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Types of Data Sets  

• Record 

• Relational records 

• Data matrix, e.g., numerical matrix, 

crosstabs 

• Document data: text documents: term-

frequency vector 

• Transaction data 

• Graph and network 

• World Wide Web 

• Social or information networks 

• Molecular Structures 

• Ordered 

• Video data: sequence of images 

• Temporal data: time-series 

• Sequential Data: transaction sequences 

• Genetic sequence data 

• Spatial, image and multimedia: 

• Spatial data: maps 

• Image data:  

• Video data: 
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Data Objects 

• Data sets are made up of data objects. 

• A data object represents an entity. 

• Examples:  

• sales database:  customers, store items, sales 

• medical database: patients, treatments 

• university database: students, professors, courses 

• Also called samples , examples, instances, data points, objects, 

tuples. 

• Data objects are described by attributes. 

• Database rows -> data objects; columns ->attributes. 

4 



Attributes 

• Attribute (or dimensions, features, variables): a data 

field, representing a characteristic or feature of a data 

object. 

• E.g., customer _ID, name, address 

• Types: 

• Nominal 

• Binary 

• Ordinal 

• Numeric: quantitative 

• Interval-scaled 

• Ratio-scaled 
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Attribute Types  

• Nominal: categories, states, or “names of things” 

• Hair_color = {auburn, black, blond, brown, grey, red, white} 

• marital status, occupation, ID numbers, zip codes 

• Binary 

• Nominal attribute with only 2 states (0 and 1) 

• Symmetric binary: both outcomes equally important 

• e.g., gender 

• Asymmetric binary: outcomes not equally important.   

• e.g., medical test (positive vs. negative) 

• Convention: assign 1 to most important outcome (e.g., HIV 
positive) 

• Ordinal 

• Values have a meaningful order (ranking) but magnitude between 
successive values is not known. 

• Size = {small, medium, large}, grades, army rankings 
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Numeric Attribute Types  

• Quantity (integer or real-valued) 

• Interval 

• Measured on a scale of equal-sized units 

• Values have order 

• E.g., temperature in C˚or F˚, calendar dates 

• No true zero-point 

• We can evaluate the difference of two values, but one value 
cannot be a multiple of another 

• Ratio 

• Inherent zero-point 

• We can speak of values as being an order of magnitude larger than 
the unit of measurement (10 K˚ is twice as high as 5 K˚). 
• e.g., temperature in Kelvin, length, counts, 

monetary quantities 
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Discrete vs. Continuous Attributes  

• Discrete Attribute 

• Has only a finite or countably infinite set of values 
• E.g., zip codes, profession, or the set of words in a collection of 

documents  

• Sometimes, represented as integer variables 

• Note: Binary attributes are a special case of discrete attributes  

• Continuous Attribute 

• Has real numbers as attribute values 
• E.g., temperature, height, or weight 

• Practically, real values can only be measured and represented 
using a finite number of digits 

• Continuous attributes are typically represented as floating-point 
variables 
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Basic Statistical Descriptions of Data 

• Central Tendency 

• Dispersion of the Data 

• Graphic Displays 
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Measuring the Central Tendency 

• Mean (algebraic measure) (sample vs. population): 

Note: n is sample size and N is population size.  

• Weighted arithmetic mean: 

• Trimmed mean: chopping extreme values 

• Median:  

• Middle value if odd number of values, or average of the 

middle two values otherwise 

• Estimated by interpolation (for grouped data): 

 

• Mode 

• Value that occurs most frequently in the data 

• Unimodal, bimodal, trimodal 

• Empirical formula: 

 

N

x∑=µ∑
=

=
n

i

ix
n

x
1

1

∑

∑

=

==
n

i

i

n

i

ii

w

xw

x

1

1

width
freq

lfreqn
Lmedian

median

)
)(2/

(1

∑−
+=

)(3 medianmeanmodemean −×=−

11 



 Symmetric vs. Skewed Data 

• Median, mean and mode of 

symmetric, positively and 

negatively skewed data 

positively skewed negatively skewed 

symmetric 
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Measuring the Dispersion of Data 

• Quartiles, outliers and boxplots 

• Quartiles: Q1 (25th percentile), Q3 (75th percentile) 

• Inter-quartile range: IQR = Q3 – Q1  

• Five number summary: min, Q1, median, Q3, max 

• Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot 

outliers individually 

• Outlier: usually, a value higher/lower than 1.5 x IQR 

• Variance and standard deviation (sample: s, population: σ) 

• Variance: (algebraic, scalable computation) 

 

 

• Standard deviation s (or σ) is the square root of variance s2 (or σ2) 
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 Boxplot Analysis 

• Five-number summary of a distribution 

• Minimum, Q1, Median, Q3, Maximum 

• Boxplot 

• Data is represented with a box 

• The ends of the box are at the first and third 

quartiles, i.e., the height of the box is IQR 

• The median is marked by a line within the box 

• Whiskers: two lines outside the box extended to 

Minimum and Maximum 

• Outliers: points beyond a specified outlier threshold, 

plotted individually 
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Visualization of Data Dispersion: 3-D Boxplots 
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Properties of Normal Distribution Curve 

• The normal (distribution) curve 

• From μ–σ to μ+σ: contains about 68% of the measurements  (μ: 

mean, σ: standard deviation) 

•  From μ–2σ to μ+2σ: contains about 95% of it 

• From μ–3σ to μ+3σ: contains about 99.7% of it 
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Graphic Displays of Basic Statistical Descriptions 

• Boxplot: graphic display of five-number summary 

• Histogram: x-axis are values, y-axis repres. frequencies  

• Quantile plot:  each value xi  is paired with fi  indicating that 

approximately 100 fi % of data  are ≤ xi  

• Quantile-quantile (q-q) plot: graphs the quantiles of one 

univariant distribution against the corresponding quantiles of 

another 

• Scatter plot: each pair of values is a pair of coordinates and 

plotted as points in the plane 
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Histogram Analysis 

• Histogram: Graph display of tabulated 

frequencies, shown as bars 

• It shows what proportion of cases fall 

into each of several categories 

• Differs from a bar chart in that it is the 

area of the bar that denotes the value, 

not the height as in bar charts, a crucial 

distinction when the categories are not 

of uniform width 

• The categories are usually specified as 

non-overlapping intervals of some 

variable. The categories (bars) must be 

adjacent 
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Histograms Often Tell More than Boxplots 

19 

 The two histograms 

shown in the left may 

have the same boxplot 

representation 

 The same values 

for:  min, Q1, 

median, Q3, max 

 But they have rather 

different data 

distributions 



Quantile Plot 

• Displays all of the data (allowing the user to assess both the 
overall behavior and unusual occurrences) 

• Plots quantile information 

• For a data xi data sorted in increasing order, fi indicates that 
approximately 100 fi% of the data are below or equal to the 
value xi 
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Quantile-Quantile (Q-Q) Plot 

• Graphs the quantiles of one univariate distribution against the corresponding 
quantiles of another 

• View: Is there is a shift in going from one distribution to another? 

• Example shows unit price of items sold at Branch 1 vs. Branch 2 for each 
quantile.  Unit prices of items sold at Branch 1 tend to be lower than those at 
Branch 2. 
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Scatter plot 

• Provides a first look at bivariate data to see clusters of points, 

outliers, etc 

• Each pair of values is treated as a pair of coordinates and plotted 

as points in the plane 
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Positively and Negatively Correlated Data 

• The left half fragment is positively 

correlated 

• The right half is negative correlated 
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 Uncorrelated Data 
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Data Visualization 

• Why data visualization? 

• Gain insight into an information space by mapping data onto 

graphical primitives 

• Provide qualitative overview of large data sets 

• Search for patterns, trends, structure, irregularities, relationships 

among data 

• Help find interesting regions and suitable parameters for further 

quantitative analysis 

• Provide a visual proof of computer representations derived 
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Direct Data Visualization 
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3D Scatter Plot 
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Scatterplot Matrices 

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots] 
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Landscapes 

• Visualization of the data as perspective landscape 

• The data needs to be transformed into a (possibly artificial) 2D spatial 
representation which preserves the characteristics of the data  
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news articles 

visualized as 

a landscape 
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Parallel Coordinates 

• n equidistant axes which are parallel to one of the screen axes and correspond 

to the attributes  

• The axes are scaled to the [minimum, maximum]: range of the corresponding 

attribute 

• Every data item corresponds to a polygonal line which intersects each of the 

axes at the point which corresponds to the value for the attribute 
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Parallel Coordinates of a Data Set 
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Visualizing Text Data 

• Tag cloud: visualizing user-generated tags 

 The importance of 

tag is represented 

by font size/color 

Newsmap: Google News Stories in 2005 



Visualizing Social/Information Networks 
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Similarity and Dissimilarity 

• Similarity 

• Numerical measure of how alike two data objects are 

• Value is higher when objects are more alike 

• Often falls in the range [0,1] 

• Dissimilarity (e.g., distance) 

• Numerical measure of how different two data objects are 

• Lower when objects are more alike 

• Minimum dissimilarity is often 0 

• Upper limit varies 

• Proximity refers to a similarity or dissimilarity 
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Data Matrix and Dissimilarity Matrix 

• Data matrix 

• n data points with p 
dimensions 

• Two modes 

 

 

• Dissimilarity matrix 

• n data points, but registers 
only the distance  

• A triangular matrix 

• Single mode 
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Proximity Measure for Nominal Attributes 

• Can take 2 or more states, e.g., red, yellow, blue, green 

(generalization of a binary attribute) 

• Method 1: Simple matching 

• m: # of matches, p: total # of variables 

 

• Method 2: Use a large number of binary attributes 

• creating a new binary attribute for each of the M nominal states 
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Proximity Measure for Binary Attributes 

• A contingency table for binary data 

 

• Distance measure for symmetric binary 

variables:  

• Distance measure for asymmetric binary 

variables:  

• Jaccard coefficient (similarity measure 

for asymmetric binary variables):  

 Note: Jaccard coefficient is the same as “coherence”:  

Object i 

Object j 
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Dissimilarity between Binary Variables 

• Example 

 

 

 

 

• Gender is a symmetric attribute 

• The remaining attributes are asymmetric binary 

• Let the values Y and P be 1, and the value N 0 
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Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Standardizing Numeric Data 

• Z-score:  

• X: raw score to be standardized, μ: mean of the population, σ: standard 

deviation 

• the distance between the raw score and the population mean in units of 

the standard deviation 

• negative when the raw score is below the mean, “+” when above 

• An alternative way: Calculate the mean absolute deviation 

 

where 

 

• standardized measure (z-score): 

• Using mean absolute deviation is more robust than using standard deviation  
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Example:  

Data Matrix and Dissimilarity Matrix 
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point attribute1 attribute2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

Dissimilarity Matrix  

(with Euclidean Distance)  

x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

Data Matrix 



Distance on Numeric Data: Minkowski Distance 

• Minkowski distance: A popular distance measure 

 

 

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-
dimensional data objects, and h is the order (the distance so 
defined is also called L-h norm) 

• Properties 

• d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness) 

• d(i, j) = d(j, i)  (Symmetry) 

• d(i, j) ≤ d(i, k) + d(k, j)  (Triangle Inequality) 

• A distance that satisfies these properties is a metric 
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Special Cases of Minkowski Distance 

• h = 1:  Manhattan (city block, L1 norm) distance  

• E.g., the Hamming distance: the number of bits that are different 

between two binary vectors 

 

 

• h = 2:  (L2 norm) Euclidean distance 

 

 

• h → ∞.  “supremum” (Lmax norm, L∞ norm) distance.  

• This is the maximum difference between any component 

(attribute) of the vectors 
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Example: Minkowski Distance 
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Dissimilarity Matrices 

point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L∞ x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1)  

Euclidean (L2)  

Supremum  



Ordinal Variables 

• An ordinal variable can be discrete or continuous 

• Order is important, e.g., rank 

• Can be treated like interval-scaled  

• replace xif  by their rank  

• map the range of each variable onto [0, 1] by replacing i-th object 

in the f-th variable by 

 

 

• compute the dissimilarity using methods for interval-scaled 

variables 
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Attributes of Mixed Type 

• A database may contain all attribute types 

• Nominal, symmetric binary, asymmetric binary, numeric, 
ordinal 

• One may use a weighted formula to combine their effects 

 

 

 

• f  is binary or nominal: 

dij
(f) = 0  if xif = xjf , or dij

(f) = 1 otherwise 

• f  is numeric: use the normalized distance 

• f  is ordinal  

• Compute ranks rif and   

• Treat zif as interval-scaled 
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 Cosine Similarity 
 

• A document can be represented by thousands of attributes, each recording the 
frequency of a particular word (such as keywords) or phrase in the document. 

 

 

 

 

 

• Other vector objects: gene features in micro-arrays, … 

• Applications: information retrieval, biologic taxonomy, gene feature mapping, ... 

• Cosine measure: If d
1
 and d

2
 are two vectors (e.g., term-frequency vectors), then 

             cos(d
1
, d

2
) =  (d

1
 • d

2
) /||d

1
|| ||d

2
|| ,  

   where • indicates vector dot product, ||d||: the length of vector d 
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 Example: Cosine Similarity 
 

• cos(d
1
, d

2
) =  (d

1
 • d

2
) /||d

1
|| ||d

2
|| ,  

   where • indicates vector dot product, ||d|: the length of vector d 

 

• Ex: Find the similarity between documents 1 and 2. 

 

d1 =  (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) 

d2 =  (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) 

 

d1•d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 

||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5  = 6.481 

||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5       = 4.12 

cos(d1, d2 ) = 0.94 
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Summary 

• Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled 

• Many types of data sets, e.g., numerical, text, graph, Web, image. 

• Gain insight into the data by: 

• Basic statistical data description: central tendency, dispersion,  graphical 

displays 

• Data visualization: map data onto graphical primitives 

• Measure data similarity 

• Above steps are the beginning of data preprocessing.  

• Many methods have been developed but still an active area of research. 
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