
RC24706 (W0812-053) December 10, 2008

Computer Science

IBM Research Report

IBM PowerPC Design in Bluespec

Kattamuri Ekanadham, Jessica Tseng, Pratap Pattnaik

IBM Research Division

Thomas J. Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598

Research Division

Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

IBM PowerPC Design in Bluespec

Kattamuri Ekanadham, Jessica Tseng, Pratap Pattnaik

(eknath, jhtseng, pratap @ us.ibm.com)

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

December 09, 2008

We describe here the structure and principal components of the design of a multi-threaded powerPC
processor using Bluespec. The focus is on the generality and flexibility of structure, using the high-
level nature of Bluespec language, so that the resulting design facilitates rapid experimentation with
incremental changes to the architecture. Hence, the code is highly parameterized so that the design can
be easily tailored to vary number of threads, cores, various table sizes, etc. The implementation
presented here is of a very primitive processor that has no cache subsystem and is directly connected to
a memory. A preliminary design of an address translation mechanism is included. We describe the
structuring of some salient components and give some code fragments to illustrate the flavor of coding
style. The complete processor is synthesized successfully and is currently being ported onto an FPGA
platform.

1.Overview

The overview of the processor structure is depicted in Figure 1. It consists of an instruction unit (Iunit)
and an execution unit (Xunit), each of which is a pipeline of several stages as shown. The two units
share a single address translation hardware (TLB) and a single interface to memory. A set of queues
(one for each thread) of decoded instructions connect the two units. The Iunit enqueues instructions
into it and the Xunit dequeues from it as it dispatches.

The Iunit is a sequence of stages and the passage of a single packet through all the stages of the Iunit
accomplishes the task of bringing one instruction block into the machine. This comprises of translating
a block address, fetching it from memory, breaking it into instructions, determining the set of
instructions from the block that belong to the predicted path of execution, decoding the instructions
from that set, cracking complex instructions out of them and finally enqueueing them into the decode
queue associated with that thread. The pipeline splices this block processing for various threads in a
fair manner. It has the provisions to receive signals from Xunit when a thread is to be reset and
restarted at a different address and takes appropriate actions to clear all partial processing of a block
when a new block must be started.

The Xunit, similarly is a sequence of stages and the passage of a single packet through all the stages of
the Xunit accomplishes the task of executing one instruction of a thread. This comprises of reading the
necessary register values, performing any address arithmetic needed to compute effective addresses,
translating addresses, accessing the memory for load/store instructions, executing any
logical/arithmetic operation for the instruction, storing the result of an instruction in the architectural
state of the thread and determining the next instruction the thread must execute. A single stage (commit

1

stage) is where the instruction is committed. It handles instruction exceptions and aborts a thread. It
recognizes interrupts and saves and restores the states of computation. It has a decrementer that can be
programmed. It has provisions to handle longer execution delays (such as memory accesses) and re-
execute instructions when necessary.

2.Pipeline Abstraction

The pipeline is designed as a generic abstraction that controls stages oblivious of the number or nature
of the component stages. This facilitates designing each stage independently and stages can be added
and removed in a very flexible manner. From the controller's view, the pipeline is a vector of stages
through which packets of certain type flow. Each packet represents an instruction carrying all
information about its thread, its operation etc. Each stage represents an operation to be performed on
the incoming packet and produces an output packet. In addition, the operation performed in a stage may
result in altering the status of the threads. To capture this, the pipeline defines the notion of status of a
thread as follows:

Thread Status: The status of a thread can take one of 4 possible values: Active, Suspend, Reset or
Restart. Intuitively, an active status indicates that a packet for that thread should be normally processed.
A suspend status indicates that processing of any packet for that thread must be abandoned and the
thread will have to be reactivated later to re-execute the same instruction. A reset status also cancels all
processing for a thread and in addition, it will also discard any partial state maintained for the thread.
The thread must then be restarted to start with a new instruction at another address.

2

Figure 1: Overview of the Processor Core

Stage Operation: Each stage is viewed as an operator. At the beginning of each cycle, it is provided
with an input packet and a status vector indicating the status of each thread as viewed by that stage. At
the end of the cycle, the stage returns a result packet and possibly an altered view of the status of each
thread, as a result of its operation. The stage is free to maintain and update an internal state during this
operation. The controller collects the outputs of all stages, pushes the packets to successive stages and
propagates the statuses up the pipeline. The manner in which the status propagation is used to control
the thread behavior is described next.

Controlling Threads: In general, several instructions of a thread may be in progress at different stages
in the pipeline, in any cycle. The pipeline provides a variety of ways in which the progress of a thread
can be controlled. For instance, when a stage i returns suspend status for thread j, the status is
propagated upwards so that all preceding stages discard processing any packets belonging to that
thread, while all succeeding stages continue with any packets belonging to that thread. When the
suspending stage eventually decides to reactivate the thread, it submits an active status, which is again
propagated, so that the top stage resubmits the suspended instruction packet. Similarly, when an
execution stage detects a taken branch, it submits a reset status causing all preceding stages to discard
all processing for that thread and clean up any partial states. The same mechanism is used to switch a
thread upon recognizing an exception or external interrupt.

The basic operation of the pipeline controller is illustrated in Figure 2. A stage is abstracted by a
function, f, that takes pair (p,u), of packet p and status vector u and returns the pair (q,v). The
controller operates on a vector of such pairs, one for each stage. It feeds the corresponding pair to each
stage and collects the resulting pair. (see code fragment 1) It shifts the packet vector down so that the
output packet of a stage is fed to the next stage in the next cycle. For the status vector, it accumulates
them upwards, so that stage i can see the cumulative effect of statuses set by all stages below i. It shifts
the resultant vector up and feeds to the corresponding stages in the next cycle. There is provision to
inject a new input packet at the top of the pipeline and a new status vector to be injected at the bottom

3

Figure 2: Pipeline Control Schema

of the pipeline. This pipeline operation repeats every cycle.

3.Instruction Unit

Iunit Pipeline: The Iunit pipeline may process instruction blocks for different threads concurrently.
But the instruction block processing for a given thread is done sequentially does not overlap with
fetching of other threads for the same thread. When a thread is selected for instruction fetching, it
sends out a suspend status and will not be selected again until that instruction block is fetched, inserted
into instruction buffer and its next block address is determined. Throughout this processing, a suspend
status gets sent back for that thread, preventing the top stage from selecting that thread again. Since
reading instruction memory can take arbitrary amount of time, the following strategy is adapted.

Instruction fetching: The instruction block fetch stage is a finite state machine, and its state is
characterized by three boolean variables [present, issued, tobeDiscarded] for each thread. They
respectively track whether (a)there is an outstanding block request present for the thread, (b)the request
has been issued to memory or not and (c) whether a future response for it must be discarded or not. In
each cycle, any incoming packet receives a block request; If no response is being awaited for a
previous request, it marks it as present, not issued and notToBe Discarded. Otherwise, it marks as
present, not Issued and response to be discarded. Then it selects, in a round-robin fashion, a thread
with a request that is present and not issued and for which no response is being awaited. The request is
issued and so marked. When a response is received for a thread which is marked to be discarded, it
discards the response and the state is so marked. Otherwise, its state is cleared and an output packet is
generated with the contents of the block. (see Code Fragment 2). This way, even if a thread is reset
while it has an outstanding memory response, it awaits the response, discards it and proceeds with the
new request.

Instruction Buffering: Once a block is fetched, the next stage picks one instruction at a time and
inserts into Ibuffer. This is done again in a round-robin fashion, so that processing of instructions for
various threads is interleaved in a fair manner avoiding starvation. Once an entire block is completed
for a thread, its status is set to Active and a new block address is supplied for it. (see Code Fragment 3).

Instruction Decoding: The same sharing strategy is adapted for decoding instructions from Ibuffer
and inserting them into decode buffer. The decode buffer is shared with the dispatch stage in the Xunit
and the selection criterion for decoder will check for a thread's Ibuffer to be non-empty and its Decode
buffer to be non-full. (see Code Fragment 4). In addition, load-multiple and store-multiple instructions
are cracked into individual load/store instructions in this stage.

4.Execution Unit

Dispatcher: The dispatcher performs two main functions: it ensures fair scheduling of instructions
from all threads in a round-robin fashion and it remembers a short history of instructions issued for

4

each thread, so that when a thread is resumed after suspension, instructions can be reissued in an
orderly fashion. To aid these functions it maintains the structures shown in Figure 3. GA is a global
array. There is a history array, HAi, one for each thread. Each entry in HAi can hold an instruction and
each entry of GA can hold an index into any history array. All arrays are of the same size as the number
of entries in the pipeline. The pointers g, ai, ri are used as described below. In the normal operation,
when an instruction is dispatched for thread i, the instruction is stored in HAi[ai], the index ai is stored
in GA[g] and the pointers g, ai and ri are incremented (circularly). If no instruction is dispatched, then
only g is advanced. When thread j gets suspended by stage k, then rj is set to the current value in
GA[g-k]. Next time when thread j is selected for dispatch, the instruction at HAj[rj] is dispatched and
rj is advanced. This process continues until rj reaches aj, after which normal operation is resumed for
that thread. (see Code Fragment 5).

Register Bypass: The register values are read in the second stage in Xunit and they are used the
following two stages, before new values are written into them in the commit stage. This leaves a
window during which stale values could be used when stores and loads take place back to back in the
pipeline. To overcome this, an array of register values written in the last k cycles are stored in an array.
In the execute stage, new values are taken from this array, if they can be directly used. Otherwise, the
instruction is suspended so that it is resubmitted again.

Memory Accesses: Execution of load/store instructions is designed to tolerate arbitrary latency for
memory access. The load/store unit remembers the latest memory request made by each thread and
submits them to memory in a round-robin fashion. Once a store request is accepted from a thread, no
further memory requests are accepted from that thread until the store is completed. Further requests are
simply suspended and retried until they are accepted. When a load request is accepted, the load
instruction is suspended and retried, while the load is in progress. Data received from memory is
buffered in the load-store unit and is delivered when the load is retried next. Store requests will erase
any pending data in the buffers to preserve consistency. Partial word writes are implemented by first
reading the memory and writing back the updated words. No memory request is permitted to intervene
between such read and write involved in a partial store.

5

Figure 3: Instruction History maintained by Dispatcher

Address Translation: A central table of entries is maintained to translate both instruction and data
memory addresses. Multiple page sizes are supported. All the entries in the translation table are
searched in parallel to find a match. Address translation faults generate an interrupt to resolve the fault.
Multiple requests to the translation table are ordered by priority and are handled one at a time. Writes to
the translation table take highest priority. Then data address translations are taken up. Instruction
address translations have least priority.

Decrementer: A programmable decrementer is provided that decrements a count in each cycle and
raises an interrupt when it reaches zero.

5.Validation Strategy

The Bluespec compiler produces equivalent versions of implementations in C and Verilog. The
Bluesim simulator can be used to simulate the C version and observe the inputs and outputs. This path
is used to debug the core written in Bluespec. The memory is implemented as a file that is accessed by
the Bluesim simulator. PowerPC Binary file is supplied as initial contents of the memory. A
rudimentary interface is built in the core to read the contents of a designated area in the memory to
initialize its registers before the core starts to run and also to dump the contents of the registers in that
area when the execution is stopped. Using this one can specify a complete initial state of the system
and a program and obtain the complete final state after the program completes its execution of a
specified number of instructions.

IBM has developed a sophisticated processor simulation facility (called Mambo) and PowerPC
processor designs are available that run on Mambo. Given a program and an initial state of the system,
Mambo has the capability to run behavior simulation and provide the final state of the system after
running a specified number of instructions. Using this facility, we compared the final states from
Mambo and Bluesim simulators for a given initial state. While this is, by no means, an exhaustive unit
test, this provided us a preliminary validation for various excerpts from Linux code and other micro
benchmarks.

6.FPGA Implementation

For the initial prototyping, we use a Xilinx Virtex-5 LX330 FPGA device, with an 8M SRAM on board
(known as Stinger-3), as shown in Figure 4. The FPGA board is controlled by a host computer (a laptop
PC). The host computer is connected to the board via 2 ports. The USB port connection is used as a
command interface to control the core and the RS232 port is used for the UART connection for kernel
display and input, when the core is running.

The FPGA board is populated with a processor core, an 8MB SRAM and 4 interfaces (cmd, mem, usb,
uart) as shown in Figure 4. The command interface accepts commands from the host and returns
responses. This can be used to operate the core in two modes: probe mode and run mode. In the probe
mode, the core state (registers and memory) can be examined and set to specified values via the

6

command interface. In the run mode the core is run for a specified number of instructions. The three
interfaces, usb, uart and mem, respectively interface with the 3 external devices and transfer signals in
both directions, crossing the clock boundaries as needed. The memory interface provides a quad-word
half-duplex data path to the SRAM, together with controls to read/write individual words on the quad-
word path. Currently the clocks are adjusted to provide a fully pipelined interface to the memory with a
3 cycle latency for any access.

The preliminary sizes of the Bluespec programs, the Verilog programs generated for them and the area
occupied by their synthesized versions are shown in Table 1. The table also shows how the FPGA
resource usage vary as the number of threads per core is increased without any optimization. Xilinx
Virtex-5 LX330 FPGA device includes 207,360 internal fabric flip-flops and 207,360 6-input look-up
tables (LUT). For the single thread configuration, 11% of available flip-flops and 32% of available
LUTs are consumed; these numbers increase 63% and 56% respectively to 18% and 50% for the four-
thread configuration.

7

Figure 4: FPGA board and its contents

Component Lines in

Bluespec

Lines in

Verilog

Flip-flops in

FPGA

LUTs in FPGA

Single Thread

Core + Cmd Interface 12,433 91,312 22,360 62,915

4 Threads

Core + Cmd Interface 12,433 166,171 36,469 98,443

Interfaces Written in VHDL

Memory Interface vhdl 296 302 153

Usb Interface vhdl 311 145 92

Uart Interface vhdl 5,451 710 887

Interconnect all
components in the FPGA

vhdl 439 33 3,249

Table 1: Sizes of Programs and Corresponding Area occupied in FPGA

7.Appendix: Illustrative Code Fragments

We provide Bluespec code fragments that correspond to certain descriptions given in the text. These are
excerpts from actual code and are illustrative of the coding style.

// code Fragment 1
// run one step of the pipeline
function ActionValue#(stagePkt)
 applyStageFunction(StageFunction#(stagePkt) f, stagePkt x); return f(x);
endfunction
function ActionValue#(StagePktVec#(nStages, stagePkt))
 runPipe(StageFunctionVec#(nStages, stagePkt) fvec, StagePktVec#(nStages, stagePkt) pvec);
 return zipWithM(applyStageFunction, fvec, pvec);
endfunction

// given initialStatus and an initial status vector[0..nStages] this function
// propagates the max status upwards for each stage and also captures the largest stage
// numer that set the max status. It returns that stage number and the propagated status vector
function Tuple2#(TypeStageNum#(nStages), Vector#(nStages, TypeStatus))
 propagateStatusUpward(TypeStatus initStatus, Vector#(nStages, TypeStatus) svec);
 Tuple2#(TypeStatus, TypeStageNum#(nStages)) initPair = tuple2(initStatus, fromInteger(valueof(nStages)-1));

8

 Vector#(nStages, TypeStageNum#(nStages)) snumvec = genWith(fromInteger);
 Vector#(nStages, Tuple2#(TypeStatus, TypeStageNum#(nStages))) pairVec = zip(svec, snumvec);
 Vector#(nStages, Tuple2#(TypeStatus, TypeStageNum#(nStages))) proppedPairVec =
 sscanr(maxPairStatusNum, initPair, pairVec);
 match {.newsvec, .numvec} = unzip(proppedPairVec);
 return tuple2(numvec[0], newsvec);
endfunction

// code Fragment 2
// select and issue a new inst fetch request to memory
// if not busy, select next thread and submit another request
 if (icacheRequestQueue.notFull()) begin

 TypeThreadNum w = advanceThreadNum(lastThreadServed);
 TypeMemReq r = ?;
 Maybe#(TypeThreadNum) maybeS = tagged Invalid;
 TypeBoolVec eligible = zipWith3(firstTrueRestFalse, newReqValidVec, newReqIssuedVec, newReqDiscardVec);
 for(Integer i=0;i<valueof(NTHREADS);i=i+1) begin
 if (maybeS matches tagged Invalid &&& eligible[w]) begin
 maybeS= tagged Valid w;
 r = newReqVec[w];
 end
 w = advanceThreadNum(w);
 end
 if (maybeS matches tagged Valid .s) begin
 r.addr = r.addr & (~('hf)); //send the addr of quad-word containing the desired word
 TypeTaggedMemReq tr =TypeTaggedMemReq{tag: TypeMemTag{isFromIU:1, isStore:0, tnum:s}, memReq:r};
 newLastThreadServed = s;
 newReqIssuedVec[s] = True;
 icacheRequestQueue.enq(tr);

 end
 end

 // If Icache resp arrived, note the results
 if (respWire.wget matches tagged Valid .resp) begin
 TypeMemTag tag = resp.tag;
 TypeThreadNum t = tag.tnum;

 if (newReqDiscardVec[t]) begin
 newReqDiscardVec[t] = False;
 end
 else begin
 retPkt.validPkt = True;
 retPkt.tnum = t;
 retPkt.addr = newReqVec[t].addr;
 retPkt.tlbMiss = (resp.memResp.dataValid != 1);
 retPkt.ivec = resp.memResp.data;
 // mark selected instructions ... code deleted for brevity

 newReqValidVec[t] = False; // this req is done
 newReqIssuedVec[t] = False;
 newReqDiscardVec[t] = False;

 end
 end

9

// code Fragment 3
// select an eligible thread that has an inst to enter into its IBuffer

 function Bool eligibleForXfer(TypePendingIUstagePkts pendingIUpkts,TypeThreadNum t);

 return (isIUpktValid(pendingIUpkts[t]) && ibuf[t].notFull());
 endfunction

 TypeMaybeThreadNum maybeT = selectThread(map(eligibleForXfer(pendingIUpkts), threadNums),
iBufferNextTnum);
 maybeTtoStoreIbuf <= maybeT;

 for (Integer k=0; k<valueof(NTHREADS); k=k+1)
 if (maybeT matches tagged Valid .tt &&& tt==fromInteger(k)) begin
 TypeThreadNum t = fromInteger(k);
 TypeIUstagePkt q = pendingIUpkts[t];

 TypeIbufEntry e = TypeIbufEntry{addr: q.addr,inst: q.ivec[0],isBranch: q.isBranch[0],
 brTaken: q.isTaken[0],tlbMiss: q.tlbMiss};

 ibufEntryToStoreIbuf <= e;
 iBufferNextTnum <= advanceThreadNum(t);
 q.addr = q.addr + 4;
 q.ivec = shiftInAtN(q.ivec, unpack(0));
 q.isBranch = shiftInAtN(q.isBranch, unpack(0));
 q.isTaken = shiftInAtN(q.isTaken, unpack(0));
 q.isSelected = shiftInAtN(q.isSelected, unpack(0));
 Bool noMore = (q.tlbMiss || !q.isSelected[0]);

 if (noMore) begin
 q.validPkt = False;
 retPkt.svec[t] = Active;
 newIarVec[t] = tagged Valid q.addr;
 end
 pendingIUpkts[t] = q;
 end

// code Fragment 4
// decodes an instruction and inserts into decode buffer;
// LoadMultiple and StoreMultiple instructions are cracked into individual loads and stores
 method ActionValue#(TypeIUstagePkt) ibufToDibuf(TypeIUstagePkt p);
 function Bool isEligible(TypeStatus s, TypeThreadNum t);

 return ((s==Active) && ibuf[t].notEmpty() && dibuf[t].notFull()); endfunction
 if (crackingThread matches tagged Valid .ct &&& dibuf[ct].notFull()) begin

 wireThread <= crackingThread;
 wireThreadReset <= (p.svec[ct] != Active);

 end
 else begin
 TypeBoolVec eligible = zipWith(isEligible, p.svec, threadNums);
 TypeMaybeThreadNum maybeT = selectThread(eligible, iDecodeNextTnum);

10

 maybeTtoXferIbufToDibuf <= maybeT;
 end
 TypeIUstagePkt retPkt = ?;
 retPkt.validPkt = False;
 retPkt.svec = replicate(Active);
 retPkt.avec = replicate(tagged Invalid);
 return retPkt;
 endmethod: ibufToDibuf

// code Fragment 5

 // For each thread that is reactivated after suspension, roll back its log (based on the
 // stage that has suspended it) and set resuming index to the proper place in its log
 for(Integer i=0;i<valueof(NTHREADS);i=i+1) begin

 TypeThreadNum it = fromInteger(i);
 if (((threadDispatchStatusVec[it]==Active) || (threadDispatchStatusVec[it]==Restart))
 && (inpStatusVec[it]==Suspend)) begin
 TypeXUstageNum y = moveBackXUstageNumBy(circularIndex, inpStageNums[it]);
 TypeXUstageNum z = circularIndexArray[y];
 newResumingIndex[it] = z;
 suspended[it] = tagged Valid inpStageNums[it];
 //$display("*** suspend[%d] [c=%d, stg=%d, issued at c=%d]resume at %d[@0x%h] ***",
 // it,circularIndex, inpStageNums[it], y, z,dispatchedInstLog[it][z].addr);
 end

 end

 Maybe#(TypeThreadNum) maybeT = selectThread(eligible, nextDispatchThread);

 // prepare a return packet (this stage never alters the state of any thread)
 TypeXUstagePkt retPkt = ?;
 retPkt.svec = replicate(Active);
 retPkt.avec = replicate(tagged Invalid);
 retPkt.validPkt = isValid(maybeT);
 TypeMaybeThreadNum issued = tagged Invalid;
 TypeMaybeThreadNum resumed = tagged Invalid;
 if (isValid(maybeT)) begin

 TypeThreadNum t = fromMaybe(0, maybeT);
 nextDispatchThread <= advanceThreadNum(t);
 TypeXUstageNum x = ?;
 TypeDecodedIbufEntry di = ?;
 //two cases: is the inst being taken from dibuf or am I re-executing a suspended inst?
 if (revisedStatusVec[t] == Active) begin
 x = activeIndex[t];
 di = dibuf[t].first();
 dibuf[t].deq();
 newLog[t][x] = di;
 newActiveIndex[t] = advanceXUstageNum(x);
 issued = tagged Valid t; //$display("*** issue[%d] %d[@0x%h] ***",t, x, di.addr);
 end

11

 else begin
 x = newResumingIndex[t];
 di = dispatchedInstLog[t][x];
 newResumingIndex[t] = advanceXUstageNum(x);
 if (newResumingIndex[t] == activeIndex[t]) revisedStatusVec[t] = Active;
 resumed = tagged Valid t; //$display("*** reissue[%d] %d[@0x%h] ***",t, x, di.addr);
 end
 circularIndexArray[circularIndex] <= x;

 end

// code Fragment 6

// bank of register values written during the recent past
 Reg#(Vector#(BypassLevels, Vector#(WritePorts, TypeMaybeRegData))) bypassVec <- mkReg(replicate(replicate(tagged
Invalid)));

 function Maybe#(DataD) selectValid(Maybe#(DataD) a, Maybe#(DataD) b);
 return (isValid(a) ? a : b);
 endfunction

 function Maybe#(DataD) hasNewValue(TypeThreadNum t, RegName r, TypeMaybeRegData mbd);
 return (mbd matches tagged Valid .s &&&
 s matches tagged TypeRegData {t:.ut, r:.ur, val:.uval} &&&

 (ur == r) &&&
 (ut==t)
 ? tagged Valid uval : tagged Invalid);
 endfunction

 function Maybe#(DataD) hasNewValueAtAnyPort(TypeThreadNum t, RegName r, Vector#(WritePorts,
TypeMaybeRegData) mbdVec);
 Vector#(WritePorts, Maybe#(DataD)) newValVec = map(hasNewValue(t,r), mbdVec);
 return foldl(selectValid, tagged Invalid, newValVec);
 endfunction

 function Maybe#(DataD) regHasNewValueAtAnyLevel(TypeThreadNum t, RegName r);
 Vector#(BypassLevels, Maybe#(DataD)) newValVec = map(hasNewValueAtAnyPort(t,r), bypassVec);
 return foldl(selectValid, tagged Invalid, newValVec);
 endfunction

 function Vector#(BypassLevels, Vector#(WritePorts, TypeMaybeRegData)) recordRegStores(TypeXUstagePkt p);
 Vector#(WritePorts, TypeMaybeRegData) newRegData = replicate(tagged Invalid);
 if (p.validPkt && p.inst.rdWriteValid) newRegData[0] = tagged Valid TypeRegData {t:p.tnum, r:p.inst.rd,
val:p.rdValueNew};
 if (p.validPkt && p.inst.rs1WriteValid) newRegData[1] = tagged Valid TypeRegData {t:p.tnum, r:p.inst.rs1,
val:p.rs1ValueNew};
 Vector#(1, Vector#(WritePorts, TypeMaybeRegData)) singleton; singleton[0] = newRegData;
 return append(singleton, init(bypassVec));
 endfunction

12

