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[57] ABSTRACT 

The invention disclosed herein is a system and method 

for comprehensive, non-invasive pro?ling of a proces 
sor whereby feedback is provided to a programmer of 

the execution dynamics of a program. In a preferred 
embodiment a partial real-time reduction is provided of 
selected trace events employing the environment’s trace 
facility, and a post-processing function is then per 
formed. A trace hook is provided in the environment’s 
periodic clock routine which captures the address to be 
returned to following this timer’s interrupt, and further 
captures the address of the caller of the routine repre 
sented by the ?rst address. The frequency of occur 
rences of the ?rst address is collected and correlated to 

various virtual address spaces and corresponding sub 
routine offsets within those virtual address spaces. By 
employing the assembly and source code listing of pro 
grams, the address frequencies are then correlated back 

to specific instructions, and from information in the 
assembly listing accumulated time is further correlated 
against speci?c lines of source code. A pro?le is gener 
ated indicating the amount of time spent by the proces 
sor in various processes, kernel, shared library, and user 
spaces, and subroutines correlated to the lines of source 

code for negligible additional processor run time. 

3 Claims, 5 Drawing Sheets 
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NON-INVASIVE TRACE-DRIVEN SYSTEM AND 
METHOD FOR COMPUTER SYSTEM PROFILING 

This is a continuation of application Ser. No. 

07/662,521 ?led Feb. 28, 1991, now abandoned. 

FIELD OF THE INVENTION 

This invention relates to technology for pro?ling 
processor execution time in computer systems, and, 
more particularly, relates to systems and methods for 
trace-driven pro?ling. 

BACKGROUND OF THE INVENTION 

In order to improve performance of code generated 
by various families of computers, it is often necessary to 
determine where time is being spent by the processor in 
executing code, such efforts being commonly known in 
the computer processing arts as locating “hot spots”. 
Ideally one would like to isolate such hot spots at the 
instruction and/or source line of code level in order to 

focus attention on areas which might bene?t most from 

improvements to the code. 
For example, isolating such hot spots to the instruc 

tion level permits compiler writers to ?nd signi?cant 
areas of suboptimal code generation, whereby they may 
thus focus their efforts to improve code generation 
ef?ciency in these areas. Another potential important 
use of instruction level detail is to provide guidance to 
the designer of future systems. Such designers with 
appropriate pro?ling tools may ?nd characteristic code 
sequences and/or single instructions requiring improve 
ment to optimize the available hardware for a given 
level of hardware technology. 

In like manner, isolating hot spots to the source line 
of code level would provide the level of detail neces 
sary for an application developer to make algorithmic 
tradeoffs. A programmer’s a priori guesses about where 
a program is spending signi?cant time executing are 
frequently wrong for numerous reasons. First the pro 

grammer seldom has a comprehensive understanding of 
the complex dynamics of the hardware and software 
system. Secondly, the compiler itself often does not 
generate code that corresponds to the programmer’s 
assumptions. It was accordingly highly desirable to 
provide a system for feeding back information to the 
programmer about the execution dynamics of a pro 

gram in terms that the programmer could easily under 
stand. 

Thus various methods had been developed for moni 
toring aggregate CPU usage known as “pro?ling”. One 
approach was to simply add instructions to the program 
being analyzed to enable it to essentially assess itself. 
This however introduces the undesirable characteristic 
of invasiveness wherein the possibility arose that neces 

sary changes for pro?ling may introduce changes to the 
dynamics of the very thing one is attempting to mea 
sure. Yet another approach to providing for pro?ling 
was to develop external specialized hardware monitors. 
However, this approach also entailed numerous draw 
backs, not the least of which was the expense associated 

with development of such specialized hardware and 
questions of feasibility in even doing so. 

In some environments, the need for such pro?ling 
was particularly acute and yet was not satis?ed by the 

existing methods due to the unique characteristics of the 
environments. An example of such an environment is 
the RISC System/ 6000 TM line of computers operating 

25 

30 

40 

45 

50 

55 

60 

65 

2 
the AIX TM Operating System of the IBM Corporation 
(RISC/6000 and AIX are trademarks of the Interna 
tional Business Machines Corporation). A more detailed 
description of this hardware and software is provided in 
“IBM RISC System/6000 Technology”, ?rst edition 
1990, publication SA23-26l9, IBM Corporation. 
One speci?c attempt at providing pro?ling for such 

environments was a system known in the art as 

“Gprof”, described in the article “Gprof: A Call Graph 
Execution Pro?ler”, Proc. ACM SIGPLAN Sympo 
sium on Compiler Construction, June, 1982, by S. L. 
Graham, P. B. Kessler, and M. K. McKusick. Several 
problems were associated with this pro?ling system. 
First there was no shared library support, thus requiring 
the compilation of program with exclusively non 
shared libraries. The system did not provide support for 
the simultaneous pro?ling multiple processes, all pro 
cesses which could be run had to be recompiled for 

routine-level pro?ling, the system was invasive (e.g. 
modi?ed the executable code to be pro?led), and re 

quired dedicating to pro?ling additional memory ap 
proximately half of the space of the program to be pro 

?led. Moreover, in addition to the entire set of pro 
cesses to be pro?led having to be rebuilt in order to 

provide pro?ling, it was only capable of providing rou 
tine-level and no source statement or instruction level 

pro?ling, did not summarize all CPU usage but rather 

only that of one user program at a time, and further 

often required a substantial increase in user CPU time, 
sometimes approaching 300%, due to its invasiveness. 
For this reason other approaches were suggested for 

pro?ling in such environments including, for example, 
the PIXIE system of MIPS Computer Systems, Inc. 
described in “Compilers Unlock RISC Secrets”, ESD, 
December, 1989, pgs. 26-32, by Larry B. Weber. 

In this system the executable objects of the processes 
to be pro?led are analyzed and reconstructed with 

every atomic sequence of instructions, known in the art 
as a “basic block”, being preceded with hooks which 
emit an event reporting the beginning of execution of 
the basic block from the emitted sequence of the basic 
block. From the emitted sequence of events the fre 
quency of execution of each basic block can be main 

tained during run time. In a subject post processing step 
this frequency of occurrence is correlated to the source 

statement and routines of the program to provide execu 
tion time pro?les. 
Whereas this method offers the advantage of direct 

measurement over estimates obtained from sampling the 

program counter, it offers the disadvantages of no 
shared library support, no support of multiple pro 
cesses, requires an increase in program executable space 
by up to factor of 3 and increase in program executables 
by factors of 10 or more. 

Yet additional developments were made in pro?ling 
systems such as those outlined in the following refer 
ences: “Non-Intrusive and Interactive Pro?ling in Para 

sight”, Proc. ACM/SIGPLAN, August, 1988, pgs. 
21-30, by Ziya Aral and Ilya Gertner. In this develop 
ment, the invasiveness resulting in additional run time 
was decreased by selectively modifying code sequences 
of interest to directly measure the execution time of the 

selected code sequences and by employing an additional 
supplemental process to capture and process the run 
time measures. 

From the foregoing it will be apparent that pro?ler 
technology to support the various aforementioned envi 
ronments needed numerous improvements. Speci?cally, 
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a pro?ler was needed which would support multiple 

process and multiple user environments, shared libraries 
(dynamically loaded shared objects), kernel as well as 
user execution spaces, and kernel extensions (dynami 

cally loaded extensions to the kernel). 
Requirements which became apparent as particularly 

desirable and greatly needed in a pro?ler related to the 
characteristics of convenience and non-invasiveness. 
These two factors are strongly related as well as having 
merit in their own right. 

As an example of convenience, it was highly desirable 
to provide a pro?ling tool which would enable a user to 

very easily pro?le existing running code without requir 
ing special procedures, recompilation, relinking, or 
rebuilding. Moreover, it was further highly desirable to 
provide a pro?ling tool which was non-invasive as well. 

The comprehensive feature simply would provide for 
pro?ling of all processes and all address domains for 
each process—the kernel, kernel extensions, user, and 
shared objects. The highly desirable feature of non 
invasiveness would contemplate that executables and 
supporting environments would be virtually identical 
whether pro?ling or not, requiring no special effort in 
obtaining this equivalence. Conventional systems re 
quired modi?cation of executables in order to pro?le at 
the instruction level, for example, resulting often in 
excessive CPU and memory utilization. The importance 
of non-invasiveness is that the gathered statistics are not 
distorted and all instruction streams and referenced 
addresses are maintained. The latter is particularly im 
portant when looking for performance issues that are 
related to overuse of hardware facilities such as the 

TLB, data and instruction caches, registers, and mem 
ory. 

For all of the forgoing reasons, a pro?ling tool was 
highly desirable which could report on the aggregate 
CPU usage of all users of the environment, including all 
programs (processes) running, including the kernel, 
during execution of the user programs (as well as the 
fraction of time the CPU is idle) whereby users might 
determine CPU usage in a global sense. Such a pro?ler 

was further desired as a tool to investigate programs 

which might be CPU-bound wherein the programmer 
would ?nd it useful to know sections of the program 
which were being most heavily used by the CPU. Still 
further a pro?ler was further highly sought which 
could be run using the executable program as is without 

the need to compile with special compiler ?ags or linker 
options whereby a Subprogram pro?le could be ob 
tained of any executable module that had already been 
built. 

SUMMARY OF THE INVENTION 

The invention disclosed herein is a system and 

method for comprehensive, non-invasive pro?ling of a 
processor whereby feedback is provided to a program 
mer of the execution dynamics of a program. In a pre 

ferred embodiment a partial real-time reduction is pro 
vided of selected trace events employing the environ 
ment’s trace facility, and a post-processing function is 
then performed. A trace hook is provided in the envi 
ronment’s periodic clock routine which captures the 
address to be returned to following this timer’s inter 

rupt, and further captures the address of the caller of the 
routine represented by the ?rst address. 
The frequency of occurrences of the ?rst address is 

collected and correlated to various virtual address 

spaces and corresponding subroutine offsets within 
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4 
those virtual address spaces. By employing the assem 
bly and source code listing of programs, the address 
frequencies are then correlated back to speci?c instruc 
tions, and from information in the assembly listing accu 
mulated time is further correlated against speci?c lines 
of source code. A pro?le is generated indicating the 
amount of time spent by the processor in various pro 
cesses, kernel, shared library, and user spaces, and sub 
routines correlated to the lines of source code for negli 
gible additional processor run time. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic diagram illustrating the overall 
pro?le summary generated by the present invention. 
FIG. 2 is a schematic illustration depicting the rela 

tionship between a multiprocess, multispace computa 
tional environment and the pro?ling functions of the 
present invention. 
FIGS. 3A and 3B illustrate in sequence a ?ow dia 

gram of the pro?ling process of the present invention. 
FIG. 4 is a functional block diagram illustrating the 

real-time pro?ler processing depicted in FIG. 3 in more 
detail. 

FIG. 5 is a block diagram of a representative com 
puter system environment in which the pro?ling system 
and method of the present invention operates. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

First a detailed description will be provided of the 
pro?ling process with reference to FIGS. 1-4, followed 
by a description of a representative computer environ 
ment suitable for such pro?ling with reference to FIG. 
5. Regarding the description of the pro?ling process, 
?rst a high level description of the pro?ling output will 
be made with reference with FIGS. 1 and 2, followed 
by a detailed description of the operation of the inven 
tion with respect to the ?ow diagrams of FIGS. 3, 3A, 
3B, and 4. 

Referring ?rst to FIG. 1, depicted therein is a sche 
matic representation of an overall pro?le summary gen 
erated by the present invention. Multiple columns such 
as column 11 correspond to various processes which 

may be executed by a multiprocess computational envi 
ronment. For each such process, the pro?ler will gener 
ate a measure of total counts such as that appearing in 

location 13 which will correspond to the total counts 
collected from a periodic sampler which occur during 
execution of that particular process 11 and which are 

representative of the total CPU execution time in execu 
tion of that process. 

It will be noted in FIG. 1 that for a given process or 

column such as column 11, the total counts 13 are fur 

ther subdivided into those which occurred while the 
processor was executing in user, shared, or kernel mem 

ory address space (hereinafter referred to simply as 
“space”). A plurality of rows will be depicted in a rep 

resentative pro?le labelled in FIG. 1 as “user”, 
“shared”, and “kernel”. Thus with the foregoing in 
mind, a count appearing in box 15 for example would 
correspond to counts occurring while process 11 was 

executing in shared space, whereas the count total ap 
pearing in box 19 would correspond to those occurring 
while process 17 was executing in kernel, shared and 
user space. 

Referring now to FIG. 2, this illustration is intended 
to depict a representative multiprocess, multispace, 
multiuser computational environment such as that 
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suited for pro?ling in accordance with the teachings of 
the invention. It will be noted that hereinafter the term 
“pro?le” and “pro?ling” will be employed for brevity 
in lieu of “execution time pro?le report” and “execution 
time pro?ling”, respectively. 
The purpose of FIG. 2 is to illustrate the relationship 

between the multiprocess, multispace computational 
environment and the various capabilities of pro?ling 
provided by the subject invention. More particularly, 
the multiprocess and multispace environment is illus 
trated conceptually and generally by the rectangle 10. 
In like manner to that of FIG. 1, user space of a particu 
lar process such as process 18 is shown by the smaller 
rectangle 12. Similarly, for this same process 18, box 14 
represents a shared space accessible by each user space. 

Finally with respect to representative process 18, box 
16 is intended to depict the operating system kernel 
space which is accessible via system calls to each user 

space. Also in like manner to FIG. 1, reference numer 

als 20, 22, and 24 refer to correlative columns each 
corresponding to a different individual process, each 

such process having its own respective user, shared, and 
kernel space. 

It will be noted in FIG. 2 that a rectangle 26 encom 

passing user and shared spaces 21 and 23 of a corre 

sponding process 22 has been shown for purposes of 
discussion of prior art. In the prior art, such user and 
shared space 21 and 23 could be pro?led to the subrou 

tine level of detail. However, a separate and speci?c 
action must be taken by the individual desiring the pro 
?le for each and every such user or shared subroutine 

pro?le which was desired. In contrast, in accordance 
with the teachings of the present invention, the mecha 
nism described herein captures all of the data required 
for generation of any desired subroutine pro?le without 
any particular prior action being required. 

Still referring to FIG. 2, a subpro?le column 25 is 
shown. A subpro?le is an ordered listing of each sub 
routine within the given space. For each subroutine the 
total number of program counter samples that occurred 
within the address range of that subroutine is provided. 
The purpose of this is to schematically illustrate repre 
sentative subroutine level execution-time pro?les of the 
various spaces of the processes 18-24. Thus for exam 

ple, pro?le 30 illustrates a pro?le of user, shared, and 
kernel space corresponding to process 22, subpro?le 32 
corresponds to a similar user, shared, and kernel space 
pro?le corresponding to process 20, subpro?le 34 corre 
sponds to a pro?le of the user, shared, and kernel spaces 
corresponding to process 18, and ?nally pro?le 36 cor 
responds to a pro?ling of user, shared, and kernel spaces 
associated with process 24. 

For illustrative purposes now, attention will be fo 
cused on process 24 which corresponds, in accordance 

with FIG. 2, to spaces U4, S4, and K4 (e.g. the user, 
shared, and kernel execution spaces of process 24.) By 
the mechanisms to be herein described, a complete exe 

cution time pro?le of process 24 may be produced, 
namely the previously mentioned pro?le 36 in all of its 
execution spaces. Still referring to FIG. 2, a column 27 
captioned “source statement pro?le” is provided which 
is intended to schematically illustrate that in accordance 

with the invention, a source statement level pro?ling 

may be performed of the user space U4, for example, of 
the process 24 shown subpro?led at reference numeral 

36. This source statement level pro?le 38 means that 
each line of code in the source ?les of the user space of 

this process 24 (or any desired such process) will be 
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6 
annotated with the count representative of the CPU 
time spent executing the instructions generated for this 
line of code. " 

Referring now to. FIGS. 3A and 3B, a ?ow diagram 
is depicted illustrating a computerized process for gen 
erating the system pro?les as herein described. Several 
conventions employing graphical elements have been 
utilized in the ?gure for convenience. First, a tuple of 
data elements is denoted therein by the notation <da 
turn 1, datum 2, . . . >. Next, an intermediate table of 

tuples or a ?le of tuples is denoted in FIG. 3 by a square. 
Thirdly, a report or program listing suitable for human 
viewing is represented by a rectangle. Next, an oval is 
employed to denote a system call or system interrupt 
which has been modi?ed to produce supplemental data. 
Finally, the ?fth graphical component employed in 
FIGS. 3A and 3B is a circle which denotes a processing 

step which produces an intermediate ?le, report, or 
table. The principal contents of each intermediate ?le, 
table, or report is denoted in FIGS. 3A and 3B by a 
tuple, representing a set of unique tuples of the type 
shown. 

With continued reference to FIGS. 3A and 3B, it will 
be noted that the ?gure is conveniently divided into two 
areas separated by line 44 which are denoted as “run 

time processing” 40, and “post processing” 42. With 
respect to the run time processing 40 portion of FIG. 3, 
a block 46 is included which is intended to represent the 
additional detail provided in FIG. 4 to be hereinafter 
discussed. 

Starting at the top of FIG. 3A in describing ?rst the 
run time processing 40, an initialized step 52 produces a 

table of currently active processes consisting of process 
id and program name. This step is more fully described 
hereinafter with reference to FIG. 4. The data neces 

sary to produce an intermediate ?le 37 is maintained 

during run time processing 40 by system processes fork 
56 and exec 58. The fork 56 creates a new process id 

with the same name as the process which executed the 

fork. Exec 58 assigns a new name to a currently active 

process. As each new <process id, program name> 
tuple is created by either fork 56 or exec 58, it is retained 
in order to eventually produce the table 37. 
By means of instrumentation placed in the system 

central processing unit dispatcher, the current process 
id is maintained. The AIX Operating System has a dis 
patcher software function. Following any interruption 
in sequence ?ow of running process, this dispatcher is 
invoked in order to start the appropriate process. This 
interruption might be due to l) the running process 
blocking on an input/output request, 2) the termination 
of a CPU scheduling quantum, or 3) an external inter 

rupt signal. At the time of dispatching a process, the 
dispatcher code 54 executes an AIX trace hook captur 

ing the process id of the newly initiated process. Fur 
ther, by means of instrumentation placed in the periodic 
system interrupt (pro?le 50 shown in run time process 

ing component 40), the value of the program counter, 
denoted by the tuple <space id address> is captured. 
Further, by means of instrumentation placed in the 
system process dispatcher (pro?le 54 is shown in run 
time processing component 40), the current process id is 
maintained. Processing steps denoted in FIG. 4 combine 
the <current process id> and <space id, address> 
tuples and maintain the data necessary to produce the 

intermediate ?le 60, consisting of <process id, space id, 
address, count>. “Count” in the preceding tuple is the 
number of occurrences of <process id, space id, ad 
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dress> and denotes the number of times the program 
counter was sampled executing at “address” in “space 
id” for the process denoted by “process id”. At the 
completion of the run time pro?ling interval 40, the 
intermediate ?les 60 and 37 shown in FIG. 3A are writ~ 
ten. 

Continuing to refer to FIG. 3A, and, more particu 
larly, to the post processing 42 portion of the system 
and method of the invention, a processing step 39 will 
then merge together the intermediate table or ?les 60 
and 37 in order to obtain the table 41 of <process id, 

space id, program name, address, count> tuples. 
A report ,31 is produced which sums the counts 

which are representative of the CPU time consumed in 
the system. Such a count is reported for each <process 

id, space id, and program name>. Report 31 is pro 
duced by processing step 29, which coalesces the tuples 
comprising the intermediate ?le 41 by summing to 
gether all counts associated with unique <process id, 
space id, program name> tuples over all address values 
encountered. 

With continued reference to FIGS. 3A and 3B, next 
the processing steps will be described which are re~ 

quired to produce a set of reports 55 in which counts for 
every subprogram of a program are reported. The pro 
cessing step 45 is employed to examine any program 
executables 43 selected for pro?ling and determines the 
address boundaries of subprogram elements within each 
executable. This step is accomplished by use of operat 
ing system utilities such as the “nm” command well 
known in the art in UNIX-based operating systems as 
well as by employing specialized programs written 
which postprocess the operating system state in order to 
resolve the address spaces of the dynamically loaded 
shared library and kernel extensions. These specialized 
programs access the memory area of the AIX operating 

system that contains the location of dynamically loaded 
modules. 

Each such program executable has associated with it 
a program name and space id. For each subprogram in 

a program executable there exists a starting address and 

ending address. Processing step 45 examines executa 
bles to obtain for each executable the tuples <space id, 
program name, subprogram name, subprogram begin 
ning address, subprogram ending address>, which 
form an intermediate ?le 47. 

A processing step 49 is then performed which con 
sists of appending to each tuple in the previously noted 
intermediate ?le 41 its corresponding subprogram name 
and relative address. The relative address is the dis 
placement beyond a subprogram starting address, and is 
calculated from the program address from intermediate 
?le 41 and the subprogram beginning address from 
intermediate ?le 47. The resulting intermediate ?le 51 
consists of <process id, space id, program name, rela 
tive address, count> and is denoted at reference nu 
meral 51. 

A summary of reports 55 is produced in the process 
consisting of counts representing the amount of CPU 
time consumed by subprograms, and is produced for 
every <process id, space id, program name> 'tuple by 
processing step 53. This processing step 53 sums the 
counts for the tuples <process id, space id, program 
name, subprogram name, relative address, count> 
across all values of “relative address”. 

Next, the processing steps will be described which 
are required to obtain an annotated source code listing 

of programs selected for more detailed pro?ling in ac 
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cordance with the invention. An annotated source code 
listing is a program source code listing in which the 
counts representative of the CPU time consumed by 
execution of the machine instructions generated by each 
line of source code is reported. As an intermediate step, 
an annotated assembly code listing for each program 
selected for more detailed pro?ling is ?rst constructed. 
As shown in FIG. 3, a processing step 59 is performed 
which is a compilation of a program source listing 57 in 
order to obtain assembly code listings 61 of the pro 
gram. A source code listing of a program is represented 

by the tuples < program name, subprogram name, 
source line of code number, source line of code text>. 
The assembly code listing is represented by the tuples 
<program name, subprogram name, source line of code 

number, assembly line of code number, relative address, 
assembly line of code text>. 
For tuples of intermediate ?le 61 which match the 

tuples of intermediate ?le 51 for the elements <pro 
gram name, subprogram name, relative address>, pro 
cessing step 63 appends the data <line of source code 
number, count> to form an annotated assembly listing 
consisting of <program name, subprogram name, line 
of source code number, line of assembler code number, 
relative address, assembler line of code text, count> 
which comprises report 65. An annotated source code 
listing is obtained from step 69 by summing all counts in 
intermediate ?le 65 corresponding to the identical 
<program name, line of source code number> and 
appending the sum to the source listing of the program 
57. The annotated source listing 71 consists of the tuples 
<program name, subprogram name, line of code num 
ber, line of code text, count>. 

Referring now to FIG. 4, depicted therein is a more 
detailed illustration of the steps employed in generating 
the real-time portion of the pro?ling of the present 
invention. The procedure 104 begins when a user in~ 

vokes the pro?ler and speci?es the pro?ling measure 
ment interval. This processing step in turn invokes the 
trace facility process 100 of the operating system. When 
the trace facility process 100 is turned on, a speci?c 
subset of all the AIX trace facility hooks are activated. 

These hooks result in a corresponding set of events to 

be captured. Hereinafter the same reference numeral 
will be utilized to refer to both a hook and the trace 

event resulting from the enabling of that hook. Calls or 
interrupts referred to as pro?le 50, dispatch 54, fork 56, 
initialize 52, and exec 58 are speci?ed by the trace facil 
ity process 100. 

The initialization step 52 captures the process name 
and PID of all active processes. These values are put 

into table 106 of FIG. 4. These initial values are ob 
tained by use of the AIX “ps” command. 
After the trace facility process 100 has been acti 

vated, the real-time trace processor processing step 104 
goes into a wait condition. Trace facility processing 
step 100 then collects trace hooks into its trace buffer 
102 as they occur. The trace buffer is preferably con?g 
ured into two buffers. When the ?rst buffer is full, sub 
sequent events are put into the second buffer and the 

trace facility, using standard operating system facilities 
well known in the art, reactivates the real-time trace 
processor processing step 104 which then proceeds to 
process the contents of the trace buffer 102. 

This processing consists of stepping through the se 
quential trace events stored in the trace buffer 102 and 

for each event type performing the appropriate action, 
as described below. 
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The initialize step 52 uses the ps command to record 

a PID, process name tuple for each process that is ac 

tive when the trace facility 100 is ?rst turned on. The 
exec hook 58 contains a new process name. This hook 

causes the creation of a new entry in 106 consisting of 

current PID and the new process name from the exec 

hook. The fork hook 56 contains the PID of a newly 

created process. This hook causes an addition to 106 of 

a tuple consisting of the new PID and the current pro 
cess name. 

The dispatch hook 54 contains the PID of the newly 
dispatched process. The pro?le hook 50 contains the 
tuple of SID and relative address within that space. The 
processing of this hook is important in supporting the 
function of maintaining all the information necessary to 
pro?le all processes and all spaces within a reasonable 
amount of memory space. The technique used is one 
well known in the art referred to as a hash table. The 

key to the table is a function of PID, (current process id) 
and SID and address from the pro?le hook 150. When 

a hash slot is found where the key is matched (PID, 
SID, and address), the associated count ?eld of 108 is 
incremented. This processing continues throughout the 
real-time phase of the pro?ling. When the pro?les pro 
cess terminates the real-time trace processor function 

104 deactivates the trace facility process 100 which 
causes the remaining trace buffer contents to be trans 

ferred to 104 for processing. When the latter function is 
completed, the tables 106 and 108 are then written to 

?les 37 and 60 (FIG. 3), respectively, for post process 
ing as previously described. 

Referring to FIG. 5, there is depicted therein a repre 
sentative computer system suitable for the profiling 
system hereinbeforc disclosed. A central processing 
unit 122 is provided which includes a program counter 

124 which will contain an address 132 of the form 

shown at reference numeral 128. An address is de?ned 

in the virtual memory 120 as being a space identi?er 

136, followed by a displacement address within that 
space identi?er. For example, space identi?er 2 and 
displacement address 100 shown at reference numeral 
130 point to the third space identi?er block of contigu 
ous virtual memory, and the instruction word that’ rela 

tive address 100 shown at reference numeral 144 within 
that block 142. 

In a particular embodiment of an environment suit 

able for pro?ling ill accordance with the invention such 
as the RISC System/ 6000 of the IBM Corporation, the 
virtual memory 146 shown more generally at reference 

numeral 138 is comprised of 224—1 identical contiguous 
blocks of memory where space id 136 refers to the index 

224-1 as indicated at reference numeral 138. The dis 

placement address 132 ranges from O to 223-1 shown at 

reference numeral 134, yielding 228 contiguous elements 
of memory within the memory system of FIG. 5. For 

purposes of illustration, the space id, address tuple 130 
de?nes the contents of the space id=2 and displacement 
address: 100 represented by the previously noted mem 
ory word 144. The purpose of the program counter 124 
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is to step through the instructions in a computer pro 
gram and the contents of the program counter 124 are 

the space id and relative address of the particular mem 
ory word such as word 144. For every value of the 

program counter 124 the contents of the memory word, 
are automatically copied into the instruction unit 126 
which comprises a second component of the central 
processing unit 122 for execution. 

While the invention has been shown and described 

with reference to particular embodiments thereof, it 
will be understood by those skilled in the art that the 
foregoing and other changes in form and details may be 
made therein without departing from the spirit and 
scope of the invention. 
What is claimed is: r 

1. In a computer system having an operating system 
kernel in a program executing multiple processes, a 
method for use during execution of said multiple pro 
cesses in pro?ling said multiple processes, comprising: 

inserting with said system a trace hook mechanism in 

a periodic clock routine of said operating system 

kernel; 
inserting with said system additional trace hook 
mechanisms in said operating system kernel suffi 
cient to initialize and maintain process identity, 

name, and current running process correspon 

dences; 
generating with said system trace events in response 

to said trace hook and additional trace hook mech 

anisms at predetermined time intervals; 
generating with said system trace events in response 

to changes in process state at times of occurrence 

of said changes in process state; 
creating and maintaining with said system during said 

pro?ling a trace buffer as a function of said trace 

events comprised of: 

a plurality of ?elds of program counter hook data, 

each corresponding to a different <current exe 

cuting process identity, program counter val~ 
ue> tuple and a count of the number of repeti 

tions of each said instance; and 
a plurality of ?elds maintaining correspondences 
between process names, 

identities, and said ?elds of program counter hook 
data. 

2. The method of claim 1 further comprising in a 
postprocessing interval the steps of: 

generating with said system correlations of program 
counter frequency counts to a plurality of pro 

gramming constructs. 

3. The method of claim 2 wherein said constructs 
comprise at least one from a group of: 

process; 

space identity; 
routine; 
source line of code; and 
assembly instruction. 

* * * * * 


