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We describe here the structure and principal components of the design of a multi-threaded powerPC 
processor using Bluespec. The focus is on the generality and flexibility of structure, using the high-
level nature of Bluespec language, so that the resulting design facilitates rapid experimentation with 
incremental changes to the architecture.  Hence, the code is highly parameterized so that the design can 
be  easily  tailored  to  vary  number  of  threads,  cores,  various  table  sizes,  etc.  The  implementation 
presented here is of a very primitive processor that has no cache subsystem and  is directly connected to 
a memory. A preliminary design of an address translation mechanism is included. We describe the 
structuring of some salient components and give some code fragments to illustrate the flavor of coding 
style. The complete processor is synthesized successfully and is currently being ported onto an FPGA 
platform. 

1.Overview

The overview of the processor structure is depicted in  Figure 1. It consists of an instruction unit  (Iunit) 
and an execution unit (Xunit), each of which is a pipeline of several stages as shown. The two units 
share a single address translation hardware (TLB) and a single interface to memory. A set of queues 
(one for each thread) of decoded instructions connect  the two units. The Iunit enqueues instructions 
into it and the Xunit dequeues from it as it dispatches. 

The Iunit is a sequence of stages and the passage of a single packet through all the stages of the Iunit 
accomplishes the task of bringing one instruction block into the machine. This comprises of translating 
a  block  address,  fetching  it  from  memory,  breaking  it  into  instructions,  determining  the  set  of 
instructions from the block that belong to the predicted path of execution, decoding the instructions 
from that set, cracking complex instructions out of them and finally enqueueing them into the decode 
queue associated with that thread. The pipeline splices this block processing for various threads in a 
fair  manner.  It  has  the  provisions  to  receive  signals  from Xunit  when a  thread is  to  be reset  and 
restarted at a different address and takes appropriate actions to clear all partial processing of a block 
when a new block must be started.

The Xunit, similarly is a sequence of stages and the passage of a single packet through all the stages of 
the Xunit accomplishes the task of executing one instruction of a thread. This comprises of reading the 
necessary register values, performing any address arithmetic needed to compute effective addresses, 
translating  addresses,  accessing  the  memory  for  load/store  instructions,  executing  any 
logical/arithmetic operation for the instruction, storing the result of an instruction in the architectural 
state of the thread and determining the next instruction the thread must execute. A single stage (commit 
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stage) is where the instruction is committed. It handles instruction exceptions and aborts a thread. It 
recognizes interrupts and saves and restores the states of computation. It has a decrementer that can be 
programmed. It has provisions to  handle longer execution delays (such as memory accesses) and re-
execute instructions when necessary. 

2.Pipeline Abstraction 

The pipeline is designed as a generic abstraction that controls stages oblivious of the number or nature 
of the component stages. This facilitates designing each stage independently and stages can be added 
and removed in a very flexible manner. From the controller's view, the pipeline is a vector of stages 
through  which  packets  of  certain  type  flow.  Each  packet  represents  an  instruction  carrying  all 
information about its thread, its operation etc. Each stage represents an operation to be performed on 
the incoming packet and produces an output packet. In addition, the operation performed in a stage may 
result in altering the status of the threads. To capture this, the pipeline defines the notion of status of a 
thread as follows:

Thread Status:  The status of a thread can take one of 4 possible values:  Active, Suspend, Reset  or 
Restart. Intuitively, an active status indicates that a packet for that thread should be normally processed. 
A suspend status indicates that processing of any packet for that thread must be abandoned and the 
thread will have to be reactivated later to re-execute the same instruction. A reset status also cancels all 
processing for a thread and in addition, it will also discard any partial state maintained for the thread. 
The thread must then be restarted to start with a new instruction at another address. 
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Figure 1: Overview of the Processor Core



Stage Operation:  Each stage is viewed as an operator. At the beginning of each cycle, it is provided 
with an input packet and a status vector indicating the status of each thread as viewed by that stage. At 
the end of the cycle, the stage returns a result packet and possibly an altered view of the status of each 
thread, as a result of its operation. The stage is free to maintain and update an internal state during this 
operation. The controller collects the outputs of all stages, pushes the packets to successive stages and 
propagates the statuses  up the pipeline. The  manner in which the status propagation is used to control 
the thread behavior is described next.

Controlling Threads:  In general, several instructions of a thread may be in progress at different stages 
in the pipeline, in any cycle. The pipeline provides a variety of ways in which the progress of a thread 
can  be  controlled.  For  instance,  when  a  stage i  returns  suspend  status  for  thread j,  the  status  is 
propagated  upwards  so  that  all  preceding  stages  discard  processing  any  packets  belonging  to  that 
thread,  while  all  succeeding stages  continue with any packets  belonging  to  that  thread.  When the 
suspending stage eventually decides to reactivate the thread, it submits an active status, which is again 
propagated,  so  that  the  top  stage  resubmits  the  suspended  instruction  packet.  Similarly,  when  an 
execution stage detects a taken branch, it submits a reset status causing all preceding stages to discard 
all processing for that thread and clean up any partial states. The same mechanism is used to switch a 
thread upon recognizing an exception or external interrupt. 

The basic operation of the pipeline controller  is illustrated in  Figure 2.  A stage is  abstracted by a 
function,  f, that  takes  pair  (p,u),  of  packet   p  and status  vector  u and returns the pair  (q,v).   The 
controller operates on  a vector of such pairs, one for each stage. It feeds the corresponding pair to each 
stage and collects the resulting pair. (see code fragment 1) It shifts the packet vector down so that the 
output packet of a stage is fed to the next stage in the next cycle. For the status vector, it accumulates 
them upwards, so that stage i can see the cumulative effect of  statuses set by all stages below i. It shifts 
the resultant vector up and feeds to the corresponding stages in the next cycle.  There is provision to 
inject a new input packet at the top of the pipeline and a new status vector to be injected at the bottom 
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Figure 2: Pipeline Control Schema



of the pipeline. This pipeline operation repeats every cycle.

3.Instruction Unit

Iunit Pipeline:  The Iunit pipeline may process instruction blocks for different threads concurrently. 
But the instruction block processing for a given thread is  done sequentially does not overlap with 
fetching of other threads for the same thread. When  a thread is selected for  instruction fetching, it 
sends out a suspend status and will not be selected again until that instruction block is fetched, inserted 
into instruction buffer and its next block address is determined. Throughout this processing, a suspend 
status gets sent back for that thread, preventing the top stage from selecting that thread again. Since 
reading instruction memory can take arbitrary amount of time, the following strategy is adapted. 

Instruction  fetching:  The instruction block fetch  stage  is  a  finite  state  machine,  and  its  state  is 
characterized  by  three  boolean  variables  [present,  issued,  tobeDiscarded]  for  each  thread.  They 
respectively track whether (a)there is an outstanding block request present for the thread, (b)the request 
has been issued to memory or not and (c) whether a future response for it must be discarded or not. In 
each cycle,  any incoming packet  receives  a  block  request;   If  no response is  being  awaited  for  a 
previous request,  it  marks it  as present, not issued and notToBe Discarded. Otherwise,  it  marks as 
present, not Issued and response  to be discarded. Then it selects, in a round-robin fashion, a thread 
with a request that is present  and not issued and for which no response is being awaited. The request is 
issued and so marked. When a response is received for a thread which is marked to be discarded, it 
discards the response and  the state is so marked. Otherwise, its state is cleared and an output packet is 
generated with the contents of the block.  (see Code Fragment 2). This way, even if a thread is reset 
while it has an outstanding memory response, it awaits the response, discards it and proceeds with the 
new request.

Instruction Buffering:  Once a block is fetched, the next stage picks one instruction at a time and 
inserts into Ibuffer. This is done again in a round-robin fashion, so that processing of instructions for 
various threads is interleaved in a fair manner avoiding starvation. Once an entire block is completed 
for a thread, its status is set to Active and a new block address is supplied for it. (see Code Fragment 3). 

Instruction Decoding:  The same sharing strategy is adapted for decoding instructions from Ibuffer 
and inserting them into decode buffer. The decode buffer is shared with the dispatch stage in the Xunit 
and the selection criterion for decoder will check for a thread's Ibuffer to be non-empty and its Decode 
buffer to be non-full. (see Code Fragment 4). In addition, load-multiple and store-multiple instructions 
are cracked into individual load/store instructions in this stage.

4.Execution Unit

Dispatcher:  The dispatcher performs two main functions: it ensures fair scheduling of instructions 
from all threads in a round-robin fashion and it remembers a short history of instructions issued for 
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each thread,  so that when a thread is  resumed after  suspension,  instructions can be reissued in  an 
orderly fashion. To aid these functions it maintains the structures shown in  Figure 3.  GA is a global 
array. There is a history array, HAi, one for each thread. Each entry in HAi  can hold an instruction and 
each entry of GA can hold an index into any history array. All arrays are of the same size as the number 
of entries in the pipeline. The pointers g, ai, ri are used as described below. In the normal operation, 
when an instruction is dispatched for thread i, the instruction is stored in HAi[ai], the index ai is stored 
in GA[g] and the pointers  g, ai and ri are incremented (circularly).  If no instruction is dispatched, then 
only g is advanced.  When  thread j  gets suspended by stage k,  then rj  is set to the current value in 
GA[g-k].  Next time when thread j is selected for dispatch, the instruction at HAj[rj] is dispatched and 
rj is advanced. This process continues until rj reaches aj, after which normal operation is resumed for 
that thread.  (see Code Fragment 5).

Register Bypass:  The register  values are read in the second stage in Xunit  and they are used the 
following two stages,  before new values  are written into them in the commit  stage.  This leaves  a 
window during which stale values could be used when stores and loads take place back to back in the 
pipeline. To overcome this, an array of register values written in the last k cycles are stored in an array. 
In the execute stage, new values are taken from this array, if they can be directly used. Otherwise, the 
instruction is suspended so that it is resubmitted again.

Memory Accesses:   Execution of load/store instructions is designed to tolerate arbitrary latency for 
memory access.  The load/store unit remembers the latest memory request made by each thread and 
submits them to memory in a round-robin fashion. Once a store request is accepted from a thread, no 
further memory requests are accepted from that thread until the store is completed. Further requests are 
simply  suspended  and  retried  until  they  are  accepted.  When  a  load  request  is  accepted,  the  load 
instruction is  suspended and retried,  while  the load is  in progress.  Data received from memory is 
buffered in the load-store unit and is delivered when the load is retried next. Store requests will erase 
any pending data in the buffers to preserve consistency. Partial word writes are implemented by first 
reading the memory and writing back the updated words. No memory request is permitted to intervene 
between such read and write involved in a partial store. 

5

Figure 3: Instruction History maintained by Dispatcher



Address Translation:   A central table of entries is maintained to translate both instruction and data 
memory  addresses.  Multiple  page  sizes  are  supported.  All  the  entries  in  the  translation  table  are 
searched in parallel to find a match. Address translation faults generate an interrupt to resolve the fault. 
Multiple requests to the translation table are ordered by priority and are handled one at a time. Writes to 
the  translation  table  take  highest  priority.  Then  data  address  translations  are  taken  up.  Instruction 
address translations have least priority. 

Decrementer:   A programmable decrementer is provided that decrements a count in each cycle and 
raises an interrupt when it reaches zero. 

5.Validation Strategy

The  Bluespec  compiler  produces  equivalent  versions  of  implementations  in  C  and  Verilog.  The 
Bluesim simulator can be used to simulate the C version and observe the inputs and outputs. This path 
is used to debug the core written in Bluespec. The memory is implemented as a file that is accessed by 
the  Bluesim  simulator.  PowerPC  Binary  file  is  supplied  as  initial  contents  of  the  memory.  A 
rudimentary interface is built in the core to read the contents of a designated area in the memory to 
initialize its registers before the core starts to run and also to dump the contents of the registers in that 
area when the execution is stopped. Using this one can specify a complete initial state of the system 
and a program and  obtain the complete final state after the program completes its execution of a 
specified number of instructions.

IBM  has  developed  a  sophisticated  processor  simulation  facility  (called  Mambo)  and  PowerPC 
processor designs are available that run on Mambo. Given a program and an initial state of the system, 
Mambo has the capability to run behavior simulation and provide the final state of the system after 
running  a specified  number  of  instructions.  Using this  facility,  we compared the  final  states  from 
Mambo and Bluesim simulators for a given initial state. While this is, by no means, an exhaustive unit 
test, this provided us a preliminary validation for various excerpts from Linux code and other micro 
benchmarks.

6.FPGA Implementation

For the initial prototyping, we use a Xilinx Virtex-5 LX330 FPGA device, with an 8M SRAM on board 
(known as Stinger-3), as shown in Figure 4. The FPGA board is controlled by a host computer (a laptop 
PC). The host computer is connected to the board via 2 ports. The USB port connection is used as a 
command interface to control the core and the RS232 port is used for the UART connection for kernel 
display and input, when the core is running.

The FPGA board is populated with a processor core, an 8MB SRAM and 4 interfaces (cmd, mem, usb, 
uart)  as  shown in  Figure  4.  The command interface accepts  commands from the  host  and returns 
responses. This can be used to operate the core in two modes: probe mode and run mode. In the probe 
mode,  the  core  state  (registers  and memory)  can be examined and set  to  specified values  via  the 

6



command interface. In the run mode the core is run for a specified number of instructions.  The three 
interfaces, usb, uart and mem, respectively interface with the 3 external devices and transfer signals in 
both directions, crossing the clock boundaries as needed. The memory interface provides a quad-word 
half-duplex data path to the SRAM, together with controls to read/write individual words on the quad-
word path. Currently the clocks are adjusted to provide a fully pipelined interface to the memory with a 
3 cycle latency for any access. 

        

The preliminary sizes of the Bluespec programs, the Verilog programs generated for them and the area 
occupied by their synthesized versions are shown in  Table 1. The table also shows how the FPGA 
resource usage vary as the number of threads per core is increased without any optimization.  Xilinx 
Virtex-5 LX330 FPGA device includes 207,360 internal fabric flip-flops and 207,360 6-input look-up 
tables (LUT).  For the single thread configuration, 11% of available flip-flops and 32% of available 
LUTs are consumed; these numbers increase 63% and 56% respectively to 18% and 50% for the four-
thread configuration.  
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Figure 4: FPGA board and its contents



Component Lines in 

Bluespec

Lines in

Verilog

Flip-flops in 

FPGA

LUTs in FPGA 

Single Thread

Core +  Cmd Interface 12,433 91,312 22,360 62,915

4 Threads

Core +  Cmd Interface 12,433 166,171 36,469 98,443

Interfaces Written in VHDL

Memory Interface vhdl 296 302 153

Usb Interface vhdl 311 145 92

Uart Interface vhdl 5,451 710 887

Interconnect all 
components in the  FPGA

vhdl 439 33 3,249

Table 1: Sizes of Programs and Corresponding Area occupied in FPGA

7.Appendix: Illustrative Code Fragments

We provide Bluespec code fragments that correspond to certain descriptions given in the text. These are 
excerpts from actual code and are illustrative of the coding style.

// code Fragment 1 
// run one step of the pipeline
function ActionValue#(stagePkt) 
   applyStageFunction(StageFunction#(stagePkt) f, stagePkt x); return f(x);
endfunction
function ActionValue#(StagePktVec#(nStages, stagePkt))
   runPipe(StageFunctionVec#(nStages, stagePkt) fvec, StagePktVec#(nStages, stagePkt) pvec);
   return zipWithM(applyStageFunction, fvec, pvec);
endfunction

//   given initialStatus and an initial status vector[0..nStages] this function 
//   propagates the max status upwards for each stage and also captures the largest stage
//   numer that set the max status. It returns that stage number and the propagated status vector
function Tuple2#(TypeStageNum#(nStages), Vector#(nStages, TypeStatus))
   propagateStatusUpward(TypeStatus initStatus, Vector#(nStages, TypeStatus) svec);
        Tuple2#(TypeStatus, TypeStageNum#(nStages)) initPair = tuple2(initStatus, fromInteger(valueof(nStages)-1));
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        Vector#(nStages, TypeStageNum#(nStages)) snumvec = genWith(fromInteger);
        Vector#(nStages, Tuple2#(TypeStatus, TypeStageNum#(nStages))) pairVec = zip(svec, snumvec);
        Vector#(nStages, Tuple2#(TypeStatus, TypeStageNum#(nStages))) proppedPairVec = 
                                                                      sscanr(maxPairStatusNum, initPair, pairVec);
        match {.newsvec, .numvec} = unzip(proppedPairVec);
   return tuple2(numvec[0], newsvec);
endfunction

// code Fragment 2
//  select and issue a new inst fetch request to memory  
// if not busy, select next thread and submit another request
      if  (icacheRequestQueue.notFull()) begin

 TypeThreadNum w = advanceThreadNum(lastThreadServed);
 TypeMemReq r = ?;
 Maybe#(TypeThreadNum) maybeS = tagged Invalid;
 TypeBoolVec eligible = zipWith3(firstTrueRestFalse, newReqValidVec, newReqIssuedVec, newReqDiscardVec);
 for(Integer i=0;i<valueof(NTHREADS);i=i+1) begin
    if (maybeS matches tagged Invalid &&& eligible[w]) begin 
       maybeS= tagged Valid w; 
       r = newReqVec[w]; 
    end
    w = advanceThreadNum(w);
 end
 if (maybeS matches tagged Valid .s) begin
    r.addr = r.addr & (~('hf)); //send the addr of quad-word containing the desired word
    TypeTaggedMemReq tr =TypeTaggedMemReq{tag: TypeMemTag{isFromIU:1, isStore:0, tnum:s}, memReq:r};
    newLastThreadServed = s;
    newReqIssuedVec[s] = True;
    icacheRequestQueue.enq(tr);

               end
      end

     // If Icache resp arrived, note the results
      if  (respWire.wget matches tagged Valid .resp) begin
         TypeMemTag tag = resp.tag;
         TypeThreadNum t = tag.tnum;

 if (newReqDiscardVec[t]) begin
    newReqDiscardVec[t] = False;
 end
 else begin
    retPkt.validPkt = True;
    retPkt.tnum = t;
    retPkt.addr =  newReqVec[t].addr;
    retPkt.tlbMiss = (resp.memResp.dataValid != 1);
    retPkt.ivec = resp.memResp.data;
    // mark selected instructions ... code deleted  for brevity 

                  newReqValidVec[t] = False; // this req is done
    newReqIssuedVec[t] = False; 
    newReqDiscardVec[t] = False;

      end
      end
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// code Fragment 3
//  select an eligible thread that has an inst to enter into its IBuffer 
 
      function Bool eligibleForXfer(TypePendingIUstagePkts pendingIUpkts,TypeThreadNum t);

 return (isIUpktValid(pendingIUpkts[t]) && ibuf[t].notFull());
      endfunction
 
      TypeMaybeThreadNum maybeT = selectThread(map(eligibleForXfer(pendingIUpkts), threadNums), 
iBufferNextTnum);
      maybeTtoStoreIbuf <= maybeT;

      for (Integer k=0; k<valueof(NTHREADS); k=k+1)
 if (maybeT matches tagged Valid .tt &&& tt==fromInteger(k)) begin
    TypeThreadNum t = fromInteger(k);
    TypeIUstagePkt q = pendingIUpkts[t];

    TypeIbufEntry e = TypeIbufEntry{addr: q.addr,inst: q.ivec[0],isBranch: q.isBranch[0],
    brTaken: q.isTaken[0],tlbMiss: q.tlbMiss};

    ibufEntryToStoreIbuf <= e;
    iBufferNextTnum <= advanceThreadNum(t);
    q.addr = q.addr + 4;
    q.ivec = shiftInAtN(q.ivec, unpack(0));
    q.isBranch = shiftInAtN(q.isBranch, unpack(0));
    q.isTaken = shiftInAtN(q.isTaken, unpack(0));
    q.isSelected = shiftInAtN(q.isSelected, unpack(0));     
    Bool noMore = (q.tlbMiss || !q.isSelected[0]);
    
    if (noMore) begin
       q.validPkt = False;
       retPkt.svec[t] = Active;
       newIarVec[t] = tagged Valid q.addr;
    end
    pendingIUpkts[t] = q;
 end

// code Fragment 4
// decodes an instruction and inserts into decode buffer;
// LoadMultiple and StoreMultiple instructions are cracked into individual loads and stores
   method ActionValue#(TypeIUstagePkt) ibufToDibuf(TypeIUstagePkt  p);   
      function Bool isEligible(TypeStatus s, TypeThreadNum t); 

 return ((s==Active) && ibuf[t].notEmpty() && dibuf[t].notFull()); endfunction
      if (crackingThread matches tagged Valid .ct &&& dibuf[ct].notFull()) begin 

 wireThread <= crackingThread;
 wireThreadReset <= (p.svec[ct] != Active);

      end
      else begin
         TypeBoolVec eligible = zipWith(isEligible, p.svec, threadNums);
         TypeMaybeThreadNum maybeT = selectThread(eligible, iDecodeNextTnum);
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 maybeTtoXferIbufToDibuf <= maybeT;
      end
      TypeIUstagePkt retPkt = ?;
      retPkt.validPkt = False;
      retPkt.svec = replicate(Active);
      retPkt.avec = replicate(tagged Invalid);
      return retPkt;
   endmethod: ibufToDibuf

// code Fragment 5

      // For each thread that is reactivated after suspension, roll back its log (based on the
      // stage that has suspended it) and set resuming index to the proper place in its log
      for(Integer i=0;i<valueof(NTHREADS);i=i+1) begin

 TypeThreadNum it = fromInteger(i);
 if (  ( (threadDispatchStatusVec[it]==Active) || (threadDispatchStatusVec[it]==Restart) )
     && (inpStatusVec[it]==Suspend)) begin
    TypeXUstageNum y = moveBackXUstageNumBy(circularIndex, inpStageNums[it]);
    TypeXUstageNum z = circularIndexArray[y];
    newResumingIndex[it] = z;
    suspended[it] = tagged Valid inpStageNums[it];
    //$display("*** suspend[%d] [c=%d, stg=%d, issued at c=%d]resume at %d[@0x%h] ***",
    //      it,circularIndex, inpStageNums[it], y, z,dispatchedInstLog[it][z].addr);
 end

      end

      Maybe#(TypeThreadNum) maybeT = selectThread(eligible, nextDispatchThread);

      // prepare a return packet (this stage never alters the state of any thread)
      TypeXUstagePkt retPkt = ?;
      retPkt.svec = replicate(Active);
      retPkt.avec = replicate(tagged Invalid);
      retPkt.validPkt = isValid(maybeT);
      TypeMaybeThreadNum issued = tagged Invalid;
      TypeMaybeThreadNum resumed = tagged Invalid;
      if (isValid(maybeT)) begin

 TypeThreadNum t = fromMaybe(0, maybeT);
 nextDispatchThread <= advanceThreadNum(t);   
 TypeXUstageNum x = ?;
 TypeDecodedIbufEntry di = ?;
 //two cases: is the inst being taken from dibuf or am I re-executing a suspended inst?
 if (revisedStatusVec[t] == Active) begin
    x = activeIndex[t];
    di = dibuf[t].first();
    dibuf[t].deq();
    newLog[t][x] = di;
    newActiveIndex[t] = advanceXUstageNum(x);
    issued = tagged Valid t; //$display("*** issue[%d] %d[@0x%h] ***",t, x, di.addr);
 end
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 else begin
    x = newResumingIndex[t];
    di = dispatchedInstLog[t][x];
    newResumingIndex[t] = advanceXUstageNum(x);
    if (newResumingIndex[t] == activeIndex[t]) revisedStatusVec[t] = Active;
    resumed = tagged Valid t; //$display("*** reissue[%d] %d[@0x%h] ***",t, x, di.addr);     
 end 
 circularIndexArray[circularIndex] <= x;

    end

// code Fragment 6

// bank of register values written during the recent past
   Reg#(Vector#(BypassLevels, Vector#(WritePorts, TypeMaybeRegData))) bypassVec  <- mkReg(replicate(replicate(tagged 
Invalid)));
   
   
   function Maybe#(DataD) selectValid(Maybe#(DataD) a, Maybe#(DataD) b);
      return (isValid(a) ? a : b);
   endfunction

   function Maybe#(DataD) hasNewValue(TypeThreadNum t, RegName r, TypeMaybeRegData mbd);
      return (   mbd matches tagged Valid .s &&& 
                  s matches tagged TypeRegData {t:.ut, r:.ur, val:.uval} &&&

  (ur == r) &&& 
                  (ut==t)
                ? tagged Valid uval : tagged Invalid); 
   endfunction

   function Maybe#(DataD) hasNewValueAtAnyPort(TypeThreadNum t, RegName r, Vector#(WritePorts, 
TypeMaybeRegData) mbdVec);
      Vector#(WritePorts, Maybe#(DataD)) newValVec = map(hasNewValue(t,r), mbdVec);
      return foldl(selectValid, tagged Invalid, newValVec);
   endfunction

   function Maybe#(DataD) regHasNewValueAtAnyLevel(TypeThreadNum t, RegName r);
      Vector#(BypassLevels, Maybe#(DataD)) newValVec = map(hasNewValueAtAnyPort(t,r), bypassVec);
      return foldl(selectValid, tagged Invalid, newValVec);
   endfunction

   function Vector#(BypassLevels, Vector#(WritePorts, TypeMaybeRegData)) recordRegStores(TypeXUstagePkt p);
      Vector#(WritePorts, TypeMaybeRegData) newRegData = replicate(tagged Invalid);
      if (p.validPkt && p.inst.rdWriteValid) newRegData[0] = tagged Valid TypeRegData {t:p.tnum, r:p.inst.rd, 
val:p.rdValueNew};
      if (p.validPkt && p.inst.rs1WriteValid) newRegData[1] = tagged Valid TypeRegData {t:p.tnum, r:p.inst.rs1, 
val:p.rs1ValueNew};
      Vector#(1, Vector#(WritePorts, TypeMaybeRegData)) singleton; singleton[0] = newRegData;
      return append(singleton, init(bypassVec));
   endfunction
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