
United States Patent [19]
Keller et a1.

USOO5355487A

Patent Number: 5,355,487

Oct. 11, 1994 Date of Patent:

[11]

[45]

[54]

[75]

[73]

[21]

[22]

[63]

[51]
[52]

[53]

[56]

NON-INVASIVE TRACE-DRIVEN SYSTEM
AND METHOD FOR COMPUTER SYSTEM
PROFILING

Thomas W. Keller; Robert J.
Urquhart, both of Austin, Tex.

Inventors:

Assignee: International Business Machines
Corporation, Armonk, NY.

Appl. N0.: 96,751

Filed: Jul. 23, 1993

Related US. Application Data

Continuation of Ser. No. 662,521, Feb. 28, 1991, aban
doned.

Int. Cl.5 G06F 11/34

US. Cl. 395/650; 395/700;

364/264; 364/2644; 364/2646
Field of Search 395/650, 700; 364/200,

364/900, 264, 264.4, 264.6

References Cited

U.S. PATENT DOCUMENTS

4,845,615 7/1989
4,866,665 9/ 1989
4,937,740 6/1990
4,969,088 11/1990
5,047,919 9/1991

McAuliffe et a1. 395/325

Sterling et a1. 364/200

Primary Examiner-Kevin A. Kriess

Assistant Examiner-—Matthew M. Payne
Attorney, Agent, or Firm—-Robert M. Carwell

[57] ABSTRACT

The invention disclosed herein is a system and method

for comprehensive, non-invasive pro?ling of a proces
sor whereby feedback is provided to a programmer of

the execution dynamics of a program. In a preferred
embodiment a partial real-time reduction is provided of
selected trace events employing the environment’s trace
facility, and a post-processing function is then per
formed. A trace hook is provided in the environment’s
periodic clock routine which captures the address to be
returned to following this timer’s interrupt, and further
captures the address of the caller of the routine repre
sented by the ?rst address. The frequency of occur
rences of the ?rst address is collected and correlated to

various virtual address spaces and corresponding sub
routine offsets within those virtual address spaces. By
employing the assembly and source code listing of pro
grams, the address frequencies are then correlated back

to specific instructions, and from information in the
assembly listing accumulated time is further correlated
against speci?c lines of source code. A pro?le is gener
ated indicating the amount of time spent by the proces
sor in various processes, kernel, shared library, and user
spaces, and subroutines correlated to the lines of source

code for negligible additional processor run time.

3 Claims, 5 Drawing Sheets

vvv
l ’ \‘V _ 37
TRACE TRACE ' "

FACILITY BUFFERS _

r a

z 102 r
100 PROCESS

STATE

\106
ADDRESS

TABLE M103

< P10, S10,ADDF1, COUNT>

US. Patent 0a. 11, 1994 Sheet 1 of 5 5,355,487

11 17

\ 15 /
/

USER SPACE u1 / U2 U3 u4
\

SHARED SPACE s1 s2 s3 s4

KERNEL SPACE K1 K2 K3 K4

TOTALSPACE \

f (19
13

FIG. 1

SOURCE
STATEMENT

SUBPROFILE PROFILE

26 25
10 18 2o 22 24

\x) 152 2” J (27 12 / r‘ r'" U3
/ T ‘ I

USER SPACE \, U1 (U2 I Us 1 U4 83
\ l _]

SHAREDSPACE ,- s1 s2: s3 :sF‘ZB K3 M30
14 _ _____ -1

KERNEL SPACE K1 K2 K3 K4 U2

16 52

Kg 32

U‘ as
31 M34 (K1

U4 I

84 I
K4 _

M36
FIG. 2

U.S. Patent Oct. 11, 1994 Sheet 2 of 5 5,355,487

Profile in periodic After newly initiated process,
system Interrupt dispatcher code executes trace hook
captures program capturing current executing process
counier Value Of identity <current process id.>

' <space |d., address>
5s 58

< spake id., address > /
52 < current process id. >

(5%‘ / fork exec I

I

I

l :1. (Q (D a
------------------ “\RUN TIME PROCESSING

__________________________ “rag; airs-Cessna‘

60 < process id., space id, 37 < process ‘d’ 43 k4.2
address, count > Programl‘??? _>__ _ _[_____ __

\ 39 ESE] W435:
: program executabies

41 45

29 41 / [My

@4—\/ \‘ 49 47 < space id., program name, subprogram 31

31 , , name, subprogram

< process id, space |d., beginning address’
pr0gram name, COU?’t > Subprogram

53 5‘ ending address >
51 . .

4/- < process id, space |d., program
[55 name, relative address, count >

fdrié bazaars-55815356155 i631
I 55

, < subprogram name, count >
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ .._

US. Patent Oct. 11, 1994 Sheet 3 of 5 5,355,487

5i
57 program _

source listing

recompile source program
to obtain assembly listing

< program name,
subprogram name, 61 —’

source line of code f 65

number, assembler 65 annotated assembly
line of code listing < program name,

number, relative subprogram name, line
address, assembly of source code number,
line of code text > line of assembly code

number, relative
address, assembly line
of code text, count >

71 annotated source listing
< program name, subprogram
name, line of code number,
line of code text, count >

FIG. 3B

US. Patent Oct. 11, 1994 Sheet 4 of 5 5,355,487

54 50 56 5s

DISPATCH PROFILE FORK 'Ng'T'E-‘lZE EXEC

104

vV+v
' I 37
TRACE TRACE ' ‘

FACILITY BUFFERS ' TRACE Pm
CESSOR __> 60

Z 102 I
100 PROCESS

STATE

\106
ADDRESS
TABLE “108

< P10, S10, ADDR, COUNT >

46]

FIG. 4

US. Patent 0a. 11, 1994 Sheet 5 0f 5 5,355,487

VIRTUAL MEMORY ~-/‘46

132 2 13s

1 ADDRESS SPACE ID ; o 0 I

122 I

;134 <_I/I4o
12s I 2 ' l

2 228.1 I
; 0 1 I

124 <SPACE ID, I I

'/ ADDRESS> ; I
<2,100> I '

I:I-- ---- I =

PROGRAM 8 I ; I
COUNTER 130 I I I

, : 228.1 I

f 126 I I : 144

INsTRUcTIoN L.f_ _ > r 100 <~L_/‘42
UNIT ; / / / / / I >

I I

I > I

CENTRAL 1228-1 :
PROCESSING I CPU INSTRUCTION I

UNIT ; AT VIRTUAL MEMORY I

; LOCATION<2,100> I 138

; 0 224.1 I I

I I

I I
I I
: l

FIG. 5 :228-1 :
' I

I I

I

5,355,487
1

NON-INVASIVE TRACE-DRIVEN SYSTEM AND
METHOD FOR COMPUTER SYSTEM PROFILING

This is a continuation of application Ser. No.

07/662,521 ?led Feb. 28, 1991, now abandoned.

FIELD OF THE INVENTION

This invention relates to technology for pro?ling
processor execution time in computer systems, and,
more particularly, relates to systems and methods for
trace-driven pro?ling.

BACKGROUND OF THE INVENTION

In order to improve performance of code generated
by various families of computers, it is often necessary to
determine where time is being spent by the processor in
executing code, such efforts being commonly known in
the computer processing arts as locating “hot spots”.
Ideally one would like to isolate such hot spots at the
instruction and/or source line of code level in order to

focus attention on areas which might bene?t most from

improvements to the code.
For example, isolating such hot spots to the instruc

tion level permits compiler writers to ?nd signi?cant
areas of suboptimal code generation, whereby they may
thus focus their efforts to improve code generation
ef?ciency in these areas. Another potential important
use of instruction level detail is to provide guidance to
the designer of future systems. Such designers with
appropriate pro?ling tools may ?nd characteristic code
sequences and/or single instructions requiring improve
ment to optimize the available hardware for a given
level of hardware technology.

In like manner, isolating hot spots to the source line
of code level would provide the level of detail neces
sary for an application developer to make algorithmic
tradeoffs. A programmer’s a priori guesses about where
a program is spending signi?cant time executing are
frequently wrong for numerous reasons. First the pro

grammer seldom has a comprehensive understanding of
the complex dynamics of the hardware and software
system. Secondly, the compiler itself often does not
generate code that corresponds to the programmer’s
assumptions. It was accordingly highly desirable to
provide a system for feeding back information to the
programmer about the execution dynamics of a pro

gram in terms that the programmer could easily under
stand.

Thus various methods had been developed for moni
toring aggregate CPU usage known as “pro?ling”. One
approach was to simply add instructions to the program
being analyzed to enable it to essentially assess itself.
This however introduces the undesirable characteristic
of invasiveness wherein the possibility arose that neces

sary changes for pro?ling may introduce changes to the
dynamics of the very thing one is attempting to mea
sure. Yet another approach to providing for pro?ling
was to develop external specialized hardware monitors.
However, this approach also entailed numerous draw
backs, not the least of which was the expense associated

with development of such specialized hardware and
questions of feasibility in even doing so.

In some environments, the need for such pro?ling
was particularly acute and yet was not satis?ed by the

existing methods due to the unique characteristics of the
environments. An example of such an environment is
the RISC System/ 6000 TM line of computers operating

25

30

40

45

50

55

60

65

2
the AIX TM Operating System of the IBM Corporation
(RISC/6000 and AIX are trademarks of the Interna
tional Business Machines Corporation). A more detailed
description of this hardware and software is provided in
“IBM RISC System/6000 Technology”, ?rst edition
1990, publication SA23-26l9, IBM Corporation.
One speci?c attempt at providing pro?ling for such

environments was a system known in the art as

“Gprof”, described in the article “Gprof: A Call Graph
Execution Pro?ler”, Proc. ACM SIGPLAN Sympo
sium on Compiler Construction, June, 1982, by S. L.
Graham, P. B. Kessler, and M. K. McKusick. Several
problems were associated with this pro?ling system.
First there was no shared library support, thus requiring
the compilation of program with exclusively non
shared libraries. The system did not provide support for
the simultaneous pro?ling multiple processes, all pro
cesses which could be run had to be recompiled for

routine-level pro?ling, the system was invasive (e.g.
modi?ed the executable code to be pro?led), and re

quired dedicating to pro?ling additional memory ap
proximately half of the space of the program to be pro

?led. Moreover, in addition to the entire set of pro
cesses to be pro?led having to be rebuilt in order to

provide pro?ling, it was only capable of providing rou
tine-level and no source statement or instruction level

pro?ling, did not summarize all CPU usage but rather

only that of one user program at a time, and further

often required a substantial increase in user CPU time,
sometimes approaching 300%, due to its invasiveness.
For this reason other approaches were suggested for

pro?ling in such environments including, for example,
the PIXIE system of MIPS Computer Systems, Inc.
described in “Compilers Unlock RISC Secrets”, ESD,
December, 1989, pgs. 26-32, by Larry B. Weber.

In this system the executable objects of the processes
to be pro?led are analyzed and reconstructed with

every atomic sequence of instructions, known in the art
as a “basic block”, being preceded with hooks which
emit an event reporting the beginning of execution of
the basic block from the emitted sequence of the basic
block. From the emitted sequence of events the fre
quency of execution of each basic block can be main

tained during run time. In a subject post processing step
this frequency of occurrence is correlated to the source

statement and routines of the program to provide execu
tion time pro?les.
Whereas this method offers the advantage of direct

measurement over estimates obtained from sampling the

program counter, it offers the disadvantages of no
shared library support, no support of multiple pro
cesses, requires an increase in program executable space
by up to factor of 3 and increase in program executables
by factors of 10 or more.

Yet additional developments were made in pro?ling
systems such as those outlined in the following refer
ences: “Non-Intrusive and Interactive Pro?ling in Para

sight”, Proc. ACM/SIGPLAN, August, 1988, pgs.
21-30, by Ziya Aral and Ilya Gertner. In this develop
ment, the invasiveness resulting in additional run time
was decreased by selectively modifying code sequences
of interest to directly measure the execution time of the

selected code sequences and by employing an additional
supplemental process to capture and process the run
time measures.

From the foregoing it will be apparent that pro?ler
technology to support the various aforementioned envi
ronments needed numerous improvements. Speci?cally,

5,355,487
3

a pro?ler was needed which would support multiple

process and multiple user environments, shared libraries
(dynamically loaded shared objects), kernel as well as
user execution spaces, and kernel extensions (dynami

cally loaded extensions to the kernel).
Requirements which became apparent as particularly

desirable and greatly needed in a pro?ler related to the
characteristics of convenience and non-invasiveness.
These two factors are strongly related as well as having
merit in their own right.

As an example of convenience, it was highly desirable
to provide a pro?ling tool which would enable a user to

very easily pro?le existing running code without requir
ing special procedures, recompilation, relinking, or
rebuilding. Moreover, it was further highly desirable to
provide a pro?ling tool which was non-invasive as well.

The comprehensive feature simply would provide for
pro?ling of all processes and all address domains for
each process—the kernel, kernel extensions, user, and
shared objects. The highly desirable feature of non
invasiveness would contemplate that executables and
supporting environments would be virtually identical
whether pro?ling or not, requiring no special effort in
obtaining this equivalence. Conventional systems re
quired modi?cation of executables in order to pro?le at
the instruction level, for example, resulting often in
excessive CPU and memory utilization. The importance
of non-invasiveness is that the gathered statistics are not
distorted and all instruction streams and referenced
addresses are maintained. The latter is particularly im
portant when looking for performance issues that are
related to overuse of hardware facilities such as the

TLB, data and instruction caches, registers, and mem
ory.

For all of the forgoing reasons, a pro?ling tool was
highly desirable which could report on the aggregate
CPU usage of all users of the environment, including all
programs (processes) running, including the kernel,
during execution of the user programs (as well as the
fraction of time the CPU is idle) whereby users might
determine CPU usage in a global sense. Such a pro?ler

was further desired as a tool to investigate programs

which might be CPU-bound wherein the programmer
would ?nd it useful to know sections of the program
which were being most heavily used by the CPU. Still
further a pro?ler was further highly sought which
could be run using the executable program as is without

the need to compile with special compiler ?ags or linker
options whereby a Subprogram pro?le could be ob
tained of any executable module that had already been
built.

SUMMARY OF THE INVENTION

The invention disclosed herein is a system and

method for comprehensive, non-invasive pro?ling of a
processor whereby feedback is provided to a program
mer of the execution dynamics of a program. In a pre

ferred embodiment a partial real-time reduction is pro
vided of selected trace events employing the environ
ment’s trace facility, and a post-processing function is
then performed. A trace hook is provided in the envi
ronment’s periodic clock routine which captures the
address to be returned to following this timer’s inter

rupt, and further captures the address of the caller of the
routine represented by the ?rst address.
The frequency of occurrences of the ?rst address is

collected and correlated to various virtual address

spaces and corresponding subroutine offsets within

5

10

15

20

25

30

35

45

55

65

4
those virtual address spaces. By employing the assem
bly and source code listing of programs, the address
frequencies are then correlated back to speci?c instruc
tions, and from information in the assembly listing accu
mulated time is further correlated against speci?c lines
of source code. A pro?le is generated indicating the
amount of time spent by the processor in various pro
cesses, kernel, shared library, and user spaces, and sub
routines correlated to the lines of source code for negli
gible additional processor run time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram illustrating the overall
pro?le summary generated by the present invention.
FIG. 2 is a schematic illustration depicting the rela

tionship between a multiprocess, multispace computa
tional environment and the pro?ling functions of the
present invention.
FIGS. 3A and 3B illustrate in sequence a ?ow dia

gram of the pro?ling process of the present invention.
FIG. 4 is a functional block diagram illustrating the

real-time pro?ler processing depicted in FIG. 3 in more
detail.

FIG. 5 is a block diagram of a representative com
puter system environment in which the pro?ling system
and method of the present invention operates.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

First a detailed description will be provided of the
pro?ling process with reference to FIGS. 1-4, followed
by a description of a representative computer environ
ment suitable for such pro?ling with reference to FIG.
5. Regarding the description of the pro?ling process,
?rst a high level description of the pro?ling output will
be made with reference with FIGS. 1 and 2, followed
by a detailed description of the operation of the inven
tion with respect to the ?ow diagrams of FIGS. 3, 3A,
3B, and 4.

Referring ?rst to FIG. 1, depicted therein is a sche
matic representation of an overall pro?le summary gen
erated by the present invention. Multiple columns such
as column 11 correspond to various processes which

may be executed by a multiprocess computational envi
ronment. For each such process, the pro?ler will gener
ate a measure of total counts such as that appearing in

location 13 which will correspond to the total counts
collected from a periodic sampler which occur during
execution of that particular process 11 and which are

representative of the total CPU execution time in execu
tion of that process.

It will be noted in FIG. 1 that for a given process or

column such as column 11, the total counts 13 are fur

ther subdivided into those which occurred while the
processor was executing in user, shared, or kernel mem

ory address space (hereinafter referred to simply as
“space”). A plurality of rows will be depicted in a rep

resentative pro?le labelled in FIG. 1 as “user”,
“shared”, and “kernel”. Thus with the foregoing in
mind, a count appearing in box 15 for example would
correspond to counts occurring while process 11 was

executing in shared space, whereas the count total ap
pearing in box 19 would correspond to those occurring
while process 17 was executing in kernel, shared and
user space.

Referring now to FIG. 2, this illustration is intended
to depict a representative multiprocess, multispace,
multiuser computational environment such as that

5,355,487
5

suited for pro?ling in accordance with the teachings of
the invention. It will be noted that hereinafter the term
“pro?le” and “pro?ling” will be employed for brevity
in lieu of “execution time pro?le report” and “execution
time pro?ling”, respectively.
The purpose of FIG. 2 is to illustrate the relationship

between the multiprocess, multispace computational
environment and the various capabilities of pro?ling
provided by the subject invention. More particularly,
the multiprocess and multispace environment is illus
trated conceptually and generally by the rectangle 10.
In like manner to that of FIG. 1, user space of a particu
lar process such as process 18 is shown by the smaller
rectangle 12. Similarly, for this same process 18, box 14
represents a shared space accessible by each user space.

Finally with respect to representative process 18, box
16 is intended to depict the operating system kernel
space which is accessible via system calls to each user

space. Also in like manner to FIG. 1, reference numer

als 20, 22, and 24 refer to correlative columns each
corresponding to a different individual process, each

such process having its own respective user, shared, and
kernel space.

It will be noted in FIG. 2 that a rectangle 26 encom

passing user and shared spaces 21 and 23 of a corre

sponding process 22 has been shown for purposes of
discussion of prior art. In the prior art, such user and
shared space 21 and 23 could be pro?led to the subrou

tine level of detail. However, a separate and speci?c
action must be taken by the individual desiring the pro
?le for each and every such user or shared subroutine

pro?le which was desired. In contrast, in accordance
with the teachings of the present invention, the mecha
nism described herein captures all of the data required
for generation of any desired subroutine pro?le without
any particular prior action being required.

Still referring to FIG. 2, a subpro?le column 25 is
shown. A subpro?le is an ordered listing of each sub
routine within the given space. For each subroutine the
total number of program counter samples that occurred
within the address range of that subroutine is provided.
The purpose of this is to schematically illustrate repre
sentative subroutine level execution-time pro?les of the
various spaces of the processes 18-24. Thus for exam

ple, pro?le 30 illustrates a pro?le of user, shared, and
kernel space corresponding to process 22, subpro?le 32
corresponds to a similar user, shared, and kernel space
pro?le corresponding to process 20, subpro?le 34 corre
sponds to a pro?le of the user, shared, and kernel spaces
corresponding to process 18, and ?nally pro?le 36 cor
responds to a pro?ling of user, shared, and kernel spaces
associated with process 24.

For illustrative purposes now, attention will be fo
cused on process 24 which corresponds, in accordance

with FIG. 2, to spaces U4, S4, and K4 (e.g. the user,
shared, and kernel execution spaces of process 24.) By
the mechanisms to be herein described, a complete exe

cution time pro?le of process 24 may be produced,
namely the previously mentioned pro?le 36 in all of its
execution spaces. Still referring to FIG. 2, a column 27
captioned “source statement pro?le” is provided which
is intended to schematically illustrate that in accordance

with the invention, a source statement level pro?ling

may be performed of the user space U4, for example, of
the process 24 shown subpro?led at reference numeral

36. This source statement level pro?le 38 means that
each line of code in the source ?les of the user space of

this process 24 (or any desired such process) will be

20

25

35

45

55

60

65

6
annotated with the count representative of the CPU
time spent executing the instructions generated for this
line of code. "

Referring now to. FIGS. 3A and 3B, a ?ow diagram
is depicted illustrating a computerized process for gen
erating the system pro?les as herein described. Several
conventions employing graphical elements have been
utilized in the ?gure for convenience. First, a tuple of
data elements is denoted therein by the notation <da
turn 1, datum 2, . . . >. Next, an intermediate table of

tuples or a ?le of tuples is denoted in FIG. 3 by a square.
Thirdly, a report or program listing suitable for human
viewing is represented by a rectangle. Next, an oval is
employed to denote a system call or system interrupt
which has been modi?ed to produce supplemental data.
Finally, the ?fth graphical component employed in
FIGS. 3A and 3B is a circle which denotes a processing

step which produces an intermediate ?le, report, or
table. The principal contents of each intermediate ?le,
table, or report is denoted in FIGS. 3A and 3B by a
tuple, representing a set of unique tuples of the type
shown.

With continued reference to FIGS. 3A and 3B, it will
be noted that the ?gure is conveniently divided into two
areas separated by line 44 which are denoted as “run

time processing” 40, and “post processing” 42. With
respect to the run time processing 40 portion of FIG. 3,
a block 46 is included which is intended to represent the
additional detail provided in FIG. 4 to be hereinafter
discussed.

Starting at the top of FIG. 3A in describing ?rst the
run time processing 40, an initialized step 52 produces a

table of currently active processes consisting of process
id and program name. This step is more fully described
hereinafter with reference to FIG. 4. The data neces

sary to produce an intermediate ?le 37 is maintained

during run time processing 40 by system processes fork
56 and exec 58. The fork 56 creates a new process id

with the same name as the process which executed the

fork. Exec 58 assigns a new name to a currently active

process. As each new <process id, program name>
tuple is created by either fork 56 or exec 58, it is retained
in order to eventually produce the table 37.
By means of instrumentation placed in the system

central processing unit dispatcher, the current process
id is maintained. The AIX Operating System has a dis
patcher software function. Following any interruption
in sequence ?ow of running process, this dispatcher is
invoked in order to start the appropriate process. This
interruption might be due to l) the running process
blocking on an input/output request, 2) the termination
of a CPU scheduling quantum, or 3) an external inter

rupt signal. At the time of dispatching a process, the
dispatcher code 54 executes an AIX trace hook captur

ing the process id of the newly initiated process. Fur
ther, by means of instrumentation placed in the periodic
system interrupt (pro?le 50 shown in run time process

ing component 40), the value of the program counter,
denoted by the tuple <space id address> is captured.
Further, by means of instrumentation placed in the
system process dispatcher (pro?le 54 is shown in run
time processing component 40), the current process id is
maintained. Processing steps denoted in FIG. 4 combine
the <current process id> and <space id, address>
tuples and maintain the data necessary to produce the

intermediate ?le 60, consisting of <process id, space id,
address, count>. “Count” in the preceding tuple is the
number of occurrences of <process id, space id, ad

5,355,487
7

dress> and denotes the number of times the program
counter was sampled executing at “address” in “space
id” for the process denoted by “process id”. At the
completion of the run time pro?ling interval 40, the
intermediate ?les 60 and 37 shown in FIG. 3A are writ~
ten.

Continuing to refer to FIG. 3A, and, more particu
larly, to the post processing 42 portion of the system
and method of the invention, a processing step 39 will
then merge together the intermediate table or ?les 60
and 37 in order to obtain the table 41 of <process id,

space id, program name, address, count> tuples.
A report ,31 is produced which sums the counts

which are representative of the CPU time consumed in
the system. Such a count is reported for each <process

id, space id, and program name>. Report 31 is pro
duced by processing step 29, which coalesces the tuples
comprising the intermediate ?le 41 by summing to
gether all counts associated with unique <process id,
space id, program name> tuples over all address values
encountered.

With continued reference to FIGS. 3A and 3B, next
the processing steps will be described which are re~

quired to produce a set of reports 55 in which counts for
every subprogram of a program are reported. The pro
cessing step 45 is employed to examine any program
executables 43 selected for pro?ling and determines the
address boundaries of subprogram elements within each
executable. This step is accomplished by use of operat
ing system utilities such as the “nm” command well
known in the art in UNIX-based operating systems as
well as by employing specialized programs written
which postprocess the operating system state in order to
resolve the address spaces of the dynamically loaded
shared library and kernel extensions. These specialized
programs access the memory area of the AIX operating

system that contains the location of dynamically loaded
modules.

Each such program executable has associated with it
a program name and space id. For each subprogram in

a program executable there exists a starting address and

ending address. Processing step 45 examines executa
bles to obtain for each executable the tuples <space id,
program name, subprogram name, subprogram begin
ning address, subprogram ending address>, which
form an intermediate ?le 47.

A processing step 49 is then performed which con
sists of appending to each tuple in the previously noted
intermediate ?le 41 its corresponding subprogram name
and relative address. The relative address is the dis
placement beyond a subprogram starting address, and is
calculated from the program address from intermediate
?le 41 and the subprogram beginning address from
intermediate ?le 47. The resulting intermediate ?le 51
consists of <process id, space id, program name, rela
tive address, count> and is denoted at reference nu
meral 51.

A summary of reports 55 is produced in the process
consisting of counts representing the amount of CPU
time consumed by subprograms, and is produced for
every <process id, space id, program name> 'tuple by
processing step 53. This processing step 53 sums the
counts for the tuples <process id, space id, program
name, subprogram name, relative address, count>
across all values of “relative address”.

Next, the processing steps will be described which
are required to obtain an annotated source code listing

of programs selected for more detailed pro?ling in ac

15

25

35

45

50

55

65

8
cordance with the invention. An annotated source code
listing is a program source code listing in which the
counts representative of the CPU time consumed by
execution of the machine instructions generated by each
line of source code is reported. As an intermediate step,
an annotated assembly code listing for each program
selected for more detailed pro?ling is ?rst constructed.
As shown in FIG. 3, a processing step 59 is performed
which is a compilation of a program source listing 57 in
order to obtain assembly code listings 61 of the pro
gram. A source code listing of a program is represented

by the tuples < program name, subprogram name,
source line of code number, source line of code text>.
The assembly code listing is represented by the tuples
<program name, subprogram name, source line of code

number, assembly line of code number, relative address,
assembly line of code text>.
For tuples of intermediate ?le 61 which match the

tuples of intermediate ?le 51 for the elements <pro
gram name, subprogram name, relative address>, pro
cessing step 63 appends the data <line of source code
number, count> to form an annotated assembly listing
consisting of <program name, subprogram name, line
of source code number, line of assembler code number,
relative address, assembler line of code text, count>
which comprises report 65. An annotated source code
listing is obtained from step 69 by summing all counts in
intermediate ?le 65 corresponding to the identical
<program name, line of source code number> and
appending the sum to the source listing of the program
57. The annotated source listing 71 consists of the tuples
<program name, subprogram name, line of code num
ber, line of code text, count>.

Referring now to FIG. 4, depicted therein is a more
detailed illustration of the steps employed in generating
the real-time portion of the pro?ling of the present
invention. The procedure 104 begins when a user in~

vokes the pro?ler and speci?es the pro?ling measure
ment interval. This processing step in turn invokes the
trace facility process 100 of the operating system. When
the trace facility process 100 is turned on, a speci?c
subset of all the AIX trace facility hooks are activated.

These hooks result in a corresponding set of events to

be captured. Hereinafter the same reference numeral
will be utilized to refer to both a hook and the trace

event resulting from the enabling of that hook. Calls or
interrupts referred to as pro?le 50, dispatch 54, fork 56,
initialize 52, and exec 58 are speci?ed by the trace facil
ity process 100.

The initialization step 52 captures the process name
and PID of all active processes. These values are put

into table 106 of FIG. 4. These initial values are ob
tained by use of the AIX “ps” command.
After the trace facility process 100 has been acti

vated, the real-time trace processor processing step 104
goes into a wait condition. Trace facility processing
step 100 then collects trace hooks into its trace buffer
102 as they occur. The trace buffer is preferably con?g
ured into two buffers. When the ?rst buffer is full, sub
sequent events are put into the second buffer and the

trace facility, using standard operating system facilities
well known in the art, reactivates the real-time trace
processor processing step 104 which then proceeds to
process the contents of the trace buffer 102.

This processing consists of stepping through the se
quential trace events stored in the trace buffer 102 and

for each event type performing the appropriate action,
as described below.

5,355,487
9

The initialize step 52 uses the ps command to record

a PID, process name tuple for each process that is ac

tive when the trace facility 100 is ?rst turned on. The
exec hook 58 contains a new process name. This hook

causes the creation of a new entry in 106 consisting of

current PID and the new process name from the exec

hook. The fork hook 56 contains the PID of a newly

created process. This hook causes an addition to 106 of

a tuple consisting of the new PID and the current pro
cess name.

The dispatch hook 54 contains the PID of the newly
dispatched process. The pro?le hook 50 contains the
tuple of SID and relative address within that space. The
processing of this hook is important in supporting the
function of maintaining all the information necessary to
pro?le all processes and all spaces within a reasonable
amount of memory space. The technique used is one
well known in the art referred to as a hash table. The

key to the table is a function of PID, (current process id)
and SID and address from the pro?le hook 150. When

a hash slot is found where the key is matched (PID,
SID, and address), the associated count ?eld of 108 is
incremented. This processing continues throughout the
real-time phase of the pro?ling. When the pro?les pro
cess terminates the real-time trace processor function

104 deactivates the trace facility process 100 which
causes the remaining trace buffer contents to be trans

ferred to 104 for processing. When the latter function is
completed, the tables 106 and 108 are then written to

?les 37 and 60 (FIG. 3), respectively, for post process
ing as previously described.

Referring to FIG. 5, there is depicted therein a repre
sentative computer system suitable for the profiling
system hereinbeforc disclosed. A central processing
unit 122 is provided which includes a program counter

124 which will contain an address 132 of the form

shown at reference numeral 128. An address is de?ned

in the virtual memory 120 as being a space identi?er

136, followed by a displacement address within that
space identi?er. For example, space identi?er 2 and
displacement address 100 shown at reference numeral
130 point to the third space identi?er block of contigu
ous virtual memory, and the instruction word that’ rela

tive address 100 shown at reference numeral 144 within
that block 142.

In a particular embodiment of an environment suit

able for pro?ling ill accordance with the invention such
as the RISC System/ 6000 of the IBM Corporation, the
virtual memory 146 shown more generally at reference

numeral 138 is comprised of 224—1 identical contiguous
blocks of memory where space id 136 refers to the index

224-1 as indicated at reference numeral 138. The dis

placement address 132 ranges from O to 223-1 shown at

reference numeral 134, yielding 228 contiguous elements
of memory within the memory system of FIG. 5. For

purposes of illustration, the space id, address tuple 130
de?nes the contents of the space id=2 and displacement
address: 100 represented by the previously noted mem
ory word 144. The purpose of the program counter 124

5

10

25

45

65

10
is to step through the instructions in a computer pro
gram and the contents of the program counter 124 are

the space id and relative address of the particular mem
ory word such as word 144. For every value of the

program counter 124 the contents of the memory word,
are automatically copied into the instruction unit 126
which comprises a second component of the central
processing unit 122 for execution.

While the invention has been shown and described

with reference to particular embodiments thereof, it
will be understood by those skilled in the art that the
foregoing and other changes in form and details may be
made therein without departing from the spirit and
scope of the invention.
What is claimed is: r

1. In a computer system having an operating system
kernel in a program executing multiple processes, a
method for use during execution of said multiple pro
cesses in pro?ling said multiple processes, comprising:

inserting with said system a trace hook mechanism in

a periodic clock routine of said operating system

kernel;
inserting with said system additional trace hook
mechanisms in said operating system kernel suffi
cient to initialize and maintain process identity,

name, and current running process correspon

dences;
generating with said system trace events in response

to said trace hook and additional trace hook mech

anisms at predetermined time intervals;
generating with said system trace events in response

to changes in process state at times of occurrence

of said changes in process state;
creating and maintaining with said system during said

pro?ling a trace buffer as a function of said trace

events comprised of:

a plurality of ?elds of program counter hook data,

each corresponding to a different <current exe

cuting process identity, program counter val~
ue> tuple and a count of the number of repeti

tions of each said instance; and
a plurality of ?elds maintaining correspondences
between process names,

identities, and said ?elds of program counter hook
data.

2. The method of claim 1 further comprising in a
postprocessing interval the steps of:

generating with said system correlations of program
counter frequency counts to a plurality of pro

gramming constructs.

3. The method of claim 2 wherein said constructs
comprise at least one from a group of:

process;

space identity;
routine;
source line of code; and
assembly instruction.

* * * * *

