2003 HEYZZI 713001 Ph1l1ps Sem1conductor, “Des1gners o?cered ?rst 16-b1t smart

FOREIGN PATENT DOCUMENTS

0190733
0466969
0666550
01277993 A
02156357 A
05089303 A

WO 87/07062
WO 94/10657

98/37526
99/16030

8/1986
1/1992
8/1995
11/1989
6/1990
4/1993
11/1987
5/1994
2/1998
9/1998

card 1C architecture With development tools”, Press
Release, Jul. 25, 2002.
Ritchey, Tim, “Advanced Topics: The Java Virtual
Machine”, Java/, Chapter 14, pp. 25-346, Sep. 22, 1995.
Sun Microsystems, “Java Card 2.0 Language Subset and
Virtual Machine Speci?cation”, Revision 1.0 Final, Oct. 13,
1997.
Sun Microsystems, “Java Card 2.0 Programming Concepts”,
Revision 1.0 Final, oct. 15, 1997.
“Sun Microsystems Announces JAVACARD API”, Business
Wire, Oct. 1996.

* cited by examiner

U.S. Patent Aug. 15, 2006 Sheet 1 0f 12 US 7,093,122 B1

210

Server

200

120
3

CAD Equipped
Network Device

FIG. 2

U.S. Patent Aug. 15,2006 Sheet 2 0f 12 US 7,093,122 B1

Small-Footprint Device 330
3

Primary Storage N310 (6'9" 861ml Port)
/\/3i5 340“ 500

ROM v S

< > Processor(s)

M

320
RAM ‘M316 i 3

Secondary Storage
(e.g., EPROM)

FIG. 3
(PRIOR ART)

400
$

Physical Device 4810
Machine (Virtual or Physical) 4320

430

Execution Context

440

Object

I Object I

Object
Access

7

1 Object I

FIG. 4
(PRIOR ART)

U.S. Patent Aug. 15, 2006 Sheet 3 0f 12 US 7,093,122 B1

510

(2,520
Action ' / Ob Ject i @

(Data)
500
3 (V520

Principal Action Object 2
(Entity) (Dom)

I 530 (5 (Action F"
Object N
(Entity)

FIG. 5

800
8

Principal invokes
Action on Object

840
S

Disollow Action

Permit Action

FIG. 8

U.S. Patent Aug. 15, 2006 Sheet 4 0f 12 US 7,093,122 B1

Physical Device 4a 0

Machine (Virtual or Physical)
Execution Context 1

N 420

Object
Access ‘V 440

430 Object
630

Object in
Access

CD

____ ___________.l (A
U‘!

03 C14 CD CD CD

Execution Context :2

Object
Access

FIG. 6

U.S. Patent Aug. 15,2006 Sheet 5 or 12 US 7,093,122 B1

Runtime Environment

0 7U

N720

///~/////////////////
////////////////

/////////////////% ///////////////////
WW

//////////////////
/////,////////////%/

V /_ // /// %5/%9"
Conte
(Sup
Conte

xt
er

xt)

///////////////% /// ///7/////////////// 6 7

Virtual Machine

N730

N740

Interpreter
or

Native Implementation

750 Runtime System

Object
System

Operating System

7 FIG.

U.S. Patent Aug. 15, 2006 Sheet 6 0f 12 US 7,093,122 B1

Physical Device 4310
Machine (Virtual or Physical)

Execution Context 1
N 420

Object
Access

Object 3
Access 630

(‘635
Object _;__1
Access

600 920 i 636 r?“ jgj
\j/ H620
lExecution Context 2

' 640

910

FIG. 9

U.S. Patent Aug. 15, 2006 Sheet 7 0f 12 US 7,093,122 B1

Physical Device S

Machine (Virtual or Physical)
Execution Context 1

~1000
1030

1070

ff’ 1
r__/1010

/

Execution Context 2
t (2/ 1050

Object 1090 1099
1040

1095

FIG. 10

U.S. Patent Aug. 15,2006 Sheet 8 or 12 US 7,093,122 B1

In Execution Context 2, Create Object and M1100
Designate as Shared (e.g., Entry Point)

ll 0
In Execution Context 1 (Principal), Obtain 0 Wm

Reference to Object

" 1120
Principal lnvokes Action on Object N

FIG. 11

400
8

Physical Device 4310
Machine (Virtual or Physical)

Supercontext
1210 N760

1220 600
/f’

770 k)
f’ ~1205

1200

Object
Access

Context 1

FIG. 12

U.S. Patent Aug. 15, 2006 Sheet 9 0f 12 US 7,093,122 B1

400
1

Physical Device 4810
Machine (Virtual or Physical)

Supercontext
~76O

Global 00m 1200
Structure
A

600 1270 1220»?\ [<4 8
\J \J

770» 1255» r4780
1210 ~1205 1250

Object Object
Access Access

Context 1 Context 2

FIG. 13
400
8

Physical Device 4310
Machine (Virtual or Physical)

Supercontext
1200 1250“760

Object Object
Access Access

1220 1205 1255>\<<d127o 6800
#780

Context 2

FIG. 14

U.S. Patent Aug. 15, 2006 Sheet 10 0f 12 US 7,093,122 B1

400
S

Physical Device 4810
Machine (Virtual or Physical)

~600
770 780
i i

1200

1205 1220
. Shareable

gbject g Interface

CCeSS Context 1 Context 2

FIG. 15

Principal lnvokes Action an Object

ls Object
Within Context
of Principal

I?

1630

Yes Is Action by
Permit Action ~ Principal Permitted

on Object
'2

1640 '

No
Disallow Action

FIG. 16

U.S. Patent Aug. 15, 2006 Sheet 11 0f 12 US 7,093,122 B1

1600
Principol lnvokes Action on Object

1610

O N Is Object
Within Context
of Principal ls Action by Principol

Permitted on Object?

Disollow Action

Yes

Permit Action

FIG. 17

U.S. Patent Aug. 15, 2006 Sheet 12 0f 12 US 7,093,122 B1

1800

1
l
l
l
l
l
|
l
l
l
l
l
l
l
I
l
l
l
l
l
l
l
l
I
l
l
l
l
l
I
l
l
I
I
I
I
I
l
l
l
I
I
I
I
I
I
I
I
I
I
I
l
l
l
l
l
l
l
I
I
I
I
I
I
I
I
I

.I

Tests 1-N for P
Invokes A on O

VM Checks if
0 is 0 Shared Object

VM lnvokes Method
A of Object O

Authorized

1810

\
I

I__________.___.._________.__.__.___ _________.___.____________.____4___

FIG. 18

US 7,093,122 B1
1

TECHNIQUES FOR PERMITTING ACCESS
ACROSS A CONTEXT BARRIER IN A
SMALL FOOTPRINT DEVICE USING
SHARED OBJECT INTERFACES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to:

US. patent application Ser. No. 10/664,216, ?led Sep. 16,
2003, entitled “Virtual Machine With Securely Distrib
uted Bytecode Veri?cation”, in the name of inventors
Moshe Levy and Judy SchWabe, Which application is
incorporated herein by reference in its entirety, Which
is a continuation of application Ser. No. 10/283,305,
now US. Pat. No. 6,640,279, ?led Oct. 30, 2002,
entitled “Virtual Machine With Securely Distributed
Bytecode Veri?cation”, in the name of inventors Moshe
Levy and Judy SchWabe, Which application is incor
porated herein by reference in its entirety, Which is a
continuation of US. patent application Ser. No. 08/839,
621, now US. Pat. No. 6,092,147, ?led Apr. 15, 1997,
entitled “VIRTUAL MACHINE WITH SECURELY
DISTRIBUTED BYTE CODE VERIFICATION”, in
the name of inventors Moshe Levy and Judy SchWabe,
Which application is incorporated herein by reference in
its entirety;

US. patent application Ser. No. 09/235,158, ?led Jan. 22,
1999, “TECHNIQUES FOR IMPLEMENTING
SECURITY ON A SMALL FOOTPRINT DEVICE
USING A CONTEXT BARRIER”, in the name of
inventors Joshua Susser, Mitchel B. Butler, and Andy
Streich, Which application is incorporated herein by
reference in its entirety;

US. patent application Ser. No. 10/659,554, ?led Sep. 9,
2003, entitled “Techniques for Permitting Access
Across a Context Barrier on a Small Footprint Device
Using an Entry Point Object”, in the name of inventors
Joshua Susser, Mitchel B. Butler, and Andy Streich,
Which is a continuation of application no. Ser. No.
09/235,157, now US. Pat. No. 6,633,984, ?led Jan. 22,
1999, entitled “TECHNIQUES FOR PERMITTING
ACCESS ACROSS A CONTEXT BARRIER ON A
SMALL FOOTPRINT DEVICE USING AN ENTRY
POINT OBJECT”, in the name of inventors Joshua
Susser, Mitchel B. Butler, and Andy Streich, Which
application herein by reference in its entirety;

US. patent application Ser. No. 09/235,155, ?led Jan. 22,
1999, entitled “TECHNIQUES FOR PERMITTING
ACCESS ACROSS A CONTEXT BARRIER ON A
SMALL FOOTPRINT DEVICE USING RUN TIME
ENVIRONMENT PRIVILEGES”, in the name of
inventors Joshua Susser, Mitchel 13. Butler, and Andy
Streich, Which application is incorporated herein by
reference in its entirety; “GLOBAL DATA STRUC
TURES”, in the name of inventors Joshua, Susser,
Mitchel B. Butler, and Andy Streich, Which application
herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to computer security and more
particularly to techniques for implementing a security on
small footprint devices, such as smart cards.

20

25

30

35

40

45

50

55

60

65

2
2. Description of Related Art
A number of object oriented programming languages are

Well knoWn in the art. Examples of these include the C++
language and the Smalltalk language.

Another such object oriented language is the JAVATM
language. This language is described in the book JavaTM
Language Speci?cation, by James Gosling et al. and pub
lished by Addison-Wesley. This Work is incorporated herein
by reference in its entirety. The JAVATM language is par
ticularly Well suited to run on a JavaTM Virtual Machine.
Such a machine is described in the book JavaTM J/irZual
Machine Specification, by Tim Lindholm and Frank Yellin
Which is also published by Addison-Wesley and Which is
also incorporated herein by reference in its entirety.
A number of small footprint devices are also Well knoWn

in the art. These include smart cards, cellular telephones, and
various other small or miniature devices.

Smart cards are similar in siZe and shape to a credit card
but contain, typically, data processing capabilities Within the
card (eg a processor or logic performing processing func
tions) and a set of contacts through Which programs, data
and other communications With the smart card may be
achieved. Typically, the set of contacts includes a poWer
source connection and a return as Well as a clock input, a

reset input and a data port through Which data communica
tions can be achieved.

Information can be Written to a smart card and retrieved
from a smart card using a card acceptance device. A card
acceptance device is typically a peripheral attached to a host
computer and contains a card port, such as a slot, in to Which
a smart card can be inserted. Once inserted, contacts or
brushes from a connector press against the surface connec
tion area on the smart card to provide poWer and to permit
communications With the processor and memory typically
found on a smart card.

Smart cards and card acceptance devices (CADs) are the
subject of extensive standardiZation efforts, e.g. ISO 7816.
The use of ?reWalls to separate authoriZed from unautho

riZed users is Well knoWn in the netWork environment. For
example, such a ?reWall is disclosed in US. patent appli
cation Ser. No. 09/203,719, ?led Dec. 1, 1998 and entitled
“AUTHENTICATED FIREWALL TUNNELLING
FRAMEWORK” in the name of inventor David BroWnell,
Which application is incorporated herein by reference in its
entirety.
A subset of the full JavaTM platform capabilities has been

de?ned for small footprint devices, such as smart cards. This
subset is called the Java CardTM platform. The uses of the
Java CardTM platform are described in the folloWing publi
cations.
JAVA CARDTM 2.0iLANGUAGE SUBSET AND VIR
TUAL MACHINE SPECIFICATION;

JAVA CARDTM 2.1iAPPLICATION PROGRAMMING
INTERFACES;

JAVA CARDTM 2.0iPROGRAMMING CONCEPTS;
JAVA CARDTM APPLET DEVELOPER’S GUIDE.
These publications are incorporated herein by reference in

their entirety.
AWorking draft of ISO 7816iPart 11 has been circulated

for comment. That draft speci?es standards for permitting
separate execution contexts to operate on a smart card. A
copy of that Working draft is hereby incorporated by refer
ence in its entirety.
The notion of an execution context is Well knoWn in

computer science. Generally speaking, the use of multiple
execution contexts in a computing environment provides a
Way to separate or isolate different program modules or

US 7,093,122 B1
3

processes from one another, so that each can operate Without
undue interference from the others. Interactionsiif anyi
betWeen different contexts are deliberate rather than acci
dental, and are carefully controlled so as to preserve the
integrity of each context. An example of multiple contexts is
seen in larger hardWare devices, such as mainframes, Where
a plurality of virtual machines may be de?ned, each such
virtual machine having its oWn execution context. Another
example is seen in US. Pat. No. 5,802,519 in the name of
inventor De long, which describes the use of multiple
execution contexts on a smart card. It Will be appreciated by
those of skill in the art that a computing environment Which
provides multiple execution contexts also needs to provide
a mechanism for associating any given executing code With
its corresponding context.

Also Well knoWn is the notion of a current context.
Certain computing environments that support multiple con
texts Will, at any given time, treat one context in particular
as an active focus of computation. The context can be
referred to as the “current context.” When the current
context changes, so that some other context becomes the
current context, a “context sWitch” is said to occur. As Will
be appreciated by those of skill in the art, these computing
environments provide mechanisms for keeping track of
Which context is the current one and for facilitating context
sWitching.

In the prior art, in the World of small footprint devices,
and particularly in the World of smart cards, there Was no
inter-operation betWeen contexts operating on the small
footprint devices. Each context operated totally separately
and could operate or malfunction Within its context space
Without affecting other applications or processes in a differ
ent context.

One layer of security protection utiliZed by the JavaTM
platform is commonly referred to as a sandbox model.
Untrusted code is placed into a “sandbox” Where it can
“play” safely Without doing any damage to the “real World”
or full JavaTM environment. In such an environment, JavaTM
applets don’t communicate, but each has its oWn name
space.
Some smart card operating systems don’t permit execu

tion contexts to communicate directly, but do permit com
munications through an operating system, or through a
server.

The Problems
A number of problems exist When trying to place com

puter programs and other information on a small footprint
device. One of the compelling problems is the existence of
very limited memory space. This requires often extraordi
nary elforts to provide needed functionality Within the
memory space.
A second problem associated With small footprint devices

is the fact that different small footprint device manufacturers
can utiliZe different operating systems. As a result, applica
tions developed for one operating system are not necessarily
portable to small footprint devices manufactured by a dif
ferent manufacturer.

If programs from more than one source of programs

(manufacturer or vendor) are to be applied to a single small
footprint device, security becomes a factor as one attempts
to avoid corruption of existing programs and data When a
neW program is loaded on to the small footprint device. The
same concern exists When one Wishes to prevent a hacker or
a malicious person from accessing programs and data.

It is clear that small footprint devices such as smart cards
don’t have the resources necessary to implement separate

20

25

30

35

40

45

50

55

60

65

4
virtual machines. Nevertheless, it is desirable to maintain
strict security betWeen separate execution contexts.

In the past, security Was provided by loading only appli
cations from the same source or from a knoWn trusted source
onto a smart card or other small footprint device.

Accordingly, it Would be desirable to alloW object-ori
ented interaction betWeen selected execution contexts only
in safe Ways via fast ef?cient peer to peer communications
Which do not impose undue burdens on the programmer but
facilitate dynamic loading of applets Written at different
times by untrusted sources.

SUMMARY OF THE INVENTION

The invention is directed to providing a context barrier
(sometimes referred to as a ?rewall) for providing separation
and isolation of one context from another and to provide
controlled access across the barrier When that is needed.

In accordance With the invention, tWo execution contexts,
e.g. each containing one or more applets, running in the
same logical (i.e., virtual or real) machine, protected from
each other, can share information in a controlled, secure
Way, using language mechanisms, such as object-oriented
language mechanisms. Security can be, for example, object
by object. Thus, a method in a ?rst execution context can
access a ?rst object A in a second execution context, but not
a second object B in the second execution context on a
selective basis.

In accordance With one exemplary embodiment, an
enhanced JavaTM Virtual Machine (V M) provides certain
run-time checks of attempted access across execution con
texts in the VM. Checks can be automatic by the VM or
coded by the programmer With support from the VM. This
can be done using language-level communication mecha
nisms. In this Way, one can express object access across
execution contexts in the same Way as other object accesses
using the language are made. These run-time checks provide
a second dimension of defense/security beyond that Which
the JavaTM language and platform already provide.

These mechanisms provide protection against, e.g., secu
rity holes due to programming bugs (such as declaring a
datum “public” (global) When it shouldn’t be accessible to
all contexts). They also alloW ?ne-grain control of sharing
(such as selection of objects to share and applets to share to).
The invention is also directed to computer program prod

ucts and carrier Waves related to the other aspects of the
invention.
The foregoing and other features, aspects and advantages

of the present invention Will become more apparent from the
folloWing detailed description of the present invention When
taken in conjunction With the accompanying draWings.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention Will
be apparent from the folloWing description in Which:

FIG. 1 is an illustration of a computer equipped With a
card acceptance device and of a smart card for use With the
card acceptance device.

FIG. 2 is an illustration of a computer equipped With a
card acceptance device connected to a netWork.

FIG. 3 is an exemplary hardWare architecture of a small
footprint device, such as a smart card, of the prior art.

FIG. 4 illustrates objects being accessed by principals as
done in the prior art.

FIG. 5 is an exemplary security model Which can be used
in explaining the various embodiments of the invention.

US 7,093,122 B1
5

FIG. 6 is a block diagram showing separation of execution
contexts by a ?rewall or context barrier in accordance With
one aspect of the invention.

FIG. 7 is a representation of a softWare architecture useful
in carrying out the invention.

FIG. 8 is a How chart of a security enforcement process
implementing a ?reWall in accordance With one aspect of the
invention.

FIG. 9 is a block diagram shoWing object access across a
?reWall in accordance With one aspect of the invention.

FIG. 10 is a block diagram shoWing cascaded object
access across a ?reWall.

FIG. 11 is a How chart of a process for permitting access
by a principal in one context across a ?reWall into another
context.

FIG. 12 is a block diagram illustrating the use of an entry
point object to permit access across a ?reWall.

FIG. 13 is a block diagram illustrating the use of a global
data structure such as an array for access across a ?reWall.

FIG. 14 is a block diagram illustrating the use of a
supercontext to permit access across a ?reWall.

FIG. 15 is a block diagram illustrating the use of shareable
interface objects to permit access across a ?reWall.

FIG. 16 is a How chart of a security enforcement process
permitting access across a ?reWall.

FIG. 17 is the How chart of FIG. 16 shoWing details of
block 1620.

FIG. 18 is a How chart shoWing an exemplary implemen
tation of block 1629 of FIG. 17.

Notations and Nomenclature

The detailed descriptions Which folloW may be presented
in terms of program procedures executed on a computer or
netWork of computers. These procedural descriptions and
representations are the means used by those skilled in the art
to most e?‘ectively convey the substance of their Work to
others skilled in the art.
A procedure is here, and generally, conceived to be a

self-consistent sequence of steps leading to a desired result.
These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherWise manipulated. It proves convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like. It should be noted, hoWever, that all of
these and similar terms are to be associated With the appro
priate physical quantities and are merely convenient labels
applied to these quantities.

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, Which are commonly
associated With mental operations performed by a human
operator. No such capability of a human operator is neces
sary, or desirable in most cases, in any of the operations
described herein Which form part of the present invention;
the operations are machine operations. Useful machines for
performing the operation of the present invention include
general purpose digital computers or other computational
devices.

The present invention also relates to apparatus for per
forming these operations. This apparatus may be specially
constructed for the required purpose or it may comprise a
general purpose computer as selectively activated or recon
?gured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a

20

25

30

35

40

45

50

55

60

65

6
particular computer or other apparatus. Various general
purpose machines may be used With programs Written in
accordance With the teachings herein, or it may prove more
convenient to construct more specialiZed apparatus to per
form the required method steps. The required structure for a
variety of these machines Will appear from the description
given.

DETAILED DESCRIPTION

Attached as an Appendix to this speci?cation is an unpub
lished draft of a document entitled JAVA CARD RUNTIME
ENVIRONMENT 2.1 SPECIFICATION. This draft docu
ment, Which provides further detailed description of speci?c
embodiments of the invention, is incorporated in its entirety
as an integral part of the present speci?cation.

Although the inventive techniques are described herein
after in the context of a smart card example, the example is
merely illustrative and shouldn’t limit the scope of the
invention.

FIG. 1 is an illustration of a computer 120 equipped With
a card acceptance device 110 and a smart card 100 for use
With the card acceptance device 110. In operation, the smart
card 100 is inserted into card acceptance device 110 and
poWer and data connections applied through a set of contacts
105 accessible at the surface of the smart card 100. When the
card is inserted, mating contacts from the card acceptance
device 110 interconnect With the surface contacts 105 to
poWer-up the card and permit communications With the
onboard processor and memory storage.

FIG. 2 is an illustration of a computer equipped With a
card acceptance device, such as 120 in FIG. 1, connected to
a netWork 200. Also connected to a netWork are a plurality
of other computing devices, such as server 210. It is possible
to load data and softWare onto a smart card over the netWork
200 using card equipped device 120. DoWnloads of this
nature can include applets or other programs to be loaded
onto a smart card as Well as digital cash and other informa
tion used in accordance With a variety of electronic com
merce and other applications. The instructions and data used
to control processing elements of the card acceptance device
and of the smart card may be stored in volatile or non
volatile memory or may be received directly over a com
munications link, e.g., as a carrier Wave containing the
instructions and/or data. Further, for example, the netWork
can be a LAN or a WAN such as the Internet or other
netWork.

FIG. 3 is an exemplary hardWare architecture of a small
footprint device, such as a smart card, of the prior art. As
shoWn in FIG. 3, a processor 300 interconnects With primary
storage 310 Which may include read only memory 315
and/or random access memory 316. The processor also
connects With a secondary storage 320 such as EEPROM
and With an input/output 330, such as a serial port. One can
see the small footprint devices of this nature can be very
simple.

FIG. 4 illustrates objects being accessed by principals as
done in the prior art. As shoWn in FIG. 4, physical device
400, such as the small footprint device may have contained
Within it one or more processing machines (virtual or
physical) Which are running an execution context 420. The
execution context may be, for example, a context associated
With a particular applet. One or more principals 430 (e.g.,
applets or applications) in the execution context may seek to
access other objects Within the execution context. As long as
the access occurs Within the execution context, the accesses
Will be permitted and everything Will function normally.

US 7,093,122 B1
7

FIG. 5 is an exemplary security model which can be used
in explaining the various embodiments of the invention. It is
just one of many models which might be utilized but is a
convenient model for this purpose. In this model, a principal
(sometimes called entity) 500 proposes to take an action 510
on an object, such as object 520. Security checks may be
imposed on the principal, on the object, and/or on the action
proposed to be taken.

In FIG. 5, two types of objects are shown on which action
may be taken by a principal. These include data objects, (eg
data1 and data2 (520, 520')) and entity 530. Aprincipal may
operate or attempt to operate on any of these objects.

While data is passive, an entity 530 is active. The diagram
line from Principal to an active entity is also labeled
“action,” but this could be a more sophisticated and arbi
trarily complex action, such as making a function or method
call or sending a message as compared with action on a data
object. As with data, a security check enforced by the
operating system may use the identity of the principal, the
identity of the entity, and/ or the type of action. Furthermore,
the entity, being active, can perform its own additional
security checks. These can be as arbitrarily complex as one
desires, and can make use of the identity of the Principal, the
identity of the entity itself, the action, and/ or any other
information that is available.

In an object-oriented system (such as the Java CardTM
platform) “objects” are typically a combination of data and
entity. When a Principal tries to access a ?eld of an object,
this is a data accessia fairly simple action protected by a
fairly simple security check. When a Principal tries to access
a method of an object, this is an entity access, which can be
arbitrarily complex both in action and in security check.

FIG. 6 is a block diagram showing separation of execution
contexts by a ?rewall or context barrier in accordance with
one aspect of the invention. The physical device 400 and the
machine 410 correspond to the same items shown in FIG. 4.
An execution context 420 shows one principal 430 attempt
ing to access object 440 within the context. This access
would normally succeed. However, execution context 420
also shows a principal 630 attempting to access object 640
of execution context 620, across a context barrier 600.
Normally, this access would be prohibited as indicated by
the X 636 where the action 635 crosses the context barrier
600.

FIG. 7 is a representation of a software architecture useful
in carrying out the invention. This software architecture is
shown as a run time environment 700. An operating system
710 for the small footprint device is commonly used. A
virtual machine 720, in an exemplary embodiment of the
invention, is implemented over the operating system. The
virtual machine could be a Java CardTM virtual machine or
other virtual machine. The capabilities of a standard virtual
machine can be expanded to provide the additional func
tionality described herein or the functionality can be pro
vided as separate modules. The virtual machine 720 may
include an interpreter or native implementation 730 which
provides access to a run time system 740. The run time
system includes object system 750 for managing the objects
of an object oriented implementation. Three contexts, 760,
770 and 780, are shown. Each context is separated from the
other by a context barrier (sometimes referred to as a
?rewall) between the execution contexts. Context 760 is, in
one speci?c embodiment, a supercontext. That is, context
760 has privileges and capabilities not available to subor
dinate contexts 770 and 780, potentially including privileges
to create entry point objects or global data structures, and to
access objects in subordinate contexts 770 and 780.

20

25

30

35

40

45

50

55

60

65

8
Every object is associated with one particular context.

That context is said to own each object that is associated
with it. The runtime system 740 provides a means for
uniquely identifying contexts, and a means for specifying
and identifying the currently executing context. The object
system 750 provides a mechanism for associating objects
with their owning contexts.

For example, the runtime 740 can identify contexts with
a unique name, and correspondingly the object system 750
can associate objects with that context by recording the
context’s name in the object’s header. Information in the
object’s header cannot be accessed by programs written in
the object-oriented language, but is only available to the
virtual machine 720 itself. Altemately, the runtime system
740 can identify contexts by dividing the memory space into
separate regions, each for a particular context, and corre
spondingly the object system 750 can associate objects with
that context by allocating the object’s storage in that con
text’s memory space.

FIG. 8 is a ?ow chart of a security enforcement process
implementing a context barrier in accordance with one
aspect of the invention. When a principal invokes an action
on an object (800) a check is made to determine whether the
object is within the context of the principal (810). If it is not,
the action is disallowed (840). Otherwise, the action is
permitted (830). This is the simplest form of context barrier
or ?rewall. In one speci?c embodiment the action is disal
lowed (840) by throwing a security exception if the object is
outside of the namespace or the memory space of the context
requesting access.

FIG. 9 is a block diagram showing object access across a
?rewall in accordance with one aspect of the invention. FIG.
9 is substantially similar to FIG. 6. However, FIG. 9 also
shows principal 900 seeking to access object 910 in order to
perform action 905 on the object 910. According to the
invention, rather than having the access blocked by the
?rewall 600, in the way that action 635 is blocked, action
905 is permitted to occur across the ?rewall through access
point 920 so that principal 900 can perform action 905 on
object 910 notwithstanding the fact that the principal and the
object are in different execution contexts. The mechanisms
behind access point 920 are described below with reference
to FIGS. 12*18. Note that access point 920 can coexist with
obstructed accesses such as X 636. Thus access point 920
provides ?ne-grain control of sharing (object by object
security) across context barrier 600.
When object access 900 is initiated, the current context

setting is context 420. If the object 910 is a data object, the
action 905 is a simple data access, and no code is executed
in the second context 620. If the object 910 is an entity
object, and the action 905 results in that obj ect’s code being
executed, that code is executed in the second context 620. To
execute the code of object 910 in the correct context 620, the
virtual machine 410 performs a context switch. The context
switch changes the current context setting to be context 620,
and the previous value of the current context setting is stored
so that it can be restored later. From that point on code will
execute in the new current context. When the action 905
completes, control is returned to the point following access
900. During the return, the virtual machine 410 must restore
the value of the current context setting to its previous value.

FIG. 10 is a block diagram showing cascaded object
accesses across a ?rewall. FIG. 10 shows three execution

contexts, 1000, 1010 and 1020. Principal 1030 in execution
context 1 seeks to invoke an action 1035 on object 1050 in
execution context 2 and does so through access point 1070
in context barrier 600. Object 1050 in execution context 2

US 7,093,122 B1
9

has an object access 1040 Which seeks to perform an action
1045 on the object 1060 in execution context 3. It achieves
this by using access point 1080 in context barrier 600'
separating execution contexts 2 and 3. Object 1050 in
execution context 2 also has another object access 1090
Which invokes an action 1095 on an object 1099 in the same
execution context, that is, in execution context 2. Both
actions 1035 and 1045 result in context sWitches as
described in the explanation of FIG. 9. But as action 1095
does not cross the context barrier, a context sWitch is not
required for its execution, and therefore does not occur.

FIG. 11 is a How chart of a process for permitting access
by a principal in one context across a ?reWall into another
context. There are essentially three steps to this process. In
execution context 2, an object to be accessed is created and
designated as shared (1100). In execution context 1, the
principal obtains a reference to the object in execution
context 2 (1110). The principal in execution context 1 then
invokes an action upon the object designated as shared in
context 2 (1120).

With respect to identifying or designating a created object
as shareable as discussed in item 1100 of FIG. 11, this can
be done, in accordance With a speci?c embodiment of the
invention, by including a shareable attribute in the header of
an object’s representation. Information in an object’s header
cannot be accessed by programs Written in the object
oriented language, but is only available to the VM itself.

Obtaining a reference to an object in another context is a
special case of accessing an object in another context. A
mechanism that provides access to an object in another
context can make other objects available also. For instance,
invoking a method on an object in another context may
return a reference to a second object in a different context.
An additional mechanism is required to alloW an initial
reference to an object in a different context to be obtained.
In a speci?c embodiment, references to certain Well-knoWn
entry point objects can be obtained using a public API. Once
the initial reference to an object in a different context is
obtained, further references can be obtained from that
object, and so on.

There are four general approaches to obtaining informa
tion across a context barrier in accordance With the inven
tion. These approaches can be utiliZed individually or in
combination in order to access an object across a context
barrier or to obtain a reference of an object to be accessed
across a context barrier (1110). These approaches are
described in FIGS. 12*18.

FIG. 12 is a block diagram illustrating the use of entry
point objects to permit access across a context barrier. As
shoWn in FIG. 12, some object 1200 in context 770 (context
1) desires access to information in supercontext 760. In the
speci?c embodiment, a supercontext 760 contains at least
one entry point object 1210. The entry point object 1210 can
be published as part of a public API, or can be made
available indirectly through a published API (e.g., in accor
dance With the mechanisms described previously With ref
erence to FIG. 11), so that each context subordinate to the
supercontext may communicate With the entry point object
of the supercontext. (It Will be appreciated that in other
embodiments, entry point objects may be housed by a
context other than the supercontext.)

FIG. 13 is a block diagram illustrating the use of global
data structures to permit access across a ?reWall. In this
approach, supercontext 760 creates a global data structure
such as a global array. In the speci?c embodiment super
context 760 is the only context permitted to create such a
global data structure. (It Will be appreciated that in other

20

25

30

35

40

45

50

55

60

65

10
embodiments, global data may be housed by a context other
than the supercontext.) By virtue of its global status, each of
the contexts 770 and 780 may read and Write to the global
data structure. Thus, information Written into the global data
structure by one context can be read by another context. For
example, this mechanism can be used to pass binary data or
references to objects betWeen contexts.

FIG. 14 is a block diagram illustrating the use of super
context privileges to permit access across a context barrier.
In FIG. 14, an object in supercontext 760 seeks access to
context 780 across the context barrier separating the tWo.
Supercontext 760 can invoke any of the methods of context
780 and can access any of the data contained Within context
780, by virtue of the privileges associated With the super
context.

FIG. 15 is a block diagram illustrating the use of shareable
interface objects to permit access across a ?reWall. A share
able interface de?nes a set of shareable interface methods. A
shareable interface object is an object that implements at
least the set of methods de?ned in a shareable interface. In
FIG. 15, object 1210 in context 2 (780) is a shareable
interface object. An object access 1200 in another context
770 can invoke any of the shareable interface methods on the
object 1210 if the principal of the object access 1200 is
authoriZed to do so by the object 1210 itself. This authori
Zation is further discussed With reference to FIG. 18 beloW.

It Will be appreciated that a virtual machine consistent
With the invention provides functionality beyond that of
earlier virtual machines, such as the virtual machine
described in the JavaTM I/irZual Machine Speci?cation. In
particular, consistently With the invention, the virtual
machine provides functionality to implement or to facilitate
a security enforcement process that permits access across a
?reWall. This process is described next With reference to
FIGS. 16*18. Note that it is applicable to any approach for
providing access across the ?reWall, including but not lim
ited to the four approaches described With reference to FIGS.
12*15 above.

FIG. 16 is a How chart of a security enforcement process
permitting access across a ?reWall. When a principal
attempts to invoke action on an object 1600, a check is made
to determine if the object is Within the context of the
principal (1610). If it is, (1610-Y), the action is permitted
(1630). If it is not, (1610-N), a check is made to see if the
action by the principal is permitted on the object (1620). If
it is, (1620-Y), the action is permitted (1630). If it is not,
(1620-N), the action is disalloWed. In the speci?c embodi
ment a security exception is throWn (1640).

FIG. 17 is the How chart of FIG. 16 shoWing further
details of block 1620. If the object is not Within the context
of the principal (1610-N), a plurality of tests, 1621, 1622,
1623 . . . 1629 are undertaken to see if the action by the

principal is permitted on the object. These tests can be done
by the virtual machine alone or by the virtual machine plus
the object, in a virtual machine object oriented implemen
tation. If any of the tests results in a pass, the action is
permitted (1630). HoWever, if all tests result in a negative
determination (162XiNo), the action Will be disalloWed. In
a speci?c embodiment, a security exception Will be throWn
(1640). These tests relate to the permitted access discussed
in conjunction With FIGS. 12*15.

FIG. 18 is a How chart shoWing an exemplary implemen
tation of block 1629 of FIG. 17 for use With access method
described in FIG. 15. In a test, such as 829 or 1629, a virtual
machine checks if the object is a shared object 1810. If it is
not (1810-No), the test Will fail. HoWever, if it is (1810-Yes),
the virtual machine Will invoke the method A on object O

US 7,093,122 B1
11

(1820). If the method A on object 0 determines that the
principal is authorized (1830), the test Will be passed (1840)
and access permitted. Otherwise, the test Will fail (1850).
This allows the authorization text to be programmed into the
code of the object itself.

Although the invention has been illustrated With respect to
a smart card implementation, the invention applies to other
devices With a small footprint, not just to smart cards.
Devices With a small footprint are generally considered to be
those that are restricted or limited in memory or in comput
ing poWer or speed. Such small footprint devices may
include boundary scan devices, ?eld programmable devices,
pagers and cellular phones among many others.

In general, small footprint devices are resource con
strained computational devices and systems Where secure
interoperation of execution contexts is a concern. Such small
devices impose constraints on the implementation of secu
rity measures because of their limited resources. Because of
resource constraints, in a virtual machine implementation, a
single virtual or physical machine must be used as opposed
to multiple virtual machines.

The invention may also be applied to devices With larger
footprints Where the characteristics of the invention may
prove bene?cial. For example, the invention may prove
advantageous When using servlets if there is object sharing
betWeen them. Even some desktop systems may pro?tably
utiliZe the techniques of the invention.

While the JavaTM language and platform are suitable for
the invention, any language or platform having certain
characteristics Would be Well suited for implementing the
invention. These characteristics include type safety, pointer
safety, object-oriented, dynamically linked, and virtual-ma
chine based. Not all of these characteristics need to be
present in a particular implementation. In some embodi
ments, languages or platforms lacking one or more of these
characteristics may be utiliZed. A “virtual machine” could be
implemented either in bits (virtual machine) or in silicon
(real/physical machines).

Although the invention has been illustrated shoWing
object by object security, other approaches, such as class by
class security could be utiliZed.

Although the present invention has been described and
illustrated in detail, it is clearly understood that the same is
by Way of illustration and example only and is not to be
taken by Way of limitation, the spirit and scope of the present
invention being limited only by the terms of the appended
claims and their equivalents.
What is claimed is:
1. A small footprint device comprising:
a. at least one processing element on said small footprint

device;
b. memory on said small footprint device, and
c. a context barrier, on said small footprint device, for

isolating program modules, on said small footprint
device, from one another Wherein said program mod
ules use said memory and execute on said processing

element,
d. in Which at least one program module contains one or
more shared interface objects for permitting access by
another program module across said context barrier.

2. The small footprint device of claim 1 in Which a
program module is con?gured to specify a particular one of
a plurality of shared interface objects to be accessed.

3. The small footprint device of claim 1 in Which a
program module containing a shared interface object is
con?gured to return a reference to a shared interface object
across the context barrier.

20

25

30

35

40

45

50

55

60

65

12
4. The small footprint device of claim 3 in Which the

program module containing a shared interface object is
con?gured to perform one or more security checks before
returning the reference to a shared interface object across the
context barrier.

5. The small footprint device of claim 3 in Which a
program module is con?gured to use the reference to a
shared interface object to access the shared interface object
across the context barrier.

6. A method of permitting access betWeen program mod
ules on different sides of a context barrier on a small

footprint device, said method comprising:
a. identifying at least part of one program module on one

side of said context barrier as a shared interface object,
and

b. providing a reference to the shared interface object to
a second program module on another side of said
context barrier Wherein said program modules use a
memory of said small footprint device and execute on
a processing element of said small footprint device.

7. The method of claim 6 in Which said reference is
provided only if said one program module permits the
reference to be returned after performing a security check.

8. The method of claim 7 further comprising using said
reference to access said shared interface object by the
second program module.

9. The method of claim 8 Wherein the using said reference
to access said shared interface object includes sWitching
context to said second program module.

10. The method of claim 6 in Which said context barrier
allocates a separate name space for each program module.

11. The method of claim 10 in Which said shared interface
object can be accessed by program modules regardless of the
name spaces in Which the program modules are located.

12. The method of claim 6 in Which said context barrier
allocates a separate memory space for each program module.

13. The method of claim 12 in Which said shared interface
object can be accessed by program modules regardless of the
memory spaces in Which the program modules are located.

14. The method of claim 13 in Which a processing element
runs each program module as a separate context.

15. The method of claim 13 in Which said context barrier
enforces security checks on at least one of a principal, an
object and an action.

16. The method of claim 14 in Which the context barrier
performs at least one security check based on partial name
agreement betWeen a principal and an object.

17. The method of claim 14 in Which at least one security
check is based on memory space agreement betWeen a
principal and an object.

18. A method of operating a small footprint device,
comprising separating program modules, on said small
footprint device, using a context barrier, on said small
footprint device, and permitting access to shared interface
objects across the context barrier Wherein said program
modules use a memory of said small footprint device and
execute on a processing element of said small footprint
device.

19. The method of claim 18 in Which the context barrier
prevents a principal from performing an action on an object
unless both the principal and the object are part of a same
context or the action is authoriZed for the object and in
Which a request for access to a shared interface object is
alWays authoriZed.

