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Introducing Functional
Data Analysis to
Managerial Science

Mayukh Dass1 and Christine Shropshire2

Abstract

In this article, we introduce functional data analysis (FDA), a set of statistical tools developed to

study information on curves or functions. We review fundamentals of the methodology along with

previous applications in other business disciplines to highlight the potential of FDA to managerial

science. We provide details of the three most commonly used FDA techniques, including functional

principal component analysis, functional regression, and functional clustering, and demonstrate each

by investigating measures of firm financial performance from a panel data set of the 1,000 largest U.S.

firms by revenues from 1992 to 2008. We compare results obtained from FDA with hierarchical

linear modeling and conclude by outlining ideas for future micro- and macro-level organizational

research incorporating this methodology.

Keywords

functional data analysis, functional principal component analysis, functional regression, functional

clustering, firm performance

With the recent interest in modeling longitudinal, multigroup, and multilevel data (e.g., Bliese &

Ployhart, 2002; Bou & Satorra, 2010; Misangyi, Elms, Greckhamer, & Lepine, 2006), scholars are

increasingly able to test theoretical models of change in organizational phenomena that were not

possible earlier. Although these methods (e.g., hierarchical linear modeling [HLM], growth models,

traditional time-series models) are useful in exploring dynamics in general, they are sometimes inef-

ficient, particularly in situations where the relationships among the variables under investigation

vary over time (Ramsay & Silverman, 2005) and exhibit a complex data pattern (Jank & Shmueli,

2006). In such cases, functional data analysis, a set of statistical tools developed to study information

on curves or functions, is more appropriate.

Functional data analysis (FDA) presents advantages over current techniques that make it partic-

ularly promising to organizational scholars. First, it has the ability to analyze highly nonlinear and
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heterogeneous longitudinal data. Although HLM can handle certain nonlinear distributions, it

typically restricts within-subject dynamics (i.e., Level 1 model) of all subjects to one functional

structure (Singer & Willett, 2003, p. 211). In comparison, FDA allows each individual subject to

determine its own functional structure, useful when dealing with highly heterogeneous data (Reddy

& Dass, 2006). Second, FDA is able to handle time-varying relationships among variables and esti-

mate their effect size and significance over time. Such analyses are not possible with HLM and

growth models. Third, FDA has better forecasting power than traditional models in very dynamic

environments (Dass, Jank, & Shmueli, 2011). As it incorporates the dynamic components of the

environment in its functional form, FDA is able to predict the outcome with very low error relative

to traditional methods. And, fourth, it is powerful in visualizing and capturing complex data patterns

with a few simple measures, thus making it appropriate for the dynamism and complexity of orga-

nizational data. Given the preceding benefits, the purpose of this article is to introduce FDA to man-

agerial science and discuss how organizational researchers can apply the method in their research.

Fundamentally, FDA and traditional models (e.g., HLM, growth models) are different as the first

is performed on functional data, whereas the latter are developed on discrete data. Functional data

are information that varies over a continuum of time, space, probability, or any dimension that

defines data separation; examples include firm performance across time, product diversification lev-

els or life cycle stages of firms, dynamics of organizational citizenship behavior, perceptions of

organizational justice, job satisfaction, emotional affect, and so on. Longitudinal organizational data

are functional, and relationships among the variables may change with time. Functional techniques

allow for functional inputs and outcomes, including measures of varying intervals, at varying rates

of change and in a highly nonlinear fashion, and thus can capture and measure how intra- and inter-

organizational characteristics coevolve.

A functional approach enables investigations of temporal effects or the analysis of relationships

of interest while addressing time dependence (e.g., Bliese & Hanges, 2004). For example, a study of

new venture survival and growth following an initial public offering (IPO) could follow daily returns

to assess entrepreneurial firms’ ‘‘particular challenges stemming from a ‘liability of newness’ that

heightens performance risks and makes them more strongly influenced by environmental change,

competitive threats, or shifting consumer preferences’’ (Holcomb, Combs, Sirmon, & Sexton,

2010, p. 348). Le Mens, Hannan, and Pólos (2011) discuss complexities beyond age dependence

to firm survival and argue that considerations of founding conditions and accumulation of organiza-

tional capital over time affect liabilities of newness, adolescence, and obsolescence. In line with the

dynamics of organizational phenomena, FDA visually depicts and models the functional nature of

data rather than singular dimensions. Studies that improve our understanding of ‘‘continuity, change

and processes that unfold in various ways over time’’ represent high-impact contributions to orga-

nizational science because ‘‘conceptualizations and analyses of change over time were made more

explicit in the models, which in turn allowed scientific examinations of the complexities involved in

the change process’’ (Chan, 1998, p. 422). FDA includes a number of promising techniques to

capture such richness and dynamics of organizational reality.

At a fundamental level, FDA is a hybrid methodology that entails both parametric and nonpara-

metric components. It includes a nonparametric stage of discovering the mathematical form of the

underlying functions and then a parametric stage to analyze them. In particular, FDA first generates

a continuous and smooth curve from discrete observations, creating a functional equation to explain

changes in states of a variable due to some group membership (e.g., point in time, firm or industry

nesting). This flexibility makes FDA appropriate for a multitude of organizational research ques-

tions. Rather than dealing in linear space with matrix equations, FDA works with integral equations

in infinite dimensions, allowing more appropriate treatment to continuous data and study of the

dynamics of longitudinal changes. Research methods for macro-organizational topics have been

limited to parametric or linear modeling or to those that require predetermined knowledge about
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event timing, such as survival analysis or traditional spline regression. Furthermore, methods in

micro-organizational research often restrict responses from study participants to one functional form

and treat responses as simultaneous when they occur over an extended time period of data collection.

Such restrictions may render insights from traditional methods less accurate. FDA is effectively a

statistical toolkit to analyze repeated observations in exploratory, confirmatory, and predictive stud-

ies. In this article, we provide details of three commonly used FDA techniques, including functional

principal component analysis, functional regression, and functional clustering. We demonstrate each

technique by examining three measures of firm financial performance (return on assets [ROA],

Tobin’s Q, and shareholder return) from a panel data set of the 1,000 largest U.S. firms by revenues

from 1992 to 2008. Moreover, we compare FDA with HLM and illustrate advantages of a functional

methodology.

The rest of the article is organized as follows: We first briefly review the application of FDA to

social science, including recent advances in finance, economics, marketing, and management infor-

mation systems, to introduce its relevance to organizational research questions. We then provide the

methodological details of FDA, demonstrate three functional techniques using financial perfor-

mance measures, and present a comparative analysis between FDA and HLM. Finally, we conclude

with a discussion of applications of FDA in the managerial sciences and its potential to explore a

variety of micro- and macro-organizational phenomena.

Development of FDA and Previous Applications

Across a variety of disciplines, functional data analysis is a new but increasingly popular methodol-

ogy, largely due to its adaptability in the multivariate context (Ramsay & Silverman, 2005, p. 399)

and its ability to extend into a functional space a number of customary statistical approaches, includ-

ing factor analysis, inference, classification, time series, and resampling (Ferraty & Romain, 2011).

Although considering data functionally adds some complexity, researchers familiar with traditional

methods such as principal components and regression analyses can easily adopt FDA to more fully

capture the realities of data in managerial science, especially the multilevel and dynamic nature of

organizational phenomena.

Functional Data Analysis in the Business Disciplines

As the social sciences have begun acknowledging limitations of using traditional econometric mod-

els in functional settings, FDA is gaining traction in business disciplines. Traditional models face

several shortcomings that functional methods address. First, traditional methods fail to provide

insights that are useful for understanding the nature of functional data. For example, consider one

part of our later example: how firm size affects firm performance. We can adequately estimate the

effect size with a linear model and determine a relationship between firm size and firm performance.

However, as both firm performance and firm size vary over time, the econometric model will only

provide results at the aggregate level, without exploring the possibility of changing relationships

across time. Second, traditional methods are limited in their capability to visualize the dynamics

of functions. For example, if we want to explore how changes in firm size covary with changes

in firm performance and visually investigate it, econometric models are unfulfilling. Because FDA

handles functional (as opposed to discrete) independent and dependent variables, researchers can

model relationships between change in size and change in performance and consider predictors, con-

trols, or outcomes as a function of nested or time-varying effects. Third, traditional methods are

inadequate in situations where data suffer from missing information. For example, it is possible that

some firms are missing performance data in some years within the sample period. In such cases, we

have to either impute the data or consider deleting those firms in our analysis. FDA can also handle
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such situations by smoothing the discovered underlying function to impute the missing values.

However, FDA also offers the ability, if the signal-to-noise ratio in the data set is low and the data

significantly sparse, to use information from ‘‘neighboring or similar’’ subjects to get more stable

estimates of the missing values (Brumback & Rice, 1998; James, Hastie, & Sugar, 2000; Ramsay

& Silverman, 2005). Studies published recently in business disciplines overcome the previously

mentioned shortcomings of traditional methods and illustrate the effectiveness of using FDA to

address organizational research questions.

Finance and Economics

Given the widespread use of financial data such as measures of risk and performance in macro-

organizational studies, relevant findings from finance and economics offer insight to how FDA can

illuminate our own research. Ramsay (1990) discusses limitations of traditional methods to capture

the nonlinear dynamics of financial data and introduces ways to visualize data using FDA. Phase

plots between the first derivative (velocity) and second derivative (acceleration) of the functions

helpfully depict the dynamics underlying the data, not just predicting change but also allowing anal-

ysis of second- and third-order changes and their correlations. Cai (2011) discusses the shortcomings

of traditional models such as the capital asset pricing model (CAPM) in comparison to FDA, noting

a wealth of empirical evidence yet ‘‘no theoretical guidance on how betas and risk premium vary

with time, or variables that represent conditioning information’’ (p. 178). Research predicting abnor-

mal returns often assumes that time and market factors are uncorrelated with the error terms (Akde-

niz, Altay-Salih, & Caner, 2003). Although some advances in econometric modeling allow for time-

varying betas of the overall market or of an individual stock (e.g., You & Jiang, 2007), these

approaches still fail to recognize covariance between the two in order to compare risk of an individ-

ual stock or portfolio against volatility of broader market indices (Cai, 2011). Functional methods

offer the ability to identify trends within panel data sets and more appropriately model autoregres-

sive time-series data, whether financial performance or other organizational phenomena.

Questions in macro-organizational research often include multilevel considerations of macroeco-

nomic country or industry effects. Finance and economics studies point to the value of FDA in

recognizing nested, dynamic organizational data. Kargin and Onatski (2008) explore the functional

nature of financial data and illustrate FDA as a superior methodology due to its accurate recognition

of observations as curves rather than vectors. Although they study the currency rates using daily

observations over 10 years of futures contracts, their analysis reveals the broader utility and

increased predictive ability of functional methods at curve forecasting, and not just in terms of

market expectations for future competitive and policy conditions (see also Hong & Lee, 2003). One

highly cited study using functional techniques samples the Nondurable Goods Index (NGI), a

monthly indicator of production and spending patterns in the United States (Ramsay & Ramsey,

2002). Applying FDA to 100 years of data reveals reliable patterns and shifts within the NGI, and

functional techniques allow visual depictions of the dynamics of variation across time through first-

and second-order derivatives of the function (Ramsay & Silverman, 2002). Identification of seasonal

or other cyclical trends and larger scale shifts in macroeconomic conditions, as well as how these

factors change over time, has powerful implications for theory and practice for organizational scho-

lars. Functional techniques allow researchers to address the time and maturity dimensions of data

simultaneously, longitudinally, and semi- or nonparametrically.

Marketing and Management Information Systems

Findings in the marketing and management information systems disciplines also indicate how orga-

nizational researchers may use functional analyses. FDA has been shown to be a more appropriate
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methodology in highly dynamic environments such as price formation in online auctions (Bapna,

Jank, & Shmueli, 2008; Reddy & Dass, 2006). Bapna and colleagues (2008) find through functional

data modeling that item characteristics, auction duration, and experience and ratings of the seller

have varying influence on the evolution and dynamics of the price. Therefore, FDA may serve as

a better alternative when testing organizational theories in dynamic environments such as the rela-

tionship between resource management and creation of value (e.g., Sirmon, Hitt, & Ireland, 2007).

Similarly, marketing and management information systems studies report FDA to have stronger pre-

dictive power than traditional models in dynamically competitive environments (Dass et al., 2011;

Foutz & Jank, 2010; Wang, Jank, & Shmueli, 2008), which may encourage organizational research-

ers to revisit and advance organizational studies in such environments (e.g., Grant, 1996).

FDA has proved useful in its ability to handle complex and large data sets, often with thousands

of variables across thousands of observations (e.g., Zhu, Brown, & Morris, 2011). Yet FDA is also

effective in smaller data sets, although it is important to have more subjects than covariates in the

data set. Some examples include Ramsay and Silverman’s (2005) analysis of the dynamics of height

among 10 girls and the investigation by Reddy and Dass (2006) into price dynamics of 107 art items.

Moreover, a minimum of two observations is required by FDA to generate an underlying function

(Ramsay & Silverman, 2005); thus, it is flexible in terms of data set size, and its range of techniques

to analyze functional data is both exploratory (e.g., functional principal components analysis) and

predictive (e.g., functional regression) in nature.

Conceptual questions in organizational behavior and strategic management research regarding

dynamic trends and covariance within and between observational units over time could be addressed

using FDA. Whether observational units are individual employees, work teams, demographic

categories, organizational divisions, companies, industries, and so on, FDA can visually depict and

capture variation and patterns of longitudinal change rather than examining central tendencies.

Given the evolution of functional techniques toward organizational data and the adoption of FDA

by other business disciplines, we now present details of the methodology and demonstrate three

FDA techniques in an exploration of measures of firm financial performance.

Method

At a fundamental level, FDA first recovers the underlying functions of the observed data and

then performs different types of analyses on them. Although these functions can be subjected to

any type of functional analysis, three applications of FDA have garnered particular attention:

functional principal components, functional regression, and functional clustering. Functional

principal components analysis (fPCA) is useful in determining the common factors or trends

that are present in the dynamics of the underlying recovered functions. Functional regression

examines the relationship between the recovered functions (a functional dependent variable)

and predictors that affect the outcome of interest. Functional clustering establishes relationships

across the functions and uses the information to group or cluster the units of analysis accord-

ingly. A flowchart of FDA to pursue these three techniques is shown in Figure 1. Moreover, to

facilitate readers applying FDA in their own research, we provide the necessary programming

code in R in the appendix.

Recovering Underlying Functions

The first step of the methodology is to discover the underlying functions of the observed data. Since

we may lack information regarding the nature of the underlying function of the given data, it is

important that we start with a general functional form that is flexible and can be applied to most

types of organizational data. A polynomial functional form is flexible and does not impose any

Dass and Shropshire 697

 at UNIV OF GEORGIA on February 26, 2013orm.sagepub.comDownloaded from 



constraint on the underlying function (Ramsay & Silverman, 2005). Therefore, we use a smoothing

polynomial spline of order p of the following form:

f ðtÞ ¼ b0 þ b1t þ b2t
2 þ b3t

3
; . . . ;þbpt

p þ
X

L

l¼1

bpl t � tlð Þþ
� �p

; ð1Þ

where t1, t2. tL is a set of L knots, t is time, and uþ ¼ uI u�0½ �. The choice of L and p in Equation 1

determines the departure of the fitted function from a straight line with higher values resulting in a

rougher f. The polynomial smoothing spline may result in a better fit of the observed data but typi-

cally tends to have a poorer recovery of the underlying trend with a tendency to overfit. To avoid this

issue, a roughness penalty function (PEN) of the following form is imposed to measure the degree of

departure from the straight line (Reddy & Dass, 2006):

PENm ¼

ð

Dmf ðtÞ½ �2dt; ð2Þ

where Dm f, m ¼ 1, 2, 3., is the mth derivative of the function f. In other words, the value of PEN is

high when the data points are highly nonlinear and the polynomial function (Equation 1) fits the data

well and is low when the data points are linear. The goal is to find a function f(j) that minimizes the

penalized residual sum of squares:

PENSS
jð Þ

l;m ¼
X

n

y
jð Þ

i � f jð Þ tið Þ
� �2

þ l� PEN jð Þ
m ; ð3Þ

where y
jð Þ

i represents the observed data j for organization i and f (j)(ti) represents the corresponding

functional value obtained from the smoothed spline. The smoothing parameter l provides the trade-

off between fit [(y
jð Þ

i – f (j)(ti))
2] and variability of the function (roughness) as measured by PENm.

The recovered function can now be further analyzed to compute its higher order derivatives

(i.e., first-order derivative – velocity; second-order derivative – acceleration). However, studying

What are the significant shapes - 

Func�onal PCA 

Recover underlying 

func�on 

Collect data 

Generate a continuous smooth curve  

from discrete observations using  

Smoothing Spline Approach 

Decompose curves into  

functional principal scores 

Investigate subjects based on 

the scores 

Regress the functional DV 

against the IV

Identify, plot & interpret 

important predictors of. DV  Interpret clusters  

& draw conclusions  

Use standard k−means 

clustering to cluster the 

functions  

How do different IVs affect 

DV - Func�onal Regression 

Can we group subjects by their 

func�ons - Func�onal Clustering 

Figure 1. Flowchart of functional data analysis

Note: DV ¼ dependent variable; IV ¼ independent variable; PCA ¼ principal component analysis.
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derivatives is only possible when the function is uncovered using a polynomial of order 3 or

more, thus requiring at least four time points in the data. We used the b-spline module devel-

oped by Ramsay (2003) for minimizing PENSS
jð Þ

l;m. The following algorithm performs the

preceding process in R:

Step 1: Call the R library fda.

Step 2: Set the number of knots for spline fitting. This number depends on the number of observa-

tions for that particular subject.

Step 3: Run three sets of statements including create.bspline.basis, fdPar, and smooth.basis.

Create.bspline.basis constructs the functional data object for the subject based on the number

of knots, order of the basis functions, and the time points. fdPar generates another object by

taking the output of the above statement, along with the smoothing parameters Lambda

(roughness penalty factor) and Lfd (linear differential operator). Finally, smooth.basis

smoothes the data using the roughness penalty (corresponding to Equation 3) and generates

the function.

Step 4: Use the statement deriv.fd to calculate the first (velocity) and second (acceleration)

derivatives of the function. See the code in R presented in the appendix for more

information.

To illustrate the preceding process, consider performance data (ROA) of a firm shown in Figure 2a.

We follow the preceding steps to discover the underlying function shown with a solid line in Figure

2b. Apart from recovering the underlying functions for the observed data, smoothing also helps

in eliminating noise in the data (Foutz & Jank, 2010), and the resulting functions can be used to

explore higher order views of the dynamics of the observed data, most commonly velocity (the

first derivative of the discovered function) and acceleration (the second derivative of the dis-

covered function), as shown in Figure 2c and 2d, respectively. Velocity measures the rate of

change in the function over time, and acceleration indicates the rate of change in velocity over

time.

Functional Principal Components Analysis

After recovering the underlying functions from the observed data, researchers may analyze these

curves to extract the common factors that are present across all units of analysis (in our case, com-

mon trends across organizations). For example, we may want to know how many common trends are

present in the performance of all firms and to identify them. This is done using fPCA. fPCA is

derived from ordinary principal components analysis such that they have the same underlying con-

cepts and goals (Foutz & Jank, 2010; James et al., 2000). Consider a set of observed data, say,

z1; z2; . . . ; zn, where each z is expressed in a p-dimensional data vector zi ¼ ðzi1; z2i; . . . ; zipÞ
T
. For

an ordinary PCA, the goal is to find a projection for z1; z2; . . . ; zn in a new space such that the var-

iance along each component of the new space is maximum and orthogonal. Therefore, ordinary PCA

finds a principal component (PC) vector e1 ¼ ðe11; e12; . . . ; e1pÞ
T
for which the principal component

scores (PCS) for p PCs are computed as

Sip ¼
X

j

epjzij ¼ eTp zi ð4Þ

such that it maximizes
P

i S
2
ip to

X

j

e2pj ¼ ep
�

�

�

�

2
¼ 1: ð5Þ
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In the context of fPCA, the above procedure is repeated, except now the z is a set of continuous

curves instead of discrete values. Consider a set of curves z1ðsÞ; z2ðsÞ; . . . ; znðsÞ that is recovered
from the previous step. Here, fPCA will find the corresponding set of PC curves ei(s) such that it

maximizes the variance along each component and is orthogonal to each other. Therefore, for the

each of the p principal components, the PCS is computed as

Sip ¼

ð

epðsÞziðsÞds; ð6Þ

such that it maximizes
P

i S
2
ip to

ð

e2p ¼ ep
�

�

�

�

2
¼ 1 ð7Þ

In other words, functional PCA is similar to ordinary PCA, except the modifications to adapt to func-

tional data. The cutoff for selecting variance explained depends on the researcher. As a rule of

Figure 2. Underlying function, velocity, and acceleration of return on assets of a firm
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thumb, considering factors explaining 90% of the variance may be appropriate (James et al., 2000),

although the researcher may decide, as with traditional PCA, that a lower threshold of variance

explained is more sufficient for the research question. In R, we run a princomp statement on the

function generated by the smooth.basis statement and identify the important factors. Refer to the

appendix for the representative code.

Functional Regression

We can also investigate the relationship between predictor variables and response functions and

determine how their relationship changes over time. For example, we may ask how firm size affects

firm performance. Moreover, as both these measures change over time, we would also like to capture

the dynamics of their relationships using functional regression. Unlike standard regression models

where predictor and explanatory variables are scalars or vectors, functional regression allows these

variables to take on a functional form. Therefore, the response variable is the recovered function of

the observed data, and it is regressed on a set of functional predictors whose effects are the focus of

the study. The estimation process is repeated across the sample period, allowing the researchers to

understand the effect of the predictors on the response variable(s) over time. As Ramsay and Silver-

man (2005) point out, this is achieved by estimating bðtiÞ for a finite number of points in time t and

constructing a continuous parameter curve by simply interpolating between the estimated values

b̂ðt1Þ; . . . ; b̂ðtnÞ. Therefore, the underlying model of the functional regression for the response func-

tion y(s) is

yðsÞt ¼ b0t þ
X

K

k¼1

bktxðsÞkt þ e: ð8Þ

If only two time points are observed at the subject level, or if there are static predictors in the data

set, the underlying function will be linear and may not be enough to demonstrate changes in relation-

ships over time. However, prior research using FDA presents an innovative approach to deal with

static predictors (e.g., Dass et al., 2011; Wang et al., 2008), that is, transforming the static variables

into time-varying predictors by considering each static variable’s impact on the dependent variable.

This is done by fitting a functional regression model of the dependent variable on each of the static

predictors and then using their resulting time-varying estimated coefficient as a time-varying predic-

tor (Dass et al., 2011, p. 1263).

In R, we run an lm statement to investigate the relationship between the function generated by the

smooth.basis statement and the covariates in the model. See the appendix for sample code.

Functional Clustering

A third type of analysis that is often conducted using functional data is the grouping of units of

analysis based on their underlying response functions (James & Sugar, 2003). For example, we

can segment firms in our sample based on the dynamics of the firm performance functions. A

k-means clustering is performed on the response curves, and the resulting membership informa-

tion of the subjects is considered for grouping. For a set of response curves

z1ðsÞ; z2ðsÞ; . . . ; znðsÞ, k-means clustering algorithm partitions n subjects into k sets

H ¼ fh1; h2; . . . ; hKg such that it minimizes the within-cluster sum of squares of the partitions;

that is,

argmin
X

k

i¼1

X

zðsÞj2Hi

zjðsÞ � mi
�

�

�

�

2
: ð9Þ
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This process differs from standard k-means clustering algorithm as it is performed on functional

rather than discrete data. Therefore, in R, we run a kmeans statement on the function generated

by the smooth.basis statement and identify the number of clusters based on reduction in the

within-cluster dissimilarity. The appendix provides the representative code.

An Investigation of Firm Performance

To introduce FDA to organizational research, we explore trends and dynamics in financial perfor-

mance using three common measures of performance: return on assets (ROA), Tobin’sQ, and share-

holder return. We provide a brief literature review in the following section on organizational

performance measures and discuss the assumptions and expectations in using these metrics.

Firm financial performance is the primary outcome of interest in strategic management

research, yet performance itself has been problematic as a construct (Boyd, Gove, & Hitt,

2005; Richard, Devinney, Yip, & Johnson, 2009). Numerous measures and approaches for esti-

mating and describing firm performance exist. In a recent review, Richard and colleagues

(2009) identify 213 papers appearing in top management journals between 2005 and 2007 (repre-

senting 29% of all articles published in these outlets) that model firm performance as a variable of

interest. They find that 53% of the studies use an objective accounting-based measure (e.g., ROA),

17% use an objective financial market measure (e.g., return to shareholders), and 11% use Tobin’s

Q or other mixed measure.

The vast majority of managerial studies on performance use a single accounting or financial mar-

ket measure. Given requirements of filings for publicly traded firms and thus the availability of

accounting data, measures such as return on assets or equity are among the most well-established

and accepted metrics for firm performance. However, they can also be ‘‘distorted by accounting pol-

icies, human error, and deception’’ and ‘‘emphasize historic activity over future performance’’

(Richard et al., 2009, pp. 727-728; see also Keats, 1988). Much finance and economics research

relies on shareholder return as a more forward-looking metric of firm performance, reflecting market

expectations for future performance, but a measure that is likewise limited. Stock returns are influenced

by overall market volatility and biases (e.g., analysts, institutional owners, the media) and are able to

reflect only the entire organization, as shareholder returns cannot be allocated by divisions or products

that may be responsible for creating the stock’s overall value in the market (Richard et al., 2009).

Given the limitations of unidimensional approaches, scholars have developed mixed measures of

firm performance to reflect both accounting and financial market information. Among the most pop-

ular hybrid metrics is Tobin’sQ, which compares the market value of assets to their replacement cost

or book value. Miller (2004) and McGahan (1999) depict Tobin’s Q as a forward-looking perfor-

mance metric that adjusts for risk, whereas Lang and Stulz (1994) describe it as a longer term expec-

tation of market valuation. Using the book value of assets as the denominator restricts the ratio to

reflect historical rather than current replacement costs and also raises concerns that the measure fails

to account for important but intangible organizational assets. Yet Tobin’s Q remains the most pre-

valent mixed measure of performance to capture the extent to which a particular firm is under- or

overvalued at a given time.

Understanding the dynamics and implications of the most common operationalizations of firm per-

formance is critically important tomanagement scholars, given that ‘‘organizational performance is the

ultimate dependent variable of interest for researchers concerned with just about any area of manage-

ment’’ (Richard et al., 2009, p. 719).We introduce our data set in the next section, including sample and

measures, and then describe an investigation of firmperformance over a 17-year period using functional

data analyses. Although not exhaustive, the methods described here introduce several important func-

tional techniques and illustrate the potential to apply FDA to the realm of organizational science.
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Data

Our data set follows the 1,000 largest U.S. firms in terms of revenues from 1992 through 2008. Data

from COMPUSTAT and CRSP are used to track the financial performance of each company across

our sample period. We follow recent convention (e.g., Hawawini, Subramanian, & Verdin, 2003) in

identifying outlying values that may skew our results. Firms that were significant outliers (i.e., more

than three standard deviations from mean values for any of the three primary measures) for our

performance measures were deleted from the sample. Thus, the final sample consists of 876 firms

and 10,490 firm-year observations.

Measures

Our outcome of interest is financial performance; thus, we collect data on a number of traditional

performance measures, including shareholder return (total return at fiscal year-end), Tobin’s Q

(compares the market value of assets to their replacement cost or book value; see Bertrand & Schoar,

2003), and return on assets (ratio of net operating profit to total assets). Although our demonstration

focuses on the dynamics of firm performance, specifically across measures, the techniques also

reveal how performance covaries with other firm characteristics, such as firm size. For our sample

firms, we collect three measures of firm size: assets, income, and total sales.

Analysis and Results

In this article, we explore three measures of firm performance and investigate (1) how these

measures vary across firms over time, (2) common trends or factors across performance of all firms,

(3) the effect of various measures of firm size on these performance measures, and, finally, (4) clus-

ters of firms present and their characteristics based on the dynamics of performance measures (using

Tobin’s Q for illustration).

Discovering underlying functions: estimating functional forms. For all firms, we normalize time

between 0 and 1 for ease in interpreting the results. This is done by dividing each time point by the

total number of possible data points (Bapna et al., 2008; Reddy & Dass, 2006). This approach brings

all firms into a common time frame and allows us to identify which firm data, if any, are missing at

which time point. FDA can also be done without normalizing the data. Figure 2 illustrates the ROA

function of a firm estimated without normalizing the data. As a first step toward analyzing firm per-

formance dynamics, we discover the underlying functions for each firm by estimating Equation 1.

We also estimate the rate of change of firm performance (velocity) and rate of change of firm per-

formance velocity (acceleration) to examine the higher degree dynamics. These results are presented

in Figure 3. As FDA is based on smoothing, and selection of smoothing parameters can significantly

affect the outcome, we perform a sensitivity test (Ramsay & Silverman, 2005; Wang et al., 2008) to

find the most appropriate knot and penalty parameter for the given data set. We considered multiple

values of p (2, 3, 4, 5, and 6) and l (10 different values between 0.001 and 100) and found that the

model fit is insensitive to the different values of p and l. However, since root mean square error

(RMSE) for the model was lowest for p¼ 4 and l¼ 0.01, we use these values to discover the under-

lying functions.

As one would expect, these plots show high levels of heterogeneity across the firms in terms of

their performance. For example, examining the plot of shareholder return as raw data (upper right

figure), we find that some firms have steady growth, some have steady decline, and others have little

change in returns over time. We can take a granular look at the dynamics of ROA with its velocity

and acceleration plots and find that performance of some firms changes dramatically in the early
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years, some during the middle, and others more recently, in later years of the sample period. Similar

heterogeneity across firms is also observed for shareholder return and Tobin’s Q.

One way to investigate how these performance measures and their dynamics evolve is by com-

puting and plotting average values of the estimates (Figure 4). Examining these plots, we find that,

on average, ROA and shareholder return increase over time, whereas Tobin’s Q declines with time.

Given that we track the 1,000 largest U.S. firms, we can see the macroeconomic effects in our sam-

ple from 1992 through 2008. Although both ROA and shareholder return have positive growth over

the period, their rates of change differ. For example, the velocity and acceleration plot of ROA
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Figure 3. Return on assets, Tobin’s Q, and shareholder return dynamics across firms
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suggests that firms typically have large changes at the early and later periods, with ROA growth

decelerating at the early period and accelerating at the later period. On the other hand, shareholder

return is typically stable until the later period, where it starts to enjoy acceleration. So the nature of

ROA and shareholder return being backward versus forward looking, respectively, is confirmed in

modeling the functional experience of the largest-revenue firms over 17 years, with the greatest

increases in wealth occurring in the final time period (roughly 2004-2008). Similarly, as would

be expected given the nature of the underlying data, Tobin’s Q maintains a steady decline (limited

change in the velocity plot) until the later period, where it suffers deceleration. Since Tobin’s Q

reflects the replacement value of assets, it is intuitive that market-to-book value would decrease with
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Figure 4. Average return on assets (ROA), Tobin’s Q, and shareholder return dynamics across firms

Dass and Shropshire 705

 at UNIV OF GEORGIA on February 26, 2013orm.sagepub.comDownloaded from 



depreciation over time. The functional forms that emerge in the data help us explore and understand

the dynamics and evolution in firm performance.

Generating typical shapes: functional principal component analysis. Functional plots of the perfor-

mance measures provide an overview of how firms differ and of the patterns in their dynamics.

Average function plots only indicate the average dynamics of the measures but do not reveal the

typical shapes that are common across firms. To explore this question, we perform fPCA on these

measures (Equations 6 and 7). In fPCA, identifying the number of principal components is partic-

ularly important as the fit of the different components is not independent, and choosing too many

components can lead to overfitting. For ROA, the first PC explained approximately 66% of the

variability, and the second PC explained around 29% of the variability. For Tobin’s Q, the first

PC explained 79% variance, and the second PC explained 16% variance, and for shareholder return,

the first PC explained 77% and the second PC explained 18% of the variance. Since two PCs capture

most of the variance, with a third component adding very marginally, we only select two and neglect

the remaining components to avoid overfitting. We further performed a validation test suggested by

James et al. (2000), which involves calculating the log likelihood for the reduced rank method by

varying the number of possible PCs (p). Given that the fitting algorithm converges to the global max-

imum, the log likelihood is expected to increase with the number of PCs, but the increase should

stabilize when the optimal rank is obtained. For all three measures, we found that the log likelihood

value levels off after p¼ 2 following a significant jump from p¼ 0 to p¼ 1 and from p¼ 1 to p¼ 2.

Thus, we considered all three measures to have two principal components. We plot these compo-

nents (Figure 5) and investigate what they represent. The PC plots of ROA show two opposing com-

ponents, with one representing an increase in ROA over time, whereas the other represents a

reduction. If a firm has positive ROA, it will load heavily on the increasing PC and vice versa. In

comparison, PCs for Tobin’s Q show a negative PC for most of the time, suggesting a decreasing

trend similar to what the average plot suggested and aligned with the calculation of the metric itself.

PCs for shareholder return are positive and increasing, thus indicating the overall trend and macro-

effects across firm-years that we observed earlier.

Investigating time-varying relationships: functional regression. After examining the common curves of

the three performance measures, we examine how other firm characteristics, including sales, net

income, and assets, affect these performance outcomes. To do so, we recover the functions of these
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factors as above and conduct functional regression (Equation 7) using functions of ROA, Tobin’s Q,

and shareholder return as dependent variables and the above firm size measures as independent

variables. The process estimates the effects for each time period and then plots the coefficients of

each independent variable with respect to time. The confidence intervals for the coefficients at
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Figure 6. Coefficient plots for return on assets (ROA)
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95% are also plotted. If the confidence band includes the zero line at any time point, the effect of the

corresponding factor is not significant. We estimate the model for the performance measurements

and their dynamics (velocity and acceleration).
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Results for ROA are shown in Figure 6. In this case, we examine how sales affect ROA over the

period. We find that sales have a nonsignificant effect on ROA in the early years but a significant

and positive effect thereafter. In other words, after the initial period, increasing sales lead to higher

ROA. On examining the effect of sales on ROA velocity, we find positive and significant effects

throughout the period, with the effect declining slightly until the midpoint in time and then
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Figure 8. Coefficient plots for shareholder return
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increasing again in the later period. This indicates that increasing sales slow the increase in ROA as

the firm operates from the early period to the midpoint but then quicken the ROA increase at the later

period. This trend is also reflected on the plot of effect of sales on ROA acceleration. On the other

hand, income has an inverted U-shaped, positive, and significant effect on ROA with the highest

effect during the middle years. The plot for ROA velocity also reflects the same trend with negative

velocity from the early to the middle years, and then positive velocity from mid to late years. The

plot for ROA acceleration reiterates the above finding but shows that income has a negative effect on

ROA acceleration throughout the time period.

It is important to note that functional regression analysis not only uncovers the effect size but

also indicates how the effect changes over time. Thus, functional regression presents a simple yet

efficient approach for investigating dynamics of firm measures and their relationship to one

another. For Tobin’s Q and shareholder return, we considered sales, income, and assets as our

independent variables. Results (Figure 7) show that assets and sales have a significant effect on

Tobin’s Q, with sales having a U-shaped and assets having an inverted U-shaped effect over time.

On examining their effect on Tobin’s Q velocity, we find that assets have a significant and positive

effect on velocity throughout the period, that sales have a significant effect only during the mid-

period, and that income has no significant effect. Interestingly, the effect of assets on Tobin’s Q

acceleration is only significant through the middle period, and sales have a positive effect between

the beginning and midpoint of the sample period. On examining the effects on shareholder return

(Figure 8), we find that none of the firm size factors has a significant effect on the dependent

variable.

The ability to model changes in financial performance as driven by changes in other firm char-

acteristics is exciting, given the sizable body of management research predicting firm performance.

Although previous studies use average size or attempt to decompose accounting profitability or

Tobin’s Q as performance measures (e.g., McGahan, 1999; McGahan & Porter, 2002), we still lack

understanding of the interrelationships between changes among firm characteristics across time.

Even in our demonstration of functional regression, when looking at changes in sales predicting

changes in Tobin’s Q, we uncover interesting evidence that although sales have a positive effect

on firm performance generally, the effect declines over time. Our results hint at the novelty and

promise of functional regression in understanding relationships among organizational phenomena

across time.

Figure 9. Tobin’s Q plot across three firm clusters

Note: CI ¼ confidence interval.
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Grouping similar firms: functional clustering. Finally, we explore the notion of grouping firms based

on the dynamics of their performance measures. For simplicity, we consider only Tobin’s Q as the

clustering criterion. We use a standard k-means algorithm on the Tobin’s Q function (Equation 8)

and use a between-segment distances (BSD) measure to identify the number of clusters. In the BSD

approach, we first compute the reduction in the within-cluster dissimilarity and then identify the

cluster solution where the reduction is the largest. In our case, we found that firms can be grouped

into three clusters based on their Tobin’s Q values. As there are various criteria to determine the

number of clusters, the decision on which criteria to select is at the discretion of the researcher, sim-

ilar to standard cluster analysis using k-means. Although we used BSD in this research, other criteria

can also be used. After identifying the clusters, we explore their characteristics. Since Tobin’sQwas

the grouping criterion, we investigate the differences across the clusters as illustrated in Figure 9. We

find that the firms belonging to Cluster 1 (n ¼ 35) have Tobin’s Q that decreases over time. Firms

belonging to Cluster 2 (n ¼ 656) exhibit similar characteristics, but the slope of the decay is much

flatter than that of Cluster 1. Finally, firms in Cluster 3 (n ¼ 185) display a stable and near-constant

value across time. We can further investigate cluster membership to compare and contrast groups

within the sample and their characteristics. For example, Cluster 1 includes on average firms that

employ the fewest employees (mean ¼ 25,700) yet invest the most in research and development

(R&D) (mean ¼ $347 million) and have the highest total risk (mean ¼ 0.0269, standard deviations

in daily returns over the fiscal year). Firms in Cluster 2 are medium-sized firms, with an average of

29,900 employees, $117 million in R&D expenditures, and yet the lowest total risk (mean ¼
0.0125). On average, Cluster 3 includes the largest firms, averaging 36,660 employees, spending

$212 million on R&D annually and total risk of 0.0228. We present these sample characteristics

by cluster membership to illustrate how, depending on the research question, functional clustering

allows researchers to identify groups within the sample that follow similar paths or patterns of

change.

Comparing FDA with HLM. We have suggested that FDA is suitable in certain situations where the

functional form of subjects varies and considering one common structure is inefficient and that FDA

has the ability to handle time-varying relationships among the variables. To show these two

Table 1. Estimation Using a Hierarchical Linear Model

Fixed Effect Coefficient Standard Error t Ratio p Value

For INTRCPT1, p0
INTRCPT2, b00 0.057977 0.003714 15.612 <.001
RET, b01 0.064148 0.008495 7.551 <.001
SALES, b02 0.000000 0.000000 1.997 .046

For TIME slope, p1
INTRCPT2, b10 –0.214515 0.028179 –7.613 <.001
RET, b11 –0.405986 0.064611 –6.284 <.001
SALES, b12 0.000000 0.000001 0.591 .555

For TIME2 slope, p2
INTRCPT2, b20 0.556213 0.064463 8.628 <.001
RET, b21 0.651881 0.147448 4.421 <.001
SALES, b22 –0.000002 0.000002 –0.965 .334

For TIME3 slope, p3
INTRCPT2, b30 –0.378652 0.042647 –8.879 <.001
RET, b31 –0.316994 0.097463 –3.252 .001
SALES, b32 0.000001 0.000001 0.981 .327
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advantages, we analyze ROA with shareholder return (RET) and sales (SALES) using HLM. Since

we are not aware of the trajectory of change in the Level 1 model, we estimated five HLM models

with different polynomial trajectories, including a no-change model, linear change (first-order)

model, quadratic change (second-order) model, a cubic change (third-order) model, and a fourth-

order change model. Polynomial models were used to make the Level 1 model similar to that of the

function discovery process (Equation 1) in FDA. Next, we compared deviance statistics (Singer &

Willett, 2003: 220) of these five models to find the most suitable model for analysis. We found the

difference between the linear change model and no-change model to be 14.59, which exceeds the

0.01 critical value of w2 on 3 df, and thus, the linear change model is superior to the no-change

model. Similarly, the difference in deviance statistics between the quadratic change and linear

change model is 17.41, which is more than w2 ¼ 13.28 at the 0.01 critical value and with 4 df, and

the difference in deviance between the quadratic change and cubic change is 93.18, which is more

than w2 ¼ 20.52 at the 0.001 critical value and with 5 df. Since the deviance statistic increases with

the fourth-order change model, we conclude that the cubic model is the most appropriate trajectory

for our data. Therefore, we use the following model specification for the HLM analysis of our data:

Level 1 model:

ROAti ¼ p0i þ p1i
�ðTIMEtiÞ þ p2i

�ðTIME2tiÞ þ p3i
�ðTIME3tiÞ þ eti ð10Þ

Level 2 model:

p0i ¼ b00 þ b01
�ðRETiÞ þ b02

�ðSALESiÞ þ r0i: ð11Þ

p1i ¼ b10 þ b11
�ðRETiÞ þ b12

�ðSALESiÞ: ð12Þ

p2i ¼ b20 þ b21
�ðRETiÞ þ b22

�ðSALESiÞ: ð13Þ

p3i ¼ b30 þ b31
�ðRETiÞ þ b32

�ðSALESiÞ: ð14Þ

Mixed model:

ROAti ¼ b00 þ b01
�RETi þ b02

�SALESi þ b10
�TIMEti b11

�RETi
�TIMEti

þ b12
�SALESi

�TIMEti þ b20
�TIME2ti þ b21

�RETi
�TIME2ti

þ b22
�SALESi

�TIME2ti þ b30
�TIME3ti þ b31

�RETi
�TIME3ti

þ b32
�SALESi

�TIME3ti þ r0i þ eti;

ð15Þ

where ROA¼ return on assets, TIME ¼ time variable, TIME2 ¼ square of time variable, TIME3 ¼
cube of time variable, RET ¼ shareholder return, and SALES ¼ sales.

We estimate the preceding equations using the HLM 7 software, and the results are shown in

Table 1. Although HLM estimates the overall effects of the covariates, it does not reveal the

time-varying relationships between ROA and shareholder return and sales as examined through

FDA. Moreover, HLM does not allow us to estimate the dynamic characteristics (i.e., velocity and

acceleration) of ROA or to investigate the time-varying relationships between them and other cov-

ariates (Figure 6). Results obtained from HLM show significant effects of shareholder return and

sales on the intercept, whereas only firm return is significant at the .05 level for the higher order

time slopes.

To show that restricting the within-subject functional structure to one form may lead to ineffi-

ciency, we compare the errors of estimated ROA within-subject functions from both methods. In

particular, we fit the Level 1 model shown in Equation 10 and the underlying function obtained

through FDA as shown in Equation 1 and compare the error from the two approaches. We find that

the error from the FDA approach (error ¼ 0.043) is significantly smaller than that of HLM (error ¼
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0.162) (p < .05), thus suggesting that fitting one common Level 1 model for all subjects is inefficient

in this context. Since our context exhibits heterogeneity in the growth process, a random effect

HLM model may account for some of the model misfit identified earlier. These results also high-

light the advantages of using FDA, which include its ability to efficiently capture the underly-

ing function of individual subjects, capture the common trends among them through functional

principal components, and use these functions as clustering criteria in functional clustering.

Finally, to compare the predictive advantage of FDA over HLM, we develop an FDA-based

dynamic forecaster (Dass et al., 2011) to predict ROA with sales and shareholder return and then

compare it with an HLM-based forecaster. The FDA forecaster is called a dynamic forecaster as

it uses the dynamics of ROA functions along with the predictor variables as the basis of forecasting

and is able to dynamically predict the outcome variable in a later time period. In particular, it uses

the following model for ROA at time t (y(t)) as given as

yðtÞ ¼ aþ
X

2

i¼1

bixiðtÞ þ
X

2

j¼1

gjD
ðjÞyðtÞ þ

X

L

l¼1

Zlyðt � lÞ þ eðtÞ; ð16Þ

where x1ðtÞ; x2ðtÞ is a set of time-varying predictors (i.e., sales and shareholder return),DðjÞyðtÞ denotes
the jth derivative of ROA at time t, and yðt � lÞ is the lth ROA lag. Next, using Equation 16, the h-step

ahead forecast, given information until time T, is estimated by

~yðT þ hjTÞ ¼ âþ
X

2

i¼i

b̂ixiðT þ hjTÞ þ
X

2

j¼1

ĝj
~DðjÞyðT þ hjTÞ þ

X

L

l¼1

Ẑl~yðT þ h� 1jTÞ: ð17Þ

The preceding functional forecaster is equivalent to an autoregressive (AR) model. For more

information on the characteristics of the FDA forecaster and the model details, see Dass et al.

Figure 10. Mean absolute percentage error (MAPE) comparison between functional data analysis (FDA) and
hierarchical linear modeling (HLM)
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(2011). On the other hand, the HLM-based forecaster uses Equation 15 as the basis of forecasting

and thus is similar to the static forecasters discussed in prior literature (Dass et al., 2011; Wang

et al., 2008). The coefficients of the forecasters are first estimated using data from the training set

(70% of sample, 613 firms) and then used to predict the values of ROA of firms in the validation set

(30% of sample, 263 firms). The FDA forecaster predicts ROA function for each normalized time t

¼ 0.76 to t ¼ 1.0, using information available at time t ¼ 0.75 and the time-varying lag value of

ROA dynamics (Equation 17). The HLM-based forecaster is a static forecaster and thus only used

to predict ROA at normalized time t¼ 1.0 for the 263 firms. Therefore, given their functional versus

discrete approaches, the FDA and HLM forecasts yield differing output in terms of predicting a func-

tion over time versus a single point in time. We also compute mean absolute percentage error (MAPE)

(Wang et al., 2008), illustrated in Figure 10, to compare their accuracy. We found that the forecaster

based on HLM has an error of 66%, whereas the error from the FDA forecaster ranges from 19% to

43%, thus suggesting that the FDA-based forecaster has better accuracy than the HLM forecaster.

Promising FDA Applications in Organizational Research

Although our demonstration showcases three functional techniques to explore dynamics in firm

performance measures across time, there are many promising FDA applications in organizational

science research. Given the multiple levels inherent and complexity of relationships within and

between organizations and their environments, methods that offer continuous rather than discrete

approaches to statistical modeling get closer to the reality of the data themselves. We outline an

agenda for future research that incorporates functional data techniques to enrich our understanding

of both micro- and macro-organizational phenomena.

Organizational behavior research often relies on primary data collection, wherein survey or lab

study participants provide feedback at various time points. Survey research typically collapses

responses into windows of time to use traditional methods that rely on discrete data points. Func-

tional techniques allow each participant’s responses to be a function, so rather than discrete Time 1

versus Time 2 versus Time 3 observations, the timing and spatial dimensions across the entire study

period can be captured. Incorporating research design to record exact response times (e.g., electronic

time stamp), if participants are given 1 month to complete each of two questionnaires, with 2 months

between surveys, then ‘‘Time 1’’ surveys submitted on Day 1 versus Day 30 can be captured func-

tionally, and we can analyze differences (e.g., relationships with other covariates) between responses

submitted by one participant on Day 1 and Day 120 relative to another participant responding on

Day 30 and Day 90. These replies represent different intervals in response to an intervention, yet

most survey research collapses replies by sampling period (e.g., Time 1, Time 2) as a matter of prac-

ticality and convenience. Meaningful information is lost in aggregating the data to broad categories

and subsequently in the structural equation models using these inputs as equivalent time intervals

and equally spaced observations. We offer this generic example to illustrate how functional tech-

niques provide micro-researchers the opportunity to get closer to the realities of their data and depict

responses as a function of time and space, which may have powerful implications both theoretically

and empirically.

Functional analyses also offer scholars the opportunity to design studies that minimize common

method biases sourcing from affect change, transient mood, or other artifacts of research collecting

multiple responses across time (Podsakoff, MacKenzie, Jeong-Yeon, & Podsakoff, 2003). Organi-

zational behavior researchers often use experience-sampling to study within-individual change and

then model the multivariate dynamics of micro-phenomena such as motivation (Dalal & Hulin,

2008), job performance (Dalal, Lam, Weiss, Welch, & Hulin, 2009), and negative affect at work

(Ilies, Johnson, Judge, & Kenney, 2011). We discuss the research design and modeling of recent

published work to evidence the potential of FDA at capturing the dynamics and dimensionality
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of micro-data. In one experience-sampling study, Judge, Scott, and Ilies (2006) collect daily

responses over 3 weeks to explore intraindividual differences in job satisfaction and workplace

deviance and suggest that further testing may reveal other associations and alternative representa-

tions of interest. Gathering responses over consecutive days or weeks, each participant’s Time 1,

Time 2, and so forth are not simultaneous but are treated as such in traditional models. A functional

approach allows each subject to have its own functional model rather than restricting to a single

Level 1 form for hierarchical modeling. Following Ilies and Judge’s (2005) finding that ‘‘affect and

goals are dynamically related within individuals in that they vary in synchrony across time’’ (p. 464),

we suggest that functional approaches may be fruitful to explore trends and covariation in change

among variables, within- and between-person changes, and potential moderation and mediation

effects at multiple levels across time.

Macro-organizational scholarship also has much to gain from functional techniques. Multilevel

methods are popular in research on strategic management; however, these efforts are still limited

to structuring the data in a multivariate (i.e., set of individual numbers or values) rather than a func-

tional way. Recognizing the experience by subject or company across time, FDA further separates

variance by allowing curves to vary vertically (i.e., amplitude variation) as well as horizontally (i.e.,

phase variation), an important extension to understanding organizational observations as time-series

data. FDA enriches the complexity of models and can separate the magnitude and direction of

effects, as previously problematized in terms of the scope and pace of organizational change

(e.g., Street & Gallupe, 2009). Studying the time-varying relationships between variables is partic-

ularly promising to macro-researchers, such as in the introductory example of entrepreneurship

research (e.g., Holcomb et al., 2010). A recent study on international strategies and foreign direct

investment argues the ‘‘need to examine FDI ownership structure as a complex and interrelated phe-

nomenon’’ (Mani, Antia, & Rindfleisch, 2007, p. 865). The authors note more accurate and unique

findings revealed by their adoption of longitudinal modeling, which still applies a consistent base

model for their sample of 4,459 subsidiaries established by 858 firms across 38 countries in 9 years.

We suggest that, like moving from traditional fixed effects to hierarchical estimations, freeing indi-

vidual observations to have their own functional form allows researchers to further uncover the

effects of unobserved heterogeneity and covariation in variables at multiple levels and across time.

As demonstrated in our firm performance example, FDA also allows for graphical depictions of

the underlying functional data, especially higher order changes and patterns. The shape of derivative

functions (i.e., velocity and acceleration) may reveal the influence of exogenous or interesting

events undetected in plotted raw data and linear relationships. Macro-organizational scholars may

find functional coefficient models useful to extend time-series or survival analyses (Fan & Zhang,

2008) or regression analyses to include functional predictors and functional outcomes. For example,

researchers in social issues in management have long investigated the relationship between corpo-

rate social performance and financial performance (e.g., meta-analysis by Orlitzky, Schmidt, &

Rynes, 2003), yet traditional methods do not fully capture how changes in social performance may

be driving changes in financial performance or vice versa. As illustrated earlier, functional regres-

sion is particularly promising in allowing scholars to discover the dynamics of change among

multiple organizational characteristics and outcomes over time.

Furthermore, functional methods offer the opportunity to build typologies of change over time by

identifying functional components, recognizing breakpoints in derivative plots to classify life cycle

stages, and functional clustering to identify categories or patterns of change. For example, Lynall,

Golden, and Hillman’s (2003) theory on the evolution of board composition and firm performance

over time remains largely untested, perhaps due to the lack of methods capable of appropriately

modeling changes and examining how firm characteristics covary as the firm evolves through its life

cycle. Functional regression and clustering offer fruitful approaches to investigate changes and
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stages of growth in board composition relative to a firm’s evolving resource needs, as well as their

interactions and ultimate relationship with firm performance.

Finally, although we illustrate three of the most common functional techniques, additional func-

tional methods may be useful to managerial science. Previous work has used multivariate

approaches such as canonical correlation and discriminant analyses to test congruence among

business strategy, pay policy, and firm performance (e.g., Montemayor, 1996) and combinations

of resources and capabilities as a source of competitive advantage (e.g., Carmeli & Tishler,

2004). Functional canonical correlation and other functional extensions of traditional methods can

address extensive data or variable sets to explore these macro-research questions of strategic fit,

compensation, and bundling relative to firm performance or, similarly, to explore micro-research

questions involving person-organization fit, motivation, and personality relative to outcomes such

as job satisfaction or workplace deviance. The possibilities for applying FDA within organizational

scholarship are nearly as limitless as the research questions themselves, and we hope the ideas and

topics suggested earlier are only the start of productive applications of functional methods.

Conclusion

In conclusion, we believe organizational scholars have much to gain by adopting functional

techniques into their analytical toolkits. In particular, identifying the dynamics of change within and

between units and over time is a common dilemma in organizational behavior and strategic manage-

ment research, and FDA offers substantial advantages over traditional linear models through func-

tional or hybrid research design. For example, functional regression can have functional inputs and

outcomes that are either scalar or curves themselves. Past special issues of statistical journals pro-

vide additional support and explanation for functional topics (e.g., Davidian, Lin, & Wang, 2004;

Gonzalez-Manteiga & Vieu, 2007). Further software support and sample code are available in Ram-

say, Hooker, and Graves (2009), with links to code that can be downloaded. Fundamentally, FDA

offers functional counterparts of well-known linear analyses, so we feel the methodological benefits

far outweigh the limited learning curve and complexity associated with adopting these functional

approaches.

We recognize that functional data analysis is still largely in its infancy and, as such, has

some limitations in terms of both technical support and immaturity to resolve a number of more

complex, functional research questions. Jank and Shmueli (2006) argue that FDA is vastly

superior to static models with its ability to capture processes and dynamics over time. However,

FDA is still evolving to deal with such challenges as concurrency of events and longitudinal

changes in the functional objects themselves. In relation to our demonstration on firm perfor-

mance measures, we see promise of functional techniques to answer recent calls for research

that ‘‘examines triangulation using multiple measures, longitudinal data and alternative methodo-

logical formulations as methods of appropriately aligning research contexts with the measurement

of organizational performance’’ (Richard et al., 2009, p. 718). As FDA controls for time-invariant

errors, it reduces the influence of common method errors and corrects for contextual firm-specific

fixed effects, thus moving beyond parametric approaches to more accurately address the dimension-

ality of organizational phenomena. Overall, we encourage managerial scholars to follow the

momentum and advances in other disciplines recognizing functional data analysis as a promising,

novel methodology to enrich our empirical and theoretical understanding of the research questions

we ask and their underlying constructs, relationships, research design, and outcomes. We look for-

ward to the broader adoption of FDA by micro- and macro-organizational scholars to enhance our

understanding of managerial science.
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Appendix

Sample R Code for Functional Data Analysis

rm(list ¼ ls(all ¼ TRUE))

###########################################

# Reading the required library files

library(splines)

library(pspline)

library(fda)

library(stats)

library(dlnm)

require(graphics)

############################################

#Setting the seed.

set.seed(100);

############################################

# Simulating Data for Illustration

times<-matrix(nrow¼101, ncol¼1);times <- seq(0,1,0.1)

nl.data<- arima.sim(list(order ¼ c(1,1,0), ar ¼ 0.1), n ¼ 10);

a1 <- matrix(c(times));a2 <- matrix(c(nl.data))

orm <- cbind(a1, a2,1);id <- orm[,3];yvar <-orm[,2];xvar <- orm[,1];

#############################################

# Identifying the required parameters

pointer <- 1;k <- 1;

ormid <- id;

xtime <- xvar;

numdata <- length(yvar);

numid <- length(unique(ormid));

grid <- seq(0,1,0.01);

norder <- 6; # determined by the researcher

Lfd <- int2Lfd(4); # 4 for B-splines or 2 for monosplines

lambda <- 0.05; # determined by the researcher

nbasis <- length(grid) þnorder-2; #This is the no. of Knots

##############################################

# Estimating the underlying function

bidbasis <- create.bspline.basis((0:1), nbasis, norder, grid);

bidfdPar <- fdPar(bidbasis, Lfd, lambda);

coefMat <- matrix(0);

betaMat <-matrix(0);

rel_yvar<-matrix(0);

resultfunc <- matrix(0, nrow¼101, ncol¼1);

firm <- ormid[pointer];

first <- pointer;

for(i in pointer: numdata)f
if (ormid [pointer] ¼¼ firm)f
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pointer <- pointer þ 1g;
flast <- pointer-1g;
g
if (pointer ¼¼ numdataþ1)flast <- pointer-1g
rel_yvar[first] <- yvar[first];

for(j in firstþ1: last)f
rel_yvar[j] ¼ (yvar[j]);

g
x <- sort(xtime[first: last])

y <- length(sort(xtime[first: last]))

z <- c(1: y)

y1 <- length(grid)

h <- dim(as.array(y1))

for(k in 1: y1)f
for(l in 2: y)f

if(grid[k] > x[l]) f(h[k]<- z[l])g
if((x[l-1]<¼ grid[k]) & (grid[k] <¼ x[l])) f(h[k]<- z[l-1])g
if(is.na(h[k]))(h[k] <- h[k-1])

g
g

bidfd ¼ smooth.basis(grid, rel_yvar[first-1þh], bidfdPar)

resultfunc <- bidfd$y;

vel <- deriv.fd(bidfd$fd,1); #First Deriv. of the function

acc <-deriv.fd(bidfd$fd,2); #Second Deriv.of the function

##############################################

# Plotting the function, its dynamics, and the raw data

par(mfrow¼c(2,2));

plot(yvar, xlab¼‘‘time’’, ylab¼‘‘Raw Data’’);

plot(bidfd, xlab¼‘‘time’’, ylab¼‘‘Underlying Function’’);

par(new¼TRUE);

plot(yvar, xaxt¼‘n’, yaxt¼‘n’, ann¼FALSE);

plot(vel, xlab¼‘‘time’’, ylab¼‘‘Velocity’’);

plot(acc, xlab¼‘‘time’’, ylab¼‘‘Acceleration’’);

##############################################

# Sample code to perform functional principle component.

pc.y <- princomp(result_function_y, scores ¼ TRUE);

# Sample code to perform functional regression.

lm.y <- lm(result_function_y[t]*covariates[t])

# Sample code to perform functional clustering.

y.dist<-dist(result_function_y);

clus.y <-kmeans(y.dist, iter.max¼20);

FDA libraries in R (http://cran.r-project.org/web/packages/fda/index.html [last accessed on

April 20, 2012]) and MATLAB (http://www.bscb.cornell.edu/*hooker/FDAWorkshop/Mintro.m

[last accessed on April 20, 2012]) are downloadable.
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