

NFRC 102-2004 THERMAL PERFORMANCE TEST REPORT

Rendered to:

TUBELITE, INC.

SERIES/MODEL: 300ES Curtainwall System with Insulation in Frame TYPE: Glazed Wall Systems (Site-built)

Summary of Results			
Standardized Thermal Transmittance (U-Factor) 0.33			
Unit Size	80" x 80" (2032 mm x 2032 mm)		
Lover 1	1/4" Viracon VUE1-50 Low-E (e=0.030*, #2) Heat		
Layer 1	Strengthened		
Gap 1	0.50" Gap, Stainless Steel Spacer (SS-D), 90%	Argon Filled	
Layer 2	1/4" Clear Heat Strengthened		

Reference must be made to Report No. 92324.03-116-46, dated 06/19/12 for complete test specimen description and data.

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

NFRC 102-2004 THERMAL PERFORMANCE TEST REPORT

Rendered to:

TUBELITE, INC. 4878 Mackinaw Trail Reed City, Michigan 49677

Report Number: 92324.03-116-46

Test Date: 07/10/09
Report Date: 06/19/12

Test Retention Date: 07/10/13

Test Sample Identification:

Series/Model: 300ES Curtainwall System with Insulation in Frame

Type: Glazed Wall Systems (Site-built)

Overall Size: 80" x 80" (2032 mm x 2032 mm) (Non-Standard Size) **NFRC Standard Size**: 78.7" x 78.7" (2000 mm wide x 2000 mm high)

Test Sample Submitted by: Client

Test Sample Submitted for: Validation for Initial Certification (Production Line Unit)

& Plant Qualification

Test Procedure: U-factor tests were performed in a Guarded Hot Box in accordance with NFRC 102-2004, *Test Procedure for Measuring the Steady-State Thermal Transmittance of Fenestration Systems*.

Test Results Summary:

Standardized U-factor (Ust): 0.33 Btu/hr·ft²·F CTS Method

Test Sample Description:

ONSTRUCTION	Frame	
Size (in.) Non-Standard	80" x 80"	
Daylight Opening (in.)	36-1/4" x 75-1/4" (x2)	
CORNERS	Butted	
Fasteners	Screws	
Sealant	Yes	
MATERIAL	AT (1.13") with R-13 Fiberglass Insulation in Frame Cavities	
Color Exterior	Gray	
Finish Exterior	Anodized	
Color Interior	Gray	
Finish Interior	Anodized	
GLAZING METHOD	Interior Pocket	

Glazing Information:

Layer 1	1/4" Viracon VUE1-50 Low-E (e=0.030*, #2) Heat Strengthened	
Gap 1 0.50" Gap, Stainless Steel Spacer (SS-D), 90% Argon Filled		
Layer 2 1/4" Clear Heat Strengthened		
Gas Fill Method	Single-Probe Timed*	

^{*}Stated per Client/Manufacturer N/A Non-Applicable See Description Table Abbreviations

Test Sample Description: (Continued)

OMPONENTS		
Туре	Quantity	Location
WEATHERSTRIP		
EPDM Wedge gasket	1 Row	Exterior glazing perimeter
EPDM Compression gasket	1 Row	Interior glazing perimeter
HARDWARE		
R-13 Fiberglass Insulation	1 Row	Interior frame perimeter in the cavities
DRAINAGE		
(0.25") Diameter weephole	8	Two per horizontal trim on exterior

Thermal Transmittance (U-factor)

Measured Test Data

Heat Flows

1. Total Measured Input into Metering Box (Qtotal)	1149.98 Btu/hr
2. Surround Panel Heat Flow (Q _{sp})	44.83 Btu/hr
3. Surround Panel Thickness	8.00 inches
4. Surround Panel Conductance	0.0261 Btu/hr·ft ² ·F
5. Metering Box Wall Heat Flow (Qmb)	35.49 Btu/hr
6. EMF vs Heat Flow Equation (equivalent information)	0.0196*EMF + 0.020
7. Flanking Loss Heat Flow (Q _{fl})	17.90 Btu/hr
8. Net Specimen Heat Loss (Q _s)	1051.77 Btu/hr

Areas

1. Test Specimen Projected Area (A _s)	44.44 ft^2
2. Test Specimen Interior Total (3-D) Surface Area (Ah)	62.85 ft^2
3. Test Specimen Exterior Total (3-D) Surface Area (Ac)	53.46 ft^2
4. Metering Box Opening Area (Amb)	69.44 ft^2
5. Metering Box Baffle Area (Abl)	60.74 ft^2
6. Surround Panel Interior Exposed Area (A _{sp})	25.00 ft^2

Test Conditions

1. Average Metering Room Air Temperature (t _h)	69.80 F
2. Average Cold Side Air Temperature (t _c)	-0.39 F
3. Average Guard/Environmental Air Temperature	71.25 F
4. Metering Room Average Relative Humidity	13.65 %
5. Measured Cold Side Wind Velocity (Perpendicular Flow)	17.07 mph
6. Measured Static Pressure Difference Across Test Specimen	$0.00" \pm 0.04" \text{H}_2\text{O}$

Results

1. Thermal Transmittance of Test Specimen (U _s)	0.34 Btu/hr·ft ² ·F
2. Standardized Thermal Transmittance of Test Specimen (U _{st})	0.33 Btu/hr·ft ² ·F

Thermal Transmittance (U-factor)

Calculated Test Data

CTS Method

1. Emittance of Glass (e ₁)	0.84
2. Warm Side Baffle Emittance (e _{b1})	0.92
3. Equivalent Warm Side Surface Temperature	51.98 F
4. Equivalent Cold Side Surface Temperature	3.99 F
5. Warm Side Baffle Surface Temperature	68.63 F
6. Measured Warm Side Surface Conductance (h _h)	1.33 Btu/hr·ft ² ·F
7. Measured Cold Side Surface Conductance (h _c)	5.40 Btu/hr·ft ² ·F
8. Test Specimen Thermal Conductance (Cs)	0.49 Btu/hr·ft ² ·F
9. Convection Coefficient (Kc)	$0.31 \text{ Btu/(hr} \cdot \text{ft}^2 \cdot \text{F}^{1.25})$
10. Radiative Test Specimen Heat Flow (Q _{r1})	558.09 Btu/hr
11. Conductive Test Specimen Heat Flow (Qc1)	493.68 Btu/hr
12. Radiative Heat Flux of Test Specimen (q _{r1})	12.56 Btu/hr·ft ² ·F
13. Convective Heat Flux of Test Specimen (q _{c1})	11.11 Btu/hr·ft ² ·F
14. Standardized Warm Side Surface Conductance (hsth)	1.20 Btu/hr·ft ² ·F
15. Standardized Cold Side Surface Conductance (hstc)	5.28 Btu/hr·ft ² ·F
16. Standardized Thermal Transmittance (U _{st})	$0.33 \text{ Btu/hr} \cdot \text{ft}^2 \cdot \text{F}$

Test Duration

- 1. The environmental systems were started at 16:58 hours, 07/09/09.
- 2. The test parameters were considered stable for two consecutive four hour test periods from 00:03 hours, 07/10/09 to 08:03 hours, 07/10/09.
- 3. The thermal performance test results were derived from 04:03 hours, 07/10/09 to 08:03 hours, 07/10/09.

The reported Standardized Thermal Transmittance (Ust) was determined using CTS Method, per Section 8.2(A) of NFRC 102.

Glazing Deflection (in):

	Left Glazing	Right Glazing
Edge Gap Width	0.50	0.50
Estimated center gap width upon receipt of specimen in laboratory (after stabilization)	0.50	0.50
Center gap width at laboratory ambient conditions on day of testing	0.50	0.50
Center gap width at test conditions	0.41	0.41

The sample was inspected for the formation of frost or condensation, which may influence the surface temperature measurements. The sample showed no evidence of condensation/frost at the conclusion of the test.

A calibration of the Architectural Testing Inc. 'thermal test chamber' (ICN 000001) in York, Pennsylvania was conducted in April 2009 in accordance with Architectural Testing Inc. calibration procedure.

"This test method does not include procedures to determine the heat flow due to either air movement through the specimen or solar radiation effects. As a consequence, the thermal transmittance results obtained do not reflect performances which may be expected from field installations due to not accounting for solar radiation, air leakage effects, and the thermal bridge effects that may occur due to the specific design and construction of the fenestration system opening. Therefore, it should be recognized that the thermal transmittance results obtained from this test method are for ideal laboratory conditions and should only be used for fenestration product comparisons and as input to thermal performance analyses which also include solar, air leakage and thermal bridge effects."

"Ratings included in this report are for submittal to an NFRC-licensed IA for certification purposes and are not meant to be used for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) are to be used for labeling purposes."

The test sample was installed in a vertical orientation, the exterior of the specimen was exposed to the cold side. The direction of heat transfer was from the interior (warm side) to the exterior (cold side) of the specimen.

ANSI/NCSL Z540-2-1997 type B uncertainty for this test was 1.61%.

Detailed drawings, data sheets, representative samples of the test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. until 7/10/2013. At the end of this retention period such materials shall be discarded without notice and the service life of this report by Architectural Testing, Inc. will expire.

Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. Ratings included in this report are for submittal to an NFRC licensed IA for certification purposes and are not meant to be used for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) are to be used for labeling purposes. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

Tested By:

Reviewed By:

Ryan P. Moser

Technician

Shon W. Einsig

Senior Technician

Individual-In-Responsible-Charge

RPM:amg 92324.03-116-46

Attachments (pages): This report is complete only when all attachments listed are included.

Appendix-A: Description Table Abbreviations (1)
Appendix-B: Submittal Form and Drawings (14)

Revision Log

Rev. #	Date	Page(s)	Revision(s)
.03R0	06/19/12	All	Original Report Issue. Work requested by
			Steve Wilkening of Tubelite, Inc.

This report produced from controlled document template ATI 00025, revised 10/08/08..

Appendix A: Description Table Abbreviations

CODE	Frame / Sash Types
AI	Aluminum w/ Vinyl Inserts (Caps)
AL	Aluminum
AP	Aluminum w/ Thermal Breaks - Partial
AS	Aluminum w/ Steel Reinforcement
AT	Aluminum w/ Thermal Breaks - All Members (≥ 0.21")
AU	Aluminum Thermally Improved - All Members (0.062" - 0.209")
AV	Aluminum / Vinyl Composite
AW	Aluminum-clad Wood
FG	Fiberglass
PA	ABS Plastic w/ All Members Reinforced
PC	ABS Plastic-clad Aluminum
PF	ABS Plastic w/ Foam-filled Insulation
PH	ABS Plastic w/ Horizontal Members Reinforced
PI	ABS Plastic w/ Reinforcement - Interlock
PL	ABS Plastic
PP	ABS Plastic w/ Reinforcement - Partial
PV	ABS Plastic w/ Vertical Members Reinforced
PW	ABS Plastic-clad Wood
ST	Steel
VA	Vinyl w/ All Members Reinforced
VC	Vinyl-clad Aluminum
VF	Vinyl w/ Foam-filled Insulation
VH	Vinyl w/ Horizontal Members Reinforced
VI	Vinyl w/ Reinforcement - Interlock
VP	Vinyl w/ Reinforcement - Partial
VV	Vinyl w/ Vertical Members Reinforced
VW	Vinyl-clad Wood
VY	Vinyl
WA	Aluminum / Wood composite
WD	Wood
WV	Vinyl / Wood composite
WF	Fiberglass/Wood Combination
WC	Composite/Wood Composite (Shaped vinyl/wood composite members)
CW	Copper Clad Wood
CO	Vinyl/Wood Composite Material

~~~	
CODE	Spacer Types (See sealant)
A1	Aluminum
A2	Aluminum (Thermally-broken)
A3	Aluminum-reinforced Polymer
A4	Aluminum / Wood
A5	Aluminum-reinforced Butyl (Swiggle)
A6	Aluminum / Foam / Aluminum
A7	Aluminum U-shaped
A8	Aluminum-Butyl (Corrugated) (Duraseal)
ER	EPDM Reinforced Butyl
FG	Fiberglass
GL	Glass
OF	Organic Foam
P1	Duralite
PU	Polyurethane Foam
SU	Stainless Steel, U-shaped
CU	Coated Steel, U-shaped (Intercept)
S2	Steel (Thermally-broken)
S3	Steel / Foam / Steel
S5	Steel-reinforced Butyl
S6	Steel U-channel w/ Thermal Cap
SS	Stainless Steel
CS	Coated Steel
TP	Thermo-plastic
WD	Wood
ZE	Elastomeric Silicone Foam
ZF	Silicone Foam
ZS	Silicone / Steel
N	Not Applicable
TS	Thermo-plastic w/ stainless steel substrate

CODE	Tint Codes
ΑZ	Azurlite
BL	Blue
BZ	Bronze
CL	Clear
EV	Evergreen
GD	Gold
GR	Green
GY	Gray
LE	Low 'e' Coating
OT	Other (use comment field)
RC	Solar or Reflective Coating
RG	Roller Shades between glazing
RS	Silver (reflective coating)
SF	Suspended Polyester Film
SR	Silver
BG	Blinds between the Glazing
DV	Dynamic Glazing-Variable
DY	Dynamic Glazing-NonVariable

CODE Gap Fill Codes  AIR Air  AR2 Argon/Krypton Mixture  AR3 Argon / Krypton / Air  ARG Argon/Air  CO2 Carbon Dioxide  KRY Krypton/Air  SF6 Sulfur Hexaflouride  XE2 Xenon/Krypton/Air  XF3 Yanon/Argon/Air		
AR2 Argon/Krypton Mixture AR3 Argon / Krypton / Air ARG Argon/Air CO2 Carbon Dioxide KRY Krypton/Air SF6 Sulfur Hexaflouride XE2 Xenon/Krypton/Air	CODE	Gap Fill Codes
AR3 Argon / Krypton / Air ARG Argon/Air CO2 Carbon Dioxide KRY Krypton/Air SF6 Sulfur Hexaflouride XE2 Xenon/Krypton/Air	AIR	Air
ARG Argon/Air CO2 Carbon Dioxide KRY Krypton/Air SF6 Sulfur Hexaflouride XE2 Xenon/Krypton/Air	AR2	Argon/Krypton Mixture
CO2 Carbon Dioxide KRY Krypton/Air SF6 Sulfur Hexaflouride XE2 Xenon/Krypton/Air	AR3	Argon / Krypton / Air
KRY Krypton/Air SF6 Sulfur Hexaflouride XE2 Xenon/Krypton/Air	ARG	Argon/Air
SF6 Sulfur Hexaflouride XE2 Xenon/Krypton/Air	CO2	Carbon Dioxide
XE2 Xenon/Krypton/Air	KRY	Krypton/Air
Henon, in ypton, in	SF6	Sulfur Hexaflouride
XF3 Vanan/Argan/Air	XE2	Xenon/Krypton/Air
ALS ACHOH/AIgon/An	XE3	Xenon/Argon/Air
XEN Xenon/Air	XEN	Xenon/Air
N Not Applicable	N	Not Applicable

	DOOR DETAILS
N	Not Applicable
CODE	Door Type
EM	Embossed
FL	Flush
LF	Full Lite
LH	1/2 - Lite
LQ	1/4 - Lite
LT	3/4 - Lite
RP	Raised Panel
CODE	
AL	Aluminum
FG	Fiberglass
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	Vinyl
CODE	
FG	Fiberglass
PL	Plastic
WP	Wood - Plywood
WS	Wood - Solid
	Sub-Structure
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	Vinyl
CODE	
CH	Cellular - Honeycomb
EP	Expanded Polystyrene
PI	Polyisocyanurate
PU	Polyurethane
WP	Wood - Plywood
WS	Wood - Solid
XP	Extruded Polystyrene

CO	DE	Spacer Sealant
I	)	Dual Seal Spacer System
	S	Single Seal Spacer System

CODE	Grid Description
	No Muntins
G	Grids between glass
S	Simulated Divided Lites
T	True Muntins

CODE	Grid Size Codes
	Blank for no grids
0.75	Grids < 1"
1.5	Grids >= 1"

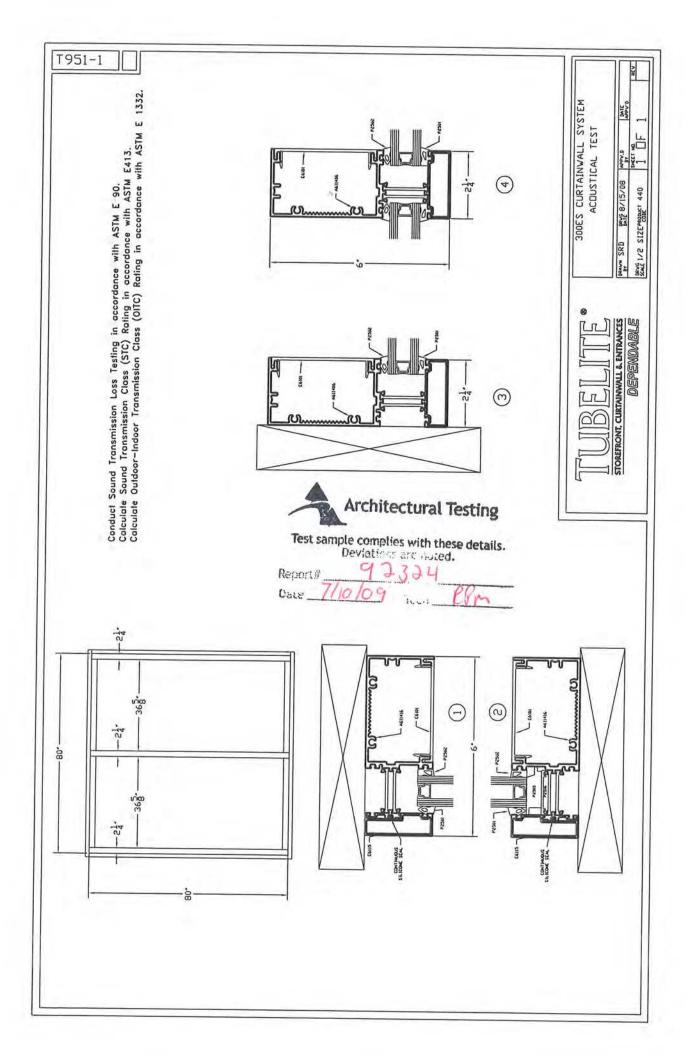
CODE	Thermal Breaks
F	Foam
U	Urethane
V	Vinyl
FB	Fiberglass
О	Other
AB	ABS
NE	Neoprene
ΑI	Air
N	Not Applicable
P	Polyamide

# **Appendix B: Submittal Form and Drawings**

# NFRC PRODUCT CERTIFICATION PROGRAM

# **Submittal Form for Test Samples**

For use by manufacturers, lineal suppliers and fabricators


Information on Production of the Test Sample (complete ALL fields);

Manufacturer: UBELITE Date of sample manufacture: DECEMBER Plant Address where manufactured; ALKER RIDGE State: Zip Code: Name of IA: Phone: 2. Product Information (complete ALL fields): Product Line ID (CPD) No.: Product/Operator Type (Table 4-3 of NFRC 100): Series/Model: 3. Test sample is being submitted for (select ONE): a. O Validation for Initial Certification (prototype only) no plant qualification b. X Validation for Initial Certification (production line unit) & plant qualification ☐ Validation for Recertification (production line unit) & plant qualification ☐ Plant Qualification Only (production line unit) STOVEN R. WILKENING , as the designated agent for TUBELITE do hereby attest that the foregoing information is true to the best of my information, knowledge, and belief, Further, if the unit is identified in Section 3 as a production line unit, I hereby authorize the NFRC-accredited testing laboratory to send a copy of the test report to the IA identified above for plant qualification purposes pursuant to the NFRO Froduct Certification Program... Signature: FOR LABORATORY USE ONLY 1 Laboratory 2. Date Sample Received: File number ID: 3. Date Sample Tested: By: Jub Modifications made: 5. Reason for non-testing of sample unit: [Note: If the sample submitted can not be tested due to damage prior to testing, a new sample and

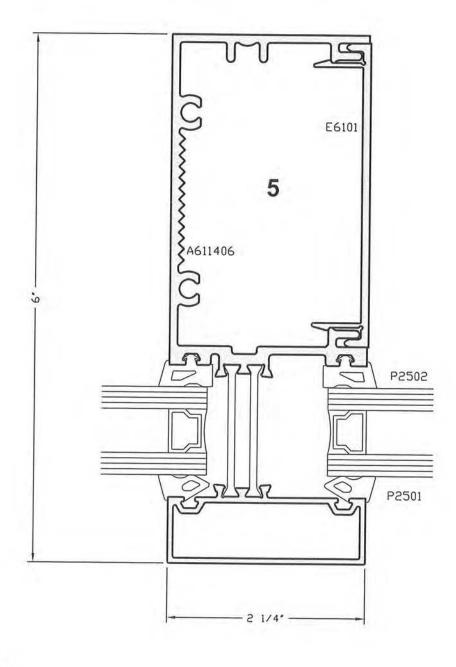
new form shall be submitted to the testing laboratory. Both forms shall be submitted to the IA

when the testing is completed.]

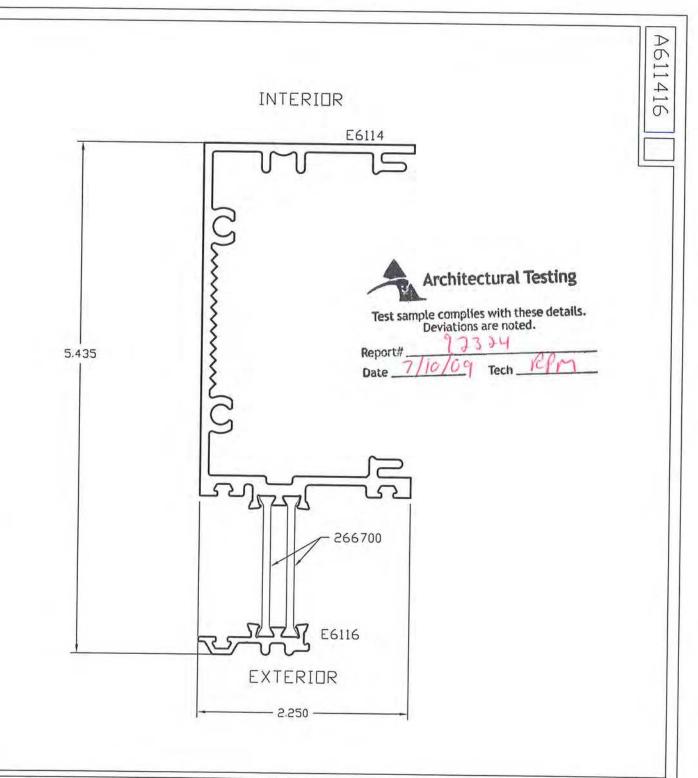
National Fenestration Rating Council®



# 23.12 300ES Curtainwall Outside Set Vertical


CAD DETAIL FILE NO. 440VERT1




Test sample complies with these details.
Deviations are noted.

Report# 77334

ate 7/10/09 Tech RPM



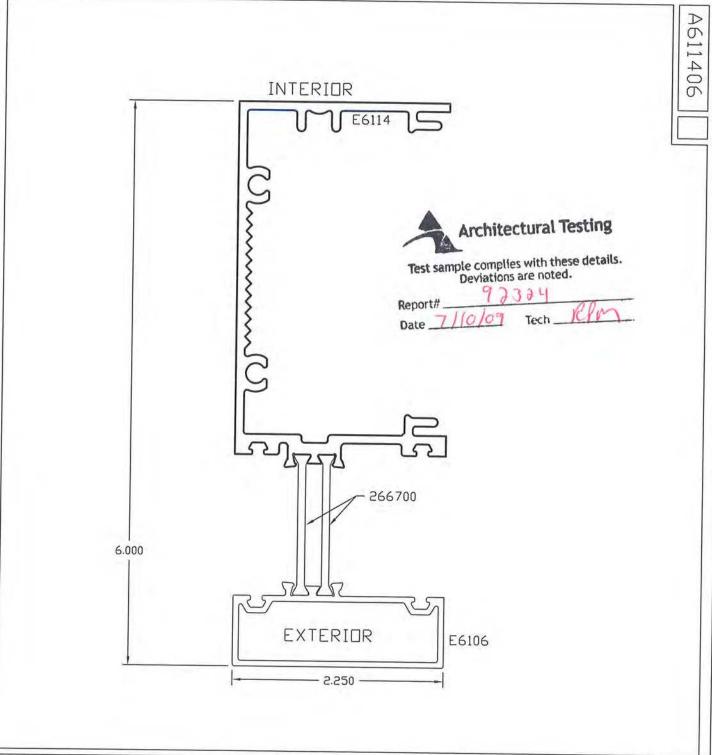




@ 2006 TUBELITE INC. ALL RIGHTS RESERVED

ALL UNSPECIFIED RADII .015

- * INDICATES .031 RADIUS
- DENOTES CRITICAL DIMENSION


	п	D			П	T	4
11	الد	D	L	L	П	L	1
_			D	ene	MDA	DIE	

3056 WALKER RIDGE NW, SUITE G WALKER, MICHIGAN 49544

REV DATE DESCRIPTION INTL

ASSEMBLED HEAD / SILL
LS CURTAINWALL DUTSIDE SET
6" SYSTEM

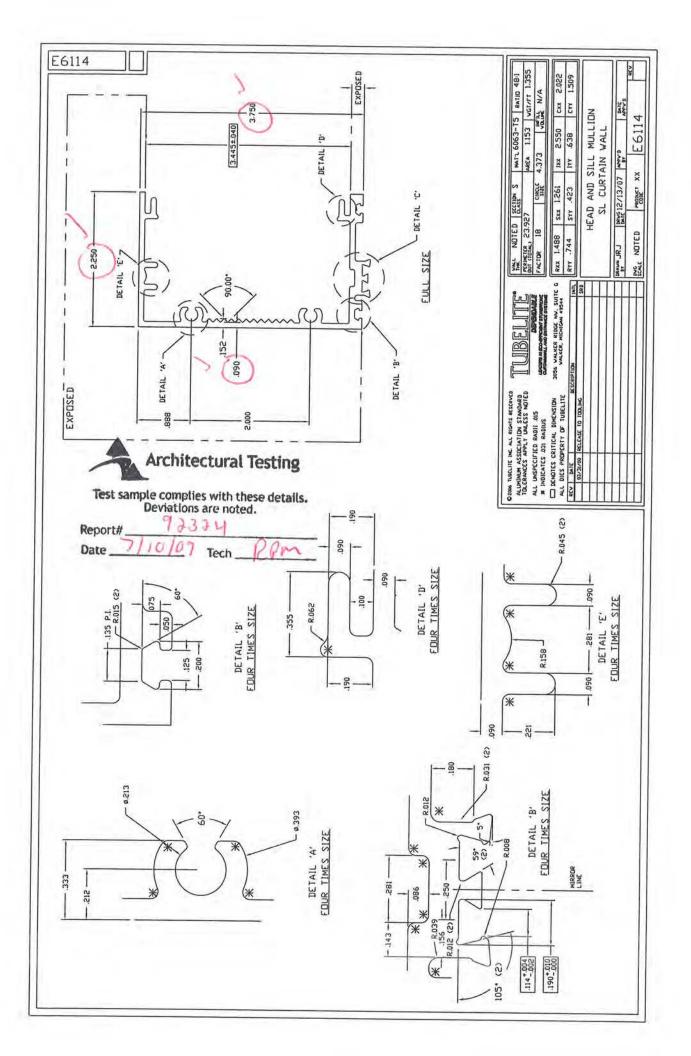
BY JRJ	DRVG 12/13/07	APPV.D BY		
DRWG FULL	PRODUCT	A6114	16	REV

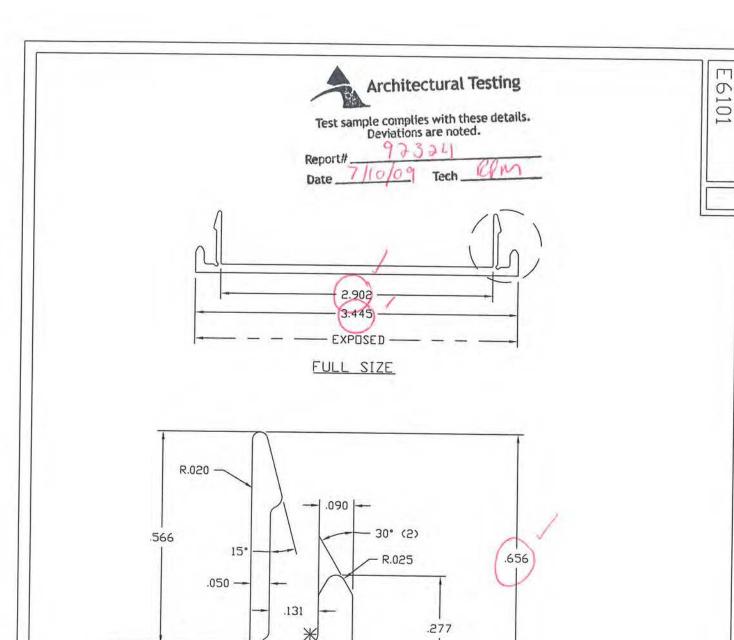


© 2006 TUBELITE INC. ALL RIGHTS RESERVED

ALL UNSPECIFIED RADII .015

- * INDICATES .031 RADIUS
- DENOTES CRITICAL DIMENSION


TI	T	D	F		רו	1
11	J	D	L		П	C
	-	_		-	1 11	, and the same of


3056 WALKER RIDGE NW. SUITE G WALKER, MICHIGAN 49544

DATE	DESCRIPTION	INT
	DATE	DATE DESCRIPTION

ASSEMBLED JAMB
ES300 CURTAINWALL INSIDE SET
6" SYSTEM

DRAWN BY	DRVG 12/13/07	APPV,D BY	DATE APPV'D	
DRWG FULL	PRODUCT CODE	A611	406	REV





DETAIL 'A' FOUR TIMES SIZE

© 2006 TUBELITE INC. ALL RIGHTS RESERVED ALUMINUM ASSOCIATION STANDARD TOLERANCES APPLY UNLESS NOTED

ALL UNSPECIFIED RADII .015
** INDICATES .031 RADIUS

.090 □

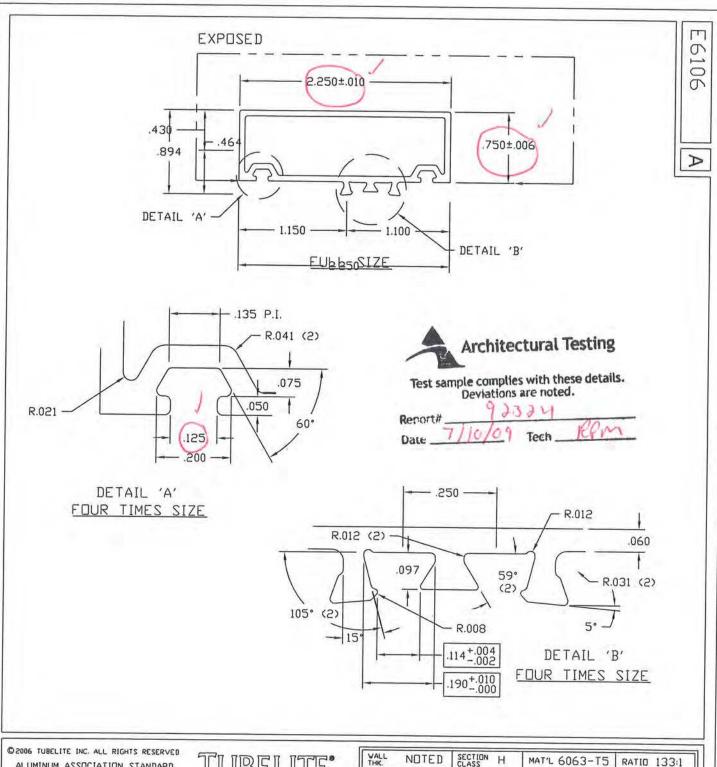
DENOTES CRITICAL DIMENSION
ALL DIES PROPERTY OF TUBELITS

# TUBELITE®

Ø.040 -

L 8.050 (5)

3056 WALKER RIDGE NW. SUITE G WALKER, MICHIGAN 49544


REV	DATE	DESCRIPTION	INT
	08/27/07	RELEASE FOR TOOLING	JEN
-			

WALL THK.	NOTED	SECTION S	MAT'L 60	63-T5	RATIO 138:1
PERIMETE OUT (TOT	R 10.015	5	AREA .4	100 W	GT/FT .470
FACTOR	21	CIRCLE	3.453	INFILI	ē N/A

RXX 1.143	808. xx2	1xx .522	CXX 1.722
RYY .138	SYY .073	800. YYI	CYY .550

#### POCKET CLOSURE

DRYG 08/13/07	APPV'D BY	DATE APPV'D	
D PRODUCT	F6	101	REV
		n PRODUCT EC	n PRODUCT EC101



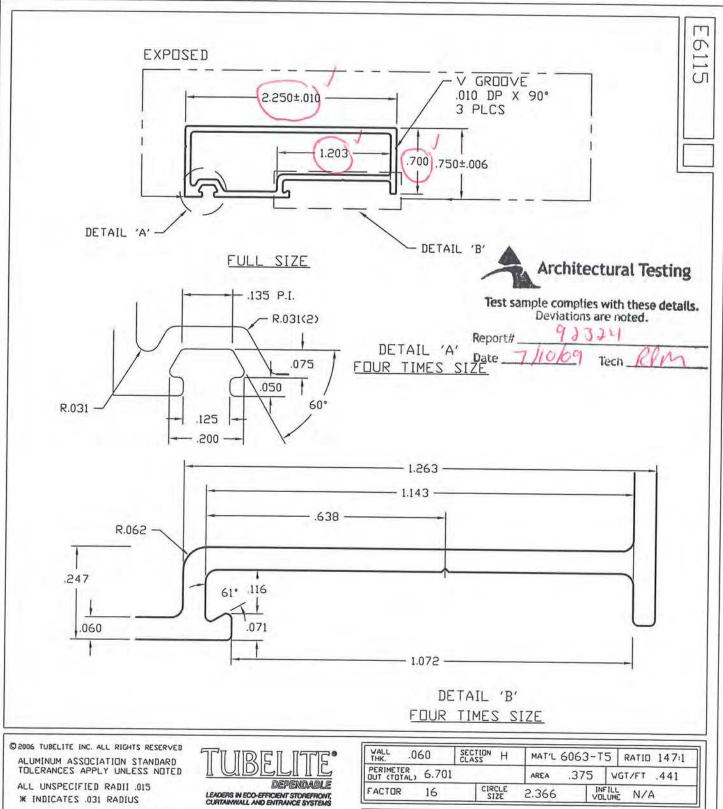
© 2006 TUBELITE INC. ALL RIGHTS RESERVED
ALUMINUM ASSOCIATION STANDARD
TOLERANCES APPLY UNLESS NOTED
ALL UNSPECIFIED RADII .015

* INDICATES .031 RADIUS

DENOTES CRITICAL DIMENSION
ALL DIES PROPERTY OF TUBELITE

ירו ווסור ו ווירוריי
TUBELITE.
DEPENDABLE
LEADERS IN ECO-EFFICIENT STOREFRONT,

3056 WALKER RIDGE NW, SUITE G WALKER, MICHIGAN 49544


REV	DATE	DESCRIPTION	INTL
	08/27/07	RELEASE FOR TOOLING	JEM
A	01/17/08	REVISED I-STRUT DOVETAIL	JRJ

VALL THK.	NOTED	SECTION H	MAT'L 606	3-T5	RATIO 133:1
PERIMETE	R 7.556		AREA .4	15 W	GT/FT .488
FACTOR	16	CIRCLE	2.372	INFIL	

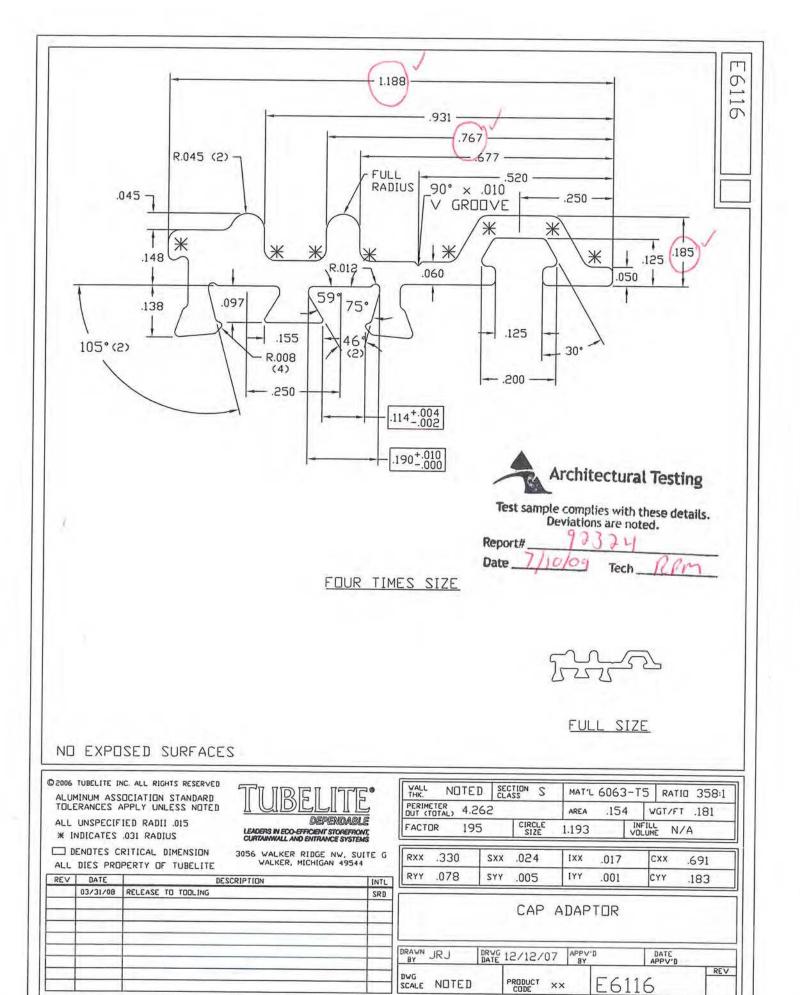
RXX .318	090. xxx	1XX .042	CXX .464
RYY .751	SYY 2.04	IYY .234	CYY 1.150

#### EXTERIOR CAP

DRAWN JEM	DRYC	08/10/07	BY APPV'D	DATE APPV'D	
DWG SCALE NOTEI				0.6	REV
SCALE NOTEI	)	PRODUCT	[E6]	.06	A



DENOTES CRITICAL DIMENSION
ALL DIES PROPERTY OF TUBELITE


3056 WALKER RIDGE NW. SUITE G WALKER, MICHIGAN 49544

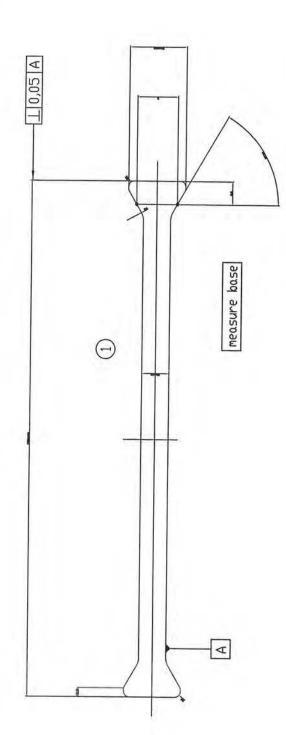
REV	DATE	DESCRIPTION	INTL
	03/31/08	RELEASE TO TOOLING	SRD
_			

RXX .280	sxx .075	020. xx1	CXX	392
RYY .756	SYY .182	IYY .214	CYY	1.178

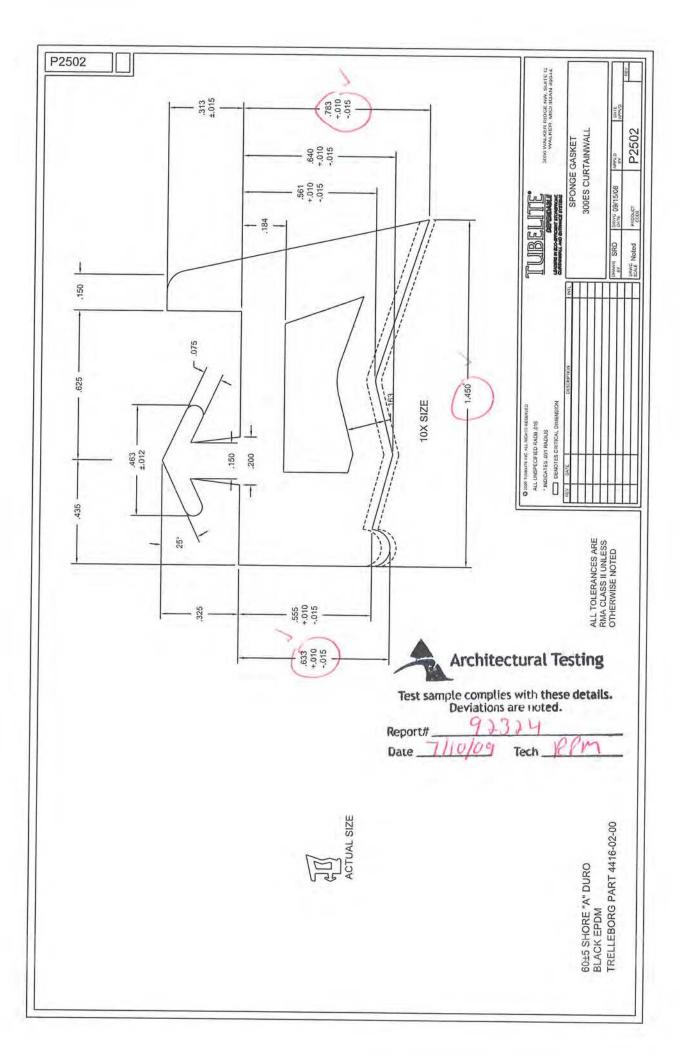
EXTERIOR CAP LS CURTAIN WALL

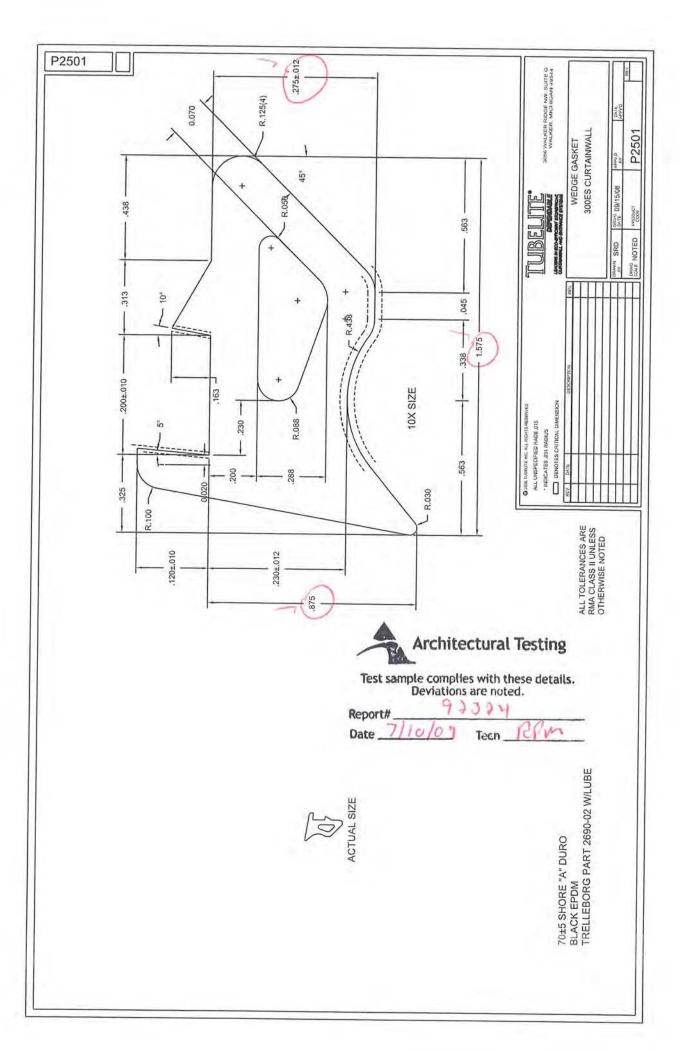
DRAWN JRJ	DRWG 12/13/07	APPV'D	DATE APPV'D	
DWG SCALE NOTED	PRODUCT XX	E61	15	REV






Test sample complies with these details.


Deviations are noted.


Report# 713 Date 71009

Tech_KIM

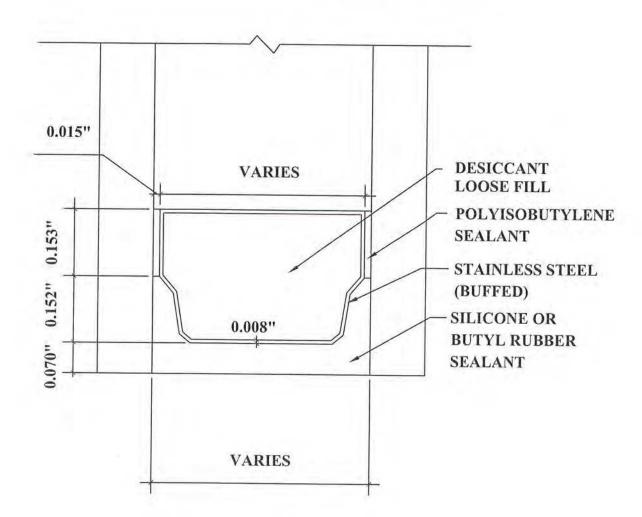


	$\gamma$							rrp		bage	-	100
2 scale 14	with specified diversions of the specified diversion diversions of the specified diversions of the specified diversion diversions of the specified diversion diversion diversions of the specified diversion diversion diversions of the specified diversion diversion diversion diversions of the specified diversion	長	II scale M Sa Class	-	12 naterial PA 66 GF 25, dry inpact	[3]	000	38 MM Flat Insulating Strip	)	266700	HSCh The Tourish to live and the first the fir	Commission to third purities or copied either totally or puritielly eithout eritten persistan of Technoform Soutes Galdi
	on less than	/ g		Check	-				UTEC	Kunststoffprodukte Gmbfig 34277 Fuldabrück		or coped eith
	Separate of the separate of th	7 customer reference		Resp.	HSch	HSch	HSch	HSch	Technoforn BAUTEC	Kunststoffproduk 34277 Fuldabrück	1	d pertes
	at specific	stoner	atus	Date	22.12	23.12	10.01.05	04.02.05	11 .	-	often to ten	ated to th
		2	10 Status	ST	0	1	2	ю	L	T	7.00	Committee
rents	n/m 0											Name
1 Coments	Bending X = +/- 15 mu/n Y = +/- 50 mu/n Mistorsion +/- 15/n										10.01.2005	Dote
	\$ <del>*</del>	6 customer	mm = 85 mm	00	= 83 mm						toleranz added	Modification
	m	9	8									Noi








Test sample complies with these details.

Deviations are noted.

Report#___

Date 7/10/09

Tech_R



DETAIL FOR THERMAL MODELING OF VIRACON STAINLESS STEEL SPACER (SS-D)