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ABSTRACT 
Ensuring the reliability of complex software intensive systems is becoming a critical requirement for 

all military and commercial aerospace applications, and becomes especially more challenging when 

implemented for autonomous and evolving deployments required of such applications. To ensure 

reliability, this research asserts that knowledge, data, and models of such complex systems must be 

integrated with their intended systems starting from the early design stages, hence enabling designers 

and engineers to plan for contingencies, redundancies, and potential changes early, before costly 

design decisions have been made. In this paper, a general system-level design methodology is 

introduced to perform simulation-based failure identification and propagation analysis of software-

hardware systems. In particular, the Functional Failure Identification and Propagation (FFIP) analysis 

framework is introduced as a novel approach for designing reliable software-intensive systems. A 

combination of function, structure, and behaviour modelling is proposed to simulate failure 

propagation paths and the resulting functional failures to determine mitigation options, integrating 

hierarchical system models with behavioural simulation and qualitative reasoning. The overall goal of 

this research is to develop a formal framework and simulation-based design tool for design and system 

engineering teams to evaluate and assess the potential of functional failures of software intensive 

systems throughout the lifecycle.  

Keywords: failure prevention and analysis, risk based design, functional modelling, conceptual design 
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Risk analysis and management is an important requirement in the development of complex systems. 

Many types of risk analyses are used during the lifecycle of complex systems [1-5] including 

quantitative and probabilistic methods [6], reliability analysis techniques applied to design [7,8], or 

knowledge-based approaches such as lessons learned databases and hazard analyses [9]. One of the 

critical shortcomings of these methods is the difficulty in applying them during the early stages of 

design, where the models are vague, knowledge and decisions are difficult to capture, and probabilities 

are hard to assign. Studies and design reviews have pointed to the early design stages as one of the best 

times to catch potential failures and anomalies [10]. It is at these stages, where many decisions and 

tasks are still open (e.g., sensor and measurement point selection, safeguards, redundancies, diagnosis, 

signature and data fusion schemes) must be decided to effectively reduce the cost of risk mitigation 

efforts and increase the safety of designed systems.  

 

However, we currently lack formal representations and methods for enabling risk analysis at the early 

design stages. Most existing risk analysis techniques require very detailed, high-fidelity models of 

system components in order to infer faulty system behaviour and its consequences. At the early design 

stages, however, selection of specific components has not been made, and hence such detailed models 

of system components and design parameters are not yet available. Instead, the designs are represented 

using low fidelity, high-level models of intended functionality. In order to facilitate early identification 

of risks, the focus should be kept on a system’s functional models, and hence it is crucial to be able to 
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reason at the functional level and identify what functions are likely to fail and what the overall effect 

of loss of these functions will be on a system’s behaviour and performance.  

 

In this paper, we introduce the functional failure identification and propagation (FFIP) framework that 

enables these capabilities. FFIP assists the designers to proactively analyze the functionality of the 

systems early in the design process, understand functional failures and their propagation paths, and 

determine what functions can be lost, what the impact to the overall system will be. The main 

advantage of the framework is that it permits the analysis of functional failures and fault propagation 

at a highly abstract system topology level before any potentially high-cost design commitments are 

made. This influence on system design supports decision making early in the design process, guides 

the designers to reduce risk through exploration of system components and their functionality, and 

facilitates the development of more reliable system configurations.  

�� �����������	����	�

Consider the Reaction Control System (RCS) example shown in Figure 1. A Reaction Control System 

is one of the major subsystems of spacecraft propulsion. It provides attitude control during orbiting 

through the use of a set of thrusters [11]. The RCS is composed of three subsystems – the forward, left, 

and right RCS located in the nose and aft sections of the shuttle. Figure 1 details the simplified layout 

of a single RCS subsystem. A subsystem is composed of two pressurization and propellant feed 

systems – one for fuel (MMH), and one for oxidizer (NTO).  

 

The two systems are independent and connect at the thruster chambers at the end of the manifold. Each 

pressurization and propellant feed system contains temperature and pressure sensors in the helium and 

propellant tanks and pressure sensors in the manifolds. Pressure in the helium tank passes through a 

series of regulators that reduce the pressure to the desired working pressure. The propellant tanks are 

pressurized with helium which in turn expels the propellant into the tank lines, towards the manifold. 

Finally, the fuel and the oxidizer from the pair of feed systems are pushed into the thruster chamber 

where they ignite on contact and produce a hot gas and thrust.  

 

Figure 1 also shows the functional model of the RCS subsystem describing the basic functionality of 

the system. It is at this high, functional level that we target to reason about failures, and their 

propagation. Specifically, FFIP helps answer questions regarding critical what-if scenarios such as 

“What happens if the helium line leaks?”, and more importantly “What are the effects of this failure on 

overall system functionality?” In most complex systems, such as the RCS, such an assessment relies 

heavily on human expertise. A human expert faced with this scenario is likely to go through the 

following reasoning steps: “…the leak will stop the helium line from delivering its intended function, 

i.e., transferring gas from the helium tank to the MMH tank causing the loss of the pipe’s “transfer 

gas” functionality (labelled as failure start point on the functional model of the RCS, point (1), in 

Figure 1.b) This will force the check valve to close and the propellant to be trapped in the tank. As a 

result, the propellant in the MMH tank will be depleted depending on the remaining helium pressure in 

the tank, and if the helium pressure drops under the minimum level required for forcing the propellant 

into the tank line, the “supply liquid” functionality of the MMH tank will seize to continue (labelled as 

point (2), in Figure 1.b.) The loss of this function will propagate to the thruster chamber next, in which 

the two propellants are designed to come in contact, explode, and produce thrust. Since, the supply 

from one of the propellant lines is interrupted, the “mix liquid”, “convert chemical energy to thermal 

energy”, “convert thermal energy to pneumatic energy”, and “convert pneumatic energy to mechanical 

energy” (labelled as points (3),(4),(5), and (6) in Figure 1.b.) functions will be lost, eventually 

preventing the main functionality of the entire RCS subsystem, i.e. to “produce thrust”. This is a 

critical failure that the system should be guarded against. 

 

In this research, we automate the kind of failure reasoning demonstrated in the abovementioned 

scenario. Accordingly, we aim to automatically compute functional failures, fault propagation paths, 

and failure consequences using only the knowledge available during the early stages of design. Our 

method brings a much needed formalism to fault assessment and is significantly different then 

approaches that rely solely on expert elicitation to assess failure and its consequences.  
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Various failure assessment, reasoning, and reliability modelling methods have been in existence for 

some time, and are reviewed here briefly for completeness. 

3.1 Failure and Risk Assessment Methods 
The industries dealing with complex systems currently employ three major reliability tools and 

methods: FMEA, FTA, and PRA. Failure Modes and Effects Analysis (FMEA) [7] is a method that 

systematically examines individual system components and their failure mode characteristics to assess 

risk and reliability. The FMEA analysis starts with decomposition of the system into subsystems and 

finally into individual components. Ways in which each component can potentially fail (failure 

mode(s)) are then recorded and evaluated separately to determine what effect they have at the 

component level, and then at the system level. It is a widely used method that is easy to understand and 

implement. However, the analysis requires a detailed level of system design, and thus is not optimal to 

be used during conceptual design [12]. Moreover, FMEA does not capture component interactions 

explicitly, and relies heavily on expert knowledge to assess failure consequences and their criticality 

[12]. As a result, it is often considered to be a highly subjective method.  
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Figure 1.a. The functional model and the schematic of a simplified Reaction Control System.  

Figure 1.b. Illustration of reasoning through functional failures and their propagation.  
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Fault Tree Analysis (FTA) [8] is performed to capture event paths from failure root causes to top-level 

consequences. Using this approach, possible event paths from failure root causes to top-level 

consequences can be captured. Like FMEA, FTA is a well-accepted, standard technique. When 

conducted properly, it is likely to identify more possible failure causes than single-component oriented 

FMEA. However, FTA also relies greatly on expert input and shares similar criticism that FMEA is 

subject to [12]. Moreover, since the failure domain is represented using events in FTA, low-level 

component interactions and dynamics leading to failure are only considered informally, during expert 

identification of event-consequence relationships. Formally capturing component interactions and 

system dynamics is however crucial for supporting design decisions during early concept 

development.  

 

Probabilistic Risk Assessment (PRA) [6] is a method used for quantification of failure risk by 

answering three questions: what can go wrong, how likely is it to happen, and what are the 

consequences? [13] PRA combines a number of fault/event modelling techniques such as master logic 

diagrams, event sequence diagrams and fault trees and integrates them into a probabilistic framework 

to guide decision-making during design. Recently, PRA has been extended to include event/behaviour 

simulation into the analysis as demonstrated by the SIMPRA tool developed by Mosleh et al. [14]. 

SIMPRA uses Simulink as its simulation environment, and thus demands a fully-specified system 

model as part of the analysis. Such detailed, high-fidelity models, however are not available during 

conceptual design. 

3.2 Failure Reasoning Methods 
A variety of diagnostic reasoning tools have been proposed for fault assessment and diagnosis. 

Diagnostic reasoning approaches share a common process in which a system is monitored and a 

comparison is performed of observed and expected behaviour of the system to detect anomalous 

conditions. The major approaches to fault modelling and diagnostic reasoning include expert systems, 

simulation and model-based diagnosis methods, and data classification techniques. Expert systems 

[15] are extensively used in diagnosis, where knowledge acquired from human experts is formulated in 

different ways such as “if-then” rules or decision trees [16, 17].  

 

Model-based-based approaches to diagnosis, on the other hand, rely mostly on qualitative knowledge 

to predict the behaviour of a system [18]. When observations disagree with the predicted behaviour, 

some diagnostic technique is initiated to identify the faults. The broadest category for diagnostic 

reasoning is model-based diagnosis (MBD) [19, 20, 21, 22].  Besides the model-based approaches, 

some researchers have employed fault propagation graphs as the system model for diagnostic 

reasoning [23, 24, 25, 26, 27]. Among those, directed graphs [28] are one of the techniques used to 

analyze component dependencies and fault propagation [29, 30, 27]. Multi-Signal Flow Graphs 

developed by Deb et al. [31] is another comprehensive methodology to model cause-effect 

dependencies of complex systems.  

 

Finally, in cases where physical cause-effect relationships are difficult to model in analytical form, 

statistical and probabilistic classification methods are applied [32, 33]. In summary, while fault 

propagation analysis tools exist, they require designers to explicitly formulate a fault propagation 

model by specifying paths of causal relationships, which is not feasible during the early stages of 

design where information about the system specifics is scarce.  

3.3 Methods for Failure Analysis during Early Functional Design Stage 
Prior work has addressed the need for integrating early risk assessment and management tools and 

methodologies into the vehicle and system design [34-37]. Most notably, the Function Failure Design 

Method (FFDM), promotes early identification of potential failures by linking them to product 

functions  [38,39]. FFDM defines a matrix based relationship between a system’s functions and its 

failure modes. This relationship is derived from documented, historical data and is formalized with the 

help of two standardized taxonomies, one describing functions [40] and the other failure modes [41] of 

complex systems. FFDM provides a starting point for determining the likelihood of system failure 

based on a set of functions that the system has to deliver. This is achieved using matrix representations 

that map functions to components, and components to failure modes. The product of these two 
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matrices results in a third matrix that relates a system’s functions to failures. Using this output, 

designers can analyze potential functional failures before any component selection is made. FFDM is 

successfully applied to the Bell 206 rotorcraft and has lately been extended to include spacecraft 

systems [42,43].  

 

As an extension to FFDM, Grantham-Lough et al. [44] developed the Risk in Early Design (RED) 

method to formulate a functional-failure likelihood and consequent risk assessment. This approach 

classifies high-risk to low-risk function failure combinations and provides designers a tool that can be 

used to qualitatively rank/order functional failures and their consequences during conceptual design.  

 

The FFIP method described in this paper is complementary to these approaches in that it is function 

oriented and thus has a conceptual design focus. However, FFIP comes with a number of additional 

features. First, it integrates qualitative reasoning with behavioural simulation that enables the 

computation of component interactions that are likely to result in functional failures. Second, it allows 

the identification of not only the functional failures but also their propagation paths that are derived 

from the functional and structural topology of a system. Third, the approach is applicable to a variety 

of systems and it is not constrained by a database of documented, historical failure data.  

�� ��	����������	
�����

The Functional Failure Identification and Propagation (FFIP) analysis framework is introduced as a 

novel approach for designing reliable complex systems. A combination of function, structure, and 

behaviour modelling is proposed to simulate failure propagation paths and the resulting functional 

failures to determine mitigation options, integrating hierarchical system models with behavioural 

simulation and qualitative reasoning, discussed next [12]. 

4.1 The FFIP Architecture 
There are three major modules in the FFIP analysis framework: the graphical system model, the 

behavioural simulation, and the functional-failure logic (FFL) reasoner, as shown in Figure 2. The 

framework represents system function, configuration, and behaviour by an interrelated array of graph-

based, elemental component models. The graph-based modelling approach provides a coherent, 

consistent, and formal schema to capture function-configuration-behaviour architecture of a system at 

an abstract level and facilitates the assessment of potential functional failures and resulting fault 

propagation paths through the FFL reasoner that translates the dynamics of the system into functional 

failure identifiers [12,45].  

Figure 2. The architecture of the FFIP framework 

4.1.1 Models of Systems 

At the conceptual stage of design, the design is expressed as an interconnectivity of elemental abstract 

components that is often defined as the topology or the configuration of a system. The topology 

imposes a certain structure on the system that permits delivery of desired functionality through specific 

component interactions, or behaviour. In order to integrate failure propagation analysis capability at 
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this stage, a modelling paradigm that is capable of representing the desired functionality of the 

individual components, their structure, as well as their interactions, is required. Capturing these 

component interactions is especially critical for supporting decision-making during concept 

development. For example, in the hardware domain, over-pressurization of a liquid tank as a result of a 

certain interaction may guide a designer to choose between adding a pressure release valve and 

increasing the strength of the tank without changing the topology of the design. To achieve this, the 

knowledge of functionality, configuration, and behaviour should be integrated in such a way that it 

will enable the computation of component interactions that are likely to result in functional failures 

leading to the identification of system faults and their propagation paths. 

 

To achieve these goals, FFIP represents system function using function structures [46]. Recall that a 

function structure is a graphical, form-independent representation of a system that shows the 

decomposition of the overall system function into smaller, more fundamental sub-functions. Using the 

terms defined in the Functional Basis [40], designers can generate a model for the actual or desired 

functionality of a system.  

Figure 3: Functional model, schematic, and CFG for a fuel tank stage of the RCS system 
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The structure in FFIP, on the other hand, is captured using configuration flow graphs (CFG’s) [45]. A 

CFG strictly follows the functional topology of a system and maps the desired functionality into the 

component configuration domain. In a CFG, nodes of the graph represent system components, whereas 

arcs represent energy, material or signal flows between them. For flow naming, the Functional Basis 

terminology is adopted, while the components of the graph are named using a taxonomy of standard 

electromechanical components [47].   

 

As an example, Figure 3 shows a configuration flow graph, and a simplified system schematic of a 

partial Reaction Control System (RCS), introduced earlier. The figure details the layout of the helium 

feed stage of an RCS. This subsystem is composed of two parallel feed lines that are used to pressurize 

separate fuel and oxidizer tanks located downstream (not shown in figure). Figure 3 also shows the 

functional model of the helium feed stage describing the basic functionality of the subsystem. For this 

example, the component “gas filter” addresses functions “separate solid”, and “store solid”. Similarly, 

the component “tank” provides “store gas” and “supply gas” functions in the system. Capturing this 

mapping between functionality and component configuration of a system is crucial for accurately 

reasoning about failures at a functional level. 

 

Finally, FFIP represents system behaviour using a component oriented modeling approach. The 

approach involves the development of high-level, qualitative behavior models of system components 

at various discrete nominal and faulty modes. The transitions between these discrete modes are defined 

by mode transition diagrams and the component behavior in each mode is derived from input-output 

relations and underlying first principles. These modular, reusable component behavior models follow 

the form of configuration flow graphs. Accordingly, state variables critical to the system behavior are 

incorporated into the representation by associating them with their respective (CFG) flows. For 

example, a designer may track the flow rate, pressure or temperature of a fluid flow. The individual 

models describe the input-output relationships between these state variables in each component mode. 

Figure 4 shows the behavioral model of a generic “pipe” component.  In this case, a pipe can transition 

from a “nominal” mode to a “failed clogged” or “failed leak” mode as a result of a fault event. The 

dynamic behaviour of the component in each mode is governed by a different set of physical laws and 

mathematical relations, and is therefore defined separately.  

4.1.2 Simulation of System Behaviour 

The next step is to determine the system behavior under certain conditions, represented by the 

occurrence of events that cause specific component mode transitions. During the simulation, both the 

discrete component modes and the set of system state variables need to be tracked. The overall system 

state )(tX at time t is described by: 

 

 ))(),(()( tvtctX Φ=           (1)    

 

 

 

Figure 4.  The behavioral model for a generic “pipe” component. 
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where,    

 

],...,,,[)( 321 Ncccctc =   is a vector of discrete component modes where each component Nc ,....,1=  

( :N number of components in the system) assumes a discrete mode from its own set of  M modes 

),...,,,( 321 iMiiii ccccc = , and, ],...,,,[)( 321 Kvvvvtv =   is a vector of system state variables.  

 

During conceptual design, the system state variables are not known quantitatively. Therefore, these 

continuous variables are discritized into a set of qualitative values. The vector )(tv  then defines these 

qualitative values for each state variable 
iv  from a set of P possible values ),...,,,( 321 iPiiii vvvvv = . For 

example, a liquid flow rate variable may take on values from the set of {zero, low, nominal, high}. 

Similarly, a control signal variable may have values of {nosignal, on, off}, etc.  

 

The evolution of the overall system state (Equation 1) is traced by the use of the system configuration 

flow graph. The CFG provides a graph-based, formal language for individual components models to 

be integrated into a system-level behavioural model. Accordingly, the values of component modes and 

system state variables are defined through the nodes and arcs of the configuration flow graph. The 

overall system behavior is simulated and the physical system state is captured by changes of the 

system CFG. 

 

Note that, FFIP is not mainly concerned with simulating the dynamic behaviour of physical systems. 

That process is fairly well understood and documented in the literature. The main novelty of the FFIP 

framework is enabling the reasoning at the high, functional level by monitoring the relationship 

between behavioural dynamics and the function of components, explained next. 

4.1.3 Reasoning about Failures using the Function-Failure Logic 

The final step is to reason about potential failures with the aid of a Function-Failure Logic (FFL)    

reasoner. FFL is used to determine the state of each system function (i.e., whether it is operational, 

degraded, or lost) at any time t given the physical state of the system ))(),(()( tvtctX Φ=  (Equation 

1). The simulation feeds the physical state of the system to the FFL reasoner at the end of each time 

step and the state of each system function is evaluated at these discrete points.  

 

As an example, Figure 5 illustrates three possible rules that come from the FFL reasoner. The first rule 

defines the failure logic for a “guide liquid” function that is addressed by a generic “valve” 

component. Depending on the values of the input control signal (CSin), and the output flow rate 

(Qout) of the valve, the state of the function is classified. This rule basically states that, the function 

“guide liquid” will be lost if: (1) there is no outflow from the valve when it is commanded on, (2) there 

is an outflow from the valve when it is commanded off, or (3) there is “no signal” to the valve. In all 

other cases, the function is considered to be operating normally. Similarly, the second rule defines the 

failure logic for a “transfer liquid” function implemented by the use of a “pipe” component. This 

function is modelled to be lost if the outflow from the pipe is zero, degraded if the pipe outflow is less 

then the pipe inflow, and operating for all other values of corresponding system state variables. Similar 

models are developed for different function component mappings in the electromechanical system 

domain. 

 

Note that, FFL allows the assessment of the operability of a function to be made based on the values of 

the input and output state variables of the CFG that corresponds to the component by which the 

function is realized. Therefore, capturing the mapping between the functional model (function) and the 

configuration flow graph (behaviour) is fundamental to the employment of the function failure logic. 

�� ����������������	��	������������������	��

Let us return to the motivating example presented in Section 2, where the conceptual application of 

FFIP is discussed. The major goal with using this example is to implement the framework in a large-

scale, highly complex system design scenario consisting of hardware and software components. The 

initial Reaction Control System (RCS) model developed to assess the performance of the FFIP method 
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includes 37 components with 113 operational and faulty modes, 51 system functions, and 76 state 

variables (See Figure 1). Specifically, the effects of the difference in fidelity of component models and 

the difference in discretization of continuous state variables must be tested by exploring various 

representations and choice of functional and configurational models. Moreover, the mapping from the 

conceptual design to the finite state machine representation needs to be studied in order to determine 

the proper level of fidelity for component modelling and the discretization of state variables. The full 

scale implementation of the FFIP method on the RCS model is planned to be developed with our 

collaborators at the Air Force Research Laboratory and NASA. Using this well documented design 

example will also provide the opportunity to directly compare the performance of FFIP with other 

approaches to fault assessment including FMEA, and FTA. 

 

A smaller scale implementation of the FFIP method was tested on a “hold-up tank” design example by 

Kurtoglu and Tumer [12]. This simpler problem consisted of designing a system that would regulate 

the liquid amount in an open tank. The hydraulic system consists of seven components: a tank, two 

valves, two pipes, a controller, and a level sensor. One of the valves, the outlet valve, is manually 

controlled by an operator. The inlet valve, on the other hand, is actuated through a controller based on 

sensor measurements from the level sensor installed on the tank. A software module controls the laws 

that are designed to shut off the inlet valve if the liquid level reaches an overflow threshold. Similarly, 

the operator is expected to shut off the outlet valve if the liquid level reduces below a hazardous dry-

out threshold.  

 

For hold-up tank example, the functional and the configurational model of this system, as well as the 

behavioural models were developed for the aforementioned seven components. Furthermore, the FFIP 

method was tested on the hold-up tank example using two simulation scenarios. In the first scenario, 

two events were considered: the inlet pipe getting clogged, and the outlet pipe failing open. In the 

second scenario, a different set of critical events was considered: a sensor failure and an operator error. 

In both scenarios, FFIP estimated potential functional failures and their propagation paths by using 

behavioural simulation and failure-based qualitative reasoning. The results of the hold-up tank study 

are presented in detail in [12] and show how the FFIP method and its unique characteristics provide an 

effective system level modelling and analysis approach. Specifically, this example illustrates how 

FFIP enables designers to understand the interactions that may lead to functional failures and help 

them improve the quality of the systems at the earliest stages of the design process. 

Figure 5. Function-failure logic for guide liquid, transfer liquid, and measure level 

functions. 
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In this paper, the Functional Failure Identification and Propagation (FFIP) analysis framework is 

introduced as a novel approach to enable the analysis of functional failures and their propagation paths 

during the early stages of design for complex systems. The overall goal of this research is to develop a 

formal framework and simulation-based design tool for design and system engineering teams to 

evaluate and assess the potential of functional failures of software intensive systems throughout the 

lifecycle.  

 

This paper focused on the main principles underlying the FFIP analysis framework. This framework 

uses a combination of functional, structural, and behavioural models as a means to represent early 

system design trades, and high-level behavioural simulation to estimate potential faults and their 

propagation under failure scenarios. In addition, a fundamental relationship is established between 

such failures and the system level behaviour and response of complex engineered systems. Finally, a 

function-failure reasoner is developed that can be used generically by system designers to reason 

about potential failures and their consequences.  A conceptual application of the approach was 

discussed using the Reaction Control System (RCS) example. Ongoing work is exploring the 

automation of the FFIP as a usable methodology and testing using the complex RCS system. 

 

The FFIP framework presents several unique opportunities. First, the function-failure-logic (FFL) 

employed by the reasoner is a novel approach in that it allows to reason about the system state at a 

very high, functional level. This goes beyond the traditional reasoning tools that use low level sensor 

values to infer failed components given the signs of errors in system operation but are short of 

quantifying the impact of failures on functional performance under off-nominal conditions. Second, 

the integration of the qualitative reasoning scheme of the function-failure-logic with a behavioural 

simulation enables automatic computation of functional failures and fault propagation paths directly 

from physical behaviour and component interactions of the system. This brings a much needed 

formalism to fault assessment and is significantly different than approaches that rely solely on expert 

input to assess failures. Third, the developed framework is able to identify functional failures that do 

not result from direct component failures, but rather from global component interactions. Finally, FFIP 

captures various non-linear aspects of fault propagation, most notably the deviation of fault 

propagation paths from strict structural and functional connectivity.  
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