United States Patent

US007216110B1

(12) 10) Patent No.: US 7,216,110 B1
Ogg et al. @5) Date of Patent: May 8, 2007
(54) CRYPTOGRAPHIC MODULE FOR SECURE 4,757,537 A 7/1988 Edelmann et al. 380/51
PROCESSING OF VALUE-BEARING ITEMS 4,775,246 A 10/1988 Edelmann et al. 380/23
(75) Inventors: Craig L. Ogg, Long Beach, CA (US);
William W. Chow, Los Angeles, CA
(US); Girish Venkat, Los Angeles, CA (Continued)
(US); Piers C. Lingle, Los Angeles, CA
US) FOREIGN PATENT DOCUMENTS
(73) Assignee: Stamps.com, Santa Monica, CA (US) EP 0360225 A2 3/1990
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 999 days. (Continued)
OTHER PUBLICATIONS
(21) Appl. No.: 09/690,066
Pastor, Jose; CRYPTOPOST™ —A Cryptographic Application to
(22) Filed: Oct. 16, 2000 Mail Processing; Journal of Cryptology; 1991; 137-146pp.; vol. 3.;
No. 2; International Association for Cryptologic Research.
Related U.S. Application Data
o o (Continued)
(60) Provisional application No. 60/193,057, filed on Mar.
29, 2000, provisional application No. 60/193,056, Primary Examiner—Firmin Backer
filed on Mar. 29, 2000, provisional application No. (74) Attorney, Agent, or Firm—Christie, Parker & Hale,
60/193,055, filed on Mar. 29, 2000, provisional appli- LLP.
cation No. 60/160,563, filed on Oct. 20, 1999, pro-
visional application No. 60/160,503, filed on Oct. 20, (57) ABSTRACT
1999, provisional application No. 60/160,491, filed
on Oct. 20, 1999, provisional application No. 60/160,
112, filed on Oct. 18, 1999, provisional application An on-line value bearing item (VBI) printing system that
No. 60/160,041, filed on Oct. 18, 1999. includes one or more cryptographic modules and a central
database is disclosed. The cryptographic modules are
(51) Inmt. Cl capable of implementing the USPS Information Based Indi-
GO6F 99/00 (2006.01) cia Program Postal Security Device Performance Criteria
(52) US.CL ..o, 705/80; 705/50; 705/62; and other required VBI standards. The modules encipher the
705/64; 705/75; 400/401; 400/403 information stored in the central database for all of the
(58) Field of Classification Search 705/80, on-line VBI system customers and are capable of preventing
705/50; 400/401 access to the database by unauthorized users. Additionally,
See application file for complete search history. the cryptographic module is capable of preventing unautho-
rized and undetected modification, including the unautho-
(56) References Cited rized modification, substitution, insertion, and deletion of
U.S. PATENT DOCUMENTS VBI related data and cryptographically critical security
parameters.
4,447,890 A 5/1984 Duwel et al. 364/900
4,725,718 A 2/1988 Sansone et al. 235/495
4,743,747 A 5/1988 Fougere et al. 235/494 72 Claims, 10 Drawing Sheets

CLIENT

_—220a

> INTERNE T<—

102

109

(N

221 POSTAGE

SERVERS

DATABASE
CRYPTOGRAPHIC

MODULE

~110
SERVER

US 7,216,110 B1

Page 2
U.S. PATENT DOCUMENTS 6,064,993 A 5/2000 Ryan, Jr. coccoeeevnnneeenn. 705/403
6,065,117 A 5/2000 White

4,802,218 A 1/1989 Wright et al. 380/23 6,070,150 A 5/2000 Remington et al.
4,812,994 A 3/1989 Taylor et al. 364/464.02 6,081,810 A 6/2000 Rosenzweig et al.
4,831,555 A 5/1989 Sansone et al. 364/519 6,098,058 A 8/2000 Gravell et al.
4,837,702 A 6/1989 Obrea 6,105,063 A 82000 Hayes, Jr.
4,853,865 A 8/1989 Sansone et al. 364/464.02 6,134,582 A 10/2000 Kennedy
4,900,903 A 2/1990 Wright et al. 6,151,501 A 11/2000 Pierce et al.
4,900,904 A 2/1990 Wright et al. 6,161,139 A 12/2000 Win et al.
4,908,770 A 3/1990 Breault et al. 6,164,528 A 12/2000 Hills et al.
4,933,849 A 6/1990 Connell et al. 364/400 6,223,166 Bl 4/2001 Kay
4,935,961 A 6/1990 Gargiulo et al. ... 380/21 6,226,752 Bl 5/2001 Gupta et al.
4,949,381 A 8/1990 Pastorcececevveennnnnns 380/51 6,233,565 Bl 5/2001 Lewis et al.
4,980,542 A 12/1990 Jackson et al. 6,233,568 Bl 5/2001 Kara
5,048,085 A 9/1991 Abraham et al. 6,249,777 Bl 6/2001 Kara et al.
5,058,008 A 10/1991 Schumacher 6,275,824 Bl 82001 O’Flaherty et al.
5,075,865 A 12/1991 Kawamura et al. 6,286,098 Bl 9/2001 Wenig et al.
5,111,030 A 5/1992 Brasington et al. 6,324,523 Bl 11/2001 Killeen, Jr. et al.
5,142,577 A 8/1992 Pastorccceceviinninns 380/21 6,341,274 Bl 1/2002 Leon
5,181,245 A /1993 Jones 6,353,926 Bl 3/2002 Parthesarathy et al.
5,265,221 A 11/1993 Miller 6,367,013 Bl 4/2002 Bisbee et al.
5,319,562 A 6/1994 Whitehouse 6,381,589 Bl 4/2002 Leon
5,325,519 A 6/1994 Long et al. 6,385,654 Bl 5/2002 Tanaka
5,341,505 A 8/1994 Whitehouse 6,385,731 B2 5/2002 Ananda
5,377,268 A 12/1994 Hunter 6,408,286 B1 6/2002 Heiden
5,384,886 A 1/1995 Rourke 6,415,983 Bl 7/2002 Ulvr et al.
5,390,251 A 2/1995 Pastor et al. 6,424,954 Bl 7/2002 Leon
5,448,641 A 9/1995 Pintsov et al. 380/51 6,427,021 Bl 7/2002 Fischer et al.
5,454,038 A 9/1995 Cordery et al. 6,466,921 Bl 10/2002 Cordery et al.
5,471,925 A 12/1995 Heinrich et al. 6,473,743 Bl 10/2002 Ryan, Jr.
5,561,795 A 10/1996 Sarkar 6,546,377 Bl 4/2003 Gravell et al.
5,570,465 A 10/1996 Tsakanikas 395/114 6,567,794 Bl 5/2003 Cordery et al.
5,598,477 A 1/1997 Berson 6,587,880 B1 7/2003 Saigo et al.
5,600,562 A 2/1997 Guenther 6,636,983 Bl 10/2003 Levi
5,621,797 A~ 4/1997 Rosen 2001/0034716 Al 10/2001 Goodwin
5,655,023 A 8/1997 Cordery et al. 2001/0037320 Al 11/2001 Allport et al.
5,659,616 A 8/1997 Sudia 2001/0055388 Al 12/2001 Kaliski, Jr.
5,666,421 A 9/1997 Pastor et al.oonee 380/51 2002/0023057 Al 2/2002 Goodwin et al.
5,068,897 A 9/1997 Stolfo 2002/0046193 Al 4/2002 Bator et al.
5,671,146 A 9/1997 Windel et al. 2002/0095383 Al 7/2002 Mengin et al.
5,680,629 A 10/1997 Slayden et al. 2003/0078893 Al 4/2003 Shah et al.
5,684,951 A 11/1997 Goldman et al. 2003/0130954 Al 7/2003 Carr et al.
5,729,734 A 3/1998 Parker ot al. 2005/0114712 Al 5/2005 Devine et al.
5,742,683 A 41998 Leeetal .ocoovorrrnnnnen. 380/23
5,768,132 A 6/1998 Cordery et al. FOREIGN PATENT DOCUMENTS
5,781,438 A 7/1998 Lee et al. 364/464.14
5,781,634 A 7/1998 Cordery et al. EP 0576 113 A2 12/1993
5,793,867 A 81998 Cordery et al. EP 0604 146 A3 6/1994
5,796,841 A 8/1998 Cordery et al. EP 0604 148 A3 6/1994
5801944 A 9/1998 Kara ... 364/4642 EP 0647925 A2 4/1995
5,812,990 A 9/1998 Ryan, Jr. et al. EP 0604 146 B1 11/1997
5812991 A 9/1998 Kara EP 0 840 258 6/1998
5819240 A 10/1998 Kara EP 0854448 A2 7/1998
5,822,739 A 10/1998 Kara EP 0892367 A2 /1999
5825803 A 10/1998 KAra ..coooooorrvvererrnnnn, 3go/51 EP 0948 158 6/1999
5,867,578 A 2/1999 Brickell et al. EP 0927 958 7/1999
5917924 A 6/1999 Herbert EP 0927 963 7/1999
5918234 A 6/1999 Shah et al. GB 2318486 A 4/1998
5930796 A 7/1999 Pierce et al. wo W094/27258 11/1994
5040383 A 8/1999 Willkie WO WO 98/13790 Al 4/1998
5953427 A 9/1999 Cordery et al. 38051 WO WO98/57302 12/1998
5,956,404 A 9/1999 Schneier et al. WO WO 98/57460 12/1998
5978484 A 11/1999 Apperson et al. WO WO 99/18514 Al 4/1999
5983227 A 11/1999 Nazem et al. WO WO 00/19382 Al 4/2000
5987441 A 11/1999 Lee etal. .occoovveeene... 705/401 WO WO 00/70503 AL 11/2000
5,988,897 A 11/1999 Pierce et al. 40061 WO WO 0150227 A2 7/2001
6,005,945 A 12/1999 Whitehouse 380/51
6,009417 A 12/1999 Brookner et al. OTHER PUBLICATIONS
6,010,156 A 1/2000 Block The United States Postal Service (USPS) Engineering Center;
6,026,385 A 2/2000 Harvey et al. 705/408 Information Based Indicia Program (IBIP) Indicium Specification;
6,049,671 A 4/2000 Slivka et al. Jun. 13, 1996; 22pp.
6,058,384 A 5/2000 Pierce et al. The United States Postal Service (USPS); Information-Based
6,061,671 A 5/2000 Baker et al. Indicia Program (IBIP): Performance Criteria for Information-

US 7,216,110 B1
Page 3

Based Indicia and Security Architecture for Closed IBI Postage
Metering Systems (PCIBI-C); Jan. 12, 1999; 49pp.

The United States Postal Service (USPS); Information-Based
Indicia Program (IBIP); Performance Criteria for Information-
Based Indicia and Security Architecture for Open IBI Postage
Evidencing Systems (PCIBI-O); Jun. 25, 1999; 76pp.

Tygar, J.D. and Yee, Bennet; Cryptography: It’s Not Just For
Electronic Mail Anymore; School of Computer Science; Mar. 1,
1993; 1-21pp.; Carnegie Mellon University, Pittsburg, PA, USA.
Tygar, J.D. and Yee, Bennet; Dyad: A System for Using Physically
Secure Coprocessors; School of Computer Science; May 4, 1991,
1-36pp.; Carnegie Mellon University, Pittsburgh, PA, USA.

U.S. Appl. No. 09/585,025, filed Jun. 1, 2000, “Online Value
Bearing Item Printing”, 125 pp.

U.S. Appl. No. 09/688,451, filed Oct. 16, 2000, Auditing Method
and System for an On-Line Value-Bearing Item Printing System,
105pp.

U.S. Appl. No. 09/688,452, filed Oct. 16, 2000, “Role Assignments
in a Cryptographic Module for Secure Processing of Value-Bearing
Items”, 105pp.

U.S. Appl. No. 09/688,456, filed Oct. 16, 2000, “Cryptographic
Module for Secure Processing of Value- Bearing Items”, 109pp.
U.S. Appl. No. 09/690,083, filed Oct. 16, 2000, “Cryptographic
Module for Secure Processing of Value-Bearing Items”, 109pp.
U.S. Appl. No. 09/690,243, filed Oct. 17, 2000, “Method and
Apparatus for On-Line Value-Bearing Item System”, 66pp.

U.S. Appl. No. 09/690,796, filed Oct. 17, 2000, “Secure and
Recoverable Database for On-Line Value-Bearing Item System”,

71pp.

U.S. Appl. No. 09/692,746, filed Oct. 18, 2000, “Method and
Apparatus for Digitally Signing an Advertisement Area Next to a
Value-Bearing Item”, 6 1pp.

U.S. Appl. No. 09/692,747, filed Oct. 18, 2000, “Machine Depen-
dent Login For On-Line Value-Bearing Item System”, 62pp.

U.S. Appl. No. 09/692,829, filed Oct. 18, 2000, “Postal System
Intranet and Commerce Processing for On-Line Value-Bearing
System”, 179pp.

U.S. Appl. No. 09/788,069, filed Feb. 16, 2001, “On-Line Value-
Bearing Indicium Printing Using DSA”, 43pp.

U.S. Appl. No. 10/083,236, filed Feb. 26, 2002, “Secured Central-
ized Public Key Infrastructure”, 101pp.

Ratcliffe, Mitch, “Ever feel you’re being watched? You will.”;
Digital Media; May 16, 1994; v3, nl2, 3pgs.

Fickel, Louise, “Know Your Customer,” Leaders for the Next
Millennium, CIO Magazine, May 15, 1999, 10pp.

Sagner, James S., “Protecting Organizations from Electronic-Trans-
action Fraud”, Healthcare Financial Management, Westchester, Feb.
1995.

XP-002137734, United States Postal Service, “Information Based
Indicia Program Postal Security Device Specification,” Entire
Document, (21 sheets), Jun. 1996.

International Search Report, International Application No. PCT/
US00/28539, Feb. 2001.

US 7,216,110 B1

Sheet 1 of 10

May 8, 2007

U.S. Patent

LN3ITD
GZ7—
HJINHES 90| —
Oll~ Jingon
JIHAYHIOLdAYD
3VEYLY0
<] INYILNI <>
SHIAYIS "
N 39V1S0d || 122
60—
_/
c0l OONN...\\
%
L 9IA

US 7,216,110 B1

Sheet 2 of 10

May 8, 2007

U.S. Patent

14%4

H3AY3S|e @ o | 4IAYIS

~weeze

RETINNE
00ZZ
cez—" o
Loz 39vE0L ISNON
ommN/ \li SSYW) Q4Y08AIN
MYOMLIN AN Ao e H =¢e H ree
o071 ,“HYOML3N H d H
ozez~ AYOWIN AJONIN Ndo
. : A NIvA A 030 p
. L2e 8¢ & €T
A‘
WNOD
cmmwj\\ JOLINOW| & oﬁwﬁ/_ﬁ o/ |e—
— i 672 4
' uzee 0¢e 92¢
ey ; 7
ﬁNN \\ n:\4< \\
| / YOLINOW|¢——) 544 o/l /
\\ \\
~02¢2Z upzz —
AN

US 7,216,110 B1

Sheet 3 of 10

May 8, 2007

U.S. Patent

INION MYANITVD | [¥OLYHINID
S3hd) ANy ¥3IgGANN
MO01D NOQONV Y JOVAYILNI O/
} Y |
o_m\ @om\ wom\ Bm\
A W »
A a
SMD0T FHYMAYYH ST
@omu\ H H % Y ANV
—— 9NISN3S
NOY NAN AVY | | ¥0SSID0¥d ALIYND3S
IV OISAHG
soc—" voe—" cog—" z0e—" e
SN

216,110 B1

b

Sheet 4 of 10 US 7

May 8, 2007

U.S. Patent

L 29 ALIOHLOY [, vl ke—ni
— ILYOHILYI VD 0¥
NOILYrddV Tddv
NYOS | QYOTdN o VavLva m%\h,_%w wwﬁwﬁ
3d0T3ANT ¥O[[3dOTIANI VD 430IA04d ¢ov INITDESAY N SULS
NOLVONddY | Z
ONNI3Y INNOYDY an-wiafy | [[SSVROV/SIO]] Z2r || SuILS LIy Il
S| /S8M0 4INS [|~0zy || N3O 313N
HOLINOW . I
: MNV8 :
@mgo\méo INISSII0Nd | Y X W1S0d
INIWAYd J043IAN0D 1 ST9NY3S
SHIOVNYA SHIND 7| QYYD L0340 |~~9 LY o | SUIAAIS
. | [vLS0d 3¥n03s
13404dNS ¥IWOLSND g1y | LOY
1404dfs L [s i I SNV
¥INOLSND 20S 8vavlva
7P 0P V1504
INIWNIOVNY 304N0S YINYIS AXONd| [+ 1VavLIva 90p
M 43009 /78S SUNID =t dinwaanan]
LINVYLNI [155 L3NVAIN] 5 YIAIS |l | FOUINAOO-3)
SWALSAS W1S0d dLnS 1 [EVEVIVD |90 o o
130ddNS 2 INLINVA™, [T 3uvHSINm IeN3 _ YIS J043INNOI
. 8ly —_— SOMLIN “SOILSILYLS
JOYINN0D LNIWIOYNYI/ | [INILYO4TY INNHH0 @3LvdIOSNOd ‘ININI Y1V
Ela i ~—Wi3 60y—__ LI VIO KUMN | [¥1¥
SYINLYYd ONY W140d G3M SvavLva RS ISNOHIYYM
SALVINIAAY YIS INMIA0 INMAH0 NOILYQIMOSNOD[™ ¥1vd
cly
AL
ATNO SLY0d3Y 1INVYLX3 TVEVLYa 35VavIva ﬁ SNOLOMOY
MIA SdSN Oly 3LISEIM JHOLS INNNO ||+ 3Lviidav IR

US 7,216,110 B1

Sheet 5 of 10

May 8, 2007

U.S. Patent

-7

NOILOVSNVYL SW¥0J¥3d 0Sd +

R

'0Sd 0L LSOH
3HL 3LYOILNIHLNY
Sd3LS OML 3A08V 3HL
SY3LSI93Y 40
V1vQd V30T SV JNVS 3yv
SY3LSI0IY SLSOH SN o
'IN3S 3JONITIVHO SI Q3AI303Y
JONITIVHO S3HIY3A @
‘HLM 03¥3dNVL LON SYM
JOVSSIAN S3IYNSNI SIHL
JAVS 3HL 40 NOILYINDIVD
VJ0T HLIM 3SNOJS3Y
40 HSYH S3dVdNOQJ e
asd

gl

|
————— e

JONITIVHO L18-¥9 NMO S1i SY 1
TI3M SV 3A09V SNY¥NL3Y aSd e
NOILYJLSIOIY ONIMNA QIYVHS
ANH JHL ONISN “JONIFTIVHO r

S.ASOH 3HL SNOIS aSd 3H1 e

/
W. asvaviva 0sL
N X
o 2
. JOVSSIN
% BmJ JYILNI 40 OVAH
Y
S
Q zo:w%zé \Bm
N A JONITIVHO
| I 3INQON 1X3LHY3D JYYMLIOS |
: o_In_é%meEov “ooc | IND
~ ¥a/4v ONY
zac” A JONITIVHD QIN9IS c0c

r
|
|
|
|
1
|
t
[
|
|
|
|
|
|
|
|
|
|
|
|

-

|
|
L

r
|

/zo_S<mz<E JHL 404 ISOH GNY OSd N33IML3G LSMiL @z__._m:mﬁmu\

ﬁ 2\
»| Wvmiios |||
JONITIVHO : IN3MD !
aNV “
ISNOJSY cos—" _
20S— COs— |t
..... 1 Q_In_mmm%h‘ée E WLOS - i_ﬁ
J9ONITIVHD INJIO _
aSd _r

NOILOVSNVYL 3HL 804 0Sd ONV LSOH NIIML3E LSNYL INIHSEYLS3I

NAH

Q3YVHS ONISN 3A08Y 3HL

40 TV 30 OVAH NV SON3Se

‘JOVSSIN NOILOVSNYYL
3HL NV 3ON3ITIVHO

JHL 4O LX3L¥¥3I10 SANISe
'USd OL SIHL SON3S
'SYALSIOIY INIANIISIA

ANV ONION3OSY S H43IN0LSND

JHL 30 QY0J3Y a0
JHL 0SW GNY “IN3S OSd

JHL LVHL 3JON3ITIYHD SNOIS e

JYVMLI0S LN3ITD

(Sd 3HL 0L 473SLt
I ILVOILNIHLNY OL FONITIVHO
S.0Sd SNIV13y LSOH e

'NOILOVSNVYL SIHL

404 QSd 3HL SLSNYL LSOH e

'0Sd 3HL WOy

S3A303Y 11 OVAH 3HL

HLIM IN3S LI 3ONITIVHO 3HL

40 JVAH 3HL SFUVANOJ »

JYYMLIO0S IN3TD

JONITIVHO LI8-+9
‘WOONYY V S3LVYINID

JHVYMLA0S IN3ND

GoId

US 7,216,110 B1

Sheet 6 of 10

May 8, 2007

U.S. Patent

JNLVYLSININGY J0dy3

3LVIS ANV

NINQY LYVLS
NINQY ON3

OO ¥30 oy

SIYVHS ONILLOAW!
SHN 3LY3HD 13V1S
SIUVHS v SIVHS
ONILYOIX s TVNOUYY30 ONILYOJHI
SIIVHS
INIGHOD

140dX3 1353y

1408v

SAW 31VH3NID Ex&@%un_zmm%\%

9914 -
LINI

US 7,216,110 B1

Sheet 7 of 10

May 8, 2007

U.S. Patent

aIn |

—» ¥ 3000 HSVH —» ¢ 3000 HSVH —» ¢ 3d00 HSVH —» | 3000 HSVH
H H H H
S S S S
v v v v
H H H H
¥ JYNLVNOIS d7314 J4NLVYNIIS MNVIE d1314 JYNLVYNIIS MNVI8 L 34NLVYNIIS
N N
m_u)
!
S S
74
7 i % 7 \
¢ 3000 HSVHH ¢ 3000 HSVH— | 3000 HSVH- \
¥ AYLINT L1dNV ¢ AdLN3 LidNV ¢ AYLN3 L1dNv | -AdLNT 11dNv

US 7,216,110 B1

Sheet 8 of 10

May 8, 2007

U.S. Patent

SENYEN
JO043INNOO -1
[

A
d3AY3S | | ¥3IAYIS NOILOVSNVHL
430IAO¥d 1V1S0d

SEAYEN
1WV1S0d

1IVM 31

ISS 1SS 1SS
13423SV/INIONI L3¥23SYINIONT 13423SYINIONI
435N NINMAA L [gl e e o [LE3S0 NINRIIA [¥3SN %
N# §3sSN Z# ¥3sn l# ¥3SN

g3LINIdd

& 914

US 7,216,110 B1

Sheet 9 of 10

May 8, 2007

U.S. Patent

H3AY3S
JOHINWNOD -3

SERYSEIS
43dIACHd

|
g3AY3S NOILOVSNVYL
1v.1S0d

43Ad3S

dsd

IV1S0d WILSAS
WOD SANVLS
TIYM IS
| NILSAS
TIYMIYIS
RERE] e S HINOLSND
134038
438N
.. Od i 9d
oF wmmz i w3on |# dmm:
}
¥3LNIYd 43LNIYd
¥3LNIYd .
6 914

U.S. Patent May 8, 2007 Sheet 10 of 10 US 7,216,110 B1

FIG.10

USER

BROWSER

PLUG-IN WITH/WITHOUT U!l |
PRINT ENGINE PRINTER
USER
SECRET

SSL

POSTAL
SERVER

VENDOR
SYSTEM

PSD

POSTAL PROVIDER
TRANSACTION SERVER SERVER

!

E—-COMMERCE
SERVER

US 7,216,110 B1

1

CRYPTOGRAPHIC MODULE FOR SECURE
PROCESSING OF VALUE-BEARING ITEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit of the filing date
of United States Provisional Patent Application Ser. Nos.
60/160,491, filed Oct. 20, 1999 and entitled “SECURE AND
RECOVERABLE DATABASE FOR ON-LINE POSTAGE
SYSTEM”; 60/160,503, filed Oct. 20, 1999 and entitled
“CRYPTOGRAPHIC MODULE ARCHITECTURE”;
60/160,112, filed Oct. 18, 1999 and entitled “INTERNET
POSTAL METERING SYSTEM”; 60/160,563, filed Oct.
20, 1999 and entitled “SERVER ARCHITECTURE FOR
ON-LINE POSTAGE SYSTEM”; 60/160,041, filed Oct. 18,
1999 and entitled “CRYPTOGRAPHIC MODULE SECU-
RITY APPROACH”; 60/193,057, filed Mar. 29, 2000 and
entitled “CUSTOMER GATEWAY DESIGN”; 60/193,055,
filed Mar. 29, 2000 and entitled “BROWSER-BASED IBI”;
and 60/193,056, filed Mar. 29, 2000 and entitled “MULTI-
USER PSD DESIGN” the entire contents of which are
hereby expressly incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to secure printing of value-
bearing items (VBI) preferably, postage. More specifically,
the invention relates to a cryptographic module for secure
printing of VBIs.

BACKGROUND OF THE INVENTION

A significant percentage of the United States Postal Ser-
vice (USPS) revenue is from metered postage. Metered
postage is generated by utilizing postage meters that print a
special mark, also known as postal indicia, on mail pieces.
Generally, printing postage and any VBI can be carried out
by using mechanical meters or computer-based systems.

With respect to computer-based postage processing sys-
tems, the USPS under the Information-Based Indicia Pro-
gram (IBIP) has published specifications for IBIP postage
meters that identify a special purpose hardware device,
known as a Postal Security Device (PSD) that is generally
located at a user’s site. The PSD, in conjunction with the
user’s personal computer and printer, functions as the IBIP
postage meter. The USPS has published a number of docu-
ments describing the PSD specifications, the indicia speci-
fications and other related and relevant information. There
are also security standards for printing other types of VBIL,
such as coupons, tickets, gift certificates, currency, voucher
and the like.

A significant drawback of existing hardware-based sys-
tems is that a new PSD must be locally provided to each new
user, which involves significant cost. Furthermore, if the
additional PSD breaks down, service calls must be made to
the user location. In light of the drawbacks in hardware-
based postage metering systems, a software-based system
has been developed that does not require specialized hard-
ware for each user. The software-based system meets the
IBIP specifications for a PSD, using a centralized server-
based implementation of PSDs utilizing one or more cryp-
tographic modules. The system also includes a database for
all users’ information. The software-based system, however,
has brought about new challenges.

The software-based system should be able to handle
secure communications between users and the database. In

20

25

30

35

40

45

50

55

60

65

2

a hardware-based system, security is generally handled by
the local hardware piece, that is unique to each user and
includes an encryption processor that encrypts that user’s
information and communications. However, as mentioned
above, this hardware-based system has significant disadvan-
tages.

Therefore, there is a need for a new method and apparatus
for implementation of VBI secure printing and a secure IBIP
postage meter over a WAN that does not require the special
purpose hardware device at the user site. Furthermore, there
is a need for a secure system and database that are capable
of preventing unauthorized access and tampering.

SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention, an
on-line VBI printing system that includes one or more
cryptographic modules and a central database has been
designed. The cryptographic modules serve the function of
the PSDs and are capable of implementing the USPS Infor-
mation Based Indicia Program Postal Security Device Per-
formance Criteria and the cryptographic security require-
ments specified by Federal Information Processing
Standards (FIPS) 140-1, Security Requirements for Crypto-
graphic Modules, and other required standards. The modules
encipher the information stored in the central database for all
of the on-line VBI system customers and are capable of
preventing access to the database by unauthorized users.
Also, a secure communication network is in operation to
prevent unauthorized access to the users’ data stored in the
centralized database. Additionally, the cryptographic mod-
ule is capable of preventing unauthorized and undetected
modification, including the unauthorized modification, sub-
stitution, insertion, and deletion of VBI related data and
cryptographically critical security parameters.

Each module prevents the unauthorized disclosure of the
non-public contents of the VBI data, such as a postage meter,
including plaintext cryptographic keys and other critical
security parameters. The module also ensures the proper
operation of cryptographic security and VBI related meter
functions. The module detects errors in the operation of
security mechanisms and prevents the compromise of meter
data and critical cryptographic security parameters as a
result of those errors.

In one aspect the present invention is a method for secure
printing of value-bearing items over a computer network
comprising the step of; storing information about users in a
database remote from the user terminals; securing the infor-
mation about the users in the database by a plurality of
cryptographic devices remote from the user terminals and
coupled to the computer network; securing data stored in the
database by the plurality of cryptographic devices, wherein
each of the plurality of cryptographic devices includes a
subsystem for authenticating one or more of the plurality of
users; storing a plurality of security device transaction data
stored in the database wherein, each transaction data is
related to a user; ensuring authenticity and authority of each
of the plurality of users; and loading a security device
transaction data related to a user into one of the plurality of
cryptographic devices when the user requests to operate on
a value bearing item.

It is to be understood that the present invention is useful
for printing not only postage, but any VBIs, such as coupons,
tickets, gift certificates, currency, voucher and the like.

US 7,216,110 B1

3
BRIEF DESCRIPTION OF THE DRAWINGS

The objects, advantages and features of this invention will
become more apparent from a consideration of the following
detailed description and the drawings, in which:

FIG. 1 is an exemplary block diagram for the client/server
architecture of one embodiment of the present invention;

FIG. 2 is an exemplary block diagram of a remote user
computer connected to a server via Internet according to one
embodiment of the present invention;

FIG. 3 is an exemplary block diagram of a cryptographic
device according to one embodiment of the present inven-
tion;

FIG. 4 is an exemplary block diagram of servers, data-
bases, and services according to one embodiment of the
present invention;

FIG. 5 is an exemplary block diagram of a client software,
a cryptographic module, and a typical transaction between
them during an operational state according to one embodi-
ment of the present invention;

FIG. 6 is an exemplary state transition diagram for a
cryptographic device according to one embodiment of the
present invention;

FIG. 7 is an exemplary diagram of audit chaining accord-
ing to one embodiment of the present invention;

FIG. 8 is an exemplary diagram of multiple user PSD
according to one embodiment of the present invention;

FIG. 9 is an exemplary diagram of multiple users using a
gateway server according to one embodiment of the present
invention; and

FIG. 10 is an exemplary diagram of a browser-based
design with or without a Ul according to one embodiment of
the present invention.

DETAILED DESCRIPTION

In one aspect, the system and method of the present
invention prevent unauthorized electronic access to a data-
base subsystem and secure customers’ related data, among
others. One level of security is achieved by protecting the
database subsystem by a postal server subsystem. The postal
server subsystem controls preferably, all communications
with the database subsystem by executing an authentication
algorithm to prevent unauthorized access. Another level of
security is achieved by encrypting preferably, all commu-
nications between the client system and the postal server
subsystem. The encryption-decryption function is employed
using commonly known algorithms, such as, Rivest, Shamir
and Adleman (“RSA”) public key encryption, DES, Triple-
DES, Pseudo-random number generation, and the like algo-
rithms. Additionally, DSA signature, and SHA-1 hashing
algorithms may be used to digitally sign a postage indicium.

Another measure of security is the interaction between a
cryptographic module and the database subsystem whenever
a PSD transaction (security device transaction) is initiated.
The cryptographic module and the database subsystem
cross-verify the last PSD transaction (security device trans-
action) before proceeding with the next PSD transaction. If
the last transaction record in the cryptographic module and
the database subsystem do not match, then the on-line
postage system shuts down until the situation can be inves-
tigated. This verification process protects against attempts of
unauthorized individuals to replace the database subsystem.
The registers in the cryptographic modules are cryptographi-
cally protected to achieve another level of security.

An exemplary on-line postage system is described in U.S.
patent application Ser. No. 09/163,993 filed Sep. 15, 1998,

20

25

30

35

40

45

50

55

60

65

4

the entire contents of which are hereby incorporated by
reference herein. The on-line postage system includes an
authentication protocol that operates in conjunction with the
USPS requirements. The system utilizes on-line postage
system software comprising user code that resides on a
client system and controller code that resides on a server
system. The on-line postage system allows a user to print a
postal indicium at home, at the office, or any other desired
place in a secure, convenient, inexpensive and fraud-free
manner. The system comprises a user system electronically
connected to a server system, which in turn is connected to
a USPS system.

Each of the cryptographic modules may be available for
use by any user. When a user requests a PSD service, one of
the available modules is loaded with data belonging to the
user’s account and the transaction is performed. When a
module is loaded with a user’s data, that module becomes
the user’s PSD. The database record containing each user’s
PSD data is referred to as the “PSD package” (security
device transaction data). After each PSD transaction is
completed, the user’s PSD package is updated and returned
to a database external to the module. The database becomes
an extension of the module’s memory and stores not only the
items specified by the IBIP for storage inside the PSD, but
also the user’s personal cryptographic keys and other secu-
rity relevant data items (SRDI) and status information
needed for continuous operation. Movement of this sensitive
data between the modules and the database is secured to
ensure that PSD packages could not be compromised.

In one embodiment, the server system is remotely located
in a separate location from the client system. All commu-
nications between the client and the server are preferably
accomplished via the Internet. FIG. 1 illustrates a remote
client system 220a connected to a server system 102 via the
Internet 221. The client system includes a processor unit
223, a monitor 230, printer port 106, a mouse 225, a printer
235, and a keyboard 224. Server system 102 includes
Postage servers 109, Database 130, and cryptographic mod-
ules 110.

An increase in the number of servers within the server
system 102 will not negatively impact the performance of
the system, since the system design allows for scalability.
The Server system 102 is designed in such a way that all of
the business transactions are processed in the servers and not
in the database. By locating the transaction processing in the
servers, increases in the number of transactions can be easily
handled by adding additional servers. Also, each transaction
processed in the servers is stateless, meaning the application
does not remember the specific hardware device the last
transaction utilized. Because of this stateless transaction
design, multiple servers can be added to each appropriate
subsystem in order to handle increased loads.

Furthermore, each cryptographic module is a stateless
device, meaning that a PSD package can be passed to any
device because the application does not rely upon any
information about what occurred with the previous PSD
package. Therefore, multiple cryptographic modules can
also be added to each appropriate subsystem in order to
handle increased loads. A PSD package for each crypto-
graphic module is a database record, stored in the server
database, that includes information pertaining to one cus-
tomer’s service that would normally be protected inside a
cryptographic module. The PSD package includes all data
needed to restore the PSD to its last known state when it is
next loaded into a cryptographic module. This includes the
items that the IBIP specifications require to be stored inside
the PSD, information required to return the PSD to a valid

US 7,216,110 B1

5

state when the record is reloaded from the database, and data
needed for record security and administrative purposes.

In one embodiment, the items included in a PSD package
include ascending and descending registers (the ascending
register “AR” records the amount of postage that is dis-
pensed or printed on each transaction and the descending
register “DR” records the value or amount of postage that
may be dispensed and decreases from an original or charged
amount as postage is printed.), device ID, indicia key
certificate serial number, licensing ZIP code, key token for
the indicia signing key, the user secrets, key for encrypting
user secrets, data and time of last transaction, the last
challenge received from the client, the operational state of
the PSD, expiration dates for keys, the passphrase repetition
list and the like.

As a result, the need for specific PSDs being attached to
specific cryptographic modules is eliminated. A Postal
Server subsystem provides cryptographic module manage-
ment services that allow multiple cryptographic modules to
exist and function on one server, so additional cryptographic
modules can easily be installed on a server. The Postal Sever
subsystem is easy to scale by adding more cryptographic
modules and using commonly known Internet load-balanc-
ing techniques to route inbound requests to the new cryp-
tographic modules.

Referring back to FIG. 1, Postage servers 109 includes
one or more Postal servers and provide indicia creation,
account maintenance, and revenue protection functionality
for the on-line postage system. The Postage servers 109
include several physical servers in several distinct logical
groupings, or services as described below. The individual
servers could be located within one facility, or in several
facilities, physically separated by great distance but con-
nected by secure communication links.

Cryptographic modules 110 are responsible for creating
PSDs and manipulating PSD data to protect sensitive infor-
mation from disclosure, generating the cryptographic com-
ponents of the digital indicia, and securely adjusting the user
registration. When a user wishes to print VBI, for example,
postage or purchase additional VBI or postage value, a user
state is instantiated in the PSD implemented within one of
the cryptographic modules 110. Database 111 includes all
the data accessible on-line for indicia creation, account
maintenance, and revenue protection processes. Postage
servers 109, Database 130, and cryptographic modules 110
are maintained in a physically secured environment, such as
a vault.

FIG. 2 shows a simplified system block diagram of a
typical Internet client/server environment used by an on-line
postage system in one embodiment of the present invention.
PCs 220a-220n used by the postage purchasers are con-
nected to the Internet 221 through the communication links
233a-233n. Each PC has access to one or more printers 235.
Optionally, as is well understood in the art, a local network
234 may serve as the connection between some of the PCs,
such as the PC 220qa and the Internet 221 or other connec-
tions. Servers 2224-222m are also connected to the Internet
221 through respective communication links. Servers
2224a-222m include information and databases accessible by
PCs 2204-220n. The on-line VBI system of the present
invention resides on one or more of Servers 2224-222m.

In this embodiment, each client system 220a-220m
includes a CPU 223, a keyboard 224, a mouse 225, a mass
storage device 231, main computer memory 227, video
memory 228, a communication interface 232a, and an
input/output device 226 coupled and interacting via a com-
munication bus. The data and images to be displayed on the

20

25

30

35

40

45

50

55

60

65

6

monitor 230 are transferred first from the video memory 228
to the video amplifier 229 and then to the monitor 230. The
communication interface 2324 communicates with the serv-
ers 222a-222m via a network link 233a. The network link
connects the client system to a local network 234. The local
network 234 communicates with the Internet 221.

In one embodiment, a customer, preferably licensed by
the USPS and registered with an IBIP vendor (such as
Stamps.com), sends a request for authorization to print a
desired amount of VBI, such as postage. The server system
verifies that the user’s account holds sufficient funds to cover
the requested amount of postage, and if so, grants the
request. The server then sends a cryptographically authen-
ticated response specifying the VBI to the client system. The
client system then sends image information for printing of a
postal indicium for the granted amount to a printer so that
the postal indicium is printed on an envelope or label.

In one embodiment, when a client system sends a VBI
print request to the server system, the request needs to be
authenticated before the client system is allowed to print the
VBI, and while the VBI is being printed. The request is
cryptographically authenticated using an authentication
code. The client system sends a password (or passphrase)
entered by a user to the server for verification. If the
password fails, a preferably asynchronous dynamic pass-
word verification method terminates the session and printing
of'the VBI is aborted. Also, the server system communicates
with a system located at a certification authority for verifi-
cation and authentication purposes.

In one embodiment, the information processing compo-
nents of the on-line postage system include a client system,
a postage server system located in a highly secure facility, a
USPS system and the Internet as the communication
medium among those systems. The information processing
equipment communicates over a secured communication
line.

Preferably, the security and authenticity of the informa-
tion communicated among the systems are accomplished on
a software level through the built-in features of a Secured
Socket Layer (SSL) Internet communication protocol. An
encryption hardware module embedded in the server system
is also used to secure information as it is processed by the
secure system and to ensure authenticity and legitimacy of
requests made and granted.

The on-line VBI system does not require any special
purpose hardware for the client system. The client system is
implemented in the form of software that can be executed on
a user computer (client system) allowing the user computer
to function as a virtual VBI meter. The software can only be
executed for the purpose of printing the VBI indicia when
the user computer is in communication with a server com-
puter located, for example, at a VBI meter vendor’s facility
(server system). The server system is capable of communi-
cating with one or more client systems simultaneously.

In one embodiment of the present invention, the crypto-
graphic modules 110 are FIPS 140-1 certified hardware
cards that include firmware to implement PSD functionality
in a cryptographically secure way. The cryptographic mod-
ules are inserted into any of the servers in the Postal Server
Infrastructure. The cryptographic modules are responsible
for creating PSDs and manipulating PSD data to generate
and verify digitally signed indicia. Since the PSD data is
created and signed by a private key known only to the
module, the PSD data may be stored externally to the
cryptographic modules without compromising security.

FIG. 3 is a block diagram of an exemplary cryptographic
module. Processor 302 is electrically coupled to the RAM

US 7,216,110 B1

7

303, NVM 304, ROM 305. I/O interface 307, Random
Number Generator (RNG) 308, Cipher Engine 310, and
Clock 309 through the bus 301. NVM 304 and ROM 305 are
protected from unauthorized access by the Hardware Locks
control 306. A Security sensing & Response (SSR) circuit
311 detects any attempts to tamper with the module and acts
accordingly. The SSR circuit includes sensors to protect
against attacks involving probe penetration, power sequenc-
ing, radiation, temperature manipulation, and the like, con-
sistent with some security standards, such as FIPS 140-1
Level 3 and 4 requirements. If the tamper sensors are
triggered, the cipher Engine 310 resets its critical keys,
destroys its certification, and is rendered inoperable.

Initially, the module generates a unique key pair, which is
stored in the secured NVM. The tamper detection circuitry
is activated at this time and remains active throughout the
useful life of the module, protecting this private key, as well
as all other keys and sensitive data. The module’s private
key is certified by a private key and the certificate is retained
in the module. Subsequently, the module private key is used
to sign module status responses which, in conjunction with
a series of public key certificates, demonstrates that the
module remains intact and is genuine. As a result, only the
software that has been signed by an entity trusted by the
module (via the embedded public key) will be loaded.

Cipher Engine 310 supports multiple custom crypto-
graphic engines and other accelerated state machines to
provide complex and numerically intensive operations
required for encryption/decryption, authentication, and key
management. RNG 308 generates the required data for the
Cipher Engine. Clock & Calender circuit 309 generates
real-time clock and calender for the Cipher Engine and the
1/0O interface 307 provides interface to other devices on a
computer network.

In one embodiment, Cipher Engine 310 includes the
following logical elements:

A DES Engine including the following features:

DES, Triple DES, MAC and Triple-DES MAC functions

Electronic codebook (ECB) support and cipher block

chain (CBC) modes of operation

3 internal 64-bit key registers loaded from a ISA port

64-bit initial vector register loadable from a ISA port

64-bit input & output registers readable from both a 16-bit
ISA port or a 32-bit PCI add-on port via the output
FIFO

Optional DES assist for data padding of data blocks which

are not multiples of 64-bytes
A SHA Engine including the following features:
SHA-1 secure hash algorithm
Four 32-bit K registers with fast initialization to FIPS-180
Constants via an ISA port accessible control register

Five 32-bit H registers with fast initialization to FIPS-180
initial values by an ISA port accessible control register.
Hashing data loadable into H registers via the 16-bit
ISA port or the 32-bit PCI add-on port and input FIFO.
Hash results readable from five 32-bit H registers via
ISA port.

Five internal registers for SHA-1 hash results creation

SHA engine exercises FIPS 180-1 algorithm. Digital
Signature Standard FIPS PUB-186 pseudo random
number creation possible by programming K constants
and H initialization vector registers via the ISA bus
input.

20

25

30

35

40

45

50

55

60

65

8

A RSA Engine capable of performing the following
modular arithmetic and exponentiation functions for high
speed RSA encryption:

Modular Exponentiation
With CRT (chinese

remainder theorem) R = A (Bp, PHmod(Np, Nq)

R = APmod N
R =(A*B)mod N
R=(A+B)mod N

Modular exponentiation
Modular multiplication
Modular addition

Addition R=(A+B)

Subtraction R=(A-B)

2’s complement R=~A+1

Signature R = APmod N; if2R >=N) R=N - R
Verify R = APmod N; if(R mod 16! = 6) R = N - R

The RSA engine is a 2048-bit engine with the following
registers:

Operand Length
Register (bits) Contents
A 2048 Data
B 2048 Exponent
B, 1088 CRT Mod Expo. only
B, 1024 CRT Mod Expo. only
N 2048 Module
Ny 1088 CRT Mod Expo. only
N, 1024 CRT Mod Expo. only
U 1088 (CRT only) Multiplicative

inverse for CRT
R 2048 Results

Registers B B, By; N; Ny N, and U are write only from the ISA port of
the UltraCypher module.

Register R (results) is read only from the ISA port of the UltraCypher
module

Chinese Remainder (CRT) Operands

A = data

B, = the largest of two odd primes so N = N, *N;

B, = the smallest of two odd primes so N = N, *Ng

N, = B mod(N-1)

Ny =B mod(N-1)

U = Multiplicative inverse: qumod N,

Exponentiation performance can be enhanced by enabling
the built-in Chinese Remainder Theorem (CRT) algorithm.

In this embodiment, there are ten 16-bit Control, Setup,
and Status registers which are written and read via the ISA
bus. Some are read only and some are write only from
outside of the module. These registers control the data paths
and various engines inside of the module and provide
information as to the status of the engines and FIFO’s.

A 64-bit shift register is provided for the collecting of
Random data bits generated from outside the module. The
external 1-bit input (usually a random noise source) is
sampled and loaded into bit-0 of the shift register. The
sampling rate is controlled from control register bits which
are loaded via the ISA bus. The collected data bits are shifted
after each new sampling of data. When the shift register is
full of new data an interrupt is generated and the shift
register contents may be read from the ISA data port.

A 128x32-bit Input FIFO and a similar Output FIFO is
provided in the module to buffer a PCI Add-on bus.

US 7,216,110 B1

9
INPUT FIFO INPUT FIFO OUTPUT FIFO OUTPUT FIFO
Inputs Outputs Inputs Outputs
PCI add-on bus DES engine DES engine PCI add-on bus
ISA bus SHA-1 engine ISA bus ISA bus
OUTPUT FIFO INPUT FIFO
ISA bus

A multipurpose 16-bit data interface supports an ISA
16-bit cycles. Addressing of the module’s internal registers
is via the ISA address bus. The PCI Add-on bus is capable
of supporting PCI bus master. There are also 8 IRQ interrupt
outputs, reset, other control lines, clock I/O.

The cryptographic module of the present invention may
be embodied in a single-chip module, a multi-chip embed-
ded module, a multi-chip standalone module, embedded in
software running on a computer such as a personal com-
puter, or the like.

The on-line VBI system is based on a client/server archi-
tecture. Generally, in a system based on client/server archi-
tecture the server system delivers information to the client
system. That is, the client system requests the services of a
generally larger computer. In one embodiment, the client is
a local personal computer and the server is a more powerful
group of computers that house the information. The con-
nection from the client to the server is made via a Local Area
Network, a phone line or a TCP/IP based WAN on the
Internet. A primary reason to set up a client/server network
is to allow many clients access to the same applications and
files stored on the server system.

In one embodiment, Postage servers 109 include a string
of servers connected to the Internet, for example, through a
T1 line, protected by a firewall. The firewall permits a client
to communicate with a server system, only if the information
packet transmitted by the client system complies with a
security policy set by the server system. The firewall not
only protects the system from unauthorized users on the
Internet, it also separates the Public Network (PUB/NET)
from the Private Network (PRB/NET). This ensures that
packets from the Internet will not go to any location but the
PUB/NET. The string of servers form the different sub-
systems of the on-line postal system. The services provided
by the different subsystems of the on-line postage system are
designed to allow flexibility and expansion and reduce
specific hardware dependency.

The Database subsystem is comprised of multiple data-
bases. FIG. 4 illustrates an overview of the on-line VBI
system which includes the database subsystems. Database
411 includes the Affiliate DBMS and the Source IDs DBMS.
The Affiliate DBMS manages affiliate information (e.g.,
affiliate’s name, phone number, and affiliate’s Website infor-
mation) that is stored on the Affiliate Database. Using the
data from this database, marketing and business reports are
generated. The Source IDs Database contains information
about the incoming links to the vendor’s Website (e.g.,
partners’ information, what services the vendor offers, what
marketing program is associated with the incoming links,
and co-branding information). Using the data from this
database, marketing and business reports are generated.

The Online Store Database 412 contains commerce prod-
uct information, working orders, billing information, pass-
word reset table, and other marketing related information.
Website database 410 keeps track of user accesses to the
vendor website. This database keeps track of user who
access the vendor website, users who are downloading

20

25

30

35

40

45

50

55

60

65

10

information and programs, and the links from which users
access the vendor website. After storing these data on the
Website Database 410, software tools are used to generate
the following information:

Web Site Status

Web Site Reports

Form Results

Download Successes

Signup, Downloads, and Demographic Graphs

Web Server Statistics (Analog)

Web Server Statistics (Web Analyzer)

Offline database 409 manages the VBI (e.g., postal) data
except meter information, postal transactions data, financial
transactions data (e.g., credit card purchases, free postage
issued, bill credits, and bill debits), customer marketing
information, commerce product information, meter license
information, meter resets, meter history, and meter move-
ment information. Consolidation Server 413 acts as a reposi-
tory for data, centralizing data for easy transportation out-
side the vault 400. The Consolidation Server hosts both file
and database services, allowing both dumps of activity logs
and reports as well as a consolidation point for all database
data.

The Offline Reporting Engine MineShare Server 415
performs extraction transformation from the holding data-
base that received transaction data from the Consolidated
Database (Commerce database 406, Membership database
408, and Postal Database 407). Also, the Offline Reporting
Engine MineShare Server handles some administrative
tasks. Transaction data in the holding database contains the
transaction information about meter licensing information,
meter reset information, postage purchase transactions, and
credit card transactions. After performing extraction trans-
formation, business logic data are stored on Offline Database
409. Transaction reports are generated using the data on the
Offline Database. Transaction reports contain marketing and
business information.

The Data Warehouse database 414 includes all customer
information, financial transactions, and aggregated informa-
tion for marketing queries (e.g., how many customers have
purchased postage). In one embodiment, commerce Data-
base 406 includes a Payment Database, an E-mail Database,
and a Stamp Mart Database. The E-mail DBMS manages
access to the contents of e-mail that were sent out to
everyone by vendor servers. The Stamp Mart database
handles order form processing. The E-commerce Server 404
provides e-commerce related services on a user/group per-
mission basis. It provides commerce-related services such as
payment processing, pricing plan support and billing as well
as customer care functionality and LDAP membership per-
sonalization services.

A Credit Card Service is invoked by the E-commerce
Server 404 to authorize and capture funds from the custom-
er’s credit card account and to transfer them to the vendor’s
merchant bank. A Billing Service is used to provide bills
through e-mail to customers based on selected billing plans
An ACH service runs automatically at a configurable time.
It retrieves all pending ACH requests and batches them to be
sent to bank for postage purchases (i.e. money destined for
the USPS), or Chase for fee payments which is destined for
the vendor account.

The E-commerce DBMS 406 manages access to the
vendor specific Payment, Credit Card, and Email Databases.
A Membership DBMS manages access to the LDAP mem-
bership directory database 408 that hosts specific customer
information and customer membership data. A Postal DBMS
manages access to the Postal Database 407 where USPS

US 7,216,110 B1

11

specific data such as meter and licensing information are
stored. A Postal Server 401 provides secure services to the
Client, including client authentication, postage purchase,
and indicia-generation. The Postal Server requires crypto-
graphic modules to perform all functions that involve client
authentication, postage purchase, and indicia generation.

Postal Transaction Server 403 provides business logic for
postal functions such as device authorization and postage
purchase/register manipulation. The Postal Transaction
Server requires the cryptographic modules to perform all
functions. There are four Client Support Servers. Address
Matching Server (AMS) 417 verifies the correct address
specified by a user. When the user enters a delivery address
or a return address using the Client Software, the user does
not need the address matching database on the user’s local
machine to verify the accuracy of the address. The Client
software connects to the vendor’s server and uses the central
address database obtained from the USPS to verify the
accuracy of the address. If the address is incorrect, the client
software provides the user with a prioritized list of addresses
to match the correct address. These choices are ranked in a
user definable order. This information is represented using a
plain text format.

The Client Support Servers 417 provides the following
services: a Pricing Plan service, an Auto Update service, and
a Printer Config service. The Pricing Plan Service provides
information on pricing plans and payment methods available
to the user. It also provides what credit cards are supported
and whether ACH is supported. This information is repre-
sented preferably using a plain text format. The Auto Update
Service verifies whether the user is running the latest Client
Software. If there is newer Client Software, the Auto Update
Server downloads the new patches to the user computer. The
Client Support Database has tables for the client software
update information. This information is represented using a
plain text format.

Before the user tries to print postage, the user sends his or
her printer driver information over the Internet in plain text.
The Printer Config Service looks up the printer driver
information in the Printer Driver Database to determine
whether the printer driver is supported or not. When the user
tries to configure the printer, the user prints a test envelope
to test whether the postage printing is working properly or
not. This testing envelope information is sent over the
Internet in plain text and is stored in the Client Support
Database.

MeterGen server 422 makes calls into the cryptographic
module to create sufficient meters to ensure that the vendor
can meet customer acquisition demands. SMTP Server 418
communicates with other SMTP servers, and it is used to
forward e-mail to users. Gatekeeper Server works as a proxy
server by handling the security and authentication validation
for the smart card users to access customer and administra-
tion information that reside in the vault.

The Proxy Server 423 uses the Netscape™ Enterprise
SSL library to provide a secure connection to the vault 400.
Audit File Server 419 acts as a repository for module
transaction logs. The Audit logs are cryptographically pro-
tected. The Audit File Server verifies the audit logs that are
digitally signed. The audit logs are verified in real time as
they are being created. Postal Server writes audit logs to a
shared hard drive on the Audit File Server. After these logs
are verified, the Audit File Server preferably moves them
from the shared hard drive to a storage device that is not
shared by any of the vendor servers.

Provider Server provides reporting and external commu-
nication functionality including the following services.

20

25

30

35

40

45

50

55

60

65

12

CMLS Service forwards license applications and it pro-
cesses responses from CMLS. The CMLS Service uses
cryptographic functions provided by the Stamps.com Crypt
library to decrypt the user’s SSN/Tax ID/Employee ID.
CMRS Service reports meter movement and resetting to the
USPS Computerized Meter Resetting infrastructure. ACH
Service is responsible for submitting ACH postage purchase
requests to the USPS lockbox account at the bank. The
CMLS Service uses cryptographic functions to decrypt the
user’s ACH account number.

After decrypting ACH account information, the ACH is
encrypted using the vendor’s script library. Then, the
encrypted ACH file is e-mailed to the Commerce Group by
the SMTP server. When the Commerce Group receives this
encrypted e-mail, the vendor’s Decrypt utility application is
used to decrypt the ACH e-mail. After veritying the ACH
information, the Commerce Group sends the ACH informa-
tion through an encrypted device first and then uses a
modem to upload the ACH information to a proper bank.
The Certificate Authority issues certificates for all IBIP
meters. The certificates are basically used to provide authen-
tication for indicia produced by their respective meters.

The following are exemplary steps describing the certifi-
cate authorization process:

MeterGen asks the module to create a meter package,

The module returns a package and the meter’s public key,

MeterGen creates a certificate request with the public key,
signs the request with a USPS-issued smartcard, and
submits the request to the USPS Certificate Authority,

The Certificate Authority verifies the request came from
the vendor then, it creates a new certificate and returns
it to MeterGen,

MeterGen verifies the certificate using the USPS Certifi-
cate Authority’s certificate (e.g., to ensure it wasn’t
forged) and stores the certificate information in the
package. The package is now ready to be associated
with a customer.

The Postal Server subsystem 401 controls client and
remote administration access to server functionality, authen-
ticates clients and allows clients to establish a secure con-
nection to the on-line postage system. The Postal Server
subsystem also manages access to USPS specific data such
as PSD information and a user’s license information. The
Postal Server subsystem queries the Postal portion of the
Database subsystem for the necessary information to com-
plete the task. The query travels through the firewall to the
Postal portion of the Database subsystem. The Postal Server
subsystem is the subsystem in the Public Network that has
access to the Database subsystem.

In one embodiment of the present invention, Postal Server
401 is a standalone server process that provides secure
connections to both the clients and the server administration
utilities, providing both client authentication and connection
management functionality to the system. Postal Server 401
also houses postal-specific services that require high levels
of security, such as purchasing postage or printing indicia.
Postal Server 401 is comprised of at least one server, and the
number of servers increases when more clients need to be
authenticated, are purchasing postage or are printing postage
indicia.

The growth in the number of servers of the Postal Server
will not impact the performance of the system since the
system design allows for scalability. The Postal Server is
designed in such a way that all of the business logic is
processed in the servers and not in the database. By locating
the transaction processing in the servers, increases in the
number of transactions can be easily handled by adding

US 7,216,110 B1

13

additional servers. Also, since each transaction is stateless
(the application does not remember the specific hardware
device the last transaction utilized), multiple machines can
be added to each subsystem in order to handle increased
loads. In one embodiment, load balancing hardware and
software techniques are used to distribute traffic among the
multiple servers.

Typically, the security requirements of an online VBI
system entail protections of two basic types: Logical and
Physical, or both. Logical protections employ cryptographic
techniques involving encryption algorithms and authentica-
tion processes. Physical security measures are required to
prevent undetected tamper and to protect stored critical data
from unauthorized access, modification or destruction. The
PSD functionality and data are to be protected by the
cryptographic modules.

For the embodiment that includes printing postage, sys-
tem functional requirements are based on the IBIP specifi-
cations. The PSD is preferably located at a central location
(for example, the Internet server) and may service multiple
clients. The PSD’s functions include client authorization
(assignment of a “meter” to a client), postage register
arithmetic operations, creation and printing of a valid post-
age, messages between the provider infrastructure and PSD,
and the like.

The following functional security objectives are achieved
by the cryptographic module according to one aspect of the
present invention:

preventing unauthorized and undetected modification of
data, including the unauthorized modification, substi-
tution, insertion, and deletion of postage related data
and cryptographically critical security parameters;

preventing the unauthorized disclosure of the non-public
contents of the postage meter, including plaintext cryp-
tographic keys and other critical security parameters;

ensuring the proper operation of cryptographic security
and postage related meter functions;

detecting errors in the operation of security mechanisms
and to prevent the compromise of meter data and
critical cryptographic security parameters as a result of
those errors;

providing indications of the operational state of the post-
age meter; and

employing generally accepted security methods for the
protection of the meter and cryptographic module, and
their contents.

The cryptographic module is capable of supporting autho-
rized roles and the corresponding services that can be
performed within those roles. Since the module can support
multiple concurrent operators, the module internally main-
tains the separation of the roles and services performed by
each operator. Furthermore, a cryptographic module is used
to employ access control mechanisms to authenticate an
operator accessing the module (either directly or indirectly
via a computer process acting on his or her behalf) and to
verify that the operator is authorized to assume the desired
role and to perform the desired services within that role.

In one embodiment, the roles supported by the module
includes the following roles:

Security Officer role initiates key management functions,
including import, export, activation and de-activation
of keys.

Key Custodian role takes possession of (encrypted) shares
of keys during key export and enter them during key
import.

Administrator role manages the user access control data-
base.

20

25

30

35

40

45

50

55

60

65

14

Auditor role manages (views, saves, archives, and

deletes) audit logs.

Provider role transmits signed messages to the PSD’s for

postage refilling and other provider functions.

User role performs the expected IBIP postal meter opera-

tions.

Certificate Authority role allows the PSD’s public key

certificate to be loaded and verified.

Access to the first four of the above listed roles is
preferably obtained by logging on from a computer con-
nected to the cryptographic module. Software applications
on the computer and in the module first establish a secure
communications channel (a session). A session master key is
established using a NIST approved protocol, for example,
anonymous unauthenticated Diffe-Hellman key exchange.
The Diffe-Hellman system parameters, p and q, are embed-
ded in the software of the module and the associated
computer. Because the Diffe-Hellman protocol is vulnerable
to certain attacks, preferably, the computer and the module
are isolated from the LAN whenever a secure session is
required. The master key is then used to derive transaction
keys (for MACing and encrypting) that are changed after
each message is transmitted.

Once the secure session with the module is established,
the entities logging on can input their names and passphrases
to provide identity based authentication for the selected role.
During the initializing state of the module, access control
data for the entity that will assume the administrator role is
entered in a module access control database. This allows the
administrator to log on and enter access control data for all
other entities who will require access to the module.

The confidentiality requirement in FIPS 140-1 mandates
encryption of all sensitive security parameters, including
passwords. The cryptographic module of the present inven-
tion establishes the session and its security services first, and
then transmits the password over the encrypted (and authen-
ticated) channel.

The user passphrase as typed on the keyboard is hashed by
the host machine and the module only has knowledge of the
hash value. In the remainder of this document, the hashed
passphrase as used to get access to the module is called the
password.

Preferably, there is no operational requirement to have
more than one user logged on at the same time, or to have
users with more than one role. This is desirable because of
separation of duties. In one embodiment, for each action that
is requested, the access control makes it clear which user
requested it, and what his role(s) is (are). This holds irre-
spective of whether the request is granted or denied. This
would be difficult to achieve if more than one user is logged
on at the same time.

Certain roles have disjoint sets of authorized commands.
For example, an Auditor is not authorized to perform any
operational or key management related commands. While it
is possible to check that a user does not possess certain roles
are well as verifying that he does possess another role (e.g.,
verify that the user is not an Administrator, and is a Security
Officer), this would complicate the code and the design. A
more elegant and foolproof method is to disallow users to
hold multiple roles. If one physical user ever has to have
more than one role, an easy solution is to provide multiple
accounts for this user, one account for each role.

In one embodiment, for each user, the following user
profile data is maintained inside the module, in permanent
storage:

Username (User 1D, UID)

User Role (Role ID, RID)

US 7,216,110 B1

15

Password (hashed passphrase)

Logon failure count

Logon failure limit

Logon time-out limit

Account expiration

Password expiration

Password period (the period for which password validity
is granted when changing it).

The following functions are provided for access manage-

ment:

Initialization of the access control database.

Begin Admin (transition to Administrative state).

End Admin (transition back to Operational state).

Creation of an account.

Deletion of an account.

Modification of an account.

Viewing the access control database. This command lists
all users and their roles, account expiration, last access,
but (of course) not the user passwords.

Logon.

Logoft.

Query Current User Role.

Query Current User ID.

Change password.

Set the internal module clock.

Get Status.

The initialization of the access control database creates
the minimal set of users required by the module. This set
includes one Administrator, one Security Officer and at least
two Key Custodians. This command is the first command in
Initializing state, as all other commands require one of these
users. Creation, deletion and modification of an account and
access control database and setting the internal module clock
are restricted to users with Administrator role, in Adminis-
trative state only. Administrative state is entered by the Start
Admin command, issued by a Security Officer in Opera-
tional state.

All sensitive Administrative commands are collected in
Administrative state and require Administrator user role.
This separation of roles ensures dual control. Secondly, the
transition to Administrative state will ensure that no opera-
tional commands can be issued by the Administrator (sepa-
ration of duties). Finally, Administrative state can only be
reached from Operational state, ensuring that initialization
of the module has been completed successfully before any
administrative command can be issued. The End Admin
command causes the module to transition back to Opera-
tional state.

Preferably, the cryptographic module only allows one
session to be established at a time. After authenticating to
select a role, the entity can then issue any command that is
available to that role. Preferably, meter users are authenti-
cated on a command-by-command basis. During the user
registration process, a DES MAC key, generated by the
client cryptographic software, is transmitted to the module
and is stored in the client’s PSD package. Each command
from a user that requests PSD services is DES MAC’ed with
his personal DES MAC key which allows the module to
authenticate the user. Many clients can be simultaneously
connected to the transaction server and the module(s) will
respond to their requests for service as each request is
received from a client.

The provider is authenticated on a command-by-com-
mand basis. Provider messages are signed using DSA. The
signature is verified using the public key which is loaded
into the module when it is initialized for postal operation.
The certificate authority role is authenticated by using the

20

25

30

35

40

45

50

55

60

65

16

Certificate Authority (“CA”) certificate to verity the signa-
ture on the PSD’s public key certificate. In one embodiment,
the module implements identity based authentication for all
roles which meets the requirements of FIPS 140-1, level 3,
in the area of roles and services.

In one embodiment of the present invention, the crypto-
graphic module is implemented within an IBM 4758 cryp-
tographic Coprocessor to securely print VBIs. The IBM
4758 to provides a set of cryptographic hardware and
software within a protective enclosure that could be cus-
tomized through additional software development. The IBM
4758 specification is described in “Building a High-Perfor-
mance, Programmable Secure Coprocessor,” S. W. Smith
and S. Weingart, IBM T. J. Watson Research Center, Feb. 17,
1998; and “IBM 4758 Cryptographic Coprocessor Specifi-
cation,” available on IBM’s website (www.IBM.com), the
contents of which are hereby incorporated by reference
herein.

The module’s software is divided into four separately
controlled layers. Software layers zero and one allow the
module to initialize itself after power up, run self-tests, and
include functions to cryptographically authenticate software
loaded into layers two and three. The 4758 module, includ-
ing the software of layer zero and one, has received a
Security Level 4 certificate from NIST. In this embodiment,
the present invention is implemented by developing a new
and proprietary crypto service and postal application soft-
ware for installation in layer three.

FIPS 140-1 cryptographic security requirements are
graded into four levels of increasing security and assurance.
At the transaction server, SSL cryptographic functions may
be implemented with software at security level 1, or may
employ a cryptographic module to achieve a greater level of
security. For the cryptographic module of the present inven-
tion, security level 3 requirements are specified for each of
the applicable FIPS 140-1 security areas, except Physical
Security, which is specified as level 4. The following are
brief descriptions of level 3 and level 4 security principles.

Level 3 provides for identity-based authentication, which
is stronger than the role-based authentication used in level 2.
The module need to authenticate the identity of an operator
and verify that the identified operator is authorized to
assume a specific role and perform a corresponding set of
services.

Level 3 also provides stronger requirements for entering
and outputting critical security parameters. The data ports
used for critical security parameters need to be physically
separated or logically distinct from other data ports. Fur-
thermore, the parameters need to either be entered into or
output from the module in encrypted form, in which case
they may travel through enclosing or intervening systems, or
be directly entered into or output from the module (without
passing through enclosing or intervening systems) using
split knowledge procedures.

Level 3 allows software cryptography in multi-user, time-
shared systems when a trusted operating system is employed
along with a trusted path for the entry and output of critical
security parameters. A trusted operating system with a
trusted path would have the capability to protect crypto-
graphic software and critical security parameters from other
untrusted software that may run on the system. Such a
system could prevent plaintext from being mixed with
ciphertext, and it could prevent the unintentional transmis-
sion of plaintext keys.

Security level 4 provides the highest level of security.
Level 4 physical security provides an envelope of protection
around the cryptographic module. Whereas, the tamper

US 7,216,110 B1

17

detection circuits of lower level modules may be bypassed,
the intent of level 4 protection is to detect a penetration of
the device from any direction. For example, if one attempts
to cut through the enclosure of the cryptographic module,
the attempt is detected and all critical security parameters
are preferably zeroized. Level 4 devices are particularly
useful for operation in a physically unprotected environment
where an intruder could possibly tamper with the device.

Level 4 also protects a module against a compromise of
its security due to environmental conditions or fluctuations
outside of the module’s normal operating ranges for voltage
and temperature. Intentional excursions beyond the normal
operating ranges could be used to thwart a module’s defense
during an attack. A module is required to either include
special environmental protection features designed to detect
fluctuations or to undergo rigorous environmental failure
testing that provides a reasonable assurance that the module
will not be affected by fluctuations outside of the normal
operating range in a manner that can compromise the
security of the module.

The cryptographic modules are capable of being used in
a multi-node server based environment. When the transac-
tion server receives a request that requires module services,
it gathers all data required to perform the service and inputs
it to a module as part of a module command. Depending on
the service requested, the module may generate outputs such
as a message to the provider infrastructure, a message to the
client, or an updated PSD package to be stored by the
database server. The transaction server acts on these module
outputs to continue the transaction sequence by relaying
messages to the provider, the client, or the database.
Although the server directs the system’s operation, the
modules and other cryptographic elements of the system
maintain the integrity of data flowing through the system
without relying on the server’s software.

Each of the cryptographic modules of the present inven-
tion is capable of performing Key management, whether the
module implements a secret key (symmetric) algorithm or a
public key (asymmetric) algorithm. Secret keys and private
keys are protected from unauthorized disclosure, modifica-
tion or substitution. Public keys are protected against unau-
thorized modification or substitution. Detailed key manage-
ment requirements are defined in FIPS 140-1, the contents of
which is incorporated by reference herein. Cryptographic
key management is typically concerned with the entire life
cycle of the cryptographic keys employed within a crypto-
graphic-based security system, including their generation,
distribution, entry, use, storage, archiving and destruction.

FIPS 140-1 allows key generation for a cryptographic
module to be done either inside the module or outside the
module and then loaded into the module. Because the
postage server uses many identical modules to perform the
PSD functions, certain keys are generated and distributed to
the other identical modules. All keys are generated using
FIPS approved key generation algorithms, for example the
following FIPS approved Standards, the contents of which
are hereby incorporated by reference herein.

FIPS PUB 46-2: Data Encryption Standard (DES)

FIPS PUB 46-3: Requirements for 3DES

FIPS PUB 112: Password Usage

FIPS PUB 180-1: Secure Hash Standard (SHA-1)

FIPS PUB 186: Digital Signature Standard

ANSI X9.52-1998 Triple Data Encryption Algorithm
Modes of Operation

PKCS#1: RSA (1024 bits)

PKCS#3: Anonymous Diffie-Hellman.

15

20

25

30

40

55

60

65

18

Each module provides key management support for keys
that are used for user data protection. The module is used for
the management of a large number of postage meters.
Presumably, this number may be too large for (permanent)
storage inside the modules. Therefore, all data pertaining to
postage meters is stored external to the modules. This
necessitates security mechanisms guarded by the module to
maintain authenticity and confidentiality of this meter data.
In addition, load balancing requires the sharing of the load
between multiple modules. Finally, it is not feasible to
predict which module will be processing a certain meter.
This leads to the following features:

Each module supports confidentiality (encryption) and
authentication of user data sets when stored outside the
module. These keys used for this are called the Master
Encryption Key (MEK) and the Master Authentication
Key (MAK), respectively.

Each module supports encryption and authentication of
the key token format: DES (sccDES_Key_t), DSA
(sccDSAKeyToken_t) and RSA (sccRSAKeyToken_t),
and preferably also generic support for arbitrary-length
key data buffers.

Each module supports generation of Master Keys (MEK
and MAK) using the module’s hardware-based, RNG.
Encryption meets FIPS 46-3 requirements for 3DES.

Each module provides a backup strategy for Master Keys
that maintains security with guaranteed availability
under all reasonable circumstances.

Each module supports activation and de-activation of
Master Keys.

Each module supports rollover from one Master Key Set
(MEK and MAK) to another set. This implies support
for two Master Key Sets, a active one, and a dormant
one. In addition, each module provides translation of
data protected under one of these sets to protection
under the other set.

Each module supports deletion of a (dormant) MKS. This
is required in case of compromise of an MKS.

Decryption of the data set and verification of its authen-
ticity by another module different than the one that created
the encrypted data set is also possible. This implies the
requirement of sharing (cloning) of the decryption and
authentication keys between modules.

Export of a Master Key Set (MKS) to another module.

Import of an MKS from another module.

Export and Import of an MKS is encrypted and authen-
ticated.

Import and export is under dual control; at least 3 users
should be involved.

The module that exports an MKS determines whether this
MKS is exportable from the importing module.

A MKS is generated in the master module The master
module can export an MKS to other modules, in shares, each
encrypted under the destination module’s Transport Public
Key. This process requires prior export of the Transport
Public Key from the destination module by a Key Custodian,
and provision of that key to the master as an input parameter
to the Export Share command. The generation of the Trans-
port Key Pair is done in Initializing state; this command
transitions to Importing Shares state. The export of the
Transport Public Key is done in Operational or Importing
Shares state; the actual import of the MKS is preferably done
in Importing Shares state.

The Transport Private Key is a retained key; it can not be
exported outside the module it was generated in. This
ensures that export of an MKS always is destined for one
well-determined module. Generation of a Transport Key

US 7,216,110 B1

19

Pair only in Initializing state ensures that a module has only
one Transport Key Pair in its lifetime; a Reset is required to
return to Initializing state. Moreover, transition from Initial-
izing to Importing Shares state upon generation of the
Transport Key means that any module should have an MKS
when in Operational state.

A MKS can be exported as an exportable MKS or as a
retained MKS. This is a property of the exported key itself;,
the destination module respects this distinction. An export-
able MKS can be exported in the same way as the master
exports its internally generated key. A retained key cannot be
exported (attempted export of a retained MKS will fail).
This architecture allows for limitation of the number of
modules with an exportable MKS. Unless all of these
modules have to be reset, one can always create additional
modules with the same MKS. At the same time, there can be
fairly tight control over the (few) modules with an export-
able MKS.

In case all exportable copies of an MKS are lost (all
modules containing an exportable copy are reset or lost) one
can still continue processing with any modules that are still
operational. Next, one can create a new MKS (possibly in a
new master) and export that to all operational modules.
These modules then can roll over to the new key. Subse-
quently, one can add new modules with this new MKS, like
before.

Preferably, all operational modules can be brought back to
operational state with the proper MKS as long as at least one
exportable copy of this MKS exists. If all exportable copies
are lost, one could just continue operating with any remain-
ing operational copies, generate a new MKS in the master
(possibly a new module) and roll over to that new MKS in
the operational modules. Subsequently, one can create new
modules with that MKS,; just like before.

This implies that no special backup procedures are
required; the cloning procedures and the fact that all export-
able copies of an MKS act as each other’s backup copy are
sufficient to maintain availability under all circumstances
that can reasonably expected to occur.

To maximize the probability that at least one exportable
copy of the MKS is always available, an additional MKS
backup copy can be created by reserving a separate (non-
operational) module for its storage. To avoid existence of an
operational module without attendance, the import of the
MKS is preferably only done when the backup copy is
needed. Preferably, the export is done in an n-out-of-m-
secret sharing scheme (Shamir).

In the descriptions below for losing keys, the backup
shares together with the backup module are considered to
constitute an exportable MKS. Note that the backup module
use requires prior import of n of the m shares.

If no exportable copies of the MKS are lost, no capabili-
ties are lost, just operational capacity (bandwidth). This
allows a quick return to full capacity in case a module is lost
(see below), as well as increase of capacity, since the MKS
can be exported to a new module.

The recovery procedure is repeated for each of the mod-
ules that have lost the MKS.

For a new module or if the transport key is also lost:

reset (or replace) the operational module and generate a

new Transport Key Pair in Initializing state;

export the Transport Public Key from the destination

module;

export encrypted shares of the MKS (for this Transport

Public Key) from the source module;

import the encrypted MKS to the destination module;

activate the MKS in the destination module.

20

25

30

35

40

45

50

55

60

65

20

If some (but not all) exportable copies of the MKS are
lost, the remaining copies can still export, therefore, no
capabilities are lost. (Some capacity may be lost) This
allows a quick return to full capacity by restoring the MKS
in all modules that lost it (or in their replacement).

If the only remaining exportable MKS is the backup copy,
first import n of the backup shares into the backup module.
This module now is a normal module with an exportable
MKS, so the remainder of the procedure is the same as
described above. In this case, all operational modules can
continue operating with the current MKS. The only capa-
bility lost in this case is export of the MKS, and therefore the
addition of new modules.

The Recovery procedure is as follow:

Reset (or replace) the master;

Generate a new MKS in Initializing state;

For each module that is still operational:

Import this module’s Transport Public Key;

Export the new MKS from the new master, encrypted
under this Transport Public Key. If the destination
module contains a retained copy of the old MKS, the
exported MKS should be a retained copy, else it may be
an exportable MKS;

Import the new MKS into the operational module;

Translate the protection of all data from the old MKS to
the new MKS;

Activate the new MKS in each of the operational mod-
ules.

This returns the system to a state equivalent to that before
loss of all exportable copies of the MKS. In particular, new
capacity can now be added again. However, during this
recovery, the system has a reduced capacity (only modules
that are still operational are running).

All keys involved in session key management (ephemeral
DH keys, session master keys and transaction keys) are
maintained by session management (described below).
Local keys are used for encryption of sensitive data stored
in persistent memory, to avoid exposure in case of tamper-
ing. One mechanism chosen for this is the PPD read/write
mechanism for the memory (sccSavePPD and sccGetPPD)
where the encryption keys are stored in NVM (which is
cleared on tamper). The key management is internal to the
module.

Key management services related to cloning and man-
agement of the MKS include:

The Key Management Services module interface function

Generate MKS

Generate Transport Public Key (TPK)

Export Transport Public Key

Create MKS Shares

Export MKS Share

Leave Exporting Shares state

Start Importing MKS (transition to Importing Shares
state)

Import MKS Share

Combine MKS Shares

Activate MKS (deactivates old MKS, if any, and activates
a new one)

Delete the dormant MKS

Encryption and/or MAC Translation (decrypt and verify
MAC under old MKS; compute MAC and re-encrypt
under new MKS)

Usage of the MKS include:

Compute MAC and Encrypt

Decrypt and verify MAC

Compute MAC

Verify MAC

US 7,216,110 B1

21

The following two keys are generated by a module when
the start initialization command is executed. These keys are
not shared with other modules.

ASK, audit signing key. This is a 1024-bit DSA key used

to sign entries in an audit log.

Audit Verification Public Key. This key is output from the
module and will be used to authenticate the audit record
log.

The following two keys are generated by a Master cryp-

tographic module when the MKS command is executed.

MEK, the master encrypting key. This is a triple-DES key
used by the module to encrypt all external key tokens
for keys that are generated by the modules.

MAK, the master authentication key. This is preferably an
8-byte key used to generate a DES MAC for key tokens
encrypted by the MEK.

The following two keys are generated by the modules that
are not Masters when the generated transport key command
is executed.

V_TPK, Transport Private Key. This is an RSA key used
by a non-master module to decrypt the imported MKS
key.

U_TPK, Transport Public Key. This is an RSA key used
by a master module to encrypt an MKS key that will be
distributed to another module.

The module’s system software (CP/Q++) generates the

following key during CP/Q++initialization.

PPD key. This is a DESkey generated by the CP/Q++ and
used to encrypt keys that are stored in the module’s
flash memory. The key is not accessible outside the
system software.

The module generates the following keys for use during

secure sessions with the host computer.

Session Master Keys. This is a set of two keys, generated
for a given secure session, used to derive session
transaction keys. One key is for authentication (DES
MAC computation) and the other for security (Triple-
DES encryption). The keys are destroyed at the con-
clusion of the secure session.

Session Transaction Keys. These keys are used for a
single transaction during a secure session. They are
derived by a one-way function of the Session Master
Keys combined with a transaction counter.

The following five keys are generated by a module when

the initialize crypto-card command is executed.

VDSK _ipost, the DSA private key used by the modules to
sign challenges during client registration. The key is
output in a key token for distribution to other modules.

UDSK _ipost, the DSA public key that is imbedded in the
client application software and is used to authenticate
challenges signed by the module during client regis-
tration.

The key is output from the module after generation.

VRSK_ipost, the RSA private key used by the modules to
decrypt client secrets transmitted to the modules during
client registration. The key is output in a key token for
distribution to other modules.

URSK_ipost, the RSA public key that is imbedded in the
client application software and is used to encrypt client
secrets transmitted to the module during client regis-
tration. The key is output from the module after gen-
eration.

MK _chkpt, the DES MAC key used to authenticate a
checkpoint database record when it is returned to a
module from the database. This key is derived from
VDSK _ipost by hashing it using SHA-1 each time that
VDSK _ipost is imported by the module.

20

25

30

35

40

45

50

55

60

65

22

The following keys are generated by a module at the time
that a PSD package, the database record containing a post-
age meter’s data, is created.

V_psd, the DSA private key used to sign indicia created
by this VBI meter. This key is stored in the meter’s PSD
package as a key token, encrypted by the MEK.

U_psd, the DSA public key used to authenticate the
signature on indicia created by this VBI meter. This key
is output from the module to the provider after genera-
tion.

MK _psd, the DES MAC key used to authenticate a PSD
package when it is returned to a module from the
database. This key is derived from V_psd by hashing it
using SHA-1 each time that V_psd is imported by the
module.

EDEK _psd, the 3DES key-encrypting-key used to
encrypt the client secrets transmitted to the module
during client registration. This key is stored in the
client’s PSD package as a key token, encrypted by the
MEK.

FIPS 140-1 allows key distribution to be performed by
manual methods, automated methods, or a combination of
automated and manual methods. Keys are input to a module
when required to initialize the module and to initialize the
PSD packages of each meter. These key transfers are not
considered key distribution. Also, FIPS 140-1 allows key
entry and output procedures to differ depending upon the key
distribution technique employed. The cryptographic module
does not implement manual key entry. All secret or private
keys are input to or output from the module electronically
and are encrypted.

The system of the present invention utilizes a plurality of
cryptographic modules that need to work in concert. This
entails creating a shared secret for all the modules. In one
embodiment, key entry is required to initialize a new clone
module for service at the service provider’s facility. Prefer-
ably, only one module functions as a master module. The
master module generate a Master Key Set (MKS). The
exporting of the shares of the MKS keys requires dual
control. The Security Officer should first issue a create MKS
shares command to specify the number of shares to be
created and to authorize the export of the shares.

In one embodiment, the module uses a Pseudo-Random
Number Generator (PNRG) to generate the MKS, which
contains two distinct keys:

1. Master Encryption Key (MEK): A 3DES key used to

encrypt keys when stored outside the module.

2. Master Authentication Key (MAK): This is a key used
to compute the DES MAC for signing keys when stored
outside of the module.

The MKS is stored in a non-volatile memory (NVM)

within the module.

When the required number of shares are input to a
module, a Key Management Officer can then enter an export
share command to export one of the MKS shares. Input as
part of the export share command is the transport public key
of the new module being cloned. This public key is used to
encrypt each key share before it is exported and stored on a
storage medium such as a floppy disk, a CDROM, or the
like. After the last share is exported, the Master module
returns to the operational state and will no longer output key
shares.

For the modules that are not masters, the Security Officer
uses the generate transport key command to request the
module to generate the transport key pair. This command
also establishes that the module is not a master module. The
transport public key is output for use by a Key Management

US 7,216,110 B1

23

Officer when exporting MKS key shares from a Master
module. To input MKS shares to a module, the Security
Officer must send the start importing shares command to the
destination module. Key Management Officers can then
enter their shares from their floppy disks, CDROMs, or the
like until all have been entered. The destination module uses
its transport private key to decrypt the key shares. The
process is completed when the Security Officer sends the
combine shares command.

The MKS is used to generate external key tokens by
MACing the key with the MAK and Triple-DES encrypting
it with the MEK. After a new module has been loaded with
the MKS, the Security Officer can use the initialize crypto-
card command to export key tokens from the module or to
load it with key tokens generated by another module.

In one embodiment for secure printing of postage values,
the following four keys are input to a module using the
initialize crypto-card command.

VDSK _ipost, the DSA private key used by modules to

sign challenges during client registration.

VRSK_ipost, the RSA private key used by modules to
decrypt client secrets transmitted to the module during
client registration.

U_ca, the USPS Certificate Authority’s X.509 certificate.

UDSK _auth, the DSA public key used to authenticate
signatures on messages from the provider infrastruc-
ture.

At the time of customer registration, the key URSK _ipost,
embedded in the client computer cryptographic software is
used to encrypt client secrets before transmitting them to the
module. These secrets include:

HMK, the client’s MACing key. The key is used to
generate a DES MAC for mutual authentication of
messages between the client and the module.

PW, the hash of the customer’s passphrase. The hash of
the passphrase is used to authenticate the customer to
the module if the client’s copy of HMK is lost.

The module uses the private key VRSK-ipost to decrypt
these client secrets before storing them as an encrypted key
token in the meter’s PSD package.

Within the module, the permanently stored secret keys are
stored in designated NVM locations that serve to adequately
identify their function. Secret and private keys that are
stored outside the module as part of a PSD package are
contained in key tokens. Key tokens are data structures that
identify the keys and include other information relevant to
the keys. The key tokens are authenticated by the MAK and
encrypted by the MEK. When these keys are inside the
module they are stored in designated locations in volatile
memory.

The cryptographic module of the present invention pro-
vides the capability to zeroize all plaintext cryptographic
keys and other unprotected critical security parameters
within the module. For example, the IBM 4758 stores all
plain text keys and other SRDI’s in BBRAM (NVM).
Zeroization of all BBRAM contents occurs if the module’s
tamper detection envelope senses intrusion. A system user
can also destroy these SRID’s by disconnecting the external
batteries that provide backup power to the module. These
features allow the 4758 to meet FIPS 140-1 requirements.
FIPS 140-1 allows for a cryptographic module to output
encrypted keys for archiving purposes. In one embodiment,
each module implements key archiving mechanisms.

A state machine determines the availability of module
commands in conjunction with the roles that a user takes up.
In other words, the state and the current user role together
provide sufficient information to decide whether an action is

—

5

20

25

30

35

40

45

50

55

60

65

24

allowed or not. Most commands require authentication for
transport from the host to the module. Therefore, an active
session is derived requirement for execution of these com-
mands. This requirement is explicitly verified by these
commands, however.

Invalid data may lead to failure of execution. However,
verification of validity is considered the first step in execu-
tion. The decision to start execution depends on the state and
the user role alone; validity of input data does not play a role
in that decision. The complete module state or the state of
any module application may be composed of the module
state as described in this document, complemented with
other state information maintained by other libraries. Exem-
plary states are described below.

Uninitialized state. This is the initial, state that the module

is in immediately after loading the code and booting.
No security related data has been loaded. The only
available command is the Start Initializing command.

Initializing state is the state that the module is in during
the initialization process. In this state, the access con-
trol database is initialized and the MKS is generated or
its import is initiated. The module exits this state when
an MKS is generated (next state: operational) or when
a Transport Key Pair is generated (next state: importing
shares).

Operational state. In this state, all normal operational
commands can be executed. Depending on the user
role(s) these can be administrative (change password),
postage meter related, session management or auditing
commands. In addition, certain key management com-
mands (activation of a new MKS and deletion of a
dormant MKS) are available. Finally, special com-
mands transition to other states (administrative, export-
ing shares, importing shares) for special restricted
commands.

Administrative state. This state includes all access control
maintenance commands, such as adding, deleting,
viewing and modifying user accounts. The module
enters this state from Operational state when a Security
Officer issues the Begin Admin command in opera-
tional state. It remains in this state until the Security
Officer issues the End Admin command (next state:
operational).

Exporting Shares state. This state allows the Key Custo-
dians to export shares of the MKS. The module enters
this state from operational state when a Security Officer
issues the Create MKS Shares command. It remains in
this state until all shares have been exported (via the
Export MKS Share command) or the Abort Export
command is issued (in both cases, the next state is
operational). If the Abort Export command is issued
before all shares are exported, the exported shares may
be useless.

Importing Shares state. This state accepts the import of
shares of the MKS. The module enters this state from
operational state when a Security Officer issues a Start
Importing MKS command. It remains in this state until
a Combine Shares command is issued (next state:
operational if an MKS exists after completion, else
error).

Error state The coprocessor enters this state on (fatal)
errors. Depending on the severity of the error, it should
be cleared by rebooting, or the coprocessor should be
reset (next state: uninitialized). Only audit entry cre-
ation and session commands are possible in this state.

FIG. 6 illustrates an exemplary finite state machine. The
logon and logoft functions, session management commands,

US 7,216,110 B1

25

access control queries, and audit entry creation are available
in all states except uninitialized and error.

Within any thread in the module, it is not possible to
interrupt processing, and to resume processing at another
instruction than where it was interrupted. The only exception
to this rule is rebooting. Rebooting interrupts processing,
and starta at a given fixed location in the application.

In one embodiment, two variables hold the current state
information: Current State and Persistent State. The latter is
stored in NVM. This allows for atomic state transitions and
for retaining state information across rebooting. Atomic
state transitions can be implemented by first updating Cur-
rent State, then performing all required actions, and finally
updating Persistent State. If the module is rebooted during
this sequence, the old state is retaine in Persistent State.
Thus, if Persistent State has been updated, one is assured that
the full transaction has been executed. In addition, it can be
used to retain Error state information as required.

Before executing any function, the module verifies
whether a reboot has occurred by checking a boot detection
flag in the NVM. A reboot clears NVM, thus also clearing
this flag. Therefore, the first call to the module after a boot
will find this flag cleared. After performing any required
initialization, the flag can be set.

Initialization includes the following boot detection. When
the reboot flag is found set, no action is taken. When the
reboot flag is found cleared, the value of the Persistent State
variable is examined, and the following is done.

If it is Error: a fatal error has occurred, and Current State

is set to Error.
If it is Initializing: Persistent and Current State are set to
Error, as this is a fatal error.

If it is Importing Shares, and if there is no active MKS,
Persistent and Current State are set to Error, as this is
a fatal error. (If the module contains a valid active
MKS, both Current State and Persistent State are set to
Operational, see below.)

If it is Exporting Shares: Current State is set to Error, as

this is a non-fatal error.

If it is Uninitialized: no successful initialization has been

performed and Current State is set to Uninitialized.
If it is Importing Shares, and if the module contains a
valid active MKS, both Current State and Persistent
State are set to Operational.

Else: both Current State and Persistent State are set to
Operational.

Unless specified otherwise, all state transitions mentioned
in this document are performed by first updating Current
State, and then updating Persistent State. Atomic actions are
enclosed within such a state transition.

The module is in Uninitialized state immediately after
loading all software and booting. In the Uninitialized state,
no commands can be accepted, except the “Start Initializa-
tion” command. This command erases all non-volatile
memory. This erases all data and keys present in the module,
in particular the Master Keys and the access control data-
base; set the internal module clock; creates the Audit Sign-
ing Key; creates the first audit entry, capturing this event;
and transitions to the Initializing state.

Preferably, the only way to return to Uninitialized state is
to reset the module. This together with the fact that initial-
ization always erases all data, ensures no data survives a
reset. The Uninitialized state serves as a shield to make sure
no transitions to Initializing state are possible from other
states without losing all data and keys.

The Initializing state contains those commands that are to
be executed once in the lifetime of a module. The only way

20

25

30

35

40

45

50

55

60

26

to enter Initializing state is by issuing the “Start Initializa-
tion” command from the Uninitialized state. This ensures
that upon entry to the Initializing state, no data or keys are
retained. Here, the module is in an entirely clean state. In
Initializing state, the following actions/commands are
allowed:

Get Status

Initialize Access control database

Logon

Logoft

Query Current User Role

Query Current User ID

All Session Management commands

Audit entry creation

Generate Master Key Set

Generate Transport Key Pair.

The last two commands represent the only means to
establish a Master Key Set (MKS) in a module. A module
can either generate a Master Key Set (MKS) itself, or it can
import one and encrypt it under its own Transport Public
Key (TPK). These two commands perform the generation
respectively and prepare the import (by generating the
import encryption key pair). In summary, the Initializing
state serves to initialize the module and the sharing of the
MKS. These initializations are one-time activities; the
former mainly because there is no need to repeat it; the latter
because it is not allowed to happen repeatedly.

All normal, operational commands are executed in Opera-
tional state. That is, Operational state contains commands
implementing all actions not related to initialization of a
module, the maintenance of the access control database, or
key management (with the exception of key usage). The
following are examples of commands in Operational state
associated with different functions.

Access Control

Begin Admin (transition to Administrative state).

Logon

Logoft

Query Current User Role

Query Current User ID

View Access control database

Change password

Set clock

Get Status

Session Management

Open Session

Close Session

Compute Session MAC

Verify Session MAC

Session Encrypt

Session Decrypt

Key Management

Key management related to cloning and management of

the MKS:

Export Transport Public Key

Start Importing MKS (transition to Importing Shares
state)

Create MKS Shares (transition to Exporting Shares
state)

Generate MKS

Activate MKS (deactivates old MKS, if any, and acti-
vates a new one)

Delete dormant MKS

Usage of the MKS:

Global Encrypt and MAC

Global Decrypt and MAC

Compute MAC

US 7,216,110 B1

27

Verify MAC

MKS Rollover:

Encryption and MAC Translation (decrypt and verify
MAC under old MKS; compute MAC and re-encrypt
under new MKS)

Audit Support

Audit Entry creation

Audit Key Creation

Export of the Audit Verification Key

All administrative commands supporting access control
are executed in Administrative state. That is, Administrative
state contains commands implementing:

Creation of an account

Deletion of an account

Modification of an account

Viewing the access control database. This command lists

all users and their roles, account expiration, last access,

but not the user passwords.

End Admin (transition back to Operational state).

Logon

Logoft

Query Current User Role

Query Current User ID

Set clock

Get Status

All session management commands

Audit entry creation.

Preferably, all these commands (except session key
usage) are audited.

As shown in FIG. 6, Administrative state is entered by the
Start Admin command, issued by a Security Officer. The
administrative commands in Administrative state require
Administrator user role. This separation of roles ensures
dual control. Secondly, the transition to administrative state
will ensure that no operational commands can be issued by
the Administrator (separation of duties).

The Exporting Shares state exports encrypted shares of a
Master Key Set. When the last share in a secret sharing
scheme is exported, the module transitions to operational
state. All these commands are audited. (Audit entry cre-
ation.) Only an exportable MKS can be exported this way
(i.e., internally generated or imported as exportable; by
default an imported MKS is a retained key). The export is
initiated by a Security Officer issuing the Create MKS
Shares command in Operational state. This command
changes state to Exporting Shares. The actual export of the
encrypted shares is done through the Export Share com-
mand, issued by a Key Custodian. Encryption of the shares
is under the Transport Public Key. This key is provided by
the Key Custodian as an input parameter to the Export
Shares command. Rebooting while in Exporting Shares state
may be a fatal error.

The following commands are available in the Exporting
Shares state.

Logon

Logoft

Query Current User Role

Query Current User ID

Export Share

Abort Export

Get Status

All Session Management commands

Audit entry creation.

In the Importing Shares state, a module imports encrypted
shares of an MKS. The encryption is done under the
Transport Key. Importing shares state is entered by Issuing
the Start Importing MKS command. The actual import is

20

25

30

35

40

45

50

55

60

65

28

performed by repeating the Import Share command as
required. Combination of the shares to a MKS transitions to
Operational state is also possible. All these commands are
audited. (Audit entry creation.

The following commands are available in the Importing
Shares state.

Logon

Logoft

Query Current User Role

Query Current User ID

Export Transport Public Key

Import Share

Combine Shares

Get Status

All Session Management commands

Audit entry creation.

In Error state, no cryptographic operations may be per-
formed. Thus, the only commands available in the Error
state are Get Status, Access Control Queries. A reset erases
all NVM and changes to Uninitialized state. Fatal errors set
both Persistent State and Current State to Error. This ensures
that rebooting will not clear the error. Therefore, the only
way to clear fatal errors is a Reset command, or by a
complete re-initialization of the module by other means
(both methods change state to Uninitialized). Non-fatal
errors only set Current State to Error; the Persistent State is
not modified. A subsequent reboot clears the error, unless a
boot error occurs. All Module command requests in Error
state, with the exception of Get Status, return an error and do
not output any data. Error states are preferably non-fatal,
with the following exceptions (i.e. these only set Current
State to Error):

failure in Audit Entry Creation which doesn’t breaks the

audit chain; and

detection of Exporting Shares state during boot-up

Throughout the lifecycle of a module, its software keeps
track of the module’s present operational state and allows
only the operations that are allowed for these module states.
Each PSD package also contains information to define its
present operational state. When the module is loaded with a
PSD’s package, module software will only perform opera-
tions that are allowed for the present state of that PSD. The
following paragraphs describe the states of the module and
the PSD package throughout their operating life.

When the module is first operated after its software is
loaded, it starts in the uninitialized state. Preferably, the only
command that it will accept is the start initialization com-
mand and the start initialization command will only be
executed if the module is in the uninitialized state. During
this phase of life, the Module is not considered to be a crypto
module and no authentication is required to issue this
command. The start initialization command first erases all
non-volatile memory to destroy any cryptographic keys or
access account database entries that may persist from pre-
vious use of the module. When memory erasure is com-
pleted, the module transitions to the initializing state.

The Initialized state includes commands that can be
executed only once in the life of the module. Because this
state can only be entered from the uninitialized state, an
existing module cannot be modified by using these com-
mands. Within this state the access account database is
initialized. If a master module is being created, the master
key set (MKS) is generated and the operational state is
entered. If the module is not a master, the transport key pair
is generated and the Importing shares state is entered.

Preferably, the module Exporting Shares state can only be
entered from the Operational state. Once the master module

US 7,216,110 B1

29

generates the MKS it can export it to another module. In one
embodiment, this is accomplished by using an n of m Shamir
secret sharing technique, as follows:

1. A target (clone) module is initialized, following the
steps described above.

2. The Security Officer logs on to the newly initialized
target Module and issues a command to generate a
transport key pair (TPK). The TPK is a RSA public key
used for transporting an MKS previously generated by
the master module. The private portion of the TPK is
retained in the new module and can never be exported
from the module that generated it. This control ensures
that MKS export is always destined for one well-
determined target module. The public portion of the
TPK is saved on to a floppy disk, a CDROM, or the
like.

3. The public portion of the TPK is saved onto a storage
medium such as a floppy, CDROM, or the like and
physically carried over to the machine housing the
master module. The Security Officer logs on to the
master module and issues the create MKS shares com-
mand. The create MKS shares command accepts two
arguments: (1) the number of shares to be created (n,
one share per key custodian) and (2) the threshold
number of shares required to recombine the shares. A
successful create MKS command results in n number of
shares, where n is greater than or equal to 2.

4. A Key Custodian logs in and initiates the export MKS
shares command on the master Module and chooses
whether the exported key pair should be an exportable
or retained key pair for the destination module. An
exportable key pair permits the destination module to
export key shares in the same manner as the original
master module. With a retained key pair, the new
cloned module cannot export key shares to other cryp-
tographic modules. The export MKS shares command
validates the current key custodian and then encrypts an
MKS share with the TPK. The TPK-encrypted share is
saved to a floppy, a CDROM, or the like. This proce-
dure is repeated for each key custodian specified in step
3, above.

The module Importing Shares State can be entered from
the Initializing state (to load the MKS for the first time) or
from the Operational state (to load a replacement MKS). The
following describe in more detail the importation of the
MKS key shares for generation of the master key set in a
module. Once the master Module encrypts the MKS shares
and saves them to floppies, the shares can be imported into
the target module.

1. The Security Officer logs into the target module and

initiates the start importing MKS shares command.

2. The first Key Custodian inserts their MKS share floppy
or CDROM, logs in, and issues the import MKS share
command.

The target module reads in the first share. This procedure

is repeated for each Key Custodian.

When the final Key Custodian has finished entering the
key share, the Security Officer logs in and issues the
combine MKS shares command. The combine MKS shares
command causes the target module to unencrypt each share
and combine them to create the MKS. The shares are
destroyed following this procedure. The MKS is stored in
the NVM as described above.

Once in the Operational state, the module is capable of
completing its remaining initialization steps. The security
officer sends an initialize crypto-card command to load all
other required module shared keys (These are described in

20

25

30

35

40

45

50

55

60

65

30

the Key Management section). The administrator can enter
the access control data for all other personnel that require
authenticated role access to the module.

When the module is initialized, it does not become a PSD
until PSD packages are created. A PSD package is created
using the initialize PSD command. This creates a data
structure that contains the PSD package data elements. One
data element is the present state of the PSD. The module will
only allow the PSD to perform operations that are allowed
for its present state. When the initialize PSD process is
completed, the PSD state changes to the raw state.

In one embodiment, the PSD package for each meter user
contains all data needed to restore the meter’s PSD to its last
known state when it is next loaded into a module. This
includes the items that the IBIP Performance Criteria speci-
fies to be stored inside the PSD, information required to
return the PSD to a valid state when the record is reloaded
from the database, and data needed for record security and
administrative purposes. In this embodiment, the PSD pack-
age includes the following items:

Ascending and descending registers

Device ID

Indicia key certificate serial number

Licensing ZIP code

Key token for the indicia signing key

The user secrets, (the client DES MAC key and the
SHA-1 hash of the client’s passphrase).

Key token for EDEK_psd, the key for encrypting user
secrets

Data needed to maintain operating continuity includes:

Date and time of the last PSD transaction

The last challenge received from the client

The operational state of the PSD (leased, withdrawn, etc.)

Expiration dates for keys

The passphrase repetition list (eliminates reuse of recent
passphrases)

The IBIP Performance Criteria specifies that the PSD
should store the public key certificate for the USPS CA.
Because all meters require this information, it serves no
purpose to repeat this data in each PSD package. Instead, the
certificate for the USPS CA public key is stored in the
memory of all the modules.

The following describes the PSD package states.

Raw state. As a result of initialization the meter serial
number is assigned, the postal registers are set to zero,
the PSD keys are generated, and all other initializing
steps are performed. The provider receives the PSD
public key and device ID needed to obtain the PSD’s
public key certificate. Preferably, the only command
that can be executed while in the raw state is the
authorize PSD command.

Unleased state. The authorize PSD command loads the
PSD public key certificate and changes the PSD state
from raw to the unleased state. Preferably, the only
command that can be executed while in the unleased
state is the configure PSD command.

Assigned state. The configure PSD command assigns the
PSD to a customer, allows entry of the customer shared
secrets, and places the PSD in the assigned state. When
the customer’s postal license is issued, the authorize
customer command enters the customer’s originating
zip code and places the PSD in the leased state.

Leased state. Once in the leased state the PSD is ready for
the customer to use. The meter can begin printing
indicia once the first postage value download had been
completed.

US 7,216,110 B1

31

Password Reset state. This is a temporary state to allow a
lost password to be replaced.

Withdrawn state. The user’s account has been closed or
suspended. This state is entered from the leased state or
pwreset state by executing the create refund indicium
command. The PSD package remains in the database
where it can be accessed by the server but after entering
the withdrawn state the Module will no longer execute
any PSD command when loaded with this PSD pack-
age.

The PSD packages are stored outside the modules when
not being used and the module is able to detect when record
storage problems have occurred. In one embodiment, a
Redundant Array of Independent Disks (RAID) and a data-
base server are used together to provide reliable operation of
the database. Multiple copies of each record are maintained
and a locking system is used to prevent more than one postal
server from simultaneously accessing one meter’s PSD
package. If a partial failure of the RAID occurs, the system
transparently switches to backup records.

In one embodiment, the cryptographic modules store up
to five transactions in a respective internal register. The
number of transactions compared in the verification process
system may be set by the system administrator. A verifica-
tion process compares a predetermined number of last
transactions. The database subsystem stores a table that
preferably includes the module(s) present in the Postal
Server subsystem, the module serial numbers, the time of the
last transaction the module processed, the date of the last
transaction the module processed and the value of the last
transaction the cryptographic module processed. Other val-
ues related to a transaction and a module can also be saved
for verification purposes. An example of the module table,
where the Postal Server subsystem has four modules, is
illustrated below.

Crypto- Cryptographic
graphic module Transaction Transaction Transaction
module Serial. # Time Date Value

1 34576590 11:53 PM Aug. 06, 1999 $0.33

2 34582152 07:30 AM Aug. 05, 1999 $7.55

3 34593104 03:00 PM Aug. 02, 1999 $3.45

4 34593992 11:22 AM Aug. 03, 1999 $5.78

When a cryptographic module loads a new PSD out of the
Database subsystem (performing a transaction), the mod-
ule’s register, containing the last transaction’s time, date and
value, is verified against that module’s entry in the Database
subsystem’s module table. The time, date or value for each
transaction stored in each module should match the corre-
sponding values for the respective module stored in the
database for the verification process to be successfully
completed. Cryptographic modules do not load new PSD
transactions unless the verification process has been suc-
cessfully completed. If any of the compared values is found
to be different, preferably the whole system shuts down until
authorized personnel can investigate the situation. In one
embodiment, the threshold in the system is adjustable so that
the system may be set to shut down if one, two or more
modules fail the verification process.

With the success of the authorization state, the client
software not only trusts the cryptographic module, but also
shares a common HMK with the cryptographic module,
which it uses to sign and challenge each successive message.
FIG. 5 is an exemplary embodiment illustrating client soft-

20

25

30

35

40

45

50

55

60

65

32

ware and cryptographic module (PSD) communication dur-
ing the operational state. Client software 503 sends a new
challenge message to cryptographic module 502, as shown
by 501. The cryptographic module responds by signing the
challenge with the shared HMK and then sends this cipher-
text back to the client software, along with its own chal-
lenge, as shown by 504. Client software 503 compares the
ciphertext of the challenge it originally sent to the crypto-
graphic module, and also signs the message received from
the cryptographic module.

If the signatures compare, the client software trusts the
cryptographic module for this transaction. Client software
503 uses the cryptographic module challenge message to
authenticate itself to cryptographic module 502. Client soft-
ware 503 now sends the signed challenge that cryptographic
module 502 had sent, with the addition of the client software
local record of the user’s AR and DR, as shown by 505.

The client software also sends a cleartext of the challenge
and the transaction message, as shown by 506. Next, the
client software sends a Hash Message Authentication Code
(HMAC) for all of the data sent in 505 and 506, using shared
HMK, as shown by 507. HMAC is a digital signature created
using a hash algorithm with an arbitrary message and the
secret key (HMK). The client software sends the original
arbitrary message and the HMAC to Postal Server via the
network. HMK, as the HMAC Key, stays in the client
software 503. The cryptographic module 502 already has a
copy of HMK because it was sent over to Postal Server
during the user registration process. In another embodiment,
Data Encryption Standard Message Authentication Code
(DES MAC) is used instead of HMAC.

In one embodiment, the checkpoint concept operates in
the following manner. Each module retains in its memory
records relating to the three most recent transactions that
modified a PSD package. For example, these records include
the following data items:

PSD meter 1D

Transaction type

Transaction amount

PSD AR value

PSD DR value

Module serial number

Date/time stamp (for record replay detection)

Module total amount reset

Module total amount printed

Module total amount refunded

The record of the most recent transaction is also output to
the database and is protected from modification by a DES
MAC generated using the key HMK_chkpt. When a PSD
transaction is to be performed, the checkpoint record from
the database is input along with the PSD package for the
meter. Preferably, all IBIP commands to the modules are
handled by the function sdx_dispatch. Within dispatch, the
checkpoint record from the database is compared with the
most recent checkpoint record stored in the module memory.
If they match, it is highly likely that no switchover of the
database (resulting in lost records) has occurred. The module
then trusts that the PSD package is up to date and allows the
IBIP command to be executed. When the IBIP command is
completed, the checkpoint record is updated and output to
the server for database storage along with the updated PSD
package.

In the case of create indicium commands, the server first
confirms that the updated records have been stored on the
database before the indicium is transmitted to the client for
printing. (Server transaction logs keep a record of all mes-
sages sent to clients.) In the case of the provider command-

US 7,216,110 B1

33

ing postage value download or create refund indicium, the
server reports an error if the database fails to correctly store
the updated checkpoint record and PSD package.

If the comparison of internal and external checkpoint
records does not match, the module will not execute the IBIP
command and an error code is returned to the server. The
server then sends a command called “Auto-Recover module
Checkpoint” to the module. This command allows a con-
trolled rollback to an older checkpoint if the external check-
point record matches either of the two older checkpoint
records stored in the module internal memory. The module
updates its internal records using data from the accepted
checkpoint and outputs audit log records to document the
more recent PSD transactions that are to be discarded
(transactions more recent than the accepted checkpoint). If
none of the module’s internal checkpoint records match the
record input from the database, auto-recovery fails and an
error is returned to the server. This module is now effectively
inhibited from processing PSD packages and operator inter-
vention, using the disaster recovery process, is needed to
return it to operation.

In summary, the checkpoint validation and auto-recovery
processes allows the module to verify that the database
providing records is up to date and to automatically resyn-
chronize the module with the database if possible.

An Audit Log Verification protects PSD Package Replay.
Use of a DES MEC to authenticate a PSD package ensures
that the record originated from a module with knowledge of
the client’s package DES MAC key. The DES MAC verifies
that the data within the record has not been modified since
the DES MAC was generated. But because the DES MAC
cannot ensure that the record is the most recent update of the
client’s data, other safeguards need to be used to prevent or
detect substitution of a record created at an earlier time. The
module addresses this problem by creating a cryptographi-
cally protected audit log entry each time a PSD package is
modified by a module. The command scaaeCreate AuditEn-
try is used to create the audit record. An Audit Log Verifi-
cation protects PSD Package Replay. Use of a DES MEC to
authenticate a PSD package ensures that the record origi-
nated from a module with knowledge of the client’s package
DES MAC key. The DES MAC verifies that the data within
the record has not been modified since the DES MAC was
generated. But because the DES MAC cannot ensure that the
record is the most recent update of the client’s data, other
safeguards need to be used to prevent or detect substitution
of a record created at an earlier time. The module addresses
this problem by creating a cryptographically protected audit
log entry each time a PSD package is modified by a module.
The command scaaeCreate AuditEntry is used to create the
audit record.

The initialize cryptocard or update cryptocard commands
perform the initializations. Limits are set for the minimum
and maximum value of indicium that can be printed. The
USPS certificate authority public key certificate is loaded.
The provider public key is loaded. Private keys used during
new customer registration are loaded. These commands are
issued by the Security Officer.

The initialize PSD command assigns the device ID, set the
postal registers to zero and generates the PSD public keys.
This command is not authenticated but can only be executed
once in the life of a PSD.

The authorize PSD command loads the PSD’s (public key
certificate. The PSD’s certificate is authenticated by the CA
certificate, and the device ID and public key from the
certificate are verified to match those contained in the PSD
package.

20

25

30

35

40

45

50

55

60

65

34

The configure PSD command enters the new customer’s
customer ID and receives the encrypted secrets from the
customer. The module decrypts the secrets using VRSK_i-
post. Preferably, this command is not authenticated but the
response returned to the customer is DES MAC’ed by the
module with the CDSK_client key just received. The cus-
tomer PC software verifies this DES MAC to ensure that the
module has received the CDSK_client key correctly.

The authorize customer command enters the originating
zip code after the server receives the meter license and then
the maximum descending register limit is set. This command
is authenticated as a provider role command from the
provider’s signature using the key UDSK_auth.

As described above, the cryptographic modules use roles
and services to control access to the module and to specify
which services (commands) are available to the user. Ser-
vices of concern are those that access security parameters or
postal financial data protected by the module. Each module
supports many roles. In one embodiment, access control is
accomplished as follows.

Authentication may be accomplished by using a secure
session. For example, the roles of Security Officer, Key
Custodian, Administrator, and Auditor are authenticated
after a secure session between the user’s PC and the module
has been established. When the user issues an scas-
mOpenSession command, application software on the user’s
PC and corresponding software in the module perform the
session opening process. An anonymous Diffie-Hellman key
generation protocol is used to establish a set of session keys
(triple DES keys for encryption and MAC’ing) that are used
during the session. The session keys are not used directly but
instead unique keys, derived from the session keys, are used
for each successive message.

Once a secure session is established, the user sends the
scaacL.ogon command containing the user ID and user
password. The module uses its access account database to
verify the user data received and to select the role that this
user is allowed to enter. The user can now send the module
any command allowable for the selected role. In one
embodiment, the module design limits each user to a single
role and will only allow one user to be logged on at a time.

Session management provides security services to the
communications between the host and the module. Session
management will establish a secure channel between the
host application and the module application. This channel
provides authentication and optional confidentiality for the
data exchanged through it. In particular, all command
requests and responses, except those for opening a session,
are protected by a MAC. This provides authentication to the
command. The host and module can verify that it is their
counterpart that issued the command because no other entity
can generate the MAC. Optionally, the command data can
also be encrypted. This provides confidentiality to the chan-
nel.

All commands from the host are initiated by a user that is
authorized to execute this command on the module. That is,
all host-initiated commands require an active user with an
appropriate role (authorized to issue the given command).
Except for Default role, this implies that a user (with that
role) should be currently logged on. For all users with roles
other than Default, the session management is closely tied to
user logon. A session should be established before the logon
and it lasts while the user is logged on. The session can be
terminated after the user logs off. Logon fails if no session
is established; session termination fails if a user is still

US 7,216,110 B1

35

logged on. Similarly, any module command that requires
session security (encryption or a MAC) is aborted if this
mechanism is not used.

An active session is instantiated by active session master
keys. These keys are exchanged between host and module
application at session set-up, and they are destroyed at
session termination. All data transmitted between the host
and the module within a certain session is protected by these
session master keys. All data is authenticated (by means of
a MACQ); in addition, some data is encrypted to preserve
confidentiality.

Preferably, session master keys are not used directly.
Instead, a temporary key is derived from a session master
key for each transmission. This transaction key is then used
to MAC or encrypt the transmitted data. The transaction
keys are derived as a one-way function of the session master
keys and a nonce (e.g., a transaction sequence counter). This
set-up with session master keys and derived transaction keys
is straightforward, and it protects the session master key. The
transaction keys are protected by limiting the amount of
ciphertext available for attacks. In addition, even if they
would be revealed, the use of a good one-way function
together with nonce for the derivation of the transaction keys
are sufficient to secure the session master key.

The Session Master Keys are obtained from an anony-
mous, unauthenticated key exchange. In one embodiment,
the key exchange protocol is an anonymous (ephemeral—
ephemeral) Diffie-Hellman protocol executed between the
host application and the module application. The system
parameters (a strong prime p, and a generator g) are fixed.
That is, they are hard-coded into the software at both ends.
This protocol establishes a shared secret that can be used to
create a secure channel between the two end entities.

Anonymous Diffie-Hellman does not provide authentica-
tion of the end entities or key confirmation. However, the
module can implicitly authenticate the host via user logon
and application data authentication provided from outside of
the module. Similarly, the host implicitly authenticates the
module by verifying that it can process the application data.
Finally, key confirmation is achieved at the first exchanged
message.

Session Management functions include:

Session Management Services

Open Session

Close Session

Session Security:

Compute Session MAC

Verify Session MAC

Session Encrypt

Session Decrypt

Role Access may be accomplished by Command Authen-
tication. Because many customers need to be provided rapid
access to the module, commands from each customer are
individually authenticated to provide access control. Each
customer has a DES MAC key (CDSK_client) and generates
a DES MAC for each command sent to the module. The
module uses its copy of CDSK_client from the customer’s
PSD package to perform the command authentication. This
meets the requirements for identity-based role authentica-
tion. Individual command authentication ensures that each
customer is authorized to enter the customer role and that the
command is an authorized service of the customer role.

The provider role also uses command authentication.
Provider commands are signed with the key VDSK_auth.
The e-commerce server provides the interface to the USPS
infrastructure and also functions as the provider when inter-
acting with PSD Packages. When a customer’s postal license

20

25

30

35

40

45

50

55

60

65

36

is approved, the provider sends an authorize_customer com-
mand to the module to store the licensing zip code and
maximum descending register value in the customer’s PSD
Package. Completion of the authorize_customer command
places the PSD Package in the leased state, allowing it to
begin operating.

When the e-commerce server is notified that the customer
has deposited funds to buy postage, a download postage
value command, signed by the provider key, VDSK_auth, is
sent to the module. The Certificate Authority role is used to
load the PSD’s public key certificate. This command (autho-
rize PSD) is authenticated when the signature on the cer-
tificate provided with the command is authenticated by the
CA certificate contained in the module.

Some commands from the server to the module do not
require authentication. These commands are used to prepare
a PSD for operation, to request status from a PSD, or to
facilitate system operation, for example. None affect data
within operating PSD packages.

When the server receives a message from the client
requesting an indicium, it forwards the request to the module
using the create indicium command. Whenever a client’s
PSD package is required to perform a module service, the
server provides it to the module with the command. The PSD
package and the client-provided data elements for the indi-
cium are then used by the module in the following way.

1. The indicia signing key token is decrypted and the DES
MAC key is derived from it. This key is used to verify
the DES MAC for the package.

2. The PSD state is checked. Preferably, the package
should be in the leased state for this command to be
executed.

3. The meter number in the command should match the
meter number in the PSD package.

4. The challenge included in the client message is verified.

5. The key token containing the client secrets is decrypted
and the DES MAC on the client’s request is verified to
authenticate the client with his PSD package. This also
authenticates the command into the user role.

After the above checks are completed, the module is
assured of the identity of the client making the request, and
is certain that it has a valid PSD package for that client. The
module can now perform the requested register modification
process.

6. The value of the indicium is then checked to ensure it
is within the minimum and maximum limits enforced
by the module.

7. The DR is checked to see if it contains sufficient value
for the indicium.

If the above tests are successfully completed, the module

completes the indicium creation process:

8. The indicium value is subtracted from the DR and
added to the AR.

9. The data elements for the indicium are assembled and
the indicium signature is generated.

10. The message that will be sent to the client is
assembled. In addition to the indicium, this includes the
challenge received from the client in the indicium
creation request and a new challenge generated by the
module that will be returned in the next message from
the client. A DES MAC for this message is generated
using the client’s CDSK_client key.

11. The PSD package and checkpoint record are updated
and DES MAC’s are generated for both.

12. The audit log record is then generated.

To broaden the appeal of the IBIP architecture to the small

business and enterprise market, one embodiment of the

US 7,216,110 B1

37

present invention allows multiple employees within a com-
pany to access a meter registered to that company as shown
in FIG. 8. This embodiment supports such an architecture by
leveraging the existing security characteristics of the Post-
age Server Cryptomodule. In particular, the invention
employs identity-based authentication, which is needed to
meet the FIPS 140-1 security level 4 requirements. As
depicted in FIG. 8, multiple users within an enterprise
account are connected via the Internet and a firewall to the
Postal server, Postal Transaction server, Provider server, and
e-commerce server.

In a single user model where there is a direct one-to-one
mapping from customer to PSD, only a single secret needs
to be shared between the individual and the cryptographic
module. This secret allows the PSD to authenticate the
communication with the user. To provide this capability for
multiple users, the PSD needs to have access to their secrets
as well. In this embodiment of the present invention, the
PSD supports the ability to share secrets with multiple users,
so that it may perform identity-based authentication of these
users. To support this capability, existing services are modi-
fied for them to support multiple secrets. Preferably no
change is necessary to the secure protocol the system uses to
communicate with the user.

Additional user management capabilities support multiple
users in a PSD. This is provided through the addition of new
services needed to support the administration of a PSD’s
authorized users. Also, a new role called “customer admin-
istrator”, is added that has the authority to perform the new
services. This embodiment supports multiple users per PSD,
supports multiple machines per PSD. In this embodiment,
preferably, all users are within the same license. Preferably
there is no additional restrictions on a user’s capabilities.

In one embodiment, the system of the present invention
allows multiple individuals to function as a single customer
by separating the user interface function of the host system
from the other core functions. An individual interacts with
the machine performing the user interface function, which in
turn, then communicates with the machine performing the
other core functions. The machine performing all core
functions of the host system, excluding the user interface, is
called a gateway machine. This machine acts, on behalf of
the individuals, to perform all customer functions. Multiple
individuals are communicating with the gateway from dif-
ferent machines, each of which is performing the user
interface function of the host system. These machines are
called interface machines.

In this embodiment of the present invention, the gateway
is performing the user authentication function. As such, the
gateway is responsible for supporting secure communication
between the customer and its PSD. This means that the
gateway performs the authentication of all messages sent to
and received from the PSD.

As previously mentioned, the gateway also performs all
other core functions of the host system (excluding the user
interface function). Performing these functions at the gate-
way provides many benefits due to its centralized nature,
including consolidated usage logging and simpler configu-
ration management.

A customer entity is responsible for the security of the
host system used to access the system. In this embodiment,
a gateway and one or more interface machines embody the
host system. To provide the same level of security as that
afforded by a single machine model, it is necessary for the
communication between the interface machines and the
gateway to be private and tamper-resistant with respect to
the community of users accessing the host system.

20

25

30

35

40

45

50

55

60

65

38

When and if the interface machines and the gateway all
reside on a network private to the user community sharing
the PSD, typically, no additional security is necessary to
protect their communication. For example, a corporate LAN
is typically protected with a firewall that prevents the
machines within the private network from being accessed
externally.

In this embodiment, the mechanism by which a customer
submits a request to purchase postage to the provider
infrastructure is performed on the gateway machine. Addi-
tionally, the corresponding purchase approval and download
of postage value to the PSD is performed by the provider
infrastructure and is preferably unaffected by the introduc-
tion of the gateway component. FIG. 9 shows multiple users
using a gateway server to generate secure indicium bitmaps.
Users can be connected to the gateway system via a private
network or using a secure channel such as SSL if they are
using a public network to access the gateway system. Users
can print the indicium generated from the gateway system
using network printers or local printers that are available.
Also, they can use printers connected to the gateway system.

In one embodiment, an IBI solution that allows users to
use IBI from within a standard web browser tool is used.
However, running in the browser environment where the Ul
and potentially code are delivered dynamically over the
Internet brings with it additional security requirements.
Improperly designed browser-based IBI systems could allow
a number of attacks over the network that are not possible in
an application-based system. These include the theft of
indicia, substitution of values in indicia (printing something
different than the user requested), substitution of values in
postage purchases, and the theft of personal information.
Generally, printing of indicia can be broken down into the
following exemplary steps: entry of values into Ul, genera-
tion of indicium by PSD, and Printing.

Typically, the security of an IBI system is dependent on
the security of the steps above. In an application-based
product these steps are either contained within one crypto-
boundary or protected by a private, tamper resistant com-
munication mechanism (e.g., SSL). There is a high degree of
assurance that what is requested is what is printed and that
no one is able to intercept the indicium. A browser plug-in
that displays its own native code UI for collecting data for
the indicium and prints the indicium itself is shown in FIG.
10. This browser offers the same protections as an applica-
tion. Untrusted code (e.g., JavaScript) cannot access the data
in the Ul and transparently modify or steal it.

A Ul-less (also known as, “headless”) browser plug-in
that generates and prints indicia with the Ul provided by web
pages is potentially unsafe. A plug-in installed in this manner
is visible to all web pages, not just to pages from the original
site. This allows attacks on the first arrow. Input can safely
be taken from a web page, but only by providing a way to
ensure only authorized pages can create and print indicia. It
is possible to ensure that the plug-in is being called by an
authorized web page by having the plug-in check the brows-
er’s Document Object Model to check to see if the page was
delivered by SSL (to eliminate spoofing) and whether it
came from an authorized domain (e.g., *.stamps.com). If
both of these are true, then the plug-in can trust the web page
as its Ul because the web page has been strongly authenti-
cated to be from an authorized source.

This can also be accomplished by having the customer’s
web browser connect to a web server (proxy) running within
the same cryptoboundary, as shown in FIG. 10. Preferably,
the proxy only allows connections to authorized domains via
SSL. In order to ensure that the proxy is only receiving

US 7,216,110 B1

39

requests from authorized domains, it is necessary for the
proxy to authenticate that the request came from a page it
delivered to the browser. The easiest way to accomplish this
is to only accept requests over the same connection the page
was delivered on, but other authentication methods are
possible. This browser-based design has generally greater
security than application-based designs.

For authentication, each user has a unique user 1D and
their own password. Preferably, user administration may
only be performed in the cryptographic module. Also, client
transactions are authenticated to a specific user. For access
control, the system is capable of granting/revoking PSD
privileges (e.g., create indicia, reset password, retrieve sta-
tus, retrieve UDSKpsd), and granting/revoking administra-
tive privileges (e.g., add user, delete user, modify user, e.g.
privileges, view all users). Some account features include
account expiration, password expiration (enforced by cli-
ent), logon failure count, and maximum total postage. Trans-
actions associated with a specific user may be audited and
administration actions are tracked in an audit trail.

Once the audit log record is generated, the server receives
the audit record, the updated database records, and the
indicium message to the client from the module. The server
stores the audit record on the audit file server and sends the
PSD package and checkpoint record to the database for
storage. When the server gets confirmation that the database
storage operation has been successful, the message contain-
ing the indicium is transmitted to the client application.

The create postage correction indicium command per-
forms the correction indicia creation function. Preferably, it
operates identically to the create indicium command except
that it results in a correction indicium being generated.

Because redating indicia creation does not involve the
PSD postal registers, the module does not perform this
function. When redating of an indicia is necessary, prefer-
ably server software performs this function.

When a meter is removed from service, the create refund
indicium command is used to empty the meter’s DR. This
command, which is a service of the provider role, is pref-
erably sent from the provider infrastructure and signed with
the provider key, VDSK_auth. Preferably, this command can
only be performed if the package is in the leased state or the
pwreset state. When the module receives this command the
result is the creation of an indicium equal to the value
remaining in the DR. Because withdrawal is a special case
of a normal indicium creation operation, the module pref-
erably performs the same series of checks as for the create
indicium command, the difference being the authentication
of the provider in place of the customer. As a result of this
command, the AR is increased by the amount of the refund
indicium and the DR is reduced to zero. The PSD package
state is changed to withdrawn which inhibits this meter from
any further use. The indicia data, including a signature using
the client’s private key, is output to the server to allow the
remaining funds to be credited to the client’s account. The
updated PSD package, checkpoint record, and audit log
record, are output to the server for storage.

VBI value download messages are sent from the provider
infrastructure to the PSD. When a customer deposits funds
into their account, this triggers the provider’s server (the
provider software) to generate a VBI value download mes-
sage to the customer’s PSD. This message is a service of the
provider role and is signed by the provider key, VDSK_auth.
The message contains the meter number, control total value
(from the last successful resetting), and the VBI download
value. The module performs the following steps.

20

25

30

35

40

45

50

55

60

65

40

. The provider signature on the message is verified.

2. The PSD package is authenticated by checking its DES
MAC.

3. The PSD state is checked. Preferably, it should be in the
leased state or pwreset state.

4. The meter number in the command must match the
meter number in the PSD package.

5. The control total in the message must equal the sum of
the AR and DR from the PSD package.

6. A check is made to ensure that the DR will not exceed
a predetermined value (in one embodiment, $500) after
the new VBI is loaded. A check is also made to ensure
that the AR will not exceed predetermined value after
the new VBI is spent.

7. If the above tests pass, the module increments the DR
by the VBI amount contained in the message.

8. The PSD package and checkpoint record are updated
and DES MAC’s are generated for both. These are
output to the database server for storage.

9. The audit log record is generated and output to the
server for storage on the audit file server.

Audit support provides functions that enable secure log-
ging of all (sensitive) actions. The security requirements
include the authenticity of the entries, completeness, and the
inability to insert (fraudulent) additional entries. For reasons
of storage space availability, the storage of the entries
happens outside the module. Therefore, the security features
are built into the audit entries themselves. To avoid involve-
ment of the originating module (or cloning of the related
keys) audit is public key based meaning, the audit entries are
digitally signed. To address performance concerns, this is
implemented as follows.

Instead of signing each individual audit entry, the entries
are securely chained, and only selected entries in the chain
are digitally signed. The security of the chaining mechanism
then makes sure that any previous entries in the chain are
implicitly authenticate as well. This chaining can be
achieved by means of a hash function: each entry also
contains a hash code of the previous entry. Modification of
any entry in the chain before a given one then requires
finding a second value that hashes to the same hash code.
(This is finding a second pre-image for the used hash
function.) That is, the hash code provides a link back to the
previous entry in the audit chain, and implicitly to the entire
pre-existent audit chain. This is depicted in FIG. 7. In FIG.
7, the arrows between the (identical) hash codes indicate the
linking back through the chain.

The only remaining risk is that the last few entries before
a crash may be unsigned (and thus forgeable). This risk can
be mitigated by forcing a signature for certain (more sensi-
tive) actions, in addition to forcing a signature on a periodic,
recurring basis (for example, each 100 entries) as well as for
the first command after a reboot.

All sensitive actions generate an audit entry. Audit entry
creation functionality are exposed to the module applica-
tions such that audit entries for all sensitive actions can be
created. This is the responsibility of each of the functions
themselves. Audit entries are available immediately at
completion of the sensitive action, to avoid losing audit
information due to a crash following it. This is done by
providing the entry as a output parameter of the command
itself. Storage is the responsibility of the host application.
(the SCA layer can provide the tools to verify authenticity
and completeness; given the absence of sufficient storage
capabilities within the module, there is no way to guarantee
availability of audit entries. Therefore, this is left to the host
application.)

—_

US 7,216,110 B1

41

Audit is started at the earliest possible moment, that is, in
the Start Initialization command that effects the exit from
Uninitialized state. This means that all sensitive actions
following that event can be audited. During the Start Ini-
tialization command an Audit Signing Key (DSA) is gen-
erated. This event, and anything sensitive that follows can be
audited by creating an audit entry.

In one embodiment, an audit entry includes:

Audit record sequence number

Hash of the previous audit record

Identity of software module requesting generation of the

audit record

Identity of the command requesting generation of the

audit record

The user ID (if a user is logged on to the module)

The user role (if a user is logged on to the module)

The current state of the module

The persistent state of the module

Date/time stamp

The reason code

Data to be stored in the audit record (dependant on the

requesting command)

Signature (if required by the requesting command)

After the above data elements are prepared for output, a
SHA-1 hash for the record is computed and is stored in the
module so that it can be included in the next generated audit
record. An audit entry is chained to the previous entry by the
hash of the previous entry, as shown in FIG. 7. The chaining
is enforced by the module by always storing the last hash in
persistent memory. The register used for this is initialized to
all-zero (20 bytes) for the first entry.

The chain of audit records begins when the start initial-
ization command is sent to a new module. This first com-
mand to the module generates the DSA audit signing key
pair (VDSK_audit and UDSK_audit) and uses it to sign the
first audit log record. Audit records for commands that affect
the module (initialize cryptocard, checkpoint commands,
etc) are always signed. Commands that affect a PSD package
are not signed but include the hash of the previous record to
create a trusted chain of audit records between records that
are signed. The server requests a signature on every several
records, for example, every one hundredth record. The
public key for authenticating audit record signatures,
UDSK _audit, is extracted from the module using the Expor-
tAuditKey command. This command can only be executed
by the Auditor role.

If an audit entry cannot be generated correctly and in its
entirety, this is considered an error. Since the audit chain
should not be broken, all data that is correctly obtained is
returned in the audit entry. In addition, the command that
just finished execution cannot be undone anymore. There-
fore, the command results are returned to the caller (and
eventually, the host) only if the error is non-fatal and the
output processing can be performed (i.e. does not require
Session Security commands). In general, no additional com-
mands should be executed anymore, so the state is set to
Error.

In case the audit chain is still unbroken, the error is not
fatal, and may be recoverable through a reboot. (l.e., Per-
sistent state is not set to error.) If the hash chain is broken,
the audit is permanently damaged (reliability of any entries
younger than the latest signature before the error is some-
what questionable). In this case, the error is fatal, and both
Current and Persistent state are set to Error. This is not
recoverable, except through a reinitialization of the module.

To avoid continued operation with damaged audit creation
capability, the first command after a reboot should be

20

25

30

35

40

45

50

55

60

65

42

audited, with a forced signature. This ensures that perma-
nently damaged audit creation capability allows the execu-
tion of at most one command after rebooting. Since no
sensitive functionality can be accessed directly at reboot
(e.g., at least a session and a user logon are required), this
ensures that no sensitive commands can be executed with
damaged audit entry creation capabilities. In summary, audit
entry creation only leads to command failure if a fatal error
is encountered. If the error is non-fatal, an incomplete audit
entry is returned for the command. In addition, the com-
mand’s results are returned to the caller if their output
processing can be performed (i.e. does not require Session
Security commands). Also, audit entry creation set the state
to Error in case of failure to deliver a complete entry. This
error is fatal (non-recoverable except through re-initializa-
tion) in case the linking with the existing audit chain is lost.
(This occurs only if the previous hash or the sequence
number are unavailable.). This is implemented by setting
both Current and Persistent state to Error. This error is
recoverable through rebooting in all other cases. This is
implemented by setting only Current state to Error (Persis-
tent state is not modified). The first command after booting
should always generate a signed audit entry. This ensures
that no sensitive commands are executed if the audit is
permanently faulty.

The Audit Support Commands include:

Export audit key

Create a new audit key

Create audit entry. This command has a flag to indicate
forcing of signature.

In addition, the Start Initialization command performs the
initialization of the Audit (as well as general module
initialization) and as such is grouped in the Audit
Support module.

External storage (external to the module) and manage-
ment of the audit database is entirely up to the host; neither
SCA nor SHL can play arole in that. In one embodiment, the
postal servers store redundant copies of the audit log records
on a mirror disk. Storage directly to disk is considered to be
more reliable that storage on the database server which is
accessed through the LAN. Storing the audit records sepa-
rately from the PSD package database also protects against
all data being lost if the database should suffer a catastrophic
failure.

A proper audit verifies the completeness of the audit
chain, by verifying all hashes in the chain, starting from the
last verified signature, and ending at the most recently
created signature. In addition, all signatures encountered
should be verified. Finally, the hash of the most recently
created audit entry should be logged (manually) to ensure
that replacement of the entire chain will be detected. For
example, in FIG. 7, if Audit Entry 4 were the last entry, one
would verify Signature 1, Hashes 1 through 4 (establishing
that the chain is unbroken) and Signature 4. (If Audit Entry
2 were signed as well, that signature should be verified as
well.) The Auditor would then log Hash 4 as verified (e.g.,
written in an audit report) such that the next audit can start
at Signature 4. (One may still want to verify that all earlier
entries are present.)

Provider software, running on the e-commerce server,
verifies the integrity of the audit log records at predeter-
mined time intervals. First, the chain of records from each
module is verified by checking all hash values and authen-
ticating the necessary signatures. Next, the records from all
module can be combined and sorted by meter number and
time to view the history of each meter. Because each PSD’s
AR value is recorded in the audit record after each PSD

US 7,216,110 B1

43

transaction, a database replay attack, which would rollback
the AR to an earlier value, can be detected. If the audit log
verification process fails for any reason, the Security Officer
is notified, for example, by e-mail. The verification starts at
the most recent entry and work back towards the entry
logged for the previous audit, or the start from the entry
logged for the previous audit and work forward to the most
recent entry.

It will be recognized by those skilled in the art that various
modifications may be made to the illustrated and other
embodiments of the invention described above, without
departing from the broad inventive scope thereof. It will be
understood therefore that the invention is not limited to the
particular embodiments or arrangements disclosed, but is
rather intended to cover any changes, adaptations or modi-
fications which are within the scope and spirit of the
invention as defined by the appended claims.

What is claimed is:

1. A security system for secure printing of value-bearing
items in a wide area computer network comprising:

a plurality of user terminals coupled to the computer

network;

a database including information about one or more users
using the plurality of terminals;

a plurality of cryptographic devices remote from the
plurality of user terminals and coupled to the computer
network, wherein the cryptographic devices include a
computer executable code for authenticating one or
more users, wherein each of the plurality of crypto-
graphic devices is programmable to service any of the
plurality of user terminals, and wherein each crypto-
graphic device is not dedicated to particular user ter-
minals; and

a plurality of security device transaction data stored in the
database for ensuring authenticity of the one or more
users, wherein each security device transaction data is
related to a user, wherein any cryptographic device
authenticates the identity of each user and authenticates
the user for a role, the role limiting the user to a subset
of operations performed by the system.

2. The system of claim 1, wherein the security device
transaction data related to a user is loaded into the crypto-
graphic device when the user requests to operate on a value
bearing item.

3. The system of claim 1, wherein the assumed role is a
security officer role to initiate a key management function.

4. The system of claim 1, wherein the assumed role is a
key custodian role to take possession of shares of keys.

5. The system of claim 1, wherein the assumed role is an
administrator role to manage a user access control database.

6. The system of claim 1, wherein the assumed role is an
auditor role to manage audit logs.

7. The system of claim 1, wherein the assumed role is a
provider role to withdraw from a user account.

8. The system of claim 1, wherein the assumed role is a
user role to operate on a VBIL.

9. The system of claim 1, wherein the assumed role is a
certificate authority role to allow a public key certificate to
be loaded and verified.

10. The system of claim 1, wherein the cryptographic
device includes a state machine for determining a state
corresponding to availability of one or more commands in
conjunction with the role.

11. The system of claim 1, wherein the cryptographic
device includes a data validation subsystem and an auto-

20

25

30

35

40

45

50

55

60

65

44

recovery subsystem for allowing the device to verify that
data is up to date and to automatically re-synchronize the
device with the data.

12. The system of claim 1, wherein the cryptographic
device is stateless.

13. The system of claim 1, wherein the cryptographic
device includes a computer executable code for preventing
unauthorized modification of data.

14. The system of claim 13, wherein the computer execut-
able code prevents the unauthorized modification, substitu-
tion, insertion, and deletion of related data and cryptographi-
cally critical security parameters.

15. The system of claim 1, wherein the cryptographic
device includes a computer executable code for preventing
unauthorized disclosure of data.

16. The system of claim 15, wherein the data includes
non-public contents of a postage meter, including plaintext
cryptographic keys and other critical security parameters.

17. The system of claim 1, wherein the cryptographic
device includes a computer executable code for ensuring the
proper operation of cryptographic security and VBI related
meter functions.

18. The system of claim 1, wherein the cryptographic
device includes a computer executable code for detecting
errors and preventing a compromise of the transaction data
or critical cryptographic security parameters as a result of
the errors.

19. The system of claim 1, wherein at least one of the
users is an enterprise account.

20. The system of claim 1, wherein the cryptographic
device includes a computer executable code for supporting
multiple concurrent users and maintaining a separation of
roles and operations performed by each user.

21. The system of claim 1, wherein the cryptographic
device stores information about a number of last transactions
in a respective internal register.

22. The system of claim 21, wherein the database stores
a table including the respective information about a last
transaction, a verification module to compare the informa-
tion saved in the device with the information saved in the
database.

23. The system of claim 1, wherein the database includes
data for creating one or more indicium, account mainte-
nance, and revenue protection.

24. The system of claim 23, wherein the data includes
virtual meter information.

25. The system of claim 23, wherein the data includes
ascending and descending registers data.

26. The system of claim 1, wherein the value bearing item
is a mail piece.

27. The system of claim 26, wherein the mail piece
includes a digital signature.

28. The system of claim 1, wherein the cryptographic
device encrypts validation information according to a user
request for printing a VBIL.

29. The system of claim 26, wherein the cryptographic
device generates data sufficient to print a postal indicium in
compliance with postal service regulation on the mail piece.

30. The system of claim 1, wherein the value bearing item
is a ticket.

31. The system of claim 1, wherein a bar code is printed
on the value bearing item.

32. The system of claim 1, wherein the value bearing item
is a coupon.

33. The system of claim 1, wherein the value bearing item
is currency.

US 7,216,110 B1

45

34. The system of claim 1, wherein the value bearing item
is a voucher.

35. The system of claim 1, wherein the value bearing item
is a traveler’s check.

36. The system of claim 1, wherein each security device
transaction data includes one or more of an ascending
register value, a descending register value, a respective
cryptographic device 1D, an indicium key certificate serial
number, a licensing ZIP code, a key token for an indicium
signing key, user secrets, a key for encrypting user secrets,
data and time of last transaction, last challenge received
from a respective client subsystem, an operational state of
the respective device, expiration dates for keys, and a
passphrase repetition list.

37. The system of claim 1, wherein each security device
transaction data includes one or more of a private key, a
public key, and a public key certificate, wherein the private
key is used to sign device status responses and a VBI which,
in conjunction with a public key certificate, demonstrates
that the device and the VBI are authentic.

38. The system of claim 1 further comprising at least one
more cryptographic device remote from the plurality of user
terminals coupled to the computer network, wherein the at
least one more cryptographic device includes a computer
executable code for authenticating any of the plurality of
users.

39. The system of claim 38, wherein the cryptographic
device shares a secret with the at least one more crypto-
graphic device.

40. The system of claim 38, wherein one of the plurality
of cryptographic devices is a master device and generates a
master key set (MKS).

41. The system of claim 40, wherein the MKS includes a
Master Encryption Key (MEK) used to encrypt keys when
stored outside the device,.

42. The system of claim 41, wherein the MKS further
includes a Master Authentication Key (MAK) used to com-
pute a DES MAC for signing keys when stored outside of
the device.

43. The system of claim 40, wherein the MKS is exported
to other cryptographic devices by any cryptographic device.

44. The system of claim 1, wherein the database includes
a user profile for a subset of the plurality of users.

45. The system of claim 44, wherein the user profile
includes username, user role, password, logon failure count,
logon failure limit, logon time-out limit, account expiration,
password expiration, and password period.

46. The system of claim 10, wherein the state machine
includes one or more of an uninitialized state, an initialized
state, an operational state, an administrative state, an export-
ing shares state, an importing shares state, and an error state.

47. The system of claim 46, wherein the command
corresponding to the operational state comprises commands
for one or more of access control, session management, key
management, and audit support.

48. The system of claim 1, wherein the cryptographic
device is capable of performing one or more of Rivest,
Shamir and Adleman (RSA) public key encryption, DES,
Triple-DES, DSA signature, SHA-1, and Pseudo-random
number generation algorithms.

49. A system for secure processing of value-bearing items
(VBIs) in a computer network comprising:

a plurality of user terminals coupled to the computer

network;

a database coupled to the network and remote from the

plurality of user terminals for storing information about
one or more users using the plurality of terminals; and

10

20

25

30

35

40

45

50

55

60

65

46

a server system coupled to the network including a
plurality of cryptographic devices for performing
secure VBI functions utilizing the information stored in
the database, each of the plurality of cryptographic
devices processes data for any of the user terminals,
wherein each cryptographic device is not dedicated to
particular user terminals;

wherein a cryptographic device authenticates the identity
of a user and restricts services to the user based on
stored information in the database.

50. The system of claim 49, wherein at least one of the

users is an enterprise account.

51. The system of claim 49, further comprising a plurality
of security device transaction data stored in the database for
ensuring authenticity and authority of each of the plurality of
users, wherein each transaction data is related to one of the
plurality of uses and the security device transaction data
related to a user is loaded into the cryptographic device
when the user requests a VBI function.

52. The system of claim 49, wherein the assumed role is
an administrator role to manage a user access control
database.

53. The system of claim 49, wherein the assumed role is
a provider role to authorize increasing credit for a user
account.

54. The system of claim 49, wherein the assumed role is
auser role to perform expected IBIP postal meter operations.

55. The system of claim 49, wherein the cryptographic
device stores information about a number of last transactions
in a respective internal register, the database stores a table
including the respective information about a last transaction,
a verification module to compare the information saved in
the device with the information saved in the table.

56. The system of claim 49, wherein the database includes
data for creating indicium, account maintenance, and rev-
enue protection.

57. The system of claim 49, wherein the value bearing
item is a mail piece.

58. The system of claim 49, wherein the mail piece
includes a digital signature.

59. The system of claim 49, wherein the mail piece
includes a postage amount.

60. The system of claim 49, wherein the mail piece
includes an ascending register of used postage and descend-
ing register of available postage.

61. The system of claim 49, wherein the value bearing
item is a ticket.

62. The system of claim 49,
item includes a bar code.

63. The system of claim 49,
item is a coupon.

64. The system of claim 49,
item is currency.

65. The system of claim 49,
item is a voucher.

66. The system of claim 49,
item is a traveler’s check.

67. The system of claim 49, wherein each security device
transaction data includes an ascending register value, a
descending register value, a respective cryptographic device
1D, an indicium key certificate serial number, a licensing ZIP
code, a key token for an indicium signing key, user secrets,
a key for encrypting user secrets, data and time of last
transaction, last challenge received from a respective client
subsystem, an operational state of the respective device,
expiration dates for keys, and a passphrase repetition list.

wherein the value bearing
wherein the value bearing
wherein the value bearing
wherein the value bearing

wherein the value bearing

US 7,216,110 B1

47

68. The system of claim 49, wherein each security device
transaction data includes a private key, a public key, and a
public key certificate, wherein the private key is used to sign
device status responses and a VBI which, in conjunction

with a public key certificate, demonstrates that the device 5

and the VBI are authentic.

69. The system of claim 49, wherein each cryptographic
device is capable of performing one or more of Rivest,
Shamir and Adleman (RSA) public key encryption, DES,
Triple-DES, DSA signature, SHA-1, and Pseudo-random
number generation algorithms.

48

70. The system of claim 49, wherein each cryptographic
device protects data using a stored secret.

71. The system of claim 70, wherein the secret is a
password.

72. The system of claim 70, wherein the secret is a
public/private key pair.

10

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 17,216,110 B1
APPLICATION NO. : 09/690066
DATED : May §, 2007
INVENTORC(S) : Oggetal.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is

hereby corrected as shown below:

Column 44, line 39, Claim 22

Column 44, line 43, Claim 23

Column 45, line 35, Claim 41

Column 46, line 4, Claim 49

Column 46, line 7, Claim 49

Column 46, line 17, Claim 51

Column 46, lines 31- 32, Claim 55

Delete “a verification module to compare”,
Insert --and a verification module compares--

Delete “indicium”,
Insert --indicia--

Delete ,.”,
Insert --.--

Before “each of the plurality”,
Insert --wherein--

Delete “terminals;”,
Insert --terminals, and

Delete “uses”™,
Insert --users--

Delete “a verification module to compare”,
Insert --and a verification module compares--

Signed and Sealed this

Fourth Day of September, 2007

o W D

JON W. DUDAS
Director of the United States Patent and Trademark Office

