

OXIDATION-REDUCTION REACTIONS

SPONTANEOUS REACTIONS

Examples: voltaic cells, batteries.

NON-SPONTANEOUS REACTIONS

Examples: electrolysis, electrolytic cells.

QUANTITATIVE ASPECTS OF ELECTROCHEMICAL REACTIONS CHI12 LRSVDS Electrochem part 1

Oxidation/Reduction

SubstanceSubstanceoxidizedreduced(loses(gainselectron)electron)

OXIDATION-REDUCTION

Oxidation =

An oxidizing agent is a substance that causes oxidation (and is itself reduced).

Reduction =

A reducing agent is a substance that causes reduction (and is itself oxidized).

LAnOx and GRedCat!

LAnOx: Lose electrons / Anode / Oxidized

GRedCat:Gain electrons /Reduced/Cathode

3

Rules for determining Oxidation States

- 1. Oxidation state of atom in elemental form is zero. e.g. $Cl_2 O_2 P_4 C(s) S_8$
- 2. The oxidation number of a monatomic ion equals its charge.
- 3. Some elements have "common" oxidation numbers that can be used as reference in determining the oxidation numbers of other atoms in the compound.

Alkali metals	+1
Alkaline earth metals	+2
Fluorine	-1
O usually	-2
(peroxides (-1) & superoxides possi	ble)
H usually	+1
(Hydrides: metal-H compounds (-1)))
CI, Br, I almost always	-1

- 4. Sum of oxidation numbers is equal to overall charge of molecule or ion:
 - For a neutral compound the sum of oxidation numbers equals zero.
 - For a polyatomic ion, the sum of the oxidation numbers is equal to the charge on the ion.
- 5. Shared electrons are assigned to the more electronegative atom of the pair:
 - more electronegative atom will have a negative oxidation number.

Single Displacement Reactions

Oxidation reduction reactions

 $Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$

Ionic equation:

Oxidation/Reduction

 $2NiO(OH)(s) + Cd(s) + 2H_2O(I)$

 \rightarrow 2Ni(OH)₂(s) + Cd(OH)₂(s)

What is reduced?

What is oxidized?

Net ionic equation

What is reduced?

What is the oxidizing agent?

What is the reducing agent?

CH112 LRSVDS Electrochem part 1

5

What is oxidized?

CH112 LRSVDS Electrochem part 1

6

Periodic trends in oxidation states

Driving force: atoms tend to lose or gain electrons to achieve an inert gas configuration

1A														7A	8A
H^+	2A									3A	4A	5A	6A	H^{-}	N
Li ⁺												N ³⁻	O ²⁻	F^-	O B
Na ⁺	Mg ²⁺	 	 Tr	ansitic	n met	als				Al ³⁺		P ³⁻	S ²⁻	Cl-	E
K ⁺	Ca ²⁺		Cr ³⁺	Mn ²⁺	Fe ²⁺ Fe ³⁺	Co ²⁺	Ni ²⁺	$\begin{array}{c} Cu^+ \\ Cu^{2+} \end{array}$	Zn ²⁺				Se ²⁻	Br ⁻	G A
Rb ⁺	Sr ²⁺							Ag^+	Cd ²⁺		Sn ²⁺		Te ²⁻	I-	SE
Cs ⁺	Ba ²⁺						Pt ²⁺	Au ⁺ Au ³⁺	$\begin{array}{c} Hg_2^{2+} \\ Hg^{2+} \\ Hg^{2+} \end{array}$		Pb ²⁺	Bi ³⁺			5

For main group elements (s and p block) The highest possible positive oxidation state is equal to the !

(transition metals don't follow the rules)

Periodic trends in oxidation states

Can we rationalize these common oxidation states?

Blue: most common oxidation states in Group 5 CH112 LRSVDS Electrochem part 1

BALANCING REDOX REACTIONS

- 1. Write incomplete half-reactions.
- 2. Balance each half-reaction separately.
 - a. Balance atoms undergoing redox.
 - b. Balance remaining atoms
 - i. Add H₂O to balance oxygens.
 - ii. Add H⁺ to balance hydrogens.
- 3. Balance charges by adding electrons.
- 4. Multiply each half-reaction so that the same number of electrons are involved in the reduction and the oxidation.
- 5. Add the half-reactions.
- 6. In basic solutions, add OH⁻ to neutralize H⁺

Half Reactions

Write the balanced half-reactions for:

 $\operatorname{Sn}^{2+}(aq) + \operatorname{Fe}^{3+}(aq) \rightarrow \operatorname{Sn}^{4+}(aq) + \operatorname{Fe}^{2+}(aq)$

1) oxidation: electrons are "products"

2) reduction: electrons are "reagents"

What is the balanced overall reaction?

CH112 LRSVDS Electrochem part 1

9

Balancing Redox Reactions in ACID SOLUTION

 $C(s) + HNO_3 \rightarrow NO_2 + CO_2 + H_2O$

Balancing Redox Reactions in BASE SOLUTION

 $PbO_2 + CI^- + OH^- \rightarrow Pb(OH)_3^- + CIO^-$

CH112 LRSVDS Electrochem part 1

Balancing Redox Reactions

When the following reaction is balanced (in acid) what is the coefficient in front of water?

 $NO_2(g) + H_2O(I) \rightarrow NO_3^-(aq) + NO(g)$

Circle your answer! 1 2 3 4

Spontaneous Redox Reactions

Is this reaction SPONTANEOUS?

 $Zn^{0}(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu^{0}(s)$

E released in a spontaneous redox reaction

Definition of Voltaic or galvanic cells:

CH112 LRSVDS Electrochem part 1

13

CH112 LRSVDS Electrochem part 1

14

Voltaic Cell

 $Zn^{0}(s) + Cu(NO_{3})_{2}(aq) \rightarrow Zn(NO_{3})_{2}(aq) + Cu^{0}(s)$

What happens in a Voltaic Cell?

 $Zn^{0}(s) + Cu(NO_{3})_{2}(aq) \rightarrow Zn(NO_{3})_{2}(aq) + Cu^{0}(s)$ What happens at the cathode?

What happens at the anode?

Which electrode will increase in mass?

Which electrode will decrease in mass?

Which direction do the electrons flow?

Why is a Salt Bridge needed?

Anode: $Zn \rightarrow Zn^{2+} + 2e^{-}$

Anions move (how?_) into the
	to neutralize the
excess Zn ²⁺ ions form	ned by oxidation.

I he electron	s flow towards the cathode
(through) where they are
used in the	reaction.

Voltaic cells consist of: Anode: what process?______ Cathode: what process?_____ The two solid metals (cathode and anode) are the ______. What does the Salt bridge or porous divider do?

Voltaic Cell

"Rules" of voltaic cells: 1. At the anode electrons are products.

2. At the cathode electrons are reagents.

3. Electrons cannot swim!

CH112 LRSVDS Electrochem part 1

17

Electrode at the Molecular Level

Voltaic Cell Potential

Spontaneous electrochemical reaction

Voltage:

1V =

19

VOLTAIC CELL VOLTAGE

Cell voltage (EMF or E_{cell}) is the measure of _____

E_{cell} is an *Intensive* property:

E_{cell} is energy <u>per electron</u>

Cell voltage depends on:

1) 2)

3)

The more spontaneous a reaction,

21

STANDARD POTENTIAL FOR AN ELECTROCHEMICAL CELL

The standard potential:

potential (voltage) generated when reactants and products of a redox reaction are in their *standard states*.

Standard States: T = 25°C. Gases, P = 1 atm partial pressure [Solutions] = 1M

It is convenient to break redox reactions into half reactions.

When all substances are in standard state: Standard half-cell potentials

TABLE 20.1 Standard Reduction Potentials in Water at 25°C

Potential (V)	Reduction Half-Reaction
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$
+1.51	$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \longrightarrow Mn^{2+}(aq) + 4H_2O(l)$
+1.36	$\operatorname{Cl}_2(g) + 2e^- \longrightarrow 2\operatorname{Cl}^-(aq)$
+1.33	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(l)$
+1.23	$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(l)$
+1.06	$\operatorname{Br}_2(l) + 2e^- \longrightarrow 2\operatorname{Br}^-(aq)$
+0.96	$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O(l)$
+0.80	$\operatorname{Ag}^+(aq) + e^- \longrightarrow \operatorname{Ag}(s)$
+0.77	$\operatorname{Fe}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Fe}^{2+}(aq)$
+0.68	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$
+0.59	$MnO_4^{-}(aq) + 2H_2O(l) + 3e^{-} \longrightarrow MnO_2(s) + 4OH^{-}(aq)$
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$
+0.40	$O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq)$
+0.34	$\operatorname{Cu}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Cu}(s)$
0	$2\mathrm{H}^+(aq) + 2\mathrm{e}^- \longrightarrow \mathrm{H}_2(g)$
-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$
-0.44	$\operatorname{Fe}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s)$
-0.76	$\operatorname{Zn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$
-0.83	$2H_2O(l) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$
-1.66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$
-2.71	$\operatorname{Na}^+(aq) + e^- \longrightarrow \operatorname{Na}(s)$
-3.05	$\operatorname{Li}^+(aq) + e^- \longrightarrow \operatorname{Li}(s)$

HALF-CELL POTENTIAL

The *half-cell potential* is the potential associated with the half-reaction.

Rules for half-cell potentials:

- 1. The sum of two half-cell potentials in a cell equals the overall cell potential:
- 2. For any half-reaction:
- 3. Standard half-cell is a <u>hydrogen</u> <u>electrode</u>:

$$E^{\circ}_{1/2}(\text{oxid}) = E^{\circ}_{1/2}(\text{reduc}) = 0 V (\text{for SHE})$$