
US006119173A

Ulllted States Patent [19] [11] Patent Number: 6,119,173

Pullen et al. [45] Date of Patent: Sep. 12, 2000

[54] SYSTEM AND METHOD FOR 5,826,030 10/1998 Hebert 395/20058

COMMUNICATIONS AND PROCESS 5,859,979 1/1999 Tung et al. . 395/20058

MANAGEMENT IN A DISTRIBUTED 5,913,061 6/1999 Gupta et al. 709/300

6,049,545 4/2000 Stephenson CI 8.1. 370/410

[75] Inventors: Steve M. Pullen, RoWlett; Alfred J. FOREIGN PATENT DOCUMENTS

Blanchard; Donald W. Miller, Jr., both 0592080 4/1994 European Pat. Off. G06F 9/46

of Plano all of Tex, 0592091 4/1994 Euro ean Pat. Off. G06F 9/46 7 p

0602824 6/1994 European Pat. Off. H04L 29/06

[73] Assignee; Alcate] USA Sourcing, L_P_, Plano, 0737922 10/1996 European Pat. Off. G06F 9/46
Tex 9511560 4/1995 WIPO H04L 29/06

_ Primary Examiner—John W. Careca
[21] Appl' NO" 08/944’682 Assistant Examiner—St. John Courtenay, III

[22] Filed: Oct. 7, 1997 Attorney, Agent, or Firm—Baker Botts L.L.P.

Related US. Application Data [57] ABSTRACT

[60] Provisional application No. 60/034,874, Jan. 27, 1997. A System for managing a plurality of applications and

[51] Int. Cl.7 G06F 9/44 Communications therebetween in a distributed telecommu

[52] US. Cl. 709/328; 370/410 nications Switch is Provided The distributed telecommuni

[58] Field of Search 709/300 303 Cations Switch includes a Service unit and at least one

709/302 100 101 102 103 104’ 105’ delivery unit. The system includes a services element resid
’ 326 31,3 32,8. 37’0/338’ 416 ing in the service unit operable to provide a plurality of

’ ’ ’ ’ services to the plurality of applications, and an application

[56] References Cited procedure interface residing in the service unit operable to
serve as an interface between the plurality of applications

U-S~ PATENT DOCUMENTS and the services element.

5,495,484 2/1996 Self et al. 370/110.1

5,794,018 8/1998 Vrvilo et al. 395/551 24 Claims, 6 Drawing Sheets

/ SERVICES ELEMENT

i)
NODE ENVIRONMENT

K
GENERIC APPLICATION SERVICE

22

100

104

x

T
PRIMARY

APPLICATION
INSTANCE

PAIRED GROUP

E 102

106

SECONDARY
APPLICATION
INSTANCE

U.S. Patent Sep. 12,2000 Sheet 1 0f6 6,119,173

R WW 6N5‘ 9E2? 225E
m f _ _

\v <

mm mm \ 25 2255259‘

m / @N

\v <

ON k 25 gage: :5
3 P a: F 95 F 5% 66 F 85

f f / f f f

N_\ 02 .3 [ow N¢ i.’ on NW /¢_, :23 55mm :23 E55
w“ 25 5E5

E5

2 E250

/ i

:23 55 \i

3\ Egg NF E55
// f \ . E\1 :23 \ V2.5‘ 655

U.S. Patent Sep. 12, 2000 Sheet 4 0f 6 6,119,173

/
SERVICES ELEMENT NODE ENVIRONMENT

9O

(
GENERIC APPLICATION SERVICE

92

PAIRED GROUP

$1

104 106

100

PRIMARY
APPLICATION
INSTANCE

104\ IDENTIFIER AND CONTROL

MESSAGE SLOT [0]

MESSAGE SLOT [1]

I51
MESSAGE SLOT [n]

FIG. 5

102

SECONDARY
APPLICATION
INSTANCE

kk

1110

U.S. Patent

120%

Sep. 12, 2000 Sheet 5 0f 6

TASK GROUP REORDERING)
‘22 PRIMARY INSTANCE EXITS ABNORMALLY

TI
‘24\ DELETE EXITED PRIMARY

IT
126\ LOCK QUEUE 0F EXITED

PRIMARY lNSTANCE

III
I28\ SECONDARY INSTANCE

DESIGNED AS NEW PRIMARY

SEND DELIvERED AND UNREAD
132/ MESSAGES TO NEW PRIMARY

134/ RELEAsE ExIIED PRIMARY RESOURCES

TI
136/ CREATE NEW SECONDARY lNSTANCE

138/CjD

150 FAULT
MONITOR

SECONDARY
TASK INSTANCE
-MEw PRIMARY

14/8 140 DELIvERED
_____/__ AND UNREAD

FAULT (- PRIMARY TASKW MESSAGES
' INSTANCE EXITS '

I42 MONITOR I l
LJETQEMALLYHJ

\146
CREATE

FIG. 7

NEW SECONDARY
TASK INSTANCE

6,119,173

FIG. 6

CONTROL
MESSAGE TASK 144

" AUDITOR

f1 52

156

158

U.S. Patent Sep. 12,2000 Sheet 6 0f6 6,119,173

FIG. 8
I. ______________ __

: TTASSK TRZTUPC ' 170 MESSAGE 1
1 A K N AN E 0 1
I , ANY AVAILABLE 180
1 172v‘ MESSAGE 1 <—1— INSTANCE IN THE /
l l p
: MESSAGE 2 1 GROU

l I
l l

1 : MESSAGE 2

i : BROADCAST fun
1 1 MESSAGE

I TASK INSTANCE 1 i
: 174 MESSAGE 2 I
1 V‘ 1
1 MESSAGE 3 MESSAGE 3
l l
1 \ TASK DIRECTED
: : MESSAGE \184
l l
l l
l l
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___l

FIG. 7 0
G SE APl \

FIG. 9 190 D

TASK CONTROL ,4 200 REGBTRATION 202

E

QUEUE CONTROL 204 206

1_94

BUFFERS

L96 208 210

6,119,173
1

SYSTEM AND METHOD FOR

COMMUNICATIONS AND PROCESS

MANAGEMENT IN A DISTRIBUTED

TELECOMMUNICATIONS SWITCH

RELATED PATENTS AND PATENT

APPLICATIONS

This patent application claims the bene?t of provisional

application Serial No. 60/034,874, title Apparatus and

Method for Monitoring and Management of Telecommuni
cations Equipment Using Enhanced Internet Access, ?led

Jan. 27, 1997.

This patent application is related to US. Pat. No. 5,495,

484, titled Distributed Telecommunications Switching

System, issued to Self et al. on Feb. 27, 1996 (“Self”),

incorporated herein by reference.

This patent application is further related to US. Pat. No.

6,049,545 titled System and Method for Message Commu
nications in a Distributed Telecommunications Switch, ?led

on Oct. 3, 1997; and US. application Ser. No. 08/940,827,

titled System and Method for Monitoring and Management

of Telecommunications Equipment Using Enhanced Internet

Access, ?led on Sep. 30, 1997, both of Which are incorpo

rated herein by reference.

TECHNICAL FIELD OF THE INVENTION

This invention is related in general to the ?eld of tele

communications systems. More particularly, the invention is

related to a system and method for communications and

process management in a distributed telecommunications

sWitch.

BACKGROUND OF THE INVENTION

In a distributed system, the task of managing the pro

cesses and communications betWeen the processes is of

utmost importance. In a distributed system such as a dis

tributed telecommunications sWitch described in Self, fault

tolerant schemes are also required to coordinate task reas

signment and message re-routing to enable continuous

operation With minimum doWn time.

SUMMARY OF THE INVENTION

Accordingly, there is a need for a system and method for

communications and process management in a distributed

telecommunications sWitch Which eliminate or substantially

reduce the disadvantages associated With prior schemes.

In one aspect of the invention, a system for managing a

plurality of applications and communications therebetWeen

in a distributed telecommunications sWitch is provided. The

distributed telecommunications sWitch includes a service

unit and at least one delivery unit. The system includes a

services element residing in the service unit operable to

provide a plurality of services to the plurality of

applications, and an application procedure interface residing

in the service unit operable to serve as an interface betWeen

the plurality of applications and the services element.

In another aspect of the invention, a method for commu

nications and process management of a plurality of appli

cations in a distributed telecommunications sWitch includes

the steps of registering each application as belonging to a

10

15

20

25

30

35

40

45

50

55

60

65

2
simplex, primary/secondary, primary/standby, or load share

task group class and assigning the application to a task group

in response thereto. Messages are then routed to the regis

tered applications based on the task group class speci?cation

of the recipient application or task group, and a fault tolerant

restart process is executed based on the task group class

speci?cation of the exiting applications.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, ref

erence may be made to the accompanying draWings, in

Which:

FIG. 1 is a simpli?ed block diagram of a distributed

telecommunications sWitching system;

FIG. 2A is a block diagram of the communications

pipelines betWeen the service unit and delivery units of the

distributed telecommunications sWitching system according

to an embodiment of the present invention;

FIG. 2B is a block diagram of an alternative arrangement

of the communications pipelines betWeen the service unit

and delivery units of the distributed telecommunications

sWitching system according to an embodiment of the present

invention;
FIG. 3 is a simpli?ed block diagram of the interface

betWeen service unit and delivery unit applications accord

ing to an embodiment of the present invention;

FIG. 4 is a ?oWchart of an exemplary delivery unit

messaging process according to the teachings of the present

invention;
FIG. 5 is a ?oWchart of an exemplary delivery unit

registration process as seen from the vieW point of the

message handler according to the teachings of the present

invention;
FIG. 6 is a ?oWchart of an exemplary delivery unit

registration process as seen from the vieW point of the

delivery unit application according to the teachings of the

present invention;

FIG. 7 is a ?oWchart of an exemplary message receiving

process according to the teachings of the present invention;

FIG. 8 is a ?oWchart of another exemplary message

receiving process according to the teachings of the present

invention;
FIG. 9 is a simpli?ed block diagram of a shared memory

utiliZed by the services element; and

FIG. 10 is a simpli?ed block diagram of exemplary

services element application procedure interface function

areas.

DETAILED DESCRIPTION OF THE

INVENTION

The preferred embodiments of the present invention are

illustrated in the ?gures, like reference numerals being used

to refer to like and corresponding parts of the various

draWings.
FIG. 1 is a simpli?ed block diagram of a distributed

telecommunications sWitching system 10. Distributed tele

communications sWitching system 10 includes a service unit

12 that provides control and management on an advanced

intelligent netWork (AIN) service platform using informa

6,119,173
3

tion network architecture (INA) software design principles.
Distributed telecommunications switching system 10 also

includes a plurality of delivery units 14 coupled to service

unit 12 that provide the message transport mechanism for

call information under the control and management of

service unit 12. Service unit 12 and delivery units 14 may

communicate with one another through a ?ber optic-based

or electrical-based network ring 16. For details on distrib

uted telecommunications switching system 10, please refer
to US. Pat. No. 5,495,484, titled Distributed Telecommuni

cations Switching System, issued to Self et al. on Feb. 27,

1996, incorporated herein by reference.

FIG. 2A is a block diagram of the network topology of

service unit 12 and an exemplary delivery unit 14. Service

unit 12 and delivery unit 14 are coupled to one another via

two networks, a call processing local area network (LAN) 20

and an administration local area network 22. Call processing

local area network 20 includes redundant segments, an A

segment 24 and a B segment 25. Similarly, administration

local area network 22 includes redundant segments, an A

segment 26 and a B segment 27. Call processing and

administration networks 20 and 22 may be implemented by

ethernet segments utiliZing the UDP/IP protocol (user data
gram protocol/internet protocol). Delivery unit 14 includes
a minimum of two ethernet controller (ENC) pairs 30 for

interfacing with call processing and administration networks

20 and 22. One ethernet controller pair 32, ENCO, is

coupled to administration network 22 and dedicated to

transmitting administration messages related to network

management. Additional one or more pairs of ethernet

controller pairs 34, ENCI to ENCn, are coupled to call

processing network 20 and dedicated to transmitting call

processing messages. The number of call processing ether

net controller pairs is determined by bandwidth require

ments of the system.

Service unit 12 includes at least two ethernet link pro

cessor pairs (ELPs) 40, ELPO 42 and ELPl 44. One ethernet

link processor pair 44 is coupled to call processing network

20 and is dedicated to transmitting call processing messages

and the other ethernet link processor pair 42 is coupled to

administration network 22 and is dedicated to transmitting

administration/network management messages.

Administration/network management messages transported
on administration network 22 may include messages related

to event reporting (alarms, information problem reports,

etc.), traffic metering and measurement, and database
updates. Hereinafter, the term “network controller” may be

a generic term used to refer to both the ethernet link

processors and ethernet controllers, or a similar controller

for a network.

In this con?guration, ethernet link processors utiliZe both

corresponding network segments. In the event of an ethernet

link processor failure or cable failure, messages are trans

ported on the alternate network segment. All ethernet link

processors are capable of sending and receiving messages.

Service unit 12 may further include an additional network

controller (NC) 46, which may include an SCSI (small

computer systems interface) controller, ethernet controller,
and other hardware such as disk drives. Network controller

46 is coupled to an external local area network 48, which is

used to communicate information to/from systems and com

ponents outside of distributed telecommunications switch

10.

15

25

35

45

55

65

4
FIG. 2B is a block diagram of an alternative embodiment

of the service unit/delivery unit network topology. In this

embodiment, service unit 12 includes additional pairs of

ethernet link processors 50 to achieve added measures of

fault tolerance. Both copies of ethernet link processor pair

42 are now coupled to A segment 26 of administration local

area network 22, and both copies of ethernet link processor

pair 44 are now coupled to B segment 27 of administration

local area network 22. Additional pairs of ethernet link

processor pairs 52 and 54 are coupled to A segment 24 and

B segment 25 of call processing local area network 20,

respectively.

Constructed in this manner, an ethernet link processor

failure or a network segment failure may be detected and

message transmission may be switched over to the function

ing ethernet link processor or network segment.

FIG. 3 is a simpli?ed block diagram of the interface

between applications on delivery unit 14 and applications on

service unit 12. Administration applications 60 interface

with a message handler 62, which communicates with

ethernet controllers 30. Similarly, call processing applica

tions 64 interface with the same or a different SU-DU

message handler 66, which also communicates with ethernet

controllers 30. Each message handler 60 and 62 can inter

face with both administration and call processing local area

network segments for sending and receiving messages

thereon. Service unit applications 70 interface with a ser

vices element 72, which communicate with external appli

cations 60 and 64 through a services element application

procedure interface 73 and ethernet link processor pairs 42

and 44. Services element 72 and application procedure

interface 73 provide a message-based communications for

interface with multiple delivery units as well as inter-service

unit and intra-service unit communications.

Services element 72 may be invoked via a start-up shell

script that contains all the required environment variables

and parameters for proper operations. The shell script may

be called as part of the platform boot procedure. Exemplary

environment variables include:

SEiNODEiID—a unique local integer identi?er for the
services element used to identify an instance of the

services element in a network of services element;

SEiNODEiNAME—an ASCII string identi?er for the
services element primarily used for the convenience of

human operators;

SEiROUTEiTABLES—a fully quali?ed path to the
services element routing information which are ?les

that de?ne the list of services element nodes and the

application peer association for delivery unit commu

nications; and

SEiLONGFILEiNAME—a fully quali?ed path and
name of the active log ?le for the services element.

Once the services element is invoked, it scans for other

instances of services element. Since only one services ele

ment is allow to run on a single kernel instance, if another

instance of services element exits, the present services

element exits with an error. If the services element success

fully starts, it either creates or attaches to segments of shared

memory. The services element uses the shared memory for

task management, queue management, and system buffer

ing. The shared memory is accessible by all tasks registered

6,119,173
5

With the services element. Resource locking is used to

prevent access con?icts. The shared memory segments are

identi?ed by speci?c tokens used as keys to ensure the

segments belong to the services element. The shared

memory may be persistent such that the services element

does not remove the segments from the system even When

the services element is shut doWn. The memory segments

are deleted during a re-boot of the operating system.

Next the netWork information is initialiZed. The routing

information is read into the services element and based on

the contents of the routing tables, UDP sockets are created.

This process establishes the association of a remote entity to

the local services element. Once all system interfaces are

initialiZed, a log ?le entry is made to declare the services

element is operational. From this point, applications are

alloW to register for service With the service element. An

application is required to register prior to using the services

element resources. As part of the registration process, a

number of options are selected. These options control the

behavior of the application as it interacts With the services

element, as Well as for error and recovery conditions.

One option is the task group class de?nition. Task group

class de?nition de?nes Which task group construct is to be

applied to the application. The de?ned classes or paired

group types are: simplex, primary/secondary, primary/

standby, and load share. Referring to FIG. 4, a three-tiered

task group class architecture is shoWn. A services element

node environment may be de?ned or identi?ed by the node

identi?er, SEiNODEiID, a generic application service or

task 92 may be de?ned or identi?ed by a task name and

identi?er, and a paired group 94 of applications 100 and 102

may be de?ned or identi?ed by a group identi?er. Note that

secondary application instance 102 may also be a standby

application instance. Therefore, one may address a task as a

speci?c instance of a task group by the group identi?er or to

the task group service in general by the task identi?er.

Therefore, many of the management decision made by the

services element are based on the group class. A simpleX

designation indicates that the application is a single mono

lithic application With no recovery and fault tolerant behav

iors. Primary/secondary and primary/standby classes indi

cate the application runs With one primary instance as the

main active application and another instance of the same

application is alloWed to run as a backup copy. One eXample

is that the primary/secondary class of application may be set

so that the secondary instance is not fully operational. The

secondary instance may need some initialiZation to become

a primary instance. On the other hand, the standby applica

tion may maintain a tight synchroniZation With the primary

instance, and in the event the primary instance eXits, the

standby may become the primary instance Without any

additional initialiZation or synchroniZation. The load share

task group class is used for those applications that have

several instances that Work in unison. The incoming mes

sage traffic is distributed among the registered load sharing

instances. HoWever, if a message is addressed to a speci?c

task instance rather than the task group, the message is

routed to the speci?ed task instance.

Referring again to FIG. 4, message queues 104 and 106

are provided for receiving messages. Queues are the end

repository of data and control messages for applications.

10

15

25

35

45

55

65

6
Each task is assigned a home message queue 104 that is

addressable by the task identi?er. Home queue 104 is

designated as the home queue of the task or generic appli

cation service 92. Home queue 104 holds all delivered and

unread messages bound for the task. The contents of home

queue 104 may be manipulated by the use of several

application procedure interface functions. Additional queues

106 may be dynamically allocated and deleted as required.

Queue 106 do not share the same address as home queue 104

but is accessed via a dynamic queue identi?er returned from

queue creation or via an ASCII name supplied by the task in

the creation of the queue.

All intra-service unit messages are delivered to the des

tination task instance directly by a messaging task or mes

sage handler, Which is described in more detail in System

and Method for Message Communications in a Distributed

Telecommunications Switch, (Attorney Docket

0365605951). Once the messaging call returns, the task is

assured that the message is either delivered or the operation

failed. All inter-service unit messages or delivery unit-bound

messages are sent to the services element for netWork

routing. The distinction betWeen the local service unit and

other service unit and delivery units is made by the node

identi?er. Each service unit and delivery unit has a unique

integer node identi?er, a list of Which is maintained by the

services element in a node routing table. The messages are

routed With consultation to the node routing table. If a

message is bound for a remote services element, then the

message is sent directly to that remote services element

through a UDP socket already opened for that services

element. The remote services element then performs addi

tional routing on the message for local delivery. If a message

is bound for a delivery unit, then a special header is applied

to the message to specify the destination delivery unit node.

Referring to FIG. 5, a simpli?ed block diagram of a

message queue 104 is shoWn. Message queue 104 is addres

sable by the task identi?er or a queue identi?er and main

tains read and Write pointers. A message body 110 of

message queue 104 may contain up to n+1 message slots,

Where n is a non-Zero integer. Message body 110 may be

implemented as a circular buffer, Which may return a null

value When no messages are in the buffer. Details of the

message queue is shoWn in FIG. 9.

Services element 72 performs process management on

application instances. Applications are required to register

for process management services and select an application

task group. Process management registration alloWs a par

ticular invocation of an application task group to automati

cally restart. At registration, a child image of the application

task group is created and returned from registration to

become a running instance of the application task group. The

original invocation or the parent is held in the registration

function in the fault monitor mode. The parent has no

services element resources allocated to it. If the child

process eXits With a non-null value, the parent process

creates a neW child process, Which may bear a different

instance number than the child that eXited. If the child

process eXits With a null value, the parent interprets its eXit

as a shutdoWn request and also eXits.

Services element 72 also uses a task group ordering

mechanism for process management. For simpleX

6,119,173
7

applications, no reordering is possible since there is no

backup, standby, or load sharing application. On the other

hand, the paired groups, hot standby and primary/secondary,
may be reordered to provide continued service for the

duration of fault recovery. Referring to both FIGS. 6 and 7

for an illustration of the task group ordering process. FIG. 6

is a simpli?ed ?oWchart of an exemplary task group reor

dering process 120. In block 122, primary instance 140,
monitored by a fault monitor instance 142, eXits abnormally

or aborts. An services element audit process 144 marks the

eXited primary instance 140 as deleted and locks its queue

146 to prevent further receipt of messages, as shoWn in

blocks 124 and 126. Services element audit 144 further

designates a secondary instance 148, monitored by a fault

monitor instance 150, as the neW primary instance, as shoWn

in block 128. A task instance number of the neW primary

instance 148 is modi?ed to re?ect its neW status, and a state

variable of instance 148 is changed to active. Atask instance

may have the folloWing states:

deleted—the task is no longer registered in the services

element;
active—the task is currently on-line and processing task

handling the application data messages;
standby—a secondary task instance in a paired group; it
may or may not receive data messages, depending on

the distribution option setting;
off-line—the task is no longer eligible to receive data or

become active; it is still a running task and can tran

sition back to standby or active states;

debug—the task is not a running task.

If a message re-routing option is enabled, as determined

in block 130, then all delivered but unread messages in

queue 146 of the eXited primary instance 140 are redirected

to a queue 152 of the neW primary task instance 148, as

shoWn in block 132. A control message is generated by

services element task auditor 144 and sent to queue 152 of

the neW primary instance 148 to inform it of its state change.

Because the operating system may alloW a program to

terminate Without the knoWledge of the running program,

the service element uses task auditor 144 to scan the list of

registered tasks and tests the existence of the tasks in the

system. If the UNIX process identi?er for a task is invalid,

then the registration of that task is removed. Task auditor

144 is run periodically. This control message supersedes all

data messages already in its queue 152. Fault monitor 142

then creates a neW secondary task instance 156 and its queue

158, as shoWn in block 136. The process ends in block 138.

With load share groups, a similar process is eXecuted for

task group reordering. HoWever, unlike primary/standby and

primary/secondary groups, the tasks in the load share group

is marked active, Where the tasks process the data stream in

parallel. Further, a load share group may also have more than

tWo task instances. When a message arrives for the load

share task group, a distribution scheme, such as round robin

scheme, may be used to deliver the data messages. If any

member of the task group eXists at time of the fault, the

group may be reordered as described above, eXcept that no

state change control message is generated and sent. If the

group has the re-route message option enabled, then any

unread messages from the expired group member are dis

tributed to the remaining group members.

Referring to FIG. 8, a message distribution scheme

according to task group class is shoWn. A task group 170

10

15

25

35

45

55

65

8
includes tWo task instances 0 (primary) and 1 (secondary)

With associated message queues 172 and 174, respectively.

A message 180 is addressed or directed to task group 170;

therefore, it is distributed to queue 172 of the primary task

instance. A distribution option de?ned at registration may

alternatively specify that active instances of a task group

receive data messages in a round robin ordered manner. For

eXample, this is the default distribution method for a load

share task group. A message 182 is a broadcast message;

therefore, it is distributed to all group members in task group

170, and therefore are sent to both queues 172 and 174. At

registration, a task group may specify that the members of

the group are to receive all data messages as broadcast

messages. Each member then receives a duplicate copy of

the data message. HoWever, this does not include control

messages addressed to a speci?c task group instance. A

message 184 may be addressed to a particular member, task

instance 1, of task group 170. Therefore, message 184 is

delivered only to queue 174 of the secondary task instance.

As described above, there are tWo types of messages: data

and control messages. Control messages are special services

element messages. When a task returns from a call to receive

a message, if it is a control message, a special error code is

also returned so that the task can separate this message from

the normal data stream. At registration, a task may specify

special handling for control messages, including call-back

functions. Control messages may be generated to notify

certain events, including state transition, shutdoWn, restart,

logging level change, and ?oW control and throttling. State

transition messages indicate that the task is changed from

one state to another. A shutdoWn message indicates that the

task is to shutdoWn and terminate. This message may be sent

to a task to request that the receiving task instance terminate

processing. A restart message is designed to request that the

receiving task re-run some level of its initialiZation, Which

may include reloading table information and/or con?gura

tion. A log level change message alloWs an outside mainte

nance package to dynamically control the amount of debug

information output by a program. If unusual behavior is

being observed, then additional and more detailed logging

information can be generated. A How control and throttling

message is used to notify a party to a service, either the

service provider or the service user, is having trouble and

that communications thereWith should be suspended. For a

more detailed description of message throttling, please refer

to co-pending patent application, titled System and Method

for Message Communications in a Distributed Telecommu

nications Switch, Attorney Docket 0365605951.

Referring to FIG. 9, a simpli?ed block diagram of shared

memory 190 of the services element is shoWn. Shared

memory 190 is used for task management, queue

management, and buffering. Because shared memory 190 is

accessible by all registered tasks, resource locking is used to

prevent con?icts. Shared memory is divided into three main

sections. A task control section 192 contains information

about each registered task, task groups, and system Wide

parameters. A task control block Within task control section

192 is allocated to each registered task and may include the

folloWing information about the task:

6,119,173

full address including name, group, and instance number;

current state;

queue identi?er of the home queue for the task;

UNIX process identi?er;

UNIX effective user identi?er;

group type and group options;

program type options;

restart throttling information for fault monitor; and

default logging level.
Shared memory 190 further includes a queue control

section 194, Which contains blocks of information related to

each queue. Queue control section 194 may contain the

folloWing information:

queue identi?er;

queue name;

task control block index of the oWner task;

read and Write pointers to message slots in the queue;

n message slots;

socket descriptor for socket noti?cation;

thread access mutux;

task permissions lock; and

forWard message indicator.

Shared memory 190 also includes memory for buffers 196.

The services element implements several source locking

mechanisms. The semaphores are thread based and are used

to control access to certain management areas. The services

element uses a coarse grain locking mechanism on task

control section 192. A single semaphore may be used to

control access to data stored in task control section 192.

Because task control data is modi?ed only during task

registration and release, the use of one semaphore to control

access thereto is suf?cient. Additionally, there is another

semaphore used for the task group control, Which is also

used during task registration and release.

Queue control section access is more frequent than the

task control section, and therefore ?ne grain control is

needed. Each queue has its oWn semaphore so that each

queue may receive messages independent of other queues,

and concurrent messaging may be achieved.

In addition, each registered task is given a logging mutex,

Which ensures single threaded logging occurs for each task.

No tWo threads of a task may log an event at the same time.

It is a blocking process, so other threads are held up until the

active logging thread is ?nished and releases the mutex.

As described above, services element 72 includes an

application procedure interface 73 (FIG. 3). FIG. 10 is a

simpli?ed diagram shoWing exemplary interface functional
areas provided by the application procedure interface. These

include registration 200, release 202, messaging 204, queues
206, query 208, log 210, and control 212 functional areas.

The application procedure interface may be implemented in

a shared obj ect library that is linked to the applications at run

time. The description beloW sets forth additional details of

the application procedure interface and its interface func

tions 200—212.

As described above, an application Which desires to use

the services of the services element is required to register.

The application procedure interface includes a registration

function Which may have an exemplary syntax:

1O

15

25

35

55

65

10

int seRegister(char *name, int tid, int group, int *number,

APP_CTL *options);

The applications may call this function, Which returns an

SEiAOK on registration success or an error code indicating

the nature of the failure. The parameter “name” may be an

ASCII string that is used to identify the speci?c task, and is
required to be unique to the system. The task identi?er, “tid,”
is a required parameter that is a unique number that is

pre-assigned to all tasks in the node. The “group” parameter
is a pre-de?ned number to indicate a logical grouping for

this task. The “number” parameter is an integer address of

user local variables. The registration function outputs the

logical number (instance) of the registering task group
member. In application task groups that alloW for multiple

instances, this value equates to the current instance number

of the application task group at the time of registration. Each

task group type speci?es the maximum number and states of

group instance members. Thea last parameter is the

“options” structure. This address of a user local data element

contains the required information to con?gure the applica
tion into the services element node environment. An exem

plary options structure is:

uiint options;
uiint groupimode;
uiint routeimode;
void *controlievent[CEiNEVENTS] (int);

The “options” ?eld is an ORed bit-?eld that contains per

application de?nitions, Which includes:

SEiTHREAD—This task is a multi-threaded program.

This alloWs all threads of the process to message and

log if so desired. Aprogram that uses the thread library

at all, is required to set this option.

SEiNOMEMB—This task is a remote process that is

netWorked into the local services element. In this case,

a remote process is de?ned to be one not resident in the

local system. This utiliZes a strictly socket based form

of communication.

SEiSOCKNT—Socket level noti?cation of message
arrival. This indicates that the reception of a message is

managed based on a local socket rather than the arrival

of a signal, Which is the default. If the registration

application procedure interface detects that the appli
cation UNIX user identi?er is not the same as the

services element UNIX UID, then the socket option is
automatically applied. If an application is making spe
cial use of the “SIGUSRl” user signal, this con?icts

With the services element’s use of “SIGUSRl” and this

option needs to be supplied by the application.

SEiFIPROC—This indicates that this task is to run as a

fault tolerant process. This causes a dual image of the

task to be created. The neW child image is returned

from the registration call. The parent is held in the
registration, monitoring the health of the neWly
spaWned child. Should the child die, a neW child is

created. This continues until the child exits With a status

of NULL or the parent receives a termination request.

There is at present a tWo second delay betWeen the

respaWning of a child to prevent any excessive thrash

ing. Values for thresholding and restart limits are avail

6,119,173
11

able. This provides a transparent restart of a Task group

member With its environment intact.

SEiCBNTFY—Use call-back procedures for noti?ca
tion of control messages. These control messages, by

default, are received as data messages With an error

code of SEiCNTRL to alloW the application to sepa

rate it from its normal data messages stream. This

option alloWs the application to specify special mes
sage handlers to process the messages rather than

receive the messages in the normal data stream.

The next element in the APPiCTL structure is the

“group-mode” ?eld. This ?eld de?nes the group class type

of application that is registering. The group class type

applies to the application group as a Whole and should be

consistent With all instances of an application that register

for service. The group class types are simplex, primary/

standby, primary/secondary, and load share as described in

more detail above.

The “routeimode” ?eld of the option structure is used to

indicate any special message delivery mode that should be

applied to the application group. These control the services

element message delivery for application groups through

state changes, restarts, shutdoWns, and normal operations.
They are:

SEiNBMSG—In normal operations for the group type,
broadcast all data messages to all application instances

in the group. This does not apply to targeted messages

Where an application is sent a message and the message

speci?es a speci?c instance of the application. The
default is to send the data message to the “First avail

able” instance of the application. This insures that a

standby application receives a copy of the message

even though it is in a standby state.

SEiNDMSG—In normal operations for the group type,
distribute the data messages across all instances of the

application. This applies only to load share group types
that process data in a distributed fashion. Data mes

sages are delivered in a round-robin fashion.

SEiFMSG—If an application group member is in a state

other than active, it Would not normally receive a data

message. This option forces a delivery of the message

to a process that is in any other state except “Deleted.”

SEiRTMSG—If an application is sWitched from active

to any other state (i.e. off-line, deleted, etc.), then all
messages in its home queue are re-routed to the ?rst

available active member of the application group. The

default behavior is to delete all pending messages if the

application is removed and to leave messages in place
for state transitions.

The remaining options are application supplied functions
that act as call-back routines for the de?ned operation. An

additional parameter is supplied to further qualify the nature

of the event that triggered the call-back.

CEiSTATE—The ?rst call-back event is the state tran

sition event. This is one means for an application to

receive noti?cation that its application has received a

state change as a result of Task group reordering or

craft interaction. Craft interaction includes:

1. Requests for sWitching the active and standby appli
cations

2. Off-lining an application.

CEiSHUTDOWN—The next call-back event is shut

doWn. The integer quali?er for shutdoWn indicates tWo

states, graceful and forced. The distinction comes from

10

15

25

35

45

55

65

12
the source that triggered the event. If a crash is

occurring, this is a forced shutdoWn. If a craft requests

the application to exit then this is a graceful shutdoWn.
These types of shutdoWn determine the amount of

cleanup and recovery that can be performed by the
application.

CEiRESTART—The next call-back event is restart.

Restarts are leveled as a “hot” “Warm” and “cold.”

These levels determine the depth to Which the appli

cation should re-initialiZe. The services element has no

restrictions on What an application does at each level.

It is application speci?c as to hoW much

re-initialiZation should occur. The routine is intended as

an event handler. It should not call the actual initial

iZation code itself. It should set up information in the

application to manage the initialiZation request. As a

guide, these are provided as a general de?nition for

each level.

Hot—A restart that does no major initialiZation. A

primary function could be Task synchroniZation or

?le synchroniZation.
Warm—A restart that involves small amounts of

re-initialiZation. This could include parameter, trans

lation or other data tables.

Cold—A restart Where all the program initialiZation is

performed. The primary difference from the initial

program load (IPL) is that no neW allocation of

resources is performed. The existing resources are

simply re-initialiZed.

CEiTHROTTLE—This event is for applications to com

municate a peer to peer event that indicates a conges

tion building on the originator.

CEiLOGLEVEL—This event is used to communicate

the level at Which logging should be performed. All

trace output from a program is controlled programmati

cally through the log level.
To de-register the applications, an SeRelease() applica

tion procedure interface function may be called. This appli

cation procedure interface function terminates the services

element registration for the application and frees all allo

cated resources therefor. It is called in all cases Where the

application intends to exit. The syntax is as folloWs:

void SeRelease(void);

This function call also causes a check of the fault tolerant

aspects of the task group to Which the calling task belonged.

This includes message re-routing and task group ordering.
As indicated above, there are tWo main methods to

message passing in the services element. They consist of the

task group messages Which are addressed to speci?c appli

cation services, and local queue based messages. These tWo

types of messages have different associated application

procedure interface functions as Well. The general opera

tional behavior of the tWo types are, hoWever, very similar.

In addition, there are tWo application procedure interface

functions that alloW the application to access the services

element message buffer pool. These are not required for

messaging, but an application that makes use of these

functions, or that requires the use of the forWard and reply

message feature must also be aWare of these functions.

The exemplary syntax for the message buffer functions is:

int SeGetbuf (void **buffer, int size);

Where “buffer” is an address of a user local pointer variable

to hold the address of the system buffer and “size” is the total

6,119,173
13

size in bytes required by the task. The valid range in buffer
sizes are from one byte to 64 Kilobytes.

void SeRelbuf (void *buffer);

Where the “buffer” is the address of the system buffer that is

being released. Once the buffer is released, it is no longer a
valid reference address for the task.

As described above, there are three Ways to send a

message to a task group address:

1. Send or originate a message to a task group or task

group instance;

int SeSendmsg (int node, char *name, int tid, int group, int nurn,
void *msg, int size, int options);

2. ForWard a received message to a task group or task

group instance;

int SeFWrdmsg (int node, char *name, int tid, int group, int nurn,
void *msg, int size, int options);

3. Reply back to the originator of a speci?c message.

int SeRplymsg (void *msg, int size, int options);

The use of the calls is open to application implementation

requirements. The send message function creates an original

message and is the general purpose message function. The

forWard message function is used to send the message to

another task in the local services element or a remote

services element but the original routing information is not

changed. The reply message is used to send a blind reply to

the originator of the message. The routing information for
source and destination are sWapped.

The “node” parameter of the destination is required. This

is a unique site identi?cation for a speci?c system in the

netWork. This is also a pre-de?ned item of a system at

installation. A local identi?er may be used to indicate that

the caller is referring to its local Node of residence.

A“name” parameter is supplied to identify the destination

of the message. This may be an ASCII NULL terminated

string that contains the Well-knoWn or pre-de?ned name of

the task. If a NULL pointer is supplied for “name” then the

task identi?er “tid” is used to identify the destination. The

name of an application has precedence.

A task identi?er “tid” may be required to identify the

speci?c pre-de?ned application of the destination. This “tid”

is a pre-assigned value in the system as part of application

de?nition and implementation. The local identi?er

MiSAME may be used to indicate the caller is referring to

the same task identi?er as itself. A single node is able to

contain more than one instance of the same task identi?er.

Also, an MiBROADCAST is speci?ed to indicate that all

local tasks of the same identi?er are to receive a copy of the

message. ANULL may be speci?ed if the caller is using the

“name” to identify the destination task.

“group” is a collective of similar functional entities. It is

a further subdivision of a “tid” (group in task). This

establishes a logical grouping of functions Within the

task. It is a prede?ned item and should be knoWn to the

10

15

25

35

45

55

65

14
message originator. The valid range for groups are 1 up

to SEiGRPiMAX. The identi?er MiSAME is used

to indicate that the destination group has the same

group identi?er as the message originator. The identi

?er MiBROADCAST is used to indicate the destina

tion is all task groups de?ned by “tid” or “name.”

The ?nal parameter for the destination process is the

“num.” This indicates the instance number in the group of

the task to Which the message is sent. Load sharing groups

can consist of up to SEiNUMiMAX members. Other

types of groups are either single or paired member groups.

There are a series of convenience de?nes to indicate the

primary, or active, instance member or standby instance

member (IiAiPROC, IiBiPROC). There are also some

control identi?ers to qualify the instance of the destination.

For eXample:

MiSAME identi?er is used to indicate the destination

instance is the same as the message originator.

MiBROADCAST is used to indicate the all task group

instances are to receive a copy of the message.

Identi?er IiNUMiANY is used to indicate the any

active instance is eligible to receive the message. In this

case the destination instance is determined at delivery.

The indicator IiOVERRIDE is used to indicate special

handling for message bound for the delivery unit. The
override indicates that the “options” ?eld contains

special message routing options that are speci?c to the
delivery unit and override the default message routing
for the delivery unit-bound messages.

MiDISTiNUM is used to indicate that the destination of

the message is the neXt active instance in the applica

tion group Where the destination task group is a load

share con?guration.
The “size” is an indication of the number of bytes that are

in the message. The range of values for message size may be

limited to 1 byte to 64 kilobytes, for eXample. NetWork

communications may impact the upper limit of the message

size. This is implementation speci?c. A non-NULL value

must be supplied for this ?eld. The SeSendmsg() function

may be used to determine if it is a user local data buffer or

if it is a services element system buffer.

The “msg” variable is the address of the user local area

Where the data is stored. It may also contain a services

element node system address that is pre-allocated from

services element system resources for this message.

“Options” may be a series of bitWise ORed message

speci?c options. The loW order byte of the options indicate

a special routing override for delivery unit-bound messages.

These are de?ned in a header ?le, “seiidh.” An application

may control the delivery unit side routing of messages With

this value and an IiOVERRIDE in the “num” parameter.

The other values for this ?eld are speci?c to service unit

message delivery. For eXample:

A priority message may be speci?ed With a

MiPRIORITY identi?er. Apriority message is placed
at the top of the destination application queue.

An MiCERTIFY identi?er indicates that a certi?ed mes

sage is to be delivered. This returns a message deliv

ered indication to the originating application.
Additional message resources are available to be used for

thread communication, job queuing, and even application

messaging. Queues can be addressed by tWo methods, an

ASCII name or the queue identi?er, as discussed above. The

6,119,173
15

queue identi?er, however, is only unique for a queue

betWeen the creation and deletion of the queue. There are

four methods available to access queues. These are:

int SeQcreate (char *name, int *qid); 5

int SeQdelete (char *name, int qid);

int SeQpost (char *name, int qid, char *msg, int len);

int SeQpend (char *name, int qid, int trno, int *msg, int len); 10

The “name” parameter is used to locate the queue. The

“name” is a NULL terminated ASCII string that matches the

name used to create the queue. If a NULL pointer is supplied

for this parameter, the “qid” is used to locate the queue on

Which to pend.

The “qid” parameter is a variable that contains the valid

queue identi?er. This identi?er is unique to the local node

only. This is the identi?er returned from the queue’s cre

ation. If a non-NULL “name” is supplied, this value is

ignored, since the “name” parameter has precedence over

the queue identi?er.

The caller may specify a time out With the “tmo” param

eter. This integer value indicates the duration, in seconds, the

caller should Wait for a message to arrive in the queue. If a

value of NULL is speci?ed, then the caller Will Wait forever

for a message to arrive. The Wait can be interrupted by the

receipt of an event such as a signal. This event may not even

be related to the Waiting thread in a process. In the event of

an interrupt With a Wait forever condition a predetermined

error code is returned.

The “msg” parameter is an address of the user message

data. The message can be in user local data space or

contained in a pre-allocated SE system buffer resource. The

SeQpend() function differentiates betWeen the tWo With the

neXt parameter. If the “len” is a non-NULL value, SeQpend(

) assumes the “msg” is an address of a user local data buffer

into Which the data is to be Written. If the value of “len” is

a NULL then SeQpend() assumes that “msg” is the address

of the user local pointer variable. It places the address of the

data message in the contents of the “msg” parameter. The

SeQpost() function automatically determines the if the

“msg” parameter is a system buffer or a user local buffer.

The “len” parameter is the actual data length of the

maXimum message to receive. If the value is a NULL, the

pending routing receives the message in a services element

system resource buffer. The address of the buffer is placed in

the address pointed to by “msg.” OtherWise the “len” is used

to limit the amount of data to Write into the area pointed to

be “msg.”
There are also application procedure interface function

that may be called by a task to query its environment. The

types of query are:

15

25

45

55

Node information

Queue information

Task information

Node information is available to applications at run time.

The folloWing functions outline the available local services

element node information.

The services element node identi?er functions return

either a numerical value or the ASCII name of the local

services element node. These are unique, run time adjustable

65

16
parameters for every services element. The services element

node name is used for human reference but is not used as

part of the services element messaging. HoWever, the node

identi?ers is used as an indeX into the node routing table.

Many applications may Wish to query their queue-based

resources. The folloWing functions outline the available

information that is available at run time. The application

procedure interface syntax is as folloWs:

int SeQquery (char *name, int qid, QUELINFO info);

int SeQnamZnum (char *name);

int SeQnumZnam (int qid, char *name);

The queue query functions perform the translation of the

queue ASCII name representation to the current queue

identi?er and from the queue identi?er back to the ASCII

name. This alloWs external applications that Wish to share a

common queue to locate the queue or to re-synchroniZe in

the event of a restart. Aparticular queue can be queried for

eXtended information. This query ?lls out a predetermined

informational status structure about the nature of the queue

being queried. An eXample of the format of the queue

informational status structure is:

uichar tid;
uichar grp;

uichar num;

uichar msg;

char name[SEiNAMiMAX];

The “tid” is the Task identi?er of the queue oWner, “grp”

is the group identi?er if the queue oWner, and “num” is the

actual instance number of the queue oWner. The “msg” is the

current count of unread messages in the queue. The “name”

is the ASCII string, NULL terminated identi?er of the queue.

For this query the “name” or the “qid” may be supplied but

both are not required.

A similar set of application procedure interface functions

eXists to query tasks. These functions alloW a task to

translate a task name into a task identi?er and to translate the

task identi?er back to the name. These values are used for

messaging. A message can be address to a “named” task as

Well as a task identi?er. Both values translate to the same

destination, hoWever, the name value carries precedence.

int SeWho (char *name, int tid, int group, int num, TASKLINFO

*info);
int SeTnamZnum (char *name);
int SeTnumZnam (int tid, char *name);

The SeWho()function ?lls in the supplied structure With

the pertinent information about the queried task, if the task

is a currently registered member in the services element

node. The TASK-INFO structure has the folloWing eXem

plary format:

6,119,173
18

These entries are also marked With a time stamp and

information on the originator of the log message. The ?rst

line of text contains the type of program logging, time

stamp, and severity of the log entry. The next line contains

the full services element identi?cation of the originator of

the log entry. The last line is the user supplied text. All

entries are separated by a record terminator for ease of both

record parsing and readability. An example entry folloWs:

TYPE:APPL SEVERITY:INFO

NAME:CALL—PROCESSING

DATE: Fri Sep 6 16:50:31 1996

PID: 6377 TID: 2 GRP: 1 NUM: 0-

REGISTRATION complete for Application CALLiPROCESSING —— TID:2

uichar tid;
uichar grp;

uichar num;

uichar state;

pidit pid;

-continued

uidit uid;
char name[SEiNAMiMAX];

The “tid” is the Task identi?er, “grp” is the group iden

ti?er and “num” is the actual instance number of the

application. The “state” parameter is the current operational

state of the application. The “pid” is the actual UNIX

process identi?er for the queried application. The “uid” is

the numeric representation of the UNIX user identi?er under

Which the queried application is running. The “name” is the

ASCII string, NULL terminated identi?er of the application.

A“tid” may be required to identify the speci?c prede?ned

application of the destination. This “tid” is a preassigned

value in the system as part of application de?nition and

implementation. The “grp” parameter is a used to further

qualify the task that is being queried. The “num” parameter

indicates the instance number in the group of the task about

Which the query is made.

TWo additional application procedure interface utilities

alloW tasks to log their activity and generate specialiZed

control or event messages. The log application procedure

interfaces function alloWs a task to generate an entry in a

services element disk-based log ?les.

void SeLogevt (int level, char *text);

The user supplies a free format string of text for up to 80

characters With no neW line terminator at the end. In

addition, the task can specify a severity “level” to the

information that is being generated. The four de?ned “lev
els” are:

Informational—General non-error operational informa

tion indication.

Warning—An indication of a resource problem or pro

cessing failure that did not create a loss of service, but

could indicate a service degradation.

Error—An indication that a failure has occurred that

represents a degradation or loss of service provided by

the application.

Fail—A fault has occurred that forces the application to

terminate its service. This may also indicate that the

application must terminate.

25

35

45

55

65

The control and event message application procedure

interface alloWs tasks in the services element to generate

speci?c types of non-data messages for application special

handling. The control messages are delivered either as a

standard message or through a call-back function. The

default method is for a task to receive the message With a

special error code to indicate that this is a valid message but

that it is not part of the application data stream and special

processing is required. An exemplary application procedure
interface syntax is as folloWs:

int SeControl(CONTROLiMSG *msg, int node, char *name, int
tid, int grp, int num, int opt);

Where the control message is contained in the task local

structure CONTROLiMSG. This structure has the folloW

ing exemplary format:

uishort

uishort
controlievent;
quali?er;

The “controlievent” is one of the types de?ned in a

predetermined header ?le, “seimsgh”. Each control mes

sage has a quali?er to further specify the types of events that

are being generated. The de?ned functionality for each of

the quali?ers, as Well as the event itself, is an application

implementation decision. Examples of the de?ned quali?ers

are:

CE- STATE

SEiACTIVE

SEiSTANDBY

SEiOFFLINE

SEiDEBUG
CEiSHUTDOWN

CQiGRACEFUL
CQiFORCED
CEiRESTART

CQiHOT
CQiWARM
CQiCOLD
CEiTHROTTLE

CQiTON
CQiTOFF
CEiLOGLEVEL

The quali?ers are described in more detail above. The log

level is generally used to indicate the severity level of the log

6,119,173
19

mentioned in this section. However, the interface is such that
a task can make any interpretation of the level and issue

additional log messages for tracing and pro?ling.
Although several embodiments of the present invention

and its advantages have been described in detail, it should be

understood that mutations, changes, substitutions,
transformations, modi?cations, variations, and alterations
can be made therein Without departing from the teachings of

the present invention, the spirit and scope of the invention
being set forth by the appended claims.
What is claimed is:

1. A system for managing a plurality of applications and

communications therebetWeen in a distributed telecommu

nications sWitch, Which includes a service unit and at least

one delivery unit, the delivery unit providing a message

transport mechanism for call information, the service unit

providing control and management of the delivery unit, the

system comprising:

a services element residing in the service unit operable to

provide a plurality of services to the plurality of appli

cations residing in the delivery unit;

an application procedure interface residing in the service
unit operable to serve as an interface betWeen the

plurality of applications residing in the delivery unit
and the services element; and

a message handler residing on the delivery unit, each of

the plurality of applications residing in the delivery unit
operable to register With the services element residing
in the service unit through the application procedure
interface and the message handler in response to a

non-existence of another services element, the message

handler operable to route messages betWeen the ser

vices element and the registered applications through
the application procedure interface.

2. The system, as set forth in claim 1, Wherein the

application procedure interface comprises a plurality of

interface functions.

3. The system, as set forth in claim 1, further comprising

paired groupings of the plurality of applications, each paired
grouping being identi?able by a group identi?er.

4. The system, as set forth in claim 1, further comprising

paired groupings of the plurality of applications, each paired
grouping having a primary task and a secondary task.

5. The system, as set forth in claim 1, further comprising

paired groupings of the plurality of applications, each paired
grouping having at least tWo load sharing tasks.

6. The system, as set forth in claim 1, further comprising

a shared memory accessible by the services element, the

application procedure interface, and the plurality of appli
cations.

7. The system, as set forth in claim 2, Wherein the plurality

of interface functions comprise a registration function Which

registers the plurality of applications prior to becoming
eligible to use the plurality of services provided by the

services element.

8. The system, as set forth in claim 2, Wherein the plurality

of interface functions comprise at least one messaging

function Which alloWs the plurality of applications to send

and receive messages therebetWeen.

9. The system, as set forth in claim 2, Wherein the plurality

of interface functions comprise at least one query function

Which alloWs the plurality of applications to obtain prede

termined information about their environment.

10

15

25

35

45

55

65

20
10. The system, as set forth in claim 2, Wherein the

plurality of interface functions comprise at least one log

function Which alloWs the plurality of applications to record

predetermined data about their operations.

11. The system, as set forth in claim 6, Wherein the shared

memory is divided into a task control portion and a queue

control portion.

12. The system, as set forth in claim 6, Wherein the task

control portion comprises data about each registered appli

cation.

13. The system, as set forth in claim 6, Wherein the queue

control portion comprises a plurality of message queues for

the plurality of registered applications.

14. The system, as set forth in claim 7, Wherein the

plurality of interface functions comprise a release function

Which de-registers the plurality of applications in order to

terminate their eligibility to use the plurality of services

provided by the services element.

15. A method for communications and process manage

ment of a plurality of applications in a distributed telecom

munications sWitch, comprising the steps of:

invoking a services element residing in a service unit to

provide services to the plurality of applications residing

in a delivery unit;

determining an existence of another services element;

registering each application as belonging to a simplex,

primary/secondary, primary/standby, or load share task

group class and assigning the application to a task

group in response thereto, each application being reg

istered With the service element in response to a non

existence of another services element;

routing messages to the registered applications based on

the task group class speci?cation thereof; and

initiating a fault tolerant restart process based on the task

group class speci?cation thereof.

16. The method, as set forth in claim 15, Wherein the

message routing step comprises the step of routing messages

only to the application speci?ed as a simplex application.

17. The method, as set forth in claim 15, Wherein the

message routing step comprises the step of routing messages

to only primary applications speci?ed as belonging to the

primary/secondary task group class.

18. The method, as set forth in claim 15, Wherein the

message routing step comprises the step of routing messages

to both primary and standby applications speci?ed as

belonging to the primary/standby task group class.

19. The method, as set forth in claim 15, Wherein the

message routing step comprises the step of broadcasting

messages destined for a task group to all applications

belonging to that task group.

20. The method, as set forth in claim 15, Wherein the

message routing step comprises the step of distributing

messages destined for a task group to all applications

belonging to that task group in turn in a predetermined

manner.

6,119,173
21 22

21. The method, as set forth in claim 15, wherein the designating asecondary or standby application as primary

message routing step comprises the step of delivering a application; and

message destined for an application to its queue.

22. The method, as set forth in claim 15, further com

prising the step of re-routing messages destined for an

exiting primary application based on the task group class 24- The IIleIhOd, 215 Set fOfIh in Claim 15, further COIII

speci?cation thereof. prising the step of periodically auditing registered applica

23. The method, as Set fOrth in Claim 22, wherein the tions to determine Whether they are still running.

message re-routing step comprises the steps of: 10

routing delivered and unread messages to the primary

5 application.

deleting the exiting application; * * * * *

