United States Patent

US006836791B1

(12) (10) Patent No.: US 6,836,791 B1
Levi et al. 5) Date of Patent: Dec. 28, 2004
(54) ACTIVE STREAM FORMAT FOR HOLDING 5,168,528 A * 12/1992 Field, Jr. cooeevvecrvnnenen 382/103
MULTIPLE MEDIA STREAMS 5,319,707 A 6/1994 Wasilewski et al. 380/14
5,321,750 A * 6/1994 Nadanccccceeeeeenn. 380/230
(75) Inventors: Steven P. Levi, Redmond, WA (US); ?;gg%ig 2 : 18;}33;‘ }7611(1 Deﬁ.PIaS etal ... ;Zgg‘gz
,387, akeuchlceceveeeeenes
l\{ljéﬂ.{g . Yanl\?nlt)werlﬁ Sli’agle’ VZAWA 5400331 A 3/1995 Lucak et al. 370/85.1
()j raig M. Dowel,, Redmond, 5436896 A 7/1995 Anderson et al. 370/62
(US), Chadd B. KnOWltOn, Bellevue, 5,452,297 A 9/1995 Hiller et al.
WA (US) 5452435 A * 9/1995 Malouf et al. 713/500
(73) Assignee: Microsoft Corporation, Redmond, WA (List continued on next page.)
Us
(US) OTHER PUBLICATIONS
(*) Notice: Sutb]etct. 1o artly ((iilsglalme(ri,. thte :iermé)f tt;; A Theory of Clock Synchronization (Extended Abstract)—
%ase nC 1;52Xbenbe 0(()ir adjusted under Patt—Shamir, al. (1994) ;http://citeseer.nj.nec.com/patt—
e (b) by 0 days. shamir94theory.html.*
(21) Appl. No.: 09/510,565 (List continued on next page.)
(22) Filed: Feb. 22, 2000 Primary Examiner—Thong Vu
(74) Antorney, Agent, or Firm—Lee & Hayes, PLLC
Related U.S. Application Data
57 ABSTRACT
(62) Division of application No. 08/813,151, filed on Mar. 7, . . .
1997, now Pat. No. 6,041,345. An active stream format is defined and adopted for a logical
(60) Provisional application No. 60/028,789, filed on Oct. 21, structure that encapsulates multiple data streams. The data
1996, and provisional application No. 60/013,029, filed on streams may be of different media. The data of the data
Mar. 8, 1996. streams 1is partitioned into packets that are suitable for
(51) It CL7 oo GO6F 15/16 transmission over a transport medium. The packets may
(52) US.Cl .o 709/217; 709/247; 380/230, include error correcting information. The packets may also
370/537; 370/389; 370/347 include clock licenses for dictating the advancement of a
(58) Field of Search 709/217-219 clock when the data streams are rendered. The format of
709/248236231 247 203: 370/443’ ASF facilitates flexibility and choice of packet size and in
241 352’ 474;. 345’/213’ 562? 348/564, specifying maximum bit rate at which data may be rendered.
537: 71’3/506. 382’/103' 375’/24()? 514/356? Error concealment strategies may be employed in the pack-
235/44;0. 424/93’. 380/230" 714/15.’340/7 43f etization of data to distribute portions of samples to multiple
’ ’ ’ ’ 767 /é packets. Property information may be replicated and stored
in separate packets to enhance its error tolerance. The format
(56) References Cited facilitates dynamic definition of media types and the pack-
etization of data in such dynamically defined data types
3,663,749 A * 5/1972 Cannonc.cce...... 375/240
4825436 A * 4/1989 Kobayashi et al. 424/93 54 Claims, 24 Drawing Sheets
1 Y2z
Source Destination
16
Storage ASF
S—
ASF \,; Renderers
N
))

=TT

18

US 6,836,791 B1

Page 2
U.S. PATENT DOCUMENTS 6,041,345 A 3/2000 Levi et al.
6,155,488 A * 12/2000 Olmstead et al. 235/440
5467342 A 11/1995 Logston et al. 370/17
5,469,433 A 11/1995 McAuley ... 370/60 OTHER PUBLICATIONS
5,487,146 A 1/1996 Guttag et al. 345/519) o
5491514 A * 2/1996 Fukuda et al. 514356 ~ PCR-Assist CBR for Delivering Pre-Recorded MPEG-2
5,493,646 A 2/1996 Guttag et al. 345/562 Transport Streams—David Du ; ftp.cs.umn.edu/dept/users/
5,506,847 A 4/1996 Shobatake 370/94.3 hsieh/PCR-Assist.*
5,544,163 A 8/1996 Madonna 370/352 An Architecture for a Distributed Stream Synchronization
5,559,813 A 9/1996 Shimizu 371/37.4 Service—Helbig, Rothermel (1996) ; www.informa-
5,600,662 A 2/1997 Zook tik.uni-stuttgart.de/ipvr/vs/Publications/
5,602,992 A 2/1997 Danneelscoon... 709/248 1996-helbig—01.ps.Z.*
5,604,843 A 2/1997 Shaw et al.u..... 395/101 ” . C .
Huang, J., et al., “MHTP—a multimedia high—speed trans-
5,612,900 A 3/1997 Azadegan et al. 7097247 .
5621720 A * 4/1997 Bropnte et al. 370241 Port protocol”, IEEE, vol. 3, No. _, pp. 1364-1368, (Dec.
5,623,483 A 4/1997 Agrawal et al. 3700253 6, 1992).))
5,625,877 A 4/1997 Dunn et al. .c.oeeeneee. 455/34.1 LaPorta, TF,, et al., “The multistream protocol: a highly
5,654,962 A 8/1997 Rostoker et al. 370/232 flexible high—speed transfport protocol”, IEEE Journal on
5,668,803 A 9/1997 Tymes et al. 370/312 Selected areas in Communications, vol. 11, No. 4, pp.
5,671,226 A 9/1997 Murakami et al. 370/474 519-530, (May 1, 1993).
5,691,986 A 11/1997 Pearlstein 370/477 Ohta, K., et al., “A proposal of network protocol with
5,708,961 A 1/1998 Hylton et al. e 455/4.2 performance for multimedia communication system”,
5,745,484 A 4/1998 Scott 370/347 . .
A IEICE Transactions on Information and Systems, vol.
5,754,242 A 5/1998 Ohkami 348/441 E79-D. No. 6 719-727 (J 1. 1996
5754580 A 5/1998 Maitra et al. 375/216 -D, No. 6, pp. 719-727, (Jun. 1, 1996). .
5764974 A * 6/1998 Walster et al. ...o.c......... 707/6 Ohta, N., Packet Video: Modeling and Signal Processing,
5,774,461 A 6/1998 Hyden et al. 370/329 Norwood, MA: Artech House, Inc., 144-153, (1994).
5,774,481 A 6/1998 Hyden et al. ... 370/329 Brun, Z., “Controlled Carrier Operation in a Memory Based
5,790,538 A 8/1998 Sugarcoconviniiinnnnn. 370/352 Echo Cancelling Data Set”, IEFEE, Paper No. CH2655-9/
5,802,105 A 9/1998 Tiedemann, Ir. et al. ... 375/225 89/0000-0254, 8.6.1-8.6.7, (1989).
5,812,773 A 9/1998 Nf)rln 395/200.34 Sarginson, P.A., “MPEG-2: a tutorial introduction to the
5,835,498 A * 11/1998 Kim et al.euvvueennene. 370/537 » . ..
. systems layer”, IFE Colloguim on MPEG what it is and
5,838,678 A 11/1998 Davis et al. 370/389 I
5842224 A 11/1998 Fenner 711202 Wwhatirisn’t, pp. 4/1-4/13, (Jan. 1, 1995).
5,011,776 A 6/1999 Guck 7097217 Schtzmayr, R, et al., “Providing support for data transfer in
5,928,330 A 7/1999 Goetz et al. ...oueun....... 709/23.1 a new networking environment”, Multimedia Transport and
5,960,152 A 9/1999 Sawabe et al. 386/98 Teleservices. Int’l Cost 237 Works Proceedings, Vienna., pp.
5963200 A * 10/1999 Deering et al. 345213 241-255, (Nov. 13, 1994).
6,006,227 A 12/1999 Freeman et al. 707/7
A

6,038,592

3/2000

Verplanken et al. 709/215

* cited by examiner

U.S. Patent Dec. 28, 2004 Sheet 1 of 24 US 6,836,791 B1

N
\
Y
__/&
8 I (
g)
£ 3
a2 o
< T~
e
\\u‘ N '~.‘
2| 4+ .20
D
AN
)
<
()]
8 & 2 ©

U.S. Patent Dec. 28, 2004 Sheet 2 of 24 US 6,836,791 B1

(e)
l

20
Build ASF stream

’s 24
Transmit ASF stream

L~ 26
Render media streams
in ASF stream

|
(oo)

Fig. 2

U.S. Patent

Dec. 28, 2004 Sheet 3 of 24
ASF 16
\
Header Section %
header_object |~ %
properties_object _|-T 34
stream_properties_object_| -1~ %
content_description_object L. T 38
marker object _| AT 40
. error_correction_object _| -1 2
clock_object 1T “
script_command_object _|_~T ©
codec_object | 1%
Data Section 90
data_object 11T
packets 4T 48
index_object =

Fig. 3

US 6,836,791 Bl

U.S. Patent Dec. 28, 2004 Sheet 4 of 24 US 6,836,791 B1

header_object 2 \

object_id |50
size 1L 52

number_headers |~ ¥ F ig- 4
alignment 1%
architecture 1L 57

properties_object 34~

object_id 1%
size %
multimedia_stream_id _| ~— 67
total_size |6
created |64
num_packets 1L 65
play_duration |66
send_duration ~ _| 67
preroll 1

flags | — Fi ig. 5
min_packet_size _| 72
max_packet size @ _| 7 74
maximum bit rate | —— 7

U.S. Patent Dec. 28, 2004 Sheet 5 of 24 US 6,836,791 B1

(Begin)

Identify size of smallest
packet in the data section
78

Store size of the smallest
packet in min_packet_size
80

Identify size of largest
packet in data section
82

Store size of largest packet
in max_packet_size
84

Return

Fig. 64

U.S. Patent Dec. 28, 2004 Sheet 6 of 24 US 6,836,791 B1

ASF1 83\ ASF2 85\
Header A-28 Header 1~28
Section Section
Data _|-30 Data _|-30
Section Section “
48 256 4T
-+
512 T /L,z
|
-+ -
512 256 1 z
- 48 256 LT
512 _L 756 _/——-:z
512 _L~ 256 _/,-43

Fig. 6B

U.S. Patent

Dec. 28, 2004 Sheet 7 of 24

stream_properties_object
36\

%
object_id 7
. - 88
size
s
stream
Sl P
error_concealment_strategy
Vet
offset 7]
L~ %
type_specific_len
-~ 98
error_concealment_len
Ve 100
stream_number
12

type_specific_data entries |

error_concealment data
entries

Fig. 7

US 6,836,791 Bl

U.S. Patent Dec. 28, 2004 Sheet 8 of 24 US 6,836,791 B1

Sample 706

108
\ S, P, S, P, s, P, S, P,

Fig. 8

U.S. Patent

Dec. 28, 2004

content_description_object

Sheet 9 of 24

B\
object_id 10
size 1~ 112
title_len 114
author_len Ve 115
copyright_len 1 116
description_len _|7 17
rating_len 1~ 118
title entries 119
author entries 1~ 120
copyright entries _|" 121
description entries _|~" 122
rating entries 1 123

Fig. 9

US 6,836,791 Bl

U.S. Patent Dec. 28, 2004 Sheet 10 of 24 US 6,836,791 B1

object_id 1%
size L~ 128
marker id =~ _| 7 1%
num_entries Ve 132
entry_alignment _/' 134
name_len 3~ 136
name L~ 138
marker_data L~ 140

Fig. 104

U.S. Patent Dec. 28, 2004 Sheet 11 of 24 US 6,836,791 B1

marker entries 747 \

offset 1~ 142
time Ve 14
entry_len 1~ 146
entry_data 11 4

Fig. 10B

U.S. Patent Dec. 28, 2004 Sheet 12 of 24 US 6,836,791 B1

error_correction_object
2~
object_id L~ 150

size 182

error_correction_id L~ 154

etror_correction_data_len |~ 156

error-correction_data entries| ~~ 758

Fig. 11

U.S. Patent Dec. 28, 2004 Sheet 13 of 24 US 6,836,791 B1

=D
|

Apply error correcting | ~ 760
to interleave packets, |
including storage of
ECCs in packets

l

Store information Ve 162
regarding error
correcting
methodology in header

l

Destination computer | ~ 164
accesses error
correcting information
in header for playback

|
=

Fig, 12

U.S. Patent Dec. 28, 2004 Sheet 14 of 24 US 6,836,791 B1

clock object 44 N

object_id 166
gize e 168
packet_clock type |~ 170
packet clock size _L~— 172

clock_specific len _|— 174.
clock_specific data _|~ 176

Fig. 13

U.S. Patent Dec. 28, 2004 Sheet 15 of 24 US 6,836,791 B1

script_command object

£~
object_id V17
size |~ 180
command id _|L 162
num _commands _| " 1#
num_ |18
type_names 1~ 188
command entty L~ 190

Fig. 144

U.S. Patent Dec. 28, 2004 Sheet 16 of 24 US 6,836,791 B1

type_names_struc
192

type_name len Ve 194
type_names 1~ 196

Fig. 14B

command_entry element

198 .
ﬁme -—/- 200
type v 202
parameter L~ 204

Fig. 14C

U.S. Patent Dec. 28, 2004 Sheet 17 of 24 US 6,836,791 B1

codec_object 46 N

object_id BVt
size |~ 28
codec_ID 210
codec_entry len | 272
codec_entry L~ 214

Fig. 154

U.S. Patent Dec. 28, 2004 Sheet 18 of 24 US 6,836,791 B1

codecEntry element

216\
type 1~ 218
pame_len 3 220
name Ve 222
description_len _| 224
description 2%
cbinfo_len A~ 228
cbinfo A~ 230

Fig. 15B

U.S. Patent Dec. 28, 2004 Sheet 19 of 24 US 6,836,791 B1

data_object 47 2

object_id 1~ 232
size A~ 234
multi_stream id | 2%
num_packets a4 238
alignment A 240
packet alignment L 242

Fig. 16

U.S. Patent Dec. 28, 2004 Sheet 20 of 24 US 6,836,791 B1

packet 48 —\

initial_structure 244

stream_flag 246

stream_id_type 248

object_id_type 250

offset type 252

replicated_data_type 254

| packet len 256

sequence 258

padding_len 260

clock data 262

payload_flag 264

payload_strucs 266

padding 268

Fig. 17

U.S. Patent Dec. 28, 2004 Sheet 21 of 24 US 6,836,791 B1

initial structure 244 N

error_correction_present |~ 270

packet len type L7 272
padding len type |~ 24
sequence_type 1~ 276
multiple_payloads_present |~ 278

Fig, 184

U.S. Patent

Dec. 28, 2004 Sheet 22 of 24

initial _structure 244 —\

US 6,836,791 Bl

ec_flag 246

error_correction_present bit 270

270
284

error_correction_len_type

opaque_data flag 286

error_correction_datalength 288

error_correction_data_len 290

error_correction_data 292

opaque data 300

flags 302

reserved 304

padding len type 272

padding_len 274

sequence_type 276

multiple payloads present 278

Fig. 18B

U.S. Patent Dec. 28, 2004 Sheet 23 of 24 US 6,836,791 B1

payload_struc 266 N

stream_id L~ J4
object_id Braril
offset 1~ 318
replicated data len |~ 320
replicated_&ata %z
payload len |~ 923

peyload data |~ 3%

Fig. 19

U.S. Patent Dec. 28, 2004 Sheet 24 of 24 US 6,836,791 B1

index_object 49 ‘\

object_id 324

size 326

index_id 328

time_delta 330

max_packets 332

num_entries 334

index_info array 336

packet 338A

packet count 340A

packet 338B

packet 338N

Packet_count 340N

Fig. 20

US 6,836,791 B1

1

ACTIVE STREAM FORMAT FOR HOLDING
MULTIPLE MEDIA STREAMS

This application is a divisional of U.S. Ser. No. 08/813,
151, filed Mar. 7, 1997 now U.S. Pat. No. 6,041,345, which
we claim the benefit of the provisional application U.S. Ser.
No. 60/013,029, filed Mar. 8, 1996, and the provisional
application U.S. Ser. No. 60/028,789, filed Oct. 21, 1996.

TECHNICAL FIELD

The present invention relates generally to data processing
systems and more particularly to an active stream format for
holding multiple media streams.

BACKGROUND OF THE INVENTION

Conventional file and/or stream formats for transmitting
multiple data streams of varying media are limited in several
respects. First, these formats are generally limited in the
packet sizes that are available for encapsulating data. Such
formats, if they specify packets, specify the packets as a
given fixed size. Another limitation of such formats is that
they do not facilitate the use of error correction codes. A
further weakness of these conventional formats is that they
do not provide flexibility in timing models for rendering the
data encapsulated within the format. An additional limitation
with such formats is that they are not well adapted for
different transport mediums that have different levels of
reliability and different transmission capabilities.

SUMMARY OF THE INVENTION

In accordance with a first aspect of the present invention,
a computer system has a logical structure for encapsulating
multiple streams of data that are partitioned into packets for
holding samples of data from the multiple data streams. A
method of incorporating error correction into the logical
structure is performed on the computer system. In accor-
dance with this method, a portion of at least one packet is
designated for holding error correcting data. The error
correcting data is then stored in the designated portion of the
packet.

In accordance with another aspect of the present
invention, multiple streams of data are stored in packets and
error correcting data is stored in at least some of the packets.
The packets are encapsulated into a larger stream and
information regarding what error correcting methods are
employed for the packets is also stored in the packets.

In accordance with yet another aspect of the present
invention, samples of data from multiple data streams are
stored in packets, and replicas of information are stored in
at least some of the packets. A flag is set in each of the
packets that holds replicas to indicate that the packets hold
the replicas. The packets are encapsulated into a larger
logical structure and transmitted to a destination.

In accordance with a further aspect of the present
invention, a logical structure is provided for encapsulating
multiple streams of data where the streams of data are stored
in packets. Clock licenses that dictate advancement of a
clock are stored in multiple ones of the packets. The logical
structure is transmitted from a source computer to a desti-
nation computer. The clock is advanced at the destination
computer as dictated by the clock license for each packet
that holds a clock license in response to the receipt or
processing of the packet at the destination computer.

In accordance with an additional aspect of the present
invention, a stream format is provided for encapsulating

10

15

20

25

30

35

40

45

50

55

60

65

2

multiple streams of data. The stream format includes a field
for specifying a packet size for holding samples of the
multiple streams of data. In a logical structure that adopts the
stream format, a value is stored in the field that corresponds
to the desired packet size. Packets of the desired size are
stored within the logical structure and the logical structure is
transmitted over a transport medium to the destination.

In accordance with a further aspect of the present
invention, a stream format is provided for encapsulating
multiple streams of data. A field is included in a logical
structure that adopts the stream format for holding a value
that specifies a maximum bit rate at which the multiple sums
may be rendered at the destination. A value is stored in the
field and the logical structure is transmitted over a transport
medium to a destination.

In accordance with another aspect of the present
invention, a stream format is provided for encapsulating
multiple data streams and a new media type is dynamically
defined. An identifier of the media type is stored in a logical
structure that adopts the stream format and packets of the
new media type are stored in the logical structure.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will be
described below relative to the following drawings.

FIG. 1 is a block diagram illustrating a computer system
that is suitable for practicing the preferred embodiment of
the present invention.

FIG. 2 is a flowchart illustrating use of the ASF stream in
accordance with a preferred embodiment of the present
invention.

FIG. 3 is a block diagram illustrating the components of
the ASF stream.

FIG. 4 is a block diagram illustrating the format of the
header__object.

FIG. 5 is a block diagram illustrating the format of the
properties_ object.

FIG. 6A is a flowchart illustrating the steps that are
performed to fill in packet size fields within the ASF stream.

FIG. 6B is a diagram illustrating different packet sizes and
respective ASF streams.

FIG. 7 is a block diagram illustrating the format of the
stream__properties__object.

FIG. 8 is a diagram that illustrates the partitioning of a
sample for storage in multiple packets.

FIG. 9 is a diagram that illustrates the format of the
content_description__object.

FIG. 10A is a diagram illustrating the format of the
marker__object.

FIG. 10B is a diagram illustrating the format of a marker
entry.

FIG. 11 is a diagram illustrating the format of the error__
correction__object.

FIG. 12 is flowchart illustrating the steps that are per-
formed to utilize error correcting information in accordance
with a preferred embodiment of the present invention.

FIG. 13 is a diagram illustrating format of the clock
object.

FIG. 14A is a diagram illustrating the format of the
script__command__object.

FIG. 14B is a diagram illustrating the format of a type__
names__struc.

FIG. 14C is a diagram illustrating the format of a
command__entry.

US 6,836,791 B1

3

FIG. 15A is a diagram illustrating the format of the
codec_ object.

FIG. 15B is a diagram of a CodecEntry.

FIG. 16 is a diagram illustrating the format of the data__ s

object.
FIG. 17 illustrates the format of a packet.

FIG. 18A illustrates a first format that the initial _
structure may assume.

FIG. 18B illustrates a second format that the initial _
structure may assume.

FIG. 19 illustrates the format of a payload_ struc.

FIG. 20 is a diagram illustrating the format of the index
object.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred embodiment of the present invention
employs an active stream format (ASF) for holding multiple
media streams. ASF is well suited for storage of multimedia
streams as well as transmission of multiple media streams
over a transport medium. ASF is constructed to encapsulate
diverse multimedia streams and facilitates optimal interleav-
ing of respective media stems. ASF specifies the packetiza-
tion of data and provides flexibility in choosing packet sizes.
In addition, ASF enables the specification of a maximum
data transmission rate. As such, the packetization and trans-
mission of media streams may be tailored to facilitate the
bandwidth limitations of the system on which media streams
are stored or transmitted.

ASF facilitates the use of error correction and error
concealment techniques on the media streams. In unreliable
transport mediums, such error correction and error conceal-
ment is highly beneficial. ASF is independent of media types
and is extensible to handle newly defined media types. ASF
supports flexible timing approaches and allows an author of
an ASF stream to specify the synchronization of events. ASF
supports synchronized rendering using a variety of synchro-
nization clock types and provides index information which
can be used as markers for lookup to provide playback
features such as fast forward and fast reverse.

FIG. 1 is a block diagram of an illustrative system for
practicing the preferred embodiment of the present inven-
tion. FIG. 2 is a flowchart that illustrates the steps that are
performed in the illustrative embodiment of FIG. 1. An ASF
stream 16 is built by an author (step 20 in FIG. 2) and stored
on a storage 14 on a source computer 10. As will be
described in more detail below, ASF allows the author to
design the stream for a most efficient storage based on the
type of source computer 10 on which it is stored. Sometime
later, the ASF stream 16 is transferred over a transport media
17, such as a network connection, to a destination computer
12 (step 24 in FIG. 2). The destination computer 12 includes
a number of renderers 18 for rendering the media types that
are present within the ASF stream 16. For example, the ASF
stream 16 may include audio-type data and video-type data.
The renderers 18 at the destination 12 include an audio
renderer and a video renderer. The renderers may begin
rendering data as soon as they receive data prior to the
complete transmission of the entire ASF stream 16 (see step
26 in FIG. 2). The renderers need not immediately render the
data, but rather may render the data at a later point in time.

FIG. 3 depicts the basic logical organization of an ASF
stream 16. It is up to the author to fill in the contents of the
ASF stream in accordance with this format. The ASF stream
16 is divisible into a header section 28, a data section 30 and

10

15

20

25

30

35

40

45

50

55

60

65

4

an index section 49. In general, the header section is fist
transmitted from the source computer 10 to the destination
computer 12 so that the destination computer may process
the information within the header section. Subsequently, the
data section 30 is transmitted from the source computer 10
to the destination computer 12 on a packet-by-packet basis
and the index section 49 is transmitted. The header section
28 includes a number of objects that describe the ASF stream
16 in aggregate. The header section 28 includes a header__
object 32 that identifies the beginning of the ASF header
section 28 and specifies the number of objects contained
within the header section. FIG. 4 depicts the format of the
header_object 32 in more detail. The header_object 32
includes an object id field 50 that holds a UUID for the
header_object. The UUID is an identifier. The header _
object 32 also includes a size field 52 that specifies a 64-bit
quantity that describes the size of the header section 28 in
bytes. The header object 32 additionally includes a
number__headers field 54 that holds a 32-bit number that
specifies a count of the objects contained within the header
section that follow the header_ object 32. An alignment field
55 specifies packing alignment of objects within the header
(e.g. byte alignment or word alignment). The architecture
field 57 identifies the computer architecture type of the data
section 30 at the index section 49. The architecture field 57
specifies the architecture of these sections as little endian or
big endian.

The header_object 32 is followed in the header section 28
by a properties__object 34, such as depicted in FIG. §. The
properties_ object 34 describes properties about the ASF
stream 16. As can be seen in FIG. 5, the properties_ object
34 includes an object_id field 56 that holds a UUID and a
size field 58 that specifies the size of the properties_object
34. The properties_object 34 also includes a multimedia__
stream_ id field 60 that contains a UUID that identifies a
multimedia ASF stream. A total_size field 62 is included in
the properties_object 34 to hold a 64-bit value that
expresses the size of the entire ASF multimedia stream.

The properties__object 34 also holds a created field 64 that
holds a timestamp that specifies when the ASF stream was
created. A num__packet field 65 holds a 64-bit value that
defines the number of packets in the data section 30. A
play__duration field 66 holds a 32-bit number that specifies
the play duration of the entire ASF stream in 100-
nanosecond units. For example, if the ASF stream 16 holds
a movie, the duration field 66 may hold the duration of the
movie. The play duration field 66 is followed by a send
duration field 67 that corresponds to send the ASF stream in
100-nanosecond units. A preroll field 68 specifies the
amount of time to buffer data before starting to play, and the
flags field 70 holds 32-bits of bit flags.

The properties object 34 includes a min_packet size
field 72 and a max_ packet_size field 74. These fields 72
and 74 specify the size of the smallest and largest packets 48
in the data section 30, respectively. These fields help to
determine if the ASF stream 16 is playable from servers that
are constrained by packet size. For constant bit rate streams,
these values are set to have the same values. A maximum__
bit_rate field 76 holds a value that specifies the maximum
instantaneous bit rate (in bits per second) of the ASF stream.

FIG. 6A is a flowchart illustrating how these values are
identified and assigned during authoring of the ASF stream
16. First, the size of the smallest packet in the data section
30 is identified (step 78 in FIG. 6A). The size of the smallest
packet is stored in the min__packet__size field 72 (step 80 in
FIG. 6A). The size of the largest packet in the data section
30 is identified (step 82 in FIG. 6A), and the size is assigned
to the max_ packet_size field 74 (step 84 in FIG. 6A).

US 6,836,791 B1

5

One of the beneficial features of ASF is its ability for
facilitating different packet sizes for data of multiple media
streams. FIG. 6B shows one example of two different
streams 83 and 85. In stream 83, cach of the packets is
chosen to have a size of 512 bytes, whereas in stream 85
each of the packets 48 holds 256 bytes. The decision as to
the size of the packets may be influenced by the speed of the
transport mechanism over which the ASF stream is to be
transmitted, the protocol adopted by the transport medium,
and the reliability of the transport medium.

As mentioned above, the properties_ object 34 holds a
value in the maximum_ bit_rate field 76 that specifies an
instantaneous maximum bit rate in bits per second that is
required to play the ASF stream 16. The inclusion of this
field 76 helps to identify the requirements necessary to play
the ASF stream 16.

The header section 28 (FIG. 3) must also include at least
one stream__properties_ object 36. The stream__ properties
object 36 is associated with a particular type of media stream
that is encapsulated within the ASF stream 16. For example,
one of the stream_ properties_objects 36 in the header
section 28 may be associated with an audio stream, while
another such object is associated with a video stream. FIG.
7 depicts a format for such stream__properties_ objects 36.
Each stream_ properties_object 36 includes an object_id
field 86 for holding a UUID for the object and a size field 88
for holding a value that specifies the size of the object in
bytes. A stream__type field 90 holds a value that identifies
the media type of the associated stream.

The stream_ properties object 36 holds at least three
fields 92, 98 and 104 for holding information relating to
error concealment strategies. In general, ASF facilitates the
use of error concealment strategies that seek to reduce the
effect of losing information regarding a given sample of
media data. An example of an error concealment strategy is
depicted in FIG. 8. A sample 106 is divided into four
sections S;, S,, S; and S,. When the sample is incorporated
into packets in the ASF stream, the samples are distributed
into separate packets P,, P, P; and P, so that if any of the
packets are lost, the amount of data that is lost relative to the
sample is not as great, and techniques, such as interpolation,
may be applied to conceal the error. Each sample has a
number of associated properties that describe how big the
sample is, how the sample should be presented to a viewer,
and what the sample holds. Since the loss of the property
information could prevent the reconstruction of the sample,
the properties information for the entire sample is incorpo-
rated with the portions of the sample in the packets.

The error__concealment__strategy field 92 holds a UUID
that identifies the error concealment strategy that is
employed by the associated stream. The error__
concealment_len field 98 describes the number of bytes in
an error concealment data block that is held in the error__
concealment_data entries 104. The properties associated
with the error concealment strategy are placed in the error
concealment_data entries 104. The number of entries will
vary depending upon the error concealment strategy that is
adopted.

The stream__properties_object 36 includes a stream__
number field 100 that holds an alias to a stream instance. The
stream__properties__object 36 also includes an offset field 94
that holds an offset value to the stream in milliseconds. This
value is added to all of the timestamps of the samples in the
associated stream to account for the offset of the stream with
respect to the timeline of the program that renders the
stream. Lastly, the stream_ properties_object 36 holds a

10

15

20

25

30

35

40

45

50

55

60

65

6

type__specific_ len field 96 that holds a value that describes
the number of bytes in the type specific data entries 102.
The type__specific_data entries 102 hold properties values
that are associated with the stream type.

The header section 28 (FIG. 3) may also include a number
of optional objects 38, 40, 42, 44, 45 and 46. These optional
objects include a content__description__object 38 that holds
information such as the title, author, copyright information,
and ratings information regarding the ASF stream. This
information may be useful and necessary in instances
wherein the ASF stream 16 is a movie or other artistic work.
The content_description_ object 38 includes an object_id
field 110 and a size field 112 like the other objects in the
header section 28. A title_ len field 114 specifies the size in
bytes of the title entries 119 that hold character data for the
title of the ASF stream 16. An author_ len field 115 specifies
the size in bytes of the author entries 120 which hold the
characters that specify the author of the ASF stream 16. The
copyright_len field 116 holds the value that specifies the
length in bytes of the copyright entries 121 that hold
copyright information regarding the ASF stream 16. The
description_ len field 117 holds a value that specifies the
length in bytes of the description entries 122. The descrip-
tion entries 122 hold a narrative description of the ASF
stream 16. Lastly, the rating len field 118 specifies a size in
bytes of the rating entries 123 that hold rating information
(e.g., X, R, PG-13) for the ASF stream content.

The header section 28 may include a marker object 40.
The marker_object 40 holds a pointer to a specific time
within the data section 30. The marker object enables a
user to quickly jump forward or backward to specific data
points (e.g., audio tracks) that are designated by markers
held within the marker object 40.

FIG. 10A shows the marker object 40 in more detail. The
marker _object 40 includes an object_id field 126 that holds
a UUID, and a size field 128 specifies the size of the
marker object in bytes. A marker id field 130 contains a
UUID that identifies the marker data strategy, and a num__
entries field 132 specifies the number of marker entries in the
marker__object 40. An entry__alignment field 134 identifies
the byte alignment of the marker data, and a name__len field
136 specifies how many Unicode characters are held in the
name field 138, which holds the name of the marker__object
40. Lastly, the marker data field 140 holds the markers in
a table. Each marker has an associated entry in the table.

FIG. 10B shows the format of a marker entry 141 such as
found in the marker data field 140. An offset field 142 holds
an offset in bytes from the start of packets in the data__object
47 indicating the position of the marker entry 141. A time
field 144 specifies a time stamp for the marker entry 141. An
entry__len field 146 specifies the size of an entry_data field
148, which is an array holding the data for the marker entry.

The header section 28 may also include an error
correction__object 42 for an error correction method that is
employed in the ASF stream. Up to four error correction
methods may be defined for the ASF stream 16 and, thus, up
to four error correction_objects 42 may be stored within
the header section 28 of the ASF stream 16. FIG. 11 depicts
the format of the error correction object 42.

The error_ correction_ object 42 includes an object id
field 150 and a size field 152, like those described above for
the other objects in the header section 28. The error
correction__object 42 also includes an error__correction__id
154 that holds UUID that identifies the error correcting
methodology associated with the object 42. The error
correction__data_ len field 156 specifies the length in bytes

US 6,836,791 B1

7

of the error__correction__data entries 158 that hold octets for
error correction. The error_ correction_ object 42 is used by
the destination computer 12 (FIG. 1) in playing the ASF
stream 16.

FIG. 12 depicts a flowchart of how error correcting may
be applied in the preferred embodiment of the present
invention. In particular, an error correction methodology
such as an N+1 parity scheme, is applied to one or more
streams within the ASF stream 16 (step 160 in FIG. 12).
Information regarding the error correcting methodology is
then stored in the error_correction_object 42 within the
header section 28 (step 162 in FIG. 12). The source com-
puter then accesses the error correcting methodology infor-
mation stored in the error correction_ object 42 in playing
back the ASF stream 16 (step 164 in FIG. 12). Error
correcting data is stored in the interleave_ packets 48.

The header section 28 of the ASF stream 16 may also hold
a clock_object 44 that defines properties for the timeline for
which events are synchronized and against which multime-
dia objects are presented. FIG. 13 depicts the format of the
clock__object 44. An object_ID field 166 holds a UUID to
identify the object, and a size field 168 identifies the size of
the clock object 44 in bytes. A packet_clock type field
170 identifies the UUID of the clock type that is used by
the object. A packet_clock size field 172 identifies the
clock size. Aclock_specific_ len field 174 identifies the size
and bytes of the clock_specific data field 176 which con-
tains clock-specific data. The clock type alternatives include
a clock that has a 32-bit source value and a 16-bit duration
value, a clock type that has a 64-bit source value and a 32-bit
duration value and a clock type that has a 64-bit source value
and a 64-bit duration value.

The ASF stream 16 enables script commands to be
embedded as a table in the script command_object 45.
This object 45 may be found in the header section 28 of the
ASF stream 16. The script commands ride the ASF stream
16 to the client where they are grabbed by event handlers
and executed. FIG. 14A illustrates the format of the script__
command__object 45. Like many of the other objects in the
header section 28, this object 45 may include an object_ID
field 178 for holding a UUID for the object and a size field
180 for holding the size in bytes of the object. A command__
ID field 182 identifies the structure of the command entry
that is held within the object.

The num__commands field 184 specifies the total number
of script commands that are to be executed. The num__types
field 186 specifies the total number of different types of
script__command types that have been specified. The type__
names field 188 is an array of type_names_struc data
structures. FIG. 14B depicts the format of this data structure
192. The type_name_len field 194 specifies the number of
Unicode characters in the type_names field 196, which is a
Unicode string array holding names that specify script
command types.

The command__entry field 190 identifies what commands
should be executed at which point in the timeline. The
command__entry field 190 is implemented as a table of
script commands. Each command has an associated
command__entry element 198 as shown in FIG. 14C. Each
such element 198 has a time field 200 that specifies when the
script command is to be executed and a type field 202 that
is an index into the type_ names array 196 that identifies the
start of a Unicode string for the command type. A parameter
field 204 holds a parameter value for the script command
type.

The script commands may be of a URL type that causes
a client browser to be executed to display an indicated URL.

10

15

20

25

30

35

40

45

50

55

60

65

8

The script command may also be of a file name type that
launches another ASF file to facilitate “continuous play”
audio or video presentations. Those skilled in the art will
appreciate that other types of script commands may also be
used.

The header section 28 of the ASF stream 16 may also
include a codec_ object 46. The codec_ object 46 provides
a mechanism to embed information about a codec depen-
dency that is needed to render the data stream by that codec.
The codec object includes a list of codec types (e.g. ACM or
ICM) and a descriptive name which enables the construction
of a codec property page on the client. FIG. 15A depicts the
format of a codec__object 46. The object_id field 206 holds
a UUID for the codec_object 46 and the size field 208
specifies the size of the object 46 in bytes. The codec_ ID
field 210 holds a UUID that specifies the codec_type used
by the object. The codec_entry len field 212 specifies the
number of CodecEntry entries that are in the codec_ entry
field 214. The codec_entry field 214 contains codec-specific
data and is an array of CodecEntry elements.

FIG. 15B depicts the format of a single CodecEntry
element 216 as found in the codec__entry field 214. A type
field 218 specifies the type of codec. A name field 222 holds
an array of Unicode characters that specifies the name of the
codec and a name len field 220 specifies the number of
Unicode characters in the name field. The description field
226 holds a description of the codec in Unicode characters
and the description_len field 224 specifies the number of
Unicode characters held within the description field. The
cbinfo field 230 holds an array of octets that identify the type
of the codec and the cbinfo_ len field 228 holds the number
of bytes in the cbinfo field 230.

As mentioned above, the data section 30 follows the
header section 28 in the ASF stream 16. The data section
includes a data object 47 and interleave packets 48. A
data_ object 47 marks the beginning of the data section 30
and correlates the header section 28 with the data section 30.
The packets 48 hold the data payloads for the media stream
stored within the ASP stream 16.

FIG. 16 depicts the format of the data object 46. Like
other objects in the ASF stream 16, data_ object 46 includes
an object__id field 232 and a size field 234. The data_ object
46 also includes a multimedia stream id field 236 that
holds a UUID for the ASF stream 16. This value must match
the value held in the multimedia stream id field 60 in the
properties__object 34 in the header section 28. The data__
object 46 also includes a num__packets field 238 that speci-
fies the number of interleave packets 48 in the data section
30. An alignment field 240 specifies the packing alignment
within packets (e.g., byte alignment or word alignment), and
the packet_alignment field 242 specifies the packet packing
alignment.

Each packet 48 has a format like that depicted in FIG. 17.
Each packet 48 begins with an initial _structure 244. The
format of the initial structures 244 depends upon whether
the first bit held within the structure is set or not. FIG. 18A
depicts a first format of the initial structure 244 when the
most significant bit is cleared (i.e., has a value of zero). The
most significant bit is the error__correction__present flag 270
that specifies whether error correction information is present
within the initial _structure 244 or not. In this case, because
the bit 270 is cleared, there is no error correction information
contained within the initial _structure 244. This bit indicates
whether or not error correction is used within the packet. The
two bits that constitute the packet len type field 272
specify the size of the packet len field 256, which will be

US 6,836,791 B1

9

described in more detail below. The next two bits constitute
the padding len_type field 274 and specify the length of
the padding len field 260, which will also be discussed in
more detail below. The next two bits constitute the
sequence_type field 276 and specify the size of the
sequence field 258. The final bit is the multiple payloads
present flag 278 which specifies whether or not multiple
payloads are present within the packet. Avalue of 1 indicates
that multiple media stream samples (i.e., multiple payloads)
are present within the packet.

FIG. 18B depicts the format of the initial _structure 244
when the error__correction__present bit is set (ie., has a value
of 1). In this instance, the first byte of the initial structure
244 constitutes the ec_ flag field 280. The first bit within the
ec_ flag field is the error__correction__present bit 270, which
has been described above. The two bits that follow the
error__correction__present bit 270 constitute the error
correction_len_ type field 284 and specify the size of the
error__correction_data_ len field 290. The next bit consti-
tutes the opaque data flag 286 which specifies whether
opaque data exists or not. The final four bits constitute the
error__correction_data_length field 288. If the error
correction_len_type field 284 has a value of “00” then the
error__correction_data_ length field 288 holds the error
correction__data_ len value and the error_ correction
data_ len field 290 does not exist. Otherwise this field 288
has a value of “0000.” When the error_ correction_ data__
len field 290 is present, it specifies the number of bytes in the
error__correction__data array 292. The error_ correction
data array 292 holds an array of bytes that contain the actual
per-packet data required to implement the selected error
correction method.

The initial _structure 244 may also include opaque data
300 if the opaque__data bit 286 is set. The initial structure
includes a byte of flags 302. The most significant bit is a
reserved bit 304 that is set to a value of “0.” The next two
bits constitute the packet len type field 306 that indicate
the size of the packet len field 256. The next subsequent
two bits constitute the padding len_ type field 272 that
indicate the size of the padding len field 274. These two
bits are followed by another 2-bit field that constitutes the
sequence_type of field 276 that specifies the size of the
sequence field 258. The last bit is the multiple_payloads__
present bit 278 that specifies whether are not multiple
payloads are present.

The initial _structure 244 is followed by a stream_ flag
field 246 that holds a byte consisting of four 2-bit fields. The
first two bits constitute a stream__id_ type field 248 that
specifies the size of the stream_id field 314 within the
payload_struc 266. The second most significant bits con-
stitute the object__id__type field 250 and indicate the number
of bits in the object id field 316 of the payload struc 266
as either 0-bits, 8-bits, 16-bits or 32-bits. The third most
significant two bits constitute the offset type field 252,
which specifies the length of the offset field 318 within the
payload__struc 266 as either 0-bits, 8-bits, 16-bits or 32-bits.
The least two significant bits constitute the replicated
data_ type field 254 and these bits indicate the number of
bits that are present for the replicated data_len field 320 of
the payload__struc 266.

The packet 48 also includes a packet_len field 256 that
specifies the packet length size. The sequence field 258
specifies the sequence number for the packet. The padding
len field 260 contains a number that specifies the number of
padding bytes that are present at the end of the packet to pad
out the packet to a desirable size.

The packet 48 also contains a clock data field 262 that
contains data representing time information. This data may

10

15

20

25

30

35

40

45

50

55

60

65

10

include a clock license that contains a system clock refer-
ence that drives the progression of the time line under the
timing model and a duration that specifies the effective
duration of the clock license. The duration field limits the
validity of the license to a time specified in milliseconds.
Under the model adopted by the preferred embodiment of
the present invention, the source computer 10 issues a clock
license to the destination computer 12 that allows the clock
of the destination computer 12 to progress forward for a
period of time. The progression of time is gated by the
arrival of a new piece of data that contains a clock value with
a valid clock license that is not expired.

The packet 48 also includes a payload flag field 264 that
specifies a payload length type and a designation of the
number of payloads present in the packet. The payload_ flag
field 264 is followed by one or more payload_strucs 266.
These structures contain payload information which will be
described in more detail below. The final bits within the
packet 48 may constitute padding 268.

FIG. 19 depicts the payload__struc 266 in more detail. The
stream__id field 314 is an optional field that identifies the
stream type of the payload. The object_id field 316 may be
included to hold an object identifier. An offset field 318 may
be included to specity an offset of the payload within the
ASF stream. The offset represents the starting address within
a zero-address-based media stream sample where the packet
payload should be copied.

The payload_ struc 266 may also include a replicated
data_len field 320 that specifies the number of bytes of
replicated data present in the replicated_data field 322. As
was discussed above, for protection against possible errors,
the packet 48 may include replicated data. This replicated
data is stored within the replicated_data field 322.

The payload len field 323 specifies the number of pay-
load bytes present in the payload held within the payload
data field 325. The payload_ data field 326 holds an array of
payloads (i.e., the data).

The ASF stream may also include an index_object 49 that
holds index information regarding the ASF stream 16. FIG.
20 depicts the format of the index_ object 49. The index__
object includes a number of index entries. The index object
49 includes an object_id field 324 and a size field 326. In
addition, the index_ object 49 includes an index_id field
328 that holds a UUID for the index type. Multiple index
name__entries may be stored depending on the number of
entries required to hold the characters of the name. For
example, each entry may hold 16 characters in an illustrative
embodiment.

The index object includes a time delta field 330 that
specifies a time interval between index entries. The time
represents a point on the timeline for the ASF stream 16. A
max_ packets field 332 specifies a maximum value for
packet__count fields, which will be described in more detail
below. A num__entries field 334 is a 32-bit unsigned integer
that describes the maximum number of index entries that are
defined within the index_ info array 336. This array 336 is
an array of index__information structures. Each index__info
structure holds a packet field that holds a packet number
associated with the index entry and a packet count field
specifies the number of the packet to send with the index
entry so as to associate the index entries with the packets. In
FIG. 21, the index__info array structure 336 holds N index__
information structures and each index information struc-
ture has a packet field 338 A—338N and a packet__count field
340A-340N.

While the present invention has been described with
reference to a preferred embodiment thereof, those skilled in

US 6,836,791 B1

11

the art will appreciate that various changes in form and detail
may be made without departing from the intended scope of
the invention as defined in the appended claims. For
example, the present invention may be practiced with a
stream format that differs from the format described above.
The particulars described above are intended merely to be
illustrative. The present invention may be practiced with
stream formats that include only a subset of the above-
described fields or include additional fields that differ from
those described above. Moreover, the length of the values
held within the fields and the organization of the structures
described above are not intended to limit the scope of the
present invention.

What is claimed is:

1. In a computer system having a source computer and a
destination computer having a clock that regulates timing of
activities at the destination computer, a method comprising
the steps of:

providing a logical structure for encapsulating multiple

streams of data; wherein:

said streams of data are being stored in packets; and

the logical structure holds a field for a maximum packet
size and a field for a minimum packet size;

storing clock licenses that dictate advancement of a clock

in multiple ones of the packets;

transmitting the logical structure from the source com-

puter to the destination computer; and

for each packet that holds a clock license, advancing the

clock at the destination computer as dictated by the
clock license in response to receiving the packet at the
destination computer.

2. The method as defined in claim 1, wherein the multiple
streams of data in the logical structure are Active Stream
Format (ASF) data streams.

3. The method as defined in claim 1, wherein the logical
structure holds a field for a maximum bit rate at which the
multiple streams of data may be rendered at the destination.

4. The method as defined in claim 1, wherein:

the logical structure holds a field for a new media type;

and

the method further comprises:

accessing the field that identifies the new media type,

upon receipt of the logical structure by the destination
computer to determine a renderer to use to render data
of new media type.

5. In a computer system, a computer-readable storage
medium holding a logical structure that encapsulates com-
ponents comprising:

multiple streams of data wherein the streams of data are

stored in packets;

clock licenses that each dictate advancement of a clock

that regulates rendering of the data in the packets; and

a field in the logical structure for holding a value that

specifies a maximum bit rate at which the multiple
streams of data may be rendered.

6. The computer-readable storage medium as defined in
claim 5, wherein the logical structure that encapsulates
components further comprises a maximum packet size and
a minimum packet size.

7. The computer-readable storage medium as defined in
claim 5, wherein the multiple streams of data in the logical
structure are Active Stream Format (ASF) data streams.

8. The computer-readable storage medium as defined in
claim 5, wherein:

the streams of data stored in packets are of a new media

type; and

10

15

20

25

30

35

40

45

50

55

60

65

12

the new media type can be used to determine a renderer
to use to render data of new media type.

9. A data processing system comprising:

a source computer with a storage;

a logical structure stored in the storage for encapsulating
multiple data streams, data from said data streams
being incorporated in packets, wherein:
the data stored in the packets are of a new media type;
the logical structure stores an identifier for the new

media type; and
the identifier can be used to determine a renderer to use
to render data of new media type;
a clock license being encapsulated into at least one packet
for advancing a clock at a destination when processed
at the destination.
10. The data processing system as defined in claim 9,
wherein the logical structure holds a field for a maximum
packet size and a field for a minimum packet size.
11. The data processing system as defined in claim 9,
wherein the multiple streams of data in the logical structure
are Active Stream Format (ASF) data streams.
12. The data processing system as defined in claim 9,
wherein the logical structure holds a value that specifies a
maximum bit rate at which the multiple streams of data may
be rendered.
13. In a computer system having a source computer and
a destination computer having a clock that regulates timing
of activities at the destination computer, a method compris-
ing the steps of:
providing a logical structure for encapsulating multiple
streams of data, said streams of data being stored in
packets, by:
storing samples of data from multiple data streams in
the packets;

storing replicas of information in at least some of the
packets;

storing error correcting data in the at least some of the
packets, wherein the error correcting data identifies
an error correcting method for the at least some of
the packets;

setting a flag in the packets that hold the replicas;

storing in the logical structure a field for a maximum
packet size and a field for a minimum packet size;
and

encapsulating the packets into the logical structure,
wherein at least some of the packets hold the repli-
cas;

storing clock licenses that dictate advancement of a clock
in multiple ones of the packets;

transmitting the packets of the logical structure on a
packet-by-packet basis over a packet switched network
from the source computer to the destination computer;
and

for each packet that holds a clock license, advancing the
clock at the destination computer as dictated by the
clock license in response to receiving the packet at the
destination computer.

14. The method of claim 13 wherein each clock license
includes a time value to which the clock at the destination
computer is to be advanced.

15. The method of claim 14 wherein each clock license
includes an expiration time after which the clock license is
invalid.

16. The method as defined in claim 13, wherein the
replicas of information hold property information regarding
the samples of data.

US 6,836,791 B1

13

17. The method of claim 13 wherein portions of a sample
are stored in selected packets and a replica of property
information regarding the sample is stored in each packet in
which a portion of the sample is stored.

18. The method of claim 13, further comprising the step
of examining one of the replicas of information at the
destination computer when one of the packets is lost during
the transmitting.

19. The method of claim 13, further comprising using the
error correcting data in the at least some of the packets to
correct an error when the transmitted logical structure is
received at the destination.

20. The method of claim 13, wherein:

the logical structure includes a header section and a data

section; and

the error correcting data is stored in multiple packets in

the data section.

21. The method of claim 20, wherein information in the
header section of the logical structure indicates what error
correcting methodology is used with the error correcting
data stored in the multiple packets in the data section.

22. The method of claim 20, wherein the header section
holds information regarding multiple error correcting meth-
ods.

23. The method of claim 13, wherein the error correcting
data identifies one of a plurality of error correcting methods.

24. The method of claim 13, wherein the error correcting
data holds parity bits.

25. The method as defined in claim 13, wherein the
multiple streams of data in the logical structure are Active
Stream Format (ASF) data streams.

26. The method as defined in claim 13, further comprising
including a field in the logical structure for holding a value
that specifies a maximum bit rate at which the multiple
streams of data may be rendered at the destination computer.

27. The method as defined in claim 13, wherein further
comprising:

dynamically defining a new media type for a stream

format of the multiple streams of data;
storing in the logical structure an identifier of the new
media type that adopts the stream format; and

accessing, at the destination computer, the identifier of the
new media type to identify a renderer to use to render
data of new media type.

28. The method as defined in claim 13, wherein:

the multiple streams of data in the logical structure are

Active Stream Format (ASF) data streams; and

the method further comprising:

including a field in the logical structure for holding a
value that specifies a maximum bit rate at which the
multiple streams of data may be rendered at the
destination computer;

dynamically defining a new media type for a stream
format of the multiple streams of data;

storing in the logical structure an identifier of the new
media type that adopts the stream format; and

accessing, at the destination computer, the identifier of
the new media type to identify a renderer to use to
render data of new media type.

29. In a computer system, a computer-readable storage
medium holding a logical structure that encapsulates com-
ponents comprising:

multiple streams of data wherein the streams of data are

stored in packets;

a field in the logical structure that holds a value that

specifies a maximum bit rate at which the multiple
streams of data may be rendered; and

10

15

20

25

30

35

40

45

50

55

60

65

14

clock licenses that each dictate advancement of a clock

that regulates rendering of the data in the packets,

wherein:

the streams of data stored in the packets are samples of
data from multiple data streams in packets for trans-
mission on a packet-by-packet basis over a packet
switched network;

replicas of information are stored in at least some of the
packets;

error correcting data is stored in the at least some of the
packets;

the error correcting data identifies an error correcting
method for the at least some of the packets; and

a flag is stored in each said packet that holds the
replicas.

30. The computer-readable storage medium of claim 29
wherein each clock license includes a time value to which
the clock at the destination computer is to be advanced.

31. The computer-readable storage medium of claim 30
wherein each clock license includes an expiration time after
which the clock license is invalid.

32. The computer-readable storage medium of claim 29
wherein portions of a sample are stored in selected packets
and a replica of property information regarding the sample
is stored in each packet in which a portion of the sample is
stored.

33. The computer-readable storage medium as defined in
claim 29, wherein:

the logical structure includes a header section and a data

section, and

the error correcting data is stored in multiple packets in

the data section.

34. The computer-readable storage medium as defined in
claim 33, wherein the information in the header section of
the logical structure indicates what error correcting meth-
odology is used with the error correcting data stored in the
multiple packets in the data section.

35. The computer-readable storage medium as defined in
claim 34, wherein the header section holds information
regarding multiple error correcting methods.

36. The computer-readable storage medium as defined in
claim 29, wherein the error correcting data identifies a
plurality of error correcting methods.

37. The computer-readable storage medium as defined in
claim 29, wherein the error correcting data holds parity bits.

38. The computer-readable storage medium as defined in
claim 29, wherein the logical structure that encapsulates
components further comprises a field for a maximum packet
size and a field for a minimum packet size.

39. The computer-readable storage medium as defined in
claim 29, wherein the multiple streams of data in the logical
structure are Active Stream Format (ASF) data streams.

40. The computer-readable storage medium as defined in
claim 29, wherein:

the logical structure that encapsulates components further

comprises a field for a new media type for the streams
of data stored in the packets; and

the new media type identifies a renderer to use to render

data of new media type.

41. The computer-readable storage medium as defined in
claim 29, wherein:

the logical structure that encapsulates components further

comprises:

a field for a maximum packet size and a field for a
minimum packet size; and

a field for a new media type for the streams of data
stored in the packets

US 6,836,791 B1

15

the multiple streams of data in the logical structure are
Active Stream Format (ASF) data streams; and

the new media type identifies a renderer to use to render
data of new media type.
42. A data processing system comprising:

a source computer with a storage;

a logical structure stored in the storage for encapsulating
multiple data streams, data from said data streams
being of a new media type and incorporated in packets,
wherein the logical structure includes an identifier of
the new media type from which a renderer can be
determined to render the data of the new media type;
and

a clock license being encapsulated into at least one packet
for advancing a clock at a destination when processed
at the destination, wherein:
the streams of data stored in the packets are samples of
data from multiple data streams in the packets for
transmission on a packet-by-packet basis over a
packet switched network;

replicas of information are stored in at least some of the
packets;

error correcting data is stored in the at least some of the
packets;

the error correcting data identifies an error correcting
method for the at least some of the packets; and

a flag is stored in each said packet that holds the
replicas.

43. The data processing system as defined in claim 42,

wherein:

the logical structure includes a header section and a data
section, and

the error correcting data is stored in multiple packets in

the data section.

44. The data processing system as defined in claim 43,
wherein information in the header section of the logical
structure indicates what error correcting methodology is
used with the error correcting data stored in the multiple
packets in the data section.

45. The data processing system as defined in claim 44,
wherein the header section holds information regarding
multiple error correcting methods.

10

15

20

25

30

35

40

16

46. The data processing system as defined in claim 42,
wherein the error correcting data identifies a plurality of
error correcting methods.

47. The data processing system as defined in claim 42,
wherein the error correcting data holds parity bits.

48. The data processing system as defined in claim 42,
wherein the logical structure includes a field for a maximum
packet size and a field for a minimum packet size.

49. The data processing system as defined in claim 42,
wherein the multiple streams of data in the logical structure
are Active Stream Format (ASF) data streams.

50. The data processing system as defined in claim 42,
wherein the logical structure includes a field for holding a
value that specifies a maximum bit rate at which the multiple
streams of data may be rendered.

51. A data processing system comprising:

a source computer with a storage;

a logical structure stored in the storage for encapsulating

multiple data streams, wherein:

the data from said data streams is incorporated in
packets; and

the multiple streams of data in the logical structure are
Active Stream Format (ASF) data streams; and

a clock license being encapsulated into at least one packet

for advancing a clock at a destination when processed

at the destination, wherein portions of a sample are

stored in selected packets and a replica of property

information regarding the sample is stored in each

packet in which a portion of the sample is stored.

52. The data processing system as defined in claim 51,
wherein the logical structure includes a field for a maximum
packet size and a field for a minimum packet size.

53. The data processing system as defined in claim 51,
wherein the logical structure includes a field for holding a
value that specifies a maximum bit rate at which the multiple
streams of data may be rendered.

54. The data processing system as defined in claim 51,
wherein the logical structure includes a field for an identifier
of a new media type for the data from said data streams
incorporated in the packets and from which a renderer can
be determined to render the data of the new media type.

#* #* #* #* #*

