
ICED’07/479 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07

28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

������������	
��������	�������	���	������

���������������	���������	������	����

Tolga Kurtoglu1, Irem Y. Tumer2
1Graduate Research Assistant*, The University of Texas at Austin, Austin, TX, USA, 78712
2Associate Professor, Oregon State University, Corvallis, OR, USA, 97330

ABSTRACT
Ensuring the reliability of complex software intensive systems is becoming a critical requirement for

all military and commercial aerospace applications, and becomes especially more challenging when

implemented for autonomous and evolving deployments required of such applications. To ensure

reliability, this research asserts that knowledge, data, and models of such complex systems must be

integrated with their intended systems starting from the early design stages, hence enabling designers

and engineers to plan for contingencies, redundancies, and potential changes early, before costly

design decisions have been made. In this paper, a general system-level design methodology is

introduced to perform simulation-based failure identification and propagation analysis of software-

hardware systems. In particular, the Functional Failure Identification and Propagation (FFIP) analysis

framework is introduced as a novel approach for designing reliable software-intensive systems. A

combination of function, structure, and behaviour modelling is proposed to simulate failure

propagation paths and the resulting functional failures to determine mitigation options, integrating

hierarchical system models with behavioural simulation and qualitative reasoning. The overall goal of

this research is to develop a formal framework and simulation-based design tool for design and system

engineering teams to evaluate and assess the potential of functional failures of software intensive

systems throughout the lifecycle.

Keywords: failure prevention and analysis, risk based design, functional modelling, conceptual design

�� �������������

Risk analysis and management is an important requirement in the development of complex systems.

Many types of risk analyses are used during the lifecycle of complex systems [1-5] including

quantitative and probabilistic methods [6], reliability analysis techniques applied to design [7,8], or

knowledge-based approaches such as lessons learned databases and hazard analyses [9]. One of the

critical shortcomings of these methods is the difficulty in applying them during the early stages of

design, where the models are vague, knowledge and decisions are difficult to capture, and probabilities

are hard to assign. Studies and design reviews have pointed to the early design stages as one of the best

times to catch potential failures and anomalies [10]. It is at these stages, where many decisions and

tasks are still open (e.g., sensor and measurement point selection, safeguards, redundancies, diagnosis,

signature and data fusion schemes) must be decided to effectively reduce the cost of risk mitigation

efforts and increase the safety of designed systems.

However, we currently lack formal representations and methods for enabling risk analysis at the early

design stages. Most existing risk analysis techniques require very detailed, high-fidelity models of

system components in order to infer faulty system behaviour and its consequences. At the early design

stages, however, selection of specific components has not been made, and hence such detailed models

of system components and design parameters are not yet available. Instead, the designs are represented

using low fidelity, high-level models of intended functionality. In order to facilitate early identification

of risks, the focus should be kept on a system’s functional models, and hence it is crucial to be able to

* The research was conducted at MCT/NASA Ames Research Center, Moffett Field, CA, 94035, USA.

ICED’07/479 2

reason at the functional level and identify what functions are likely to fail and what the overall effect

of loss of these functions will be on a system’s behaviour and performance.

In this paper, we introduce the functional failure identification and propagation (FFIP) framework that

enables these capabilities. FFIP assists the designers to proactively analyze the functionality of the

systems early in the design process, understand functional failures and their propagation paths, and

determine what functions can be lost, what the impact to the overall system will be. The main

advantage of the framework is that it permits the analysis of functional failures and fault propagation

at a highly abstract system topology level before any potentially high-cost design commitments are

made. This influence on system design supports decision making early in the design process, guides

the designers to reduce risk through exploration of system components and their functionality, and

facilitates the development of more reliable system configurations.

�� �����������	����	�

Consider the Reaction Control System (RCS) example shown in Figure 1. A Reaction Control System

is one of the major subsystems of spacecraft propulsion. It provides attitude control during orbiting

through the use of a set of thrusters [11]. The RCS is composed of three subsystems – the forward, left,

and right RCS located in the nose and aft sections of the shuttle. Figure 1 details the simplified layout

of a single RCS subsystem. A subsystem is composed of two pressurization and propellant feed

systems – one for fuel (MMH), and one for oxidizer (NTO).

The two systems are independent and connect at the thruster chambers at the end of the manifold. Each

pressurization and propellant feed system contains temperature and pressure sensors in the helium and

propellant tanks and pressure sensors in the manifolds. Pressure in the helium tank passes through a

series of regulators that reduce the pressure to the desired working pressure. The propellant tanks are

pressurized with helium which in turn expels the propellant into the tank lines, towards the manifold.

Finally, the fuel and the oxidizer from the pair of feed systems are pushed into the thruster chamber

where they ignite on contact and produce a hot gas and thrust.

Figure 1 also shows the functional model of the RCS subsystem describing the basic functionality of

the system. It is at this high, functional level that we target to reason about failures, and their

propagation. Specifically, FFIP helps answer questions regarding critical what-if scenarios such as

“What happens if the helium line leaks?”, and more importantly “What are the effects of this failure on

overall system functionality?” In most complex systems, such as the RCS, such an assessment relies

heavily on human expertise. A human expert faced with this scenario is likely to go through the

following reasoning steps: “…the leak will stop the helium line from delivering its intended function,

i.e., transferring gas from the helium tank to the MMH tank causing the loss of the pipe’s “transfer

gas” functionality (labelled as failure start point on the functional model of the RCS, point (1), in

Figure 1.b) This will force the check valve to close and the propellant to be trapped in the tank. As a

result, the propellant in the MMH tank will be depleted depending on the remaining helium pressure in

the tank, and if the helium pressure drops under the minimum level required for forcing the propellant

into the tank line, the “supply liquid” functionality of the MMH tank will seize to continue (labelled as

point (2), in Figure 1.b.) The loss of this function will propagate to the thruster chamber next, in which

the two propellants are designed to come in contact, explode, and produce thrust. Since, the supply

from one of the propellant lines is interrupted, the “mix liquid”, “convert chemical energy to thermal

energy”, “convert thermal energy to pneumatic energy”, and “convert pneumatic energy to mechanical

energy” (labelled as points (3),(4),(5), and (6) in Figure 1.b.) functions will be lost, eventually

preventing the main functionality of the entire RCS subsystem, i.e. to “produce thrust”. This is a

critical failure that the system should be guarded against.

In this research, we automate the kind of failure reasoning demonstrated in the abovementioned

scenario. Accordingly, we aim to automatically compute functional failures, fault propagation paths,

and failure consequences using only the knowledge available during the early stages of design. Our

method brings a much needed formalism to fault assessment and is significantly different then

approaches that rely solely on expert elicitation to assess failure and its consequences.

ICED’07/479 3

�� �	��	��
�����

Various failure assessment, reasoning, and reliability modelling methods have been in existence for

some time, and are reviewed here briefly for completeness.

3.1 Failure and Risk Assessment Methods
The industries dealing with complex systems currently employ three major reliability tools and

methods: FMEA, FTA, and PRA. Failure Modes and Effects Analysis (FMEA) [7] is a method that

systematically examines individual system components and their failure mode characteristics to assess

risk and reliability. The FMEA analysis starts with decomposition of the system into subsystems and

finally into individual components. Ways in which each component can potentially fail (failure

mode(s)) are then recorded and evaluated separately to determine what effect they have at the

component level, and then at the system level. It is a widely used method that is easy to understand and

implement. However, the analysis requires a detailed level of system design, and thus is not optimal to

be used during conceptual design [12]. Moreover, FMEA does not capture component interactions

explicitly, and relies heavily on expert knowledge to assess failure consequences and their criticality

[12]. As a result, it is often considered to be a highly subjective method.

T

T

NTO

T

PP

P

MMH

GHe

P P

P
c

T

Helium Tank

Helium Isolation Valve

Pressure Regulator

Check Valves

Fuel Tanks

Isolation Valves

Manifold
Thruster

TTT

TT

NTO

TTT

PPPP

P

MMHMMH

GHeGHe

PP PP

P
c

T
P

c
T

Helium Tank

Helium Isolation Valve

Pressure Regulator

Check Valves

Fuel Tanks

Isolation Valves

Manifold
Thruster

Figure 1.a. The functional model and the schematic of a simplified Reaction Control System.

Figure 1.b. Illustration of reasoning through functional failures and their propagation.

Guide

Gas

Transfer

Gas

Detect

Status

Store

Liquid

Supply

Liquid

Convert

Pneum. E.

to Hyd. E.

Actuate

Liquid

Transfer

Liquid

Detect

Status

Detect

Status

Distribute

Gas

He

He

He MMH

T

MMH

M
M

H
 Is

o
 V

a
lv

e

o
n
/o

ff

P

MMH Tank

Temp

MMH System P

��������	

����

He

Guide

Gas

Transfer

Gas

Detect

Status

Store

Liquid

Supply

Liquid

Convert

Pneum. E.

to Hyd. E.

Actuate

Liquid
Transfer

Liquid

Detect

Status

Detect

Status

He

N
T

O

T
a
n
k

P
re

s

NTO

T

NTO

N
T

O
 Is

o
 V

a
lv

e

o
n
/o

ff

P

P

NTO Tank

Temp

NTO System P

Hydraulic

Energy

He Regulate

Liquid

Mix

Liquid

Convert

Chem.E.to

Therm.E.

Convert

Therm.E.to

Pneum.E.

Convert

Pneum.E.

to Mech.E.

Export

Gas

Transfer

Mech. E.

Export

Mech. E.

Detect

Status

Detect

Status

Regulate

Liquid

T
h
ru

s
te

r V
a
lv

e
 o

n
/o

ff

T
h
ru

s
te

r
V

a
lv

e
 o

n
/o

ff

T
T

e
m

p

Thermal E. Pneu. E.

Reaction
Forces

(M.E)

Gas

Exhaust

Gasses

P
P

re
s

MMH

Gas

Gas

NTO

Store

Gas

Supply

Gas

Transfer

Gas

Detect

Status

Detect

Status

Actuate

Gas

Regulate

Gas

P

He

T

He

Helium

Tank Pressure

Helium

Tank

Temperature

He

H
e

liu
m

R
e

g
u

la
to

r

o
n

/o
ff

H
e
liu

m
 Is

o

V
a
lv

e
 o

n
/o

ff

He

M
M

H
 C

h
e
c
k

V
a
lv

e
 o

n
/o

ff

N
T

O
 C

h
e
c
k
 V

a
lv

e

o
n
/o

ff

P

M
M

H

T
a
n
k

P
re

s
M

M
H

T

a
n
k

P
re

s

P

N
T

O
 C

h
e
c
k
 V

a
lv

e

o
n
/o

ff

M
M

H
 C

h
e

c
k

V
a

lv
e

 o
n

/o
ff

He

H
e

l iu
m

 Is
o

V
a

lv
e
 o

n
/o

ff

H
e

liu
m

R
e

g
u

la
to

r

o
n

/o
ff

He

Helium

Tank

Temperature

Helium
Tank Pressure

He

T

He

P

Regulate

Gas

Actuate

Gas

Detect

Status

Detect

Status

Transfer

Gas

Supply

Gas

Store

Gas

NTO

Gas

Gas

MMH

P
re

s
P

Exhaust

Gasses
Gas

Reaction
Forces
(M.E)

Pneu. E.Thermal E.

T
e

m
p

T

T
h
ru

s
te

r
V

a
lv

e
 o

n
/o

ff

T
h

ru
s
te

r V
a
l v

e
 o

n
/o

ffRegulate

Liquid

Detect

Status
Detect

Status

Export

Mech. E.
Transfer

Mech. E.

Export

Gas

Convert

Pneum.E.

to Mech.E.

Convert

Therm.E.to

Pneum.E.

Convert

Chem.E.to

Therm.E.

Mix

Liquid

Regulate

Liquid

He

Hydraulic

Energy

NTO System P

NTO Tank

Temp

P

P

N
T

O
 Is

o
 V

a
lv

e

o
n
/o

ff

NTO

T

NTO

N
T

O

T
a
n

k

P
re

s

He

Detect

Status

Detect

Status

Transfer

Liquid

Actuate

Liquid

Convert

Pneum. E.

to Hyd. E.

Supply

Liquid

Store

Liquid

Detect

Status

Transfer

Gas

Guide

Gas

He

��������	

����

MMH System P

MMH Tank

Temp

P

M
M

H
 Is

o
 V

a
lv

e

o
n
/o

ff

MMH

T

MMHHe

He

He

Distribute

Gas

Detect

Status

Detect

Status

Transfer

Liquid

Actuate

Liquid

Convert

Pneum. E.

to Hyd. E.

Supply

Liquid

Store

Liquid

Detect

Status

Transfer

Gas

Guide

Gas

�

�

�

� �

�

�������������������

�������	�������������

T

T

NTO

T

PP

P

MMH

GHe

P P
P

c
T

Helium Tank

Helium Isolation Valve

Pressure Regulator

Check Valves

Fuel Tanks

Isolation Valves

Manifold
Thruster

TTT

TT

NTO

TTT

PPPP

P

MMHMMH

GHeGHe

PP PP
P

c
T

P
c

T

Helium Tank

Helium Isolation Valve

Pressure Regulator

Check Valves

Fuel Tanks

Isolation Valves

Manifold
Thruster

ICED’07/479 4

Fault Tree Analysis (FTA) [8] is performed to capture event paths from failure root causes to top-level

consequences. Using this approach, possible event paths from failure root causes to top-level

consequences can be captured. Like FMEA, FTA is a well-accepted, standard technique. When

conducted properly, it is likely to identify more possible failure causes than single-component oriented

FMEA. However, FTA also relies greatly on expert input and shares similar criticism that FMEA is

subject to [12]. Moreover, since the failure domain is represented using events in FTA, low-level

component interactions and dynamics leading to failure are only considered informally, during expert

identification of event-consequence relationships. Formally capturing component interactions and

system dynamics is however crucial for supporting design decisions during early concept

development.

Probabilistic Risk Assessment (PRA) [6] is a method used for quantification of failure risk by

answering three questions: what can go wrong, how likely is it to happen, and what are the

consequences? [13] PRA combines a number of fault/event modelling techniques such as master logic

diagrams, event sequence diagrams and fault trees and integrates them into a probabilistic framework

to guide decision-making during design. Recently, PRA has been extended to include event/behaviour

simulation into the analysis as demonstrated by the SIMPRA tool developed by Mosleh et al. [14].

SIMPRA uses Simulink as its simulation environment, and thus demands a fully-specified system

model as part of the analysis. Such detailed, high-fidelity models, however are not available during

conceptual design.

3.2 Failure Reasoning Methods
A variety of diagnostic reasoning tools have been proposed for fault assessment and diagnosis.

Diagnostic reasoning approaches share a common process in which a system is monitored and a

comparison is performed of observed and expected behaviour of the system to detect anomalous

conditions. The major approaches to fault modelling and diagnostic reasoning include expert systems,

simulation and model-based diagnosis methods, and data classification techniques. Expert systems

[15] are extensively used in diagnosis, where knowledge acquired from human experts is formulated in

different ways such as “if-then” rules or decision trees [16, 17].

Model-based-based approaches to diagnosis, on the other hand, rely mostly on qualitative knowledge

to predict the behaviour of a system [18]. When observations disagree with the predicted behaviour,

some diagnostic technique is initiated to identify the faults. The broadest category for diagnostic

reasoning is model-based diagnosis (MBD) [19, 20, 21, 22]. Besides the model-based approaches,

some researchers have employed fault propagation graphs as the system model for diagnostic

reasoning [23, 24, 25, 26, 27]. Among those, directed graphs [28] are one of the techniques used to

analyze component dependencies and fault propagation [29, 30, 27]. Multi-Signal Flow Graphs

developed by Deb et al. [31] is another comprehensive methodology to model cause-effect

dependencies of complex systems.

Finally, in cases where physical cause-effect relationships are difficult to model in analytical form,

statistical and probabilistic classification methods are applied [32, 33]. In summary, while fault

propagation analysis tools exist, they require designers to explicitly formulate a fault propagation

model by specifying paths of causal relationships, which is not feasible during the early stages of

design where information about the system specifics is scarce.

3.3 Methods for Failure Analysis during Early Functional Design Stage
Prior work has addressed the need for integrating early risk assessment and management tools and

methodologies into the vehicle and system design [34-37]. Most notably, the Function Failure Design

Method (FFDM), promotes early identification of potential failures by linking them to product

functions [38,39]. FFDM defines a matrix based relationship between a system’s functions and its

failure modes. This relationship is derived from documented, historical data and is formalized with the

help of two standardized taxonomies, one describing functions [40] and the other failure modes [41] of

complex systems. FFDM provides a starting point for determining the likelihood of system failure

based on a set of functions that the system has to deliver. This is achieved using matrix representations

that map functions to components, and components to failure modes. The product of these two

ICED’07/479 5

matrices results in a third matrix that relates a system’s functions to failures. Using this output,

designers can analyze potential functional failures before any component selection is made. FFDM is

successfully applied to the Bell 206 rotorcraft and has lately been extended to include spacecraft

systems [42,43].

As an extension to FFDM, Grantham-Lough et al. [44] developed the Risk in Early Design (RED)

method to formulate a functional-failure likelihood and consequent risk assessment. This approach

classifies high-risk to low-risk function failure combinations and provides designers a tool that can be

used to qualitatively rank/order functional failures and their consequences during conceptual design.

The FFIP method described in this paper is complementary to these approaches in that it is function

oriented and thus has a conceptual design focus. However, FFIP comes with a number of additional

features. First, it integrates qualitative reasoning with behavioural simulation that enables the

computation of component interactions that are likely to result in functional failures. Second, it allows

the identification of not only the functional failures but also their propagation paths that are derived

from the functional and structural topology of a system. Third, the approach is applicable to a variety

of systems and it is not constrained by a database of documented, historical failure data.

�� ��	����������	
�����

The Functional Failure Identification and Propagation (FFIP) analysis framework is introduced as a

novel approach for designing reliable complex systems. A combination of function, structure, and

behaviour modelling is proposed to simulate failure propagation paths and the resulting functional

failures to determine mitigation options, integrating hierarchical system models with behavioural

simulation and qualitative reasoning, discussed next [12].

4.1 The FFIP Architecture
There are three major modules in the FFIP analysis framework: the graphical system model, the

behavioural simulation, and the functional-failure logic (FFL) reasoner, as shown in Figure 2. The

framework represents system function, configuration, and behaviour by an interrelated array of graph-

based, elemental component models. The graph-based modelling approach provides a coherent,

consistent, and formal schema to capture function-configuration-behaviour architecture of a system at

an abstract level and facilitates the assessment of potential functional failures and resulting fault

propagation paths through the FFL reasoner that translates the dynamics of the system into functional

failure identifiers [12,45].

Figure 2. The architecture of the FFIP framework

4.1.1 Models of Systems

At the conceptual stage of design, the design is expressed as an interconnectivity of elemental abstract

components that is often defined as the topology or the configuration of a system. The topology

imposes a certain structure on the system that permits delivery of desired functionality through specific

component interactions, or behaviour. In order to integrate failure propagation analysis capability at

Function Structure

Configuration Flow Graph

Component Behavior Models

Valve Tank Pipe

C
on

fi
gu

ra
tio

n

B
eh

av
io

r

Fu
nc

tio
n

Function Structure

Configuration Flow Graph

Component Behavior Models

Valve Tank Pipe

C
on

fi
gu

ra
tio

n

B
eh

av
io

r

Fu
nc

tio
n

Critical
Event

Scenarios

Functional Failure Estimates

Functional Failure Propagation Paths

Behaviour Simulation

Functional Model

SYSTEM MODEL

Configuration Model

Component Behavioural Models

Function Failure Logic

FFIP INPUT FFIP OUTPUT

Critical
Event

Scenarios

Critical
Event

Scenarios

Functional Failure Estimates

Functional Failure Propagation Paths

Functional Failure Estimates

Functional Failure Propagation Paths

Behaviour Simulation

Functional Model

SYSTEM MODEL

Configuration Model

Component Behavioural Models

Function Failure Logic

FFIP INPUT FFIP OUTPUT

Behaviour SimulationBehaviour Simulation

Functional ModelFunctional Model

SYSTEM MODELSYSTEM MODEL

Configuration ModelConfiguration Model

Component Behavioural ModelsComponent Behavioural Models

Function Failure LogicFunction Failure Logic

FFIP INPUTFFIP INPUT FFIP OUTPUTFFIP OUTPUT

ICED’07/479 6

this stage, a modelling paradigm that is capable of representing the desired functionality of the

individual components, their structure, as well as their interactions, is required. Capturing these

component interactions is especially critical for supporting decision-making during concept

development. For example, in the hardware domain, over-pressurization of a liquid tank as a result of a

certain interaction may guide a designer to choose between adding a pressure release valve and

increasing the strength of the tank without changing the topology of the design. To achieve this, the

knowledge of functionality, configuration, and behaviour should be integrated in such a way that it

will enable the computation of component interactions that are likely to result in functional failures

leading to the identification of system faults and their propagation paths.

To achieve these goals, FFIP represents system function using function structures [46]. Recall that a

function structure is a graphical, form-independent representation of a system that shows the

decomposition of the overall system function into smaller, more fundamental sub-functions. Using the

terms defined in the Functional Basis [40], designers can generate a model for the actual or desired

functionality of a system.

Figure 3: Functional model, schematic, and CFG for a fuel tank stage of the RCS system

Helium
Tank

T-Junction

Gas Filter

Gas Filter
Isolation

Valve

T-Junction

Temperature
Sensor

Pressure
Sensor

Pressure
Regulator

Isolation
Valve

Pressure
Regulator

Gas

Helium
Tank Pressure

Helium

Tank Temperature

G
a
s

Gas Gas

Gas

G
a
s

Gas

Gas

Gas

R
e
g
u
la

tio
n

V
a
lv

e
 o

n
/o

ff

R
e
g
u
la

ti
o
n

V
a
lv

e
 o

n
/o

ff

Is
o
la

ti
o
n
 V

a
lv

e

o
n
/o

ff

Is
o
la

ti o
n
 V

a
lv

e

o
n
/ o

ff

Gas

��������	
�

���	���
��	���

�	�������

������������	���

������������
��
��

������	������
��
��

��������	
�

���	���
��	���

�	�������

������������	���

������������
��
��

������	������
��
��

Store
Gas

Supply
Gas

Distribute
Gas

Separate
Solid

Store
Solid

Separate
Solid

Store
Solid

Actuate
Gas

Mix
Gas

Detect
Status

Detect
Status

Regulate
Gas

Actuate
Gas

Regulate
Gas

Gas Gas

Helium
Tank Pressure

Helium
Tank Temperature

S
o
lid

G
a
s

Gas Gas

Gas
G

a
s

S
o
lid

Gas

Gas

Gas

R
e
g
u
la

ti o
n

V
a
lv

e
 o

n
/o

ff

R
e
g
u
la

ti
o
n

V
a
lv

e
 o

n
/o

ff

Is
o
la

ti
o
n
 V

a
lv

e

o
n
/o

ff

I s
o
l a

tio
n
 V

a
l v

e

o
n
/o

ff

Gas

ICED’07/479 7

The structure in FFIP, on the other hand, is captured using configuration flow graphs (CFG’s) [45]. A

CFG strictly follows the functional topology of a system and maps the desired functionality into the

component configuration domain. In a CFG, nodes of the graph represent system components, whereas

arcs represent energy, material or signal flows between them. For flow naming, the Functional Basis

terminology is adopted, while the components of the graph are named using a taxonomy of standard

electromechanical components [47].

As an example, Figure 3 shows a configuration flow graph, and a simplified system schematic of a

partial Reaction Control System (RCS), introduced earlier. The figure details the layout of the helium

feed stage of an RCS. This subsystem is composed of two parallel feed lines that are used to pressurize

separate fuel and oxidizer tanks located downstream (not shown in figure). Figure 3 also shows the

functional model of the helium feed stage describing the basic functionality of the subsystem. For this

example, the component “gas filter” addresses functions “separate solid”, and “store solid”. Similarly,

the component “tank” provides “store gas” and “supply gas” functions in the system. Capturing this

mapping between functionality and component configuration of a system is crucial for accurately

reasoning about failures at a functional level.

Finally, FFIP represents system behaviour using a component oriented modeling approach. The

approach involves the development of high-level, qualitative behavior models of system components

at various discrete nominal and faulty modes. The transitions between these discrete modes are defined

by mode transition diagrams and the component behavior in each mode is derived from input-output

relations and underlying first principles. These modular, reusable component behavior models follow

the form of configuration flow graphs. Accordingly, state variables critical to the system behavior are

incorporated into the representation by associating them with their respective (CFG) flows. For

example, a designer may track the flow rate, pressure or temperature of a fluid flow. The individual

models describe the input-output relationships between these state variables in each component mode.

Figure 4 shows the behavioral model of a generic “pipe” component. In this case, a pipe can transition

from a “nominal” mode to a “failed clogged” or “failed leak” mode as a result of a fault event. The

dynamic behaviour of the component in each mode is governed by a different set of physical laws and

mathematical relations, and is therefore defined separately.

4.1.2 Simulation of System Behaviour

The next step is to determine the system behavior under certain conditions, represented by the

occurrence of events that cause specific component mode transitions. During the simulation, both the

discrete component modes and the set of system state variables need to be tracked. The overall system

state)(tX at time t is described by:

))(),(()(tvtctX Φ= (1)

Figure 4. The behavioral model for a generic “pipe” component.

�����������	
����������
	
�

�������

��������������

�����������

�
�
��
�
��
��
�
�
�
�

������������

��������
���	
�������

�� ��������!

��"���!�#��$���� ��"���!�#��%$����%

#��&#��%

���&���%

�� ���������������!

��"���!�#��$���� ��"���!�#��%$����%

#��%&'���

���%&'���

�� ������������!

��"���!�#��$���� ��"���!�#��%$����%

#��% (�#��

���%�(����

ICED’07/479 8

where,

],...,,,[)(321 Ncccctc = is a vector of discrete component modes where each component Nc ,....,1=

(:N number of components in the system) assumes a discrete mode from its own set of M modes

),...,,,(321 iMiiii ccccc = , and,],...,,,[)(321 Kvvvvtv = is a vector of system state variables.

During conceptual design, the system state variables are not known quantitatively. Therefore, these

continuous variables are discritized into a set of qualitative values. The vector)(tv then defines these

qualitative values for each state variable
iv from a set of P possible values),...,,,(321 iPiiii vvvvv = . For

example, a liquid flow rate variable may take on values from the set of {zero, low, nominal, high}.

Similarly, a control signal variable may have values of {nosignal, on, off}, etc.

The evolution of the overall system state (Equation 1) is traced by the use of the system configuration

flow graph. The CFG provides a graph-based, formal language for individual components models to

be integrated into a system-level behavioural model. Accordingly, the values of component modes and

system state variables are defined through the nodes and arcs of the configuration flow graph. The

overall system behavior is simulated and the physical system state is captured by changes of the

system CFG.

Note that, FFIP is not mainly concerned with simulating the dynamic behaviour of physical systems.

That process is fairly well understood and documented in the literature. The main novelty of the FFIP

framework is enabling the reasoning at the high, functional level by monitoring the relationship

between behavioural dynamics and the function of components, explained next.

4.1.3 Reasoning about Failures using the Function-Failure Logic

The final step is to reason about potential failures with the aid of a Function-Failure Logic (FFL)

reasoner. FFL is used to determine the state of each system function (i.e., whether it is operational,

degraded, or lost) at any time t given the physical state of the system))(),(()(tvtctX Φ= (Equation

1). The simulation feeds the physical state of the system to the FFL reasoner at the end of each time

step and the state of each system function is evaluated at these discrete points.

As an example, Figure 5 illustrates three possible rules that come from the FFL reasoner. The first rule

defines the failure logic for a “guide liquid” function that is addressed by a generic “valve”

component. Depending on the values of the input control signal (CSin), and the output flow rate

(Qout) of the valve, the state of the function is classified. This rule basically states that, the function

“guide liquid” will be lost if: (1) there is no outflow from the valve when it is commanded on, (2) there

is an outflow from the valve when it is commanded off, or (3) there is “no signal” to the valve. In all

other cases, the function is considered to be operating normally. Similarly, the second rule defines the

failure logic for a “transfer liquid” function implemented by the use of a “pipe” component. This

function is modelled to be lost if the outflow from the pipe is zero, degraded if the pipe outflow is less

then the pipe inflow, and operating for all other values of corresponding system state variables. Similar

models are developed for different function component mappings in the electromechanical system

domain.

Note that, FFL allows the assessment of the operability of a function to be made based on the values of

the input and output state variables of the CFG that corresponds to the component by which the

function is realized. Therefore, capturing the mapping between the functional model (function) and the

configuration flow graph (behaviour) is fundamental to the employment of the function failure logic.

�� ����������������	��	������������������	��

Let us return to the motivating example presented in Section 2, where the conceptual application of

FFIP is discussed. The major goal with using this example is to implement the framework in a large-

scale, highly complex system design scenario consisting of hardware and software components. The

initial Reaction Control System (RCS) model developed to assess the performance of the FFIP method

ICED’07/479 9

includes 37 components with 113 operational and faulty modes, 51 system functions, and 76 state

variables (See Figure 1). Specifically, the effects of the difference in fidelity of component models and

the difference in discretization of continuous state variables must be tested by exploring various

representations and choice of functional and configurational models. Moreover, the mapping from the

conceptual design to the finite state machine representation needs to be studied in order to determine

the proper level of fidelity for component modelling and the discretization of state variables. The full

scale implementation of the FFIP method on the RCS model is planned to be developed with our

collaborators at the Air Force Research Laboratory and NASA. Using this well documented design

example will also provide the opportunity to directly compare the performance of FFIP with other

approaches to fault assessment including FMEA, and FTA.

A smaller scale implementation of the FFIP method was tested on a “hold-up tank” design example by

Kurtoglu and Tumer [12]. This simpler problem consisted of designing a system that would regulate

the liquid amount in an open tank. The hydraulic system consists of seven components: a tank, two

valves, two pipes, a controller, and a level sensor. One of the valves, the outlet valve, is manually

controlled by an operator. The inlet valve, on the other hand, is actuated through a controller based on

sensor measurements from the level sensor installed on the tank. A software module controls the laws

that are designed to shut off the inlet valve if the liquid level reaches an overflow threshold. Similarly,

the operator is expected to shut off the outlet valve if the liquid level reduces below a hazardous dry-

out threshold.

For hold-up tank example, the functional and the configurational model of this system, as well as the

behavioural models were developed for the aforementioned seven components. Furthermore, the FFIP

method was tested on the hold-up tank example using two simulation scenarios. In the first scenario,

two events were considered: the inlet pipe getting clogged, and the outlet pipe failing open. In the

second scenario, a different set of critical events was considered: a sensor failure and an operator error.

In both scenarios, FFIP estimated potential functional failures and their propagation paths by using

behavioural simulation and failure-based qualitative reasoning. The results of the hold-up tank study

are presented in detail in [12] and show how the FFIP method and its unique characteristics provide an

effective system level modelling and analysis approach. Specifically, this example illustrates how

FFIP enables designers to understand the interactions that may lead to functional failures and help

them improve the quality of the systems at the earliest stages of the design process.

Figure 5. Function-failure logic for guide liquid, transfer liquid, and measure level

functions.

Guide

Liquid

Liquid Liquid

C
o

n
tro

l
S

ig
n

a
l

Valve
Liquid Liquid

C
o

n
tro

l
S

ig
n

a
l

#��$���� #��%$����%

����

��
����
	�������

��
�����	���
��������	�

�!�"#�$�%!�"

�)�*����&&��+

�)�*#��%&&'���+

,�������"����&&�,��-%.

��-�

,�������"����&&�,� ���%���..

�)�*����&&�))+

�)�*#��%/&�'���+

,�������"����&&�,��-%.

��-�

,�������"����&&�,� ���%���..

�)�*����&&��-�����+

,�������"����&&�,��-%.

Transfer

Liquid

Liquid Liquid

Pipe
Liquid Liquid

��&'��#��$�%!�"

�)�*#��%(#��+

,����-)�����"����&&�,��������.

��-���)��*#��%&&'���.

,����-)�����"����&&�,��-%.

��-�

,����-)�����"����&&�,� ���%���..

�!'���('

�&�$!�#�$(���)

#��$���� #��%$����%

�#&�!�#�$#�#$

�)�*0��%&&��-�����+

,���-������1���&&�,��-%.

��-�

,���-������1���&&�,� ���%���..

Measure

Level

Liquid

Status Signal
Measure

Level

Measure

Level

Liquid

Status Signal

Sensor

0$��
Liquid

Status Signal

0$��%
Sensor

0$��
Liquid

Status Signal

0$��%

ICED’07/479 10

�� ������������

In this paper, the Functional Failure Identification and Propagation (FFIP) analysis framework is

introduced as a novel approach to enable the analysis of functional failures and their propagation paths

during the early stages of design for complex systems. The overall goal of this research is to develop a

formal framework and simulation-based design tool for design and system engineering teams to

evaluate and assess the potential of functional failures of software intensive systems throughout the

lifecycle.

This paper focused on the main principles underlying the FFIP analysis framework. This framework

uses a combination of functional, structural, and behavioural models as a means to represent early

system design trades, and high-level behavioural simulation to estimate potential faults and their

propagation under failure scenarios. In addition, a fundamental relationship is established between

such failures and the system level behaviour and response of complex engineered systems. Finally, a

function-failure reasoner is developed that can be used generically by system designers to reason

about potential failures and their consequences. A conceptual application of the approach was

discussed using the Reaction Control System (RCS) example. Ongoing work is exploring the

automation of the FFIP as a usable methodology and testing using the complex RCS system.

The FFIP framework presents several unique opportunities. First, the function-failure-logic (FFL)

employed by the reasoner is a novel approach in that it allows to reason about the system state at a

very high, functional level. This goes beyond the traditional reasoning tools that use low level sensor

values to infer failed components given the signs of errors in system operation but are short of

quantifying the impact of failures on functional performance under off-nominal conditions. Second,

the integration of the qualitative reasoning scheme of the function-failure-logic with a behavioural

simulation enables automatic computation of functional failures and fault propagation paths directly

from physical behaviour and component interactions of the system. This brings a much needed

formalism to fault assessment and is significantly different than approaches that rely solely on expert

input to assess failures. Third, the developed framework is able to identify functional failures that do

not result from direct component failures, but rather from global component interactions. Finally, FFIP

captures various non-linear aspects of fault propagation, most notably the deviation of fault

propagation paths from strict structural and functional connectivity.

REFERENCES
[1] Zang, T. A., Hemsch, M. J., Hilburger, M. W., Kenny, S. P., Luckring, J. M., Maghami, P.,

Padulam, S. L., and Stroud, W. J., 2002, “Needs and Opportunities for Risk-Based

Multidisciplinary Design Technologies for Vehicles,” Technical memorandum NASA/TM-

2002-211462, NASA Langley Research Center, Hampton, VA.

[2] Backman, B., 2000, “Design, Innovation and Risk Management: A Structural Designer's

Voyage into Uncertainty,” in ICASE Series on Risk-based Design.

[3] Choi, K., 2001, “Advances in Reliability-Based Design Optimization and Probability Analysis -

PART II,” in ICASE Series on Risk-based Design.

[4] Smith, N. and Mahadevan, S., 2003, “Probabilistic Methods for Aerospace System Conceptual

Design,” Journal of Spacecraft and Rockets, 40(3), pp. 411-418.

[5] V. Venkatasubramanian, Jinsong Zhao and Shankar Viswanathan. “Intelligent Systems for

HAZOP Analysis of Complex Process Plants,” Computers and Chemical Engineering, 24

(2000), 2291-2302.

[6] Greenfield, M.A. “NASA's Use of Quantitative Risk Assessment for Safety Upgrades”. In

IAAA Symposium. 2000. Rio de Janeiro, Brazil.

[7] Department of Defense, “Procedures for performing failure mode, effects, and criticality

analysis.” MIL-STD-1629A.

[8] Vesely, W. E., Goldberg, F. F., Roberts, N. H. and Haasi, D. F., The Fault Tree Handbook, US

Nuclear Regulatory Commission, NUREG 0492, 1981.

[9] NASA Exploration Systems Mission Directorate. Methodology for Conduct of Project

Constellation Hazard Analyses. (Document 0000028585, 2005).

[10] Mahadevan, S. and Smith, L., 2003, “System Risk Assessment and Allocation in Conceptual

Design,” Contractor report. NASA/CR-2003-212162, NASA.

ICED’07/479 11

[11] Wertz, J.R. and Larson, W. J. Space Mission Analysis and Design. 3
rd

 Ed. Space Technology

Library. Microcosm Press and Kluwer Academic Publishers. 1999.

[12] T. Kurtoglu and I. Y. Tumer, A graph based fault identification and propagation framework for

functional design of complex systems, ASME Journal of Mechanical Design. Accepted for

publication (May 2007).

[13] Stamatelatos, M. and Apostolakis, G. “Probabilistic Risk Assessment Procedures Guide for

NASA Managers and Practitioners v1.1”. 2002, NASA, Safety and Mission Assurance.

[14] A. Mosleh, F. Groen, Y. Hu, D. Zhu, H. Najad and T. Piers, "Simulation-based probabilistic risk

analysis report," Center for Risk and Reliability, University of Maryland, 2004.

[15] J. C. Giarratano and G. D. Riley, Expert systems: Principles and programming, PWS

Publishing Company, Boston, MA, 2004.

[16] E. Shortliffe, Mycin: Computer-based medical consultations, Elsevier, New York, 1976.

[17] R. A. Touchton, Emergency classification: A real time expert system application, SouthCon,

1986.

[18] J. deKleer and B. C. Williams, Diagnosing multiple faults, AI 32 (1987), 97-130.

[19] J. Chen and R. J. Patton, Robust model-based fault diagnosis for dynamic systems, Kluwer

Academic Publishers, 1998.

[20] D. Dvorak and B. J. Kuipers, Model based monitoring of dynamic systems, IJCAI, 1989.

[21] B. C. Williams and P. P. Nayak, A model-based approach to reactive self-configuring systems,

AAAI, 1996, pp. 971-978.

[22] J. Kurien and P. Nayak, Back to the future with consistency-based trajectory tracking, AAAI,

2000, pp. 370-377.

[23] M. A. Kramer and B. L. Palowitch, Jr, A rule-based approach to fault diagnosis using the signed

directed graph, AIChE Journal 33, no. 7, 1067-1078.

[24] N. S. V. Rao, On parallel algorithms for single-fault diagnosis in fault propagation graph

systems, IEEE Transactions on Parallel and Distributed Systems 7 (1996), no. 12, 1217-1223.

[25] S. Chessa and P. Santi, Operative diagnosis of graph-based systems with multiple faults, IEEE

Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 31 (2001), no. 2.

[26] R. W. Stevenson, J. G. Miller and M. E. Austin, Failure environment analysis tool (feat)

development status, AIAA Computing in Aerospace VIII Conference, 1991.

[27] S. Abdelwahed, G. Karsai and G. Biswas, "System diagnosis using hybrid failure propagation

graphs," Vanderbilt University, 2003.

[28] I. J. Sacks, Digraph matrix analysis, IEEE Transactions on Reliability R-34 (1985), no. 5, 437-

446.

[29] QSI, "Testability engineering and maintenance system (teams) tool."

[30] R. Kapadia, Symcure: A model-based approach for fault management with causal directed

graphs, IEA/AIE 2003, 2003, pp. 582-591.

[31] S.Deb, K. R. Pattipati, V. Raghavan, M. Shakeri and R. Shrestha, "Multisignal flow graphs: A

novel approach for system testability analysis and fault diagnosis," IEEE Aerospace and

Electronics Systems Magazine, vol. 10, 1995, pp. 14-25.

[32] T. Yairi, Y. Kato and K. Hori, Fault detection by mining association rules from house-keeping

data, SAIRAS, 2001.

[33] H. Berenji, J. Ametha and D. Vengerov, Inductive learning for fault diagnosis, 12th IEEE

International Conference on Fuzzy Systems, 2003, pp. 726-731.

[34] Mehr, A.F. and I. Y. Tumer, “Risk based decision making for managing resources during the

design of complex aerospace systems.” ASME Journal of Mechanical Design. Vol. 128, No. 4,

pp. 1014-1022. July 2006.

[35] Hoyle, C., Mehr, A. F., Tumer, I. Y., Chen, W. “On quantifying cost-benefit of ISHM in

Aerospace systems.” 2007 IEEE Aerospace Conference.

[36] Tumer, I. Y., “Towards ISHM Co-Design: Methods and practices for fault avoidance and

management during early phase design”. 1st Integrated Systems Health Engineering and

Management Forum (to be published as a book chapter). Napa, CA. November 2005.

[37] Hutcheson, R. and Tumer, I. Y., “Function-based Co-design Paradigm for Robust Health

Management.” The 5th International Workshop on Structural Health Monitoring. Stanford, CA.

September 2005.

[38] Tumer, I.Y. and R.B. Stone, “Mapping Function to Failure During High-Risk Component

ICED’07/479 12

Development”. Research in Engineering Design, 2003. 14: p. 25-33.

[39] Stone, R.B., Tumer, I.Y. and VanWie, M. “The function-failure design method.” Journal of

Mechanical Design, 2005. 127(3): p. 397-407.

[40] Hirtz, J., Stone, R., McAdams, D., Szykman, S., and Wood, K., “A Functional Basis for

Engineering Design: Reconciling and Evolving Previous Efforts,” Research in Engineering

Design 13(2): 65-82, 2002.

[41] Tumer, I.Y., Stone, R., and Bell, D., “Requirements for a Failure Mode Taxonomy for use in

Conceptual Design,” Proceedings of the International Conference on Engineering Design,

ICED, Stockholm, 2003, paper 1612.

[42] Roberts, R., Stone, R., and Tumer, I.Y., “Deriving Function-Failure Information for Failure-

Free Rotorcraft Component Design,” Proceedings of ASME Design Engineering Technical

Conference, DETC2002/DFM-34166, Montreal, Canada, 2002.

[43] R. Hutcheson and I. Y. Tumer, “Function-based design of a spacecraft power subsystem

diagnostics testbed”. ASME IMECE2005-81120. Orlando, FL. 2005.

[44] Grantham Lough, K., Stone, R., and Tumer, I., “Prescribing and Implementing the Risk in Early

Design (RED) Method”, Proceedings of the ASME DETC, Philadelphia, PA, 2006.

[45] Kurtoglu, T., Campbell, M.I.,Gonzales, J., Bryant, C.R., McAdams, D.A., Stone, R.B., ,2005,

“Capturing Empirically Derived Design Knowledge for Creating Conceptual Design

Configurations,” Proceedings of DETC2005, Sept. 24-28, Long Beach, California.

[46] Pahl, G. and Beitz, W., Engineering Design: A Systematic Approach, Design Council,

London,1984.

[47] Kurtoglu, T., Campbell, M., Bryant,C, Stone, R., McAdams, D., 2005, “Deriving a Component

Basis for Computational Functional Synthesis” Proceedings of ICED’05, Melbourne, Australia.

Contact: Irem Y. Tumer

Department of Mechanical Engineering – Oregon State University

204 Rogers Hall, Corvallis, OR 97331-6001, USA

Phone: +1-541-737 6627

e-mail: irem.tumer@oregonstate.edu

