

SERIAL-TO-ETHERNET CONVERTER

by

Gurpal Gill
B.ENG Electrical Engineering

Lakehead University, 2003

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

In the
School of Engineering Science

© Gurpal Gill 2009

SIMON FRASER UNIVERSITY

Fall 2009

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

 ii

APPROVAL

Name: Gurpal Gill

Degree: Master of Engineering

Title of Thesis: Serial-to-Ethernet Converter

Examining Committee:

 Chair: Dr. Stephen Robinovitch
Professor in the School of Engineering Science

 Dr. Lesley Shannon
Senior Supervisor
Assistant Professor in the School of Engineering
Science

 Dr. Craig Scratchley, P.Eng
Supervisor
Lecturer in the School of Engineering Science

Date Defended/Approved: April 24, 2009

Last revision: Spring 09

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

TASC Systems Inc. requires Transmission Control Protocol/Internet

Protocol (TCP/IP) communications between their remote monitoring hardware

and software run on the user’s local work station. The Serial-to-Ethernet

Converter receives serial (RS232) data from the remote monitoring hardware and

sends it to the monitoring software on the user’s local work station via Ethernet

and vice versa. It is implemented using Xilinx’s Spartan 3A FPGA with Xilinx’s

MicroBlaze soft processor and Ethernet MAC. The hardware is designed using

Xilinx’s EDK software and the Serial-to-Ethernet software utilizes the open

source lightweight Internet Protocol (lwIP) TCP/IP stack along with Xilinx’s

Xilkernel multithreaded kernel.

Keywords: FPGA; Ethernet; Remote Monitoring; MicroBlaze

 iv

ACKNOWLEDGEMENTS

I would like to thank all my professors that have helped me in my journey

of obtaining a masters degree. I would like to especially thank Dr. Lesley

Shannon and Dr. Craig Scratchley for helping me complete this project. I would

like to thank Dr. Stephen Robinovitch for being the chair at my presentation.

I would like to thank TASC Systems Inc. for providing me the opportunity

to use the design of the Serial-to-Ethernet Converter for my project. I would like

to thank all friends, family, and co-workers who have supported me in pursuing a

masters degree.

 v

TABLE OF CONTENTS

Approval .. ii

Abstract .. iii

Acknowledgements ... iv

Table of Contents..v

List of Figures ...vii

List of Tables..viii

List of Acronyms.. ix

1 INTRODUCTION ...1

2 HARDWARE DESIGN...4

2.1 System Description...5
2.1.1 MicroBlaze Processor ...6
2.1.2 Processor Local Bus (PLB) v4.6 ...7
2.1.3 Multi-Port Memory Controller (MPMC) and DDR2 Memory.............7
2.1.4 XPS SPI Interface and Serial Flash Memory...................................8
2.1.5 XPS Ethernet Lite Media Access Controller (EMAC)8
2.1.6 Block RAM (BRAM)...9
2.1.7 XPS Timer/Counter ...9
2.1.8 XPS UART Lite ...9
2.1.9 XPS Interrupt Controller (INTC) ..10
2.1.10 XPS General Purpose Input/Output (GPIO)10
2.1.11 MicroBlaze Debug Module (MDM) ..11
2.1.12 Clock Generator ..11
2.1.13 Processor System Reset (PSR) Module11

2.2 System Resource Utilization...12

3 SOFTWARE DESIGN..13

3.1 System Description...13
3.2 System Components ..14

3.2.1 Board Support Package (BSP)..14
3.2.2 Drivers...15
3.2.3 Xilkernel ..19
3.2.4 lightweight IP (lwIP)...19

3.3 Boot-loader Software ..20
3.3.1 Description ..20

3.4 Main Software...22

 vi

3.4.1 Initialization Description...23
3.4.2 main_application_thread Thread Flowchart Description................25
3.4.3 se_thread Thread Description ...27

4 SYSTEM DESIGN AND PERFORMANCE..30

4.1 Boot-loading the Hardware Design ...30
4.2 System Performance ..32

4.2.1 TCP Throughput..32
4.2.2 Comparison of Local and Serial-to-Ethernet Connections.............32

5 CONCLUSION...35

References ..37

 vii

LIST OF FIGURES

Figure 1.1: TASC Systems Inc. Remote Monitoring System.................................1

Figure 2.1: Xilinx MicroBlaze Spartan-3A DSP 1800A Development Board4

Figure 2.2: Hardware System ...5

Figure 2.3: MicroBlaze Block Diagram [4]...6

Figure 3.1: Serial-to-Ethernet Software Layered Architecture.............................14

Figure 3.2: flash_rw_data Function Flowchart ..17

Figure 3.3: flash_read_start Function Flowchart ...18

Figure 3.4: UART Interrupt Handler ..19

Figure 3.5: “Boot-loader” Application Flowchart ..21

Figure 3.6: “Main” Application Initialization Flowchart ...23

Figure 3.7: main_thread Thread Flowchart ...24

Figure 3.8: main_application_thread Flowchart ..26

Figure 3.9: se_thread Thread Flowchart ...27

Figure 4.1: Serial Flash Memory Map ...31

Figure 4.2: Test Setup ..32

 viii

LIST OF TABLES

Table 1: BRAM Distribution...9

Table 2: Hardware Resource Utilization..12

Table 3: Main Software Threads...23

Table 4: Completion Time of Typical Commands ...33

Table 5: Network Protocol Analyzer Output of Read Contact Status
Function ...33

 ix

LIST OF ACRONYMS

BSD Berkeley Software Distribution

DDR2
SDRAM

Double Data Rate 2 Synchronous Dynamic Random Access
Memory

EDK Embedded Development Kit

FFSK Fast Frequency Shift Keying

FPGA Field Programmable Gate Array

IP Internet Protocol

Kb Kilobit (1024 bits)

KB Kilobyte (1024 bytes)

Mb Megabit (1048576 bits)

Mbps Megabits per second

MB Megabyte (1048576 bytes)

NOC Network Operations Centre

PC Personal Computer

PSTN Public Switched Telephone Network

RAM Random Access Memory

SEC Serial-to-Ethernet Converter

TCP Transmission Control Protocol

 1

1 INTRODUCTION

Local

Port

TCP/IP

Laptop Server

TASC Monitoring
Software

TASC Monitoring
Hardware

TASC Serial to

Ethernet Converter

Remote

Port

Network Operations

Centre (NOC)

External

Inputs

Remote Site

TASC Configuration

Software

Figure 1.1: TASC Systems Inc. Remote Monitoring System

TASC Systems Inc. (www.tascsystems.com) provides remote monitoring

solutions to various industries such as public safety, utilities, and

telecommunications. Figure 1.1 shows a block diagram of a simple remote

monitoring system utilizing the TASC Systems Inc. product. The monitoring

hardware is provided with external inputs from the equipment being monitored at

the remote site. A client configuration utility installed on the laptop is used to

configure the monitoring hardware through the local serial port (RS232). The

monitoring hardware must be configured to communicate with the monitoring

software at the Network Operations Centre (NOC) using serial (RS232), wireless

radio (FFSK), or PSTN modem communications. The problem is that using

these communication protocols to communicate with the NOC increase

 2

communication latencies and decrease throughput. Therefore, Transmission

Control Protocol/Internet Protocol (TCP/IP) communication is required; however,

it is currently only available with the purchase of a proprietary device (available

from multiple manufacturers). The motivation for this project is that the costs

associated with using a proprietary solution are significant, causing TASC

Systems Inc. to investigate designing its own Serial-to-Ethernet Converter (SEC).

The objective is to design a SEC that accepts TCP/IP connections from the

TASC Systems Inc. monitoring software at the NOC and redirects the data over

the serial port to the remote monitoring hardware and vice versa. When utilizing

the SEC, the remote monitoring hardware is configured to communicate serially

(RS232) and is not aware that it is connected to the SEC. The SEC is

transparent as the remote monitoring hardware has no knowledge of the SEC

and thinks it is communicating serially with the monitoring software at the NOC.

On the other end, the monitoring software is configured to talk to the monitoring

hardware using a TCP/IP interface and therefore requires knowledge of the SEC.

The SEC is designed using Xilinx’s MicroBlaze Spartan-3A DSP 1800A

Embedded Development Kit (EDK). The kit consists of the Spartan-3A DSP

1800A Field Programmable Gate Array (FPGA) development board along with

Xilinx’s EDK software. The SEC’s hardware and software are designed using

Xilinx’s EDK software and incorporate the open source lwIP TCP/IP stack along

with Xilinx’s Xilkernel multithreaded kernel. Custom software drivers were also

created and used along with the drivers provided by Xilinx.

 3

This report is organized as follows. Chapter 2 describes the hardware and

Chapter 3 the software. Chapter 4 describes the final system’s operation and

verification and Chapter 5 concludes the report and presents opportunities for

future work.

 4

2 HARDWARE DESIGN

This chapter describes the hardware system designed for the SEC. The

implementation platform used is the Xilinx MicroBlaze Spartan-3A DSP 1800A

Embedded Development Board. It utilizes the Xilinx Spartan XC3SD1800A-

4FG676 FPGA and includes a 125 Megahertz (MHz) System Clock, an RS232

serial port, 8 Dual Inline Package (DIP) switches, 8 Light Emitting Diodes (LED),

a Joint Test Action Group (JTAG) connector, a 10/100/1000 Ethernet port, a 64

Megabit (Mb) SPI flash, and 128 MegaBytes (MB) of Double Data Rate Two

(DDR2) Synchronous Dynamic Random Access Memory (SDRAM). The

hardware design is implemented on the development board as a prototype for

the final design.

Figure 2.1: Xilinx MicroBlaze Spartan-3A DSP 1800A Development Board

 5

2.1 System Description

MicroBlaze
Processor

Data Memory

Dual-Port Block
Memory
(32KB)

Intstruction
Memory

Local Memory
Bus Controller

Local Memory
Bus Controller ILMB

DLMB

IPLB

DPLB

MPMC

DXCL

IXCL

SPI Flash Ctlr

Ethernet MAC

Timer

Interrupt
Controller

UART

MDMDBG

DDR2 (128 MB)

Flash (64 Mb)

Ethernet PHY

RS232

JTAG

125MHz ClockDCM

125MHz

125MHz_90

62.5MHz

Reset SwitchPSR MODULE

GPIO

GPIO

8 LEDS

8 SWITCHES

FPGA On-Board

TASC Monitoring
Server

TASC Monitoring
Hardware

Host PC for
Debugging

External

Figure 2.2: Hardware System

Figure 2.2 shows the components that make up all the hardware required

to design the SEC. The hardware design is implemented on the FPGA using

Xilinx’s EDK with no custom cores. The on-board memory is 128 MB DDR2

SDRAM of which the design requires 1.2 MB and the entire 64 Mb of serial flash

memory. An Ethernet transceiver (PHY) is used to connect the SEC to the TASC

Systems Inc. monitoring software via an Ethernet network. A RS232 transceiver

is used to connect the SEC to the TASC Systems Inc. monitoring hardware. The

eight LEDs and DIP switches are only used for hardware debugging purposes

 6

and the JTAG connector is used for connecting to a host Personal Computer

(PC) for software debugging.

2.1.1 MicroBlaze Processor

Figure 2.3: MicroBlaze Block Diagram [4]

The MicroBlaze is a soft 32-bit RISC Harvard architecture processor with

32 32-bit general purpose registers, an Arithmetic Logic Unit (ALU), and many

other optional features as shown in Figure 2.3 [4]. The optional features used in

this design are the barrel shifter, integer multiplier, and pattern comparator to

improve software performance. The barrel shifter executes any shifting

instructions in two cycles and the hardware multiplier executes any integer

multiplication in 3 cycles. The pattern comparator (not shown in Figure 2.3)

enhances any compare instructions by completing a byte-wise comparison with a

32 bit word in one cycle. The processor is implemented using a three-stage

 7

pipeline instead of five to conserve area, as the additional performance is not

required. A system clock frequency of 62.5MHz is used as it is a multiple of the

125 MHz clock used for the DDR2 memory. Instruction and data caching are

utilized in this design; an 8 KB instruction cache and 4 KB data cache meet the

design requirements when used in conjunction with 32KB of shared BRAM for

the local data memory (2KB) and local instruction memory (11KB). The cache is

created using Block RAM (BRAM) (see section 2.1.6) and interfaces with

MicroBlaze via the CacheLink (XCL) busses. For more details, [4] may be

referenced.

2.1.2 Processor Local Bus (PLB) v4.6

The Xilinx Processor Local Bus (PLB) v4.6 is used by MicroBlaze to

connect to all the peripherals in the system. It has separate address, data, and

control paths. This design uses 32 bits for the address bus and 64 bits for the

data bus. For more details, [6] may be referenced.

2.1.3 Multi-Port Memory Controller (MPMC) and DDR2 Memory

The Multi-Port Memory Controller (MPMC) provides an interface between

the DDR2 memory and the CacheLink (XCL) and PLB busses. The MPMC has

eight input ports that can be used by various peripherals to access the DDR2

memory. In the current design, three ports are used: the PLB, the Data

CacheLink (DXCL), and the Instruction CacheLink (IXCL). 1.2 MB of DDR2

SDRAM memory is used to store the main software, which is comprised of the

 8

code and data sections (see section 3.1). For more details, [8] may be

referenced.

2.1.4 XPS SPI Interface and Serial Flash Memory

The Xilinx Platform Studio (XPS) Serial Peripheral Interface (SPI) provides

an interface between the MicroBlaze processor (using the PLB bus) and the

64Mb Intel S33 serial flash memory. The optional sixteen byte transmit and

receive buffers are utilized to minimize the impact on system performance. The

system boots from the serial flash memory and thus the FPGA bitstream, the

boot-loader software, and the main software are stored in the serial flash

memory. For more details, [16] may be referenced.

2.1.5 XPS Ethernet Lite Media Access Controller (EMAC)

The XPS Ethernet Lite MAC (EMAC) provides an interface between the

Physical Layer (PHY) device using the IEEE Std. 802.3 Media Independent

Interface (MII) and MicroBlaze via the PLB interface. The EMAC can operate at

10 Megabits per second (Mbps) or 100 Mbps. It has 2 KB transmit and receive

buffers (ping buffers) for holding data for a single Ethernet packet and optional 2

KB transmit and receive buffers (pong buffers) to provide ping-pong buffering.

Ping-Pong buffering is utilized in the current design to provide maximum

throughput. The core also provides transmit and receive interrupts that are

utilized by the software. For more details, [13] may be referenced.

 9

2.1.6 Block RAM (BRAM)

BRAM is made up of SRAM cells embedded within the FPGA and

organized in eighteen kilobit (Kb) blocks. The SEC uses 32 KB of BRAM for

local memory to store the stack, heap, and boot-loader software. A summary of

all the devices using BRAM is given in Table 1 and for more details on BRAM, [9]

may be referenced.

Table 1: BRAM Distribution

Peripheral BRAMs

MicroBlaze (Cache) 8

Local Memory 16

MPMC (First In First Out (FIFO)) 11

EMAC (Buffer) 4

2.1.7 XPS Timer/Counter

The XPS Timer/Counter is a 32-bit timer that interfaces to the MicroBlaze

processor via the PLB bus. It is used by Xilkernel (see section 3.2.3) in the main

software as the clock tick timer to schedule threads. For more details, [17] may

be referenced.

2.1.8 XPS UART Lite

The XPS Universal Asynchronous Receiver Transmitter (UART) Lite

peripheral provides a PLB interface for the external RS232 transceiver to the

MicroBlaze. It has sixteen character transmit and receive FIFO buffers that run

independently of each other (i.e. full duplex mode). It is programmed to run at

9600 bits per second (bps) with eight data bits, no parity bits, and one stop bit as

 10

those are the parameters used by the TASC Systems Inc. monitoring hardware.

For more details, [18] may be referenced.

2.1.9 XPS Interrupt Controller (INTC)

The XPS Interrupt Controller (INTC) takes up to 32 interrupts from various

peripheral devices and produces a single output. The INTC is required in this

design because the MicroBlaze processor has only one interrupt input and there

are three interrupt generating peripherals (EMAC, Timer, and UART). Priority

structure of the interrupts in this system is (highest to lowest): Timer, EMAC, and

UART. The timer is given the highest priority as it is the reference for all the

software timers and the kernel’s scheduler. The EMAC is next as it can only

buffer two Ethernet packets and the Ethernet link is faster than the UART link.

Finally, the UART is given the lowest priority as it runs significantly slower than

the rest of the system. For more details, [15] may be referenced.

2.1.10 XPS General Purpose Input/Output (GPIO)

Two XPS General Purpose Input/Output (GPIO) modules are used for the

LED’s and DIP switches. The modules provide an interface between the

MicroBlaze processor (via the PLB Bus) and the LEDs and DIP switches. They

are configured to use 8 bits as that corresponds to the number of LEDs and

switches available on the board. For more details, [14] may be referenced.

 11

2.1.11 MicroBlaze Debug Module (MDM)

The MicroBlaze Debug Module connects to the host PC for software

debugging via a JTAG interface. It connects to the MicroBlaze processor using

the debug bus. For more details, [10] may be referenced.

2.1.12 Clock Generator

The Clock Generator module provides the clocks required by the system

by automatically instantiating Digital Clock Manager (DCM) modules. The board

used for the prototype has a 125 MHz oscillator that is used to generate the three

clocks required by the current design: 125 MHz, 125 MHz with a 90 degree

phase shift (125MHz_90), and 62.5 MHz. The DDR2 MPMC uses the 125 MHz

and 125MHz_90 clocks and the MicroBlaze and all the other peripherals use the

62.5 MHz clock. For more details, [11] may be referenced.

2.1.13 Processor System Reset (PSR) Module

The Processor System Reset (PSR) module allows the sequencing of

reset signals to different peripherals. After a reset, the first thing to come up is

the PLB bus followed by the peripherals (sixteen clocks delay) and lastly,

MicroBlaze (sixteen clocks delay). For more details, [12] may be referenced.

 12

2.2 System Resource Utilization

Tables 2 summarizes the resource requirements of the entire hardware

design and the percent utilization of the FPGA.

Table 2: Hardware Resource Utilization

Resource Type Used % of

XC3SD1800A

Flip Flops 4881 14

4 Input LUTs 5801 17

IOBs 110 21

BRAMs 39 46

 13

3 SOFTWARE DESIGN

This section will describe the design of the software for the SEC. In the

design of the SEC, the software is divided into two parts: the boot-loader

software and main software. The boot-loader software has the responsibility of

loading and starting the main software. The main software has the primary

function of accepting TCP/IP connections from the TASC Systems Inc.

monitoring software and redirecting the data over the serial port to the remote

monitoring hardware and vice versa.

3.1 System Description

Figure 3.1 shows the layers of the SEC system architecture with the first

layer being the implementation platform and the second layer containing the

hardware design. The Board Support Package and the low-level and high-level

drivers make up the third layer. The Board Support Package (BSP) is used to

access processor specific functions such as interrupt handling, instruction and

data cache handling, and exception handling. Xilinx’s low-level drivers act as a

direct interface to the hardware and are typically implemented using macros and

manifest constants. The high-level drivers or device drivers, provided by Xilinx

and designed as part of this project provide abstraction from hardware changes.

The fourth and fifth layers contain the kernel (Xilkernel) and the TCP/IP stack

(lwIP) respectively. The Xilkernel is a small, robust, modular, and free kernel,

 14

which makes it a great choice for memory-and cost-constrained applications

such as this one. “lightweight IP” (lwIP) is an open source (Berkeley Software

Distribution (BSD) license) TCP/IP stack designed for embedded systems. The

last layer is made up of two applications: “main” and “boot-loader”. The main

software is comprised of layers three to five and the “main” application of layer

six. The boot-loader software is comprised of layer three and the “boot-loader”

application of layer six. The SEC software is comprised of the main and boot-

loader software.

Drivers (Low Level)

BSP

Xilkernel

lwIP

Hardware Design

Drivers
(High Level)

Application
(Boot-loader, Main)

Implementation Platform

Software

 Figure 3.1: Serial-to-Ethernet Software Layered Architecture

3.2 System Components

3.2.1 Board Support Package (BSP)

The BSP is used to access processor specific functions such as interrupt

handling, instruction and data cache handling, and exception handling. It is

generated by the EDK software using the Library Generator (Libgen) utility

 15

provided by Xilinx. Along with the low-level drivers, it makes up the lowest layer

of software modules.

3.2.2 Drivers

Xilinx’s low and high-level drivers are used as well as a custom SPI serial

flash driver and UART interrupt handler.

3.2.2.1 Xilinx’s Low-level Drivers

Xilinx’s low-level drivers use macros and manifest constants to allow a

developer to create small applications or custom high-level drivers. They

typically have the following characteristics:

• Constants that define registers offsets and bit fields, and simple
macros to access hardware registers

• Small memory footprint

• Little to no error checking

• Minimal abstraction

• Polled I/O operation only

The UART and SPI controller low-level drivers are utilized in the software

as they are more efficient than the high-level drivers.

3.2.2.2 Xilinx’s High-level Drivers

The high-level drivers or device drivers provide abstraction from hardware

changes. They are implemented with macros and functions and designed to

allow the developer to take advantage of all the features of the hardware. They

are built partly upon the low-level drivers and are independent of operating

 16

systems and processors making them highly portable. They typically have the

following characteristics:

• An abstract interface isolates developer from hardware changes

• Error checking

• Polled and interrupt driven I/O

• Larger memory footprint

Xilinx’s high-level drivers are used for all of the peripherals except for the

UART and SPI controller.

3.2.2.3 Custom SPI Serial Flash Driver

A custom SPI master serial flash driver is used to alleviate the complexity

and size of Xilinx’s driver for interfacing to the Intel S33 serial flash. The driver

needs to be small and efficient to prevent extensive memory usage and long boot

up delays as it is used in the boot-loader software. The SPI controller is to

operate as a master and therefore, the driver is written only for an SPI master

interface to the serial flash. The driver is built upon Xilinx’s SPI controller low-

level driver and consists of three functions: flash_read_start, flash_read_stop,

and flash_rw_data. The driver currently provides the ability to only read from the

serial flash as writing capability will be added in the future if required.

3.2.2.3.1 flash_rw_data Function

The flash_rw_data function reads and writes data to the SPI Intel S33

serial flash. The inputs to the function are two buffers, rxdata and txdata, and a

counter rw_bytes. The buffers store the data to be received and transmitted and

the counter determines the number of bytes to be transmitted and received. In

 17

the SPI protocol, for every byte sent, a byte is received. Thus, in order to read

data from the serial flash, a known string of bytes is sent to the flash and the data

requested is received by the SPI controller. Referring to Figure 3.2, a check is

done to see if the rw_bytes counter is zero. If the rw_bytes counter is not zero, a

byte is sent to the flash and then a byte is received from the flash. The rw_bytes

counter is then decremented and the loop continues until all the bytes have been

transmitted and received from the flash. Next, the data in the receive buffer of

the SPI controller is transferred to the rxdata buffer.

rw_bytes=0?
NO Send txdata Byte to

Flash

End

Start

YES Decrement rw_bytes

SPI Rx Buffer
Empty?

NO Read Byte into rxdata
Buffer

YES

Figure 3.2: flash_rw_data Function Flowchart

3.2.2.3.2 flash_read_start and flash_read_stop Functions

The flash_read_start function initializes the serial flash to start transmitting

data from a specified serial flash sector. The inputs to the function are the base

address of the SPI controller and the flash sector address. Figure 3.3 shows the

flowchart of the flash_read_start function. The function starts off by enabling the

SPI controller and selects the serial flash. The sector address is then set in the

 18

txdata buffer and sent to the flash_rw_data function for transmitting the read

command.

Enable SPI Controller &
Select Flash

Set Sector Address

Send Read Command to
Flash

Start

End

Figure 3.3: flash_read_start Function Flowchart

The flash_read_stop function is very simple as it takes in the base

address of the SPI controller and disables the SPI controller and de-selects the

flash.

3.2.2.4 Custom Uart Interrupt Handler

A custom UART handler was developed as Xilinx’s interrupt handler has a

lot of overhead. The custom handler is very simple as required and utilizes

Xilinx’s UART low-level driver. The UART generates an interrupt when it finishes

transmitting data or when it receives data. In the software, it is used only to

buffer the receive data. Referring to Figure 3.4, the handler checks to see if the

interrupt is a receive event and if it is, it stores the data in the buffer.

 19

Start

Rx Event?

Buffer UART RX Data

End

NO

YES

Figure 3.4: UART Interrupt Handler

3.2.3 Xilkernel

Xilkernel is an embedded processor kernel that can be tailored to a great

extent for different embedded system applications. It has the key features of

embedded kernels such as multi-tasking, priority-driven pre-emptive scheduling,

inter-process communication, synchronization facilities, and interrupt handling.

Xilkernel is small (~22KB), robust, modular, and free, which makes it a great

choice for memory and cost constrained applications.

3.2.4 lightweight IP (lwIP)

lightweight IP (lwIP) is an open source (BSD license) TCP/IP stack

designed for embedded systems. lwIP provides both a RAW interface and a

BSD sockets style interface to the TCP/IP stack. The BSD sockets interface is

used in the design of the SEC as it provides a well known standard interface.

lwIP supports the following protocols:

• Internet Protocol (IP)

• Internet Control Message Protocol (ICMP)

• User Datagram Protocol (UDP)

 20

• Transmission Control Protocol (TCP)

• Address Resolution Protocol (ARP)

• Dynamic Host Configuration Protocol (DHCP)

3.3 Boot-loader Software

The boot-loader software reads the main software and MicroBlaze vectors

from the flash memory and stores them in DDR2 RAM and BRAM respectively.

Once that is complete, the “main” application is started as shown in Figure 3.5.

3.3.1 Description

Referring to Figure 3.5, the “boot-loader” application starts off by

initializing and enabling the data and instruction cache. Initialization of the data

and instruction cache requires invalidating the entire cache memories. Enabling

the cache sets up MicroBlaze to start using the cache. Next the SPI controller is

initialized by making sure it is set up to operate as a master and the slave select

is set to select nothing. The SPI controller is then enabled making it ready to

start sending/receiving data. The serial flash is organized into 64 KB sectors and

the main application software stored at sector 17 and on. The read command

tells the serial flash to go into read mode and start reading from the specified

address (i.e. sector 17).

 21

Initialize & Enable Cache

Initialize SPI Controller

Enable SPI Controller

Read Main Application Data

and Store in DDR2 RAM

Verified 1000
Bytes?

NO

YES

Enable Flash Read from
Main Application Sector

Read Vectors Data and Store
in Block RAM

Verified
Vectors?

YES

Enable Flash Read from
Vectors Sector

NO

Disable Flash Read

Disable Flash Read

Print Main App Error

Print Vector Error

Start Main Application

Enable Flash Read from
Main Application Sector

Disable Flash Read

Enable Flash Read from
Vectors Sector

Disable Flash Read

End

Start

Figure 3.5: “Boot-loader” Application Flowchart

 22

The main software is then transferred from the flash memory and stored

into the DDR2 memory. Then the flash memory is deselected. To verify the data

was transferred properly, the flash memory is reselected and 1000 bytes are

read and compared with the data in the DDR2 RAM. Only 1000 bytes is used for

verification as it takes longer to verify the entire software. Again after the read,

the flash is deselected.

The MicroBlaze vectors are the next set of data that get transferred. The

vectors need to be loaded into BRAM from address 0x00 to 0x50. The next steps

are the same as with the loading the main software data except that the vectors

are stored in BRAM and sector 50 of the flash is used to retrieve the data. Once

that is complete, the “main” application is launched.

3.4 Main Software

The main software has the primary function of accepting TCP/IP

connections from the TASC Systems Inc. monitoring software and redirecting the

data over the serial port to the remote monitoring hardware and vice versa.

Table 3 outlines the threads used in the main software.

 23

Table 3: Main Software Threads

Thread Creator Active Function

main_thread Main Temporary First thread called after Xilkernel
initialization. Used to initialize
lwIP (spawns tcpip_thread), and
the network interface. Spawns
xemacif_input_thread and
main_application_thread.

tcpip_thread Main Always Processes TCP/IP packets.
Provided by lwIP.

xemacif_input_thread Main Always Recieves data processed by the
EMAC interrupt handlers and
passes it to the tcpip_thread.
Provided by Xilinx.

main_application_thread Main Always Waits for a connection request
and spawns the se_thread

se_thread Main Temporary Spawned by the
main_application_thread.
Performs the function of
converting serial data to
Ethernet and vice versa.

Idle Xilkernel Temporary Is run if there are no other
threads ready to run. Provided
by Xilinx.

3.4.1 Initialization Description

Initialize & Enable Cache

Start

Initialize Xilkernel

End

Figure 3.6: “Main” Application Initialization Flowchart

 24

Referring to Figure 3.6, the “main” application starts off by initializing and

enabling the data and instruction cache. Initialization of the data and instruction

cache requires invalidating the entire cache memories. Enabling the cache sets

up the MicroBlaze to start using the cache. Xilkernel is then initialized and

started, which involves starting the kernel, enabling interrupts, and starting the

main_thread thread. All threads in the system have the same priority as per the

recommendation on page 167 of [1] and thus Xilkernel is using a round robin

scheduling policy.

Initialize lwIP

Initialize Network Interface

Start xemacif_input_thread

Start
main_application_thread

End

Start

Figure 3.7: main_thread Thread Flowchart

Referring to Figure 3.7, the main_thread thread starts off by initializing the

lwIP TCP/IP stack, which involves initializing data structures for the stats,

system, memory, pbufs, ARP, IP, UDP, and TCP layers. The tcpip_thread

thread (provided by lwIP) is also spawned in the lwIP initialization. Initializing the

network interface is done by providing the IP address, network mask, gateway IP

address, EMAC address, and the base address of the XPS Ethernet Lite core to

 25

lwIP. The initialized network interface is set to be the default interface (in our

case we only have one) to be used by lwIP. Once lwIP has been notified that the

network interface is ready, Xilinx’s EMAC input thread (xemacif_input_thread) is

started. This thread receives data processed by the EMAC interrupt handlers,

and passes it to the lwIP tcpip_thread thread. Once that is complete, the

main_application_thread thread is started.

3.4.2 main_application_thread Thread Flowchart Description

Referring to Figure 3.8, the main_application_thread uses the BSD

sockets interface provided by lwIP. First a TCP socket is created to provide an

endpoint for communication and then bound to a port number. The “listen”

function call then turns the socket into a listening socket that can accept

incoming connections. The UART interrupt handler is then registered with

Xilkernel as it processes all the interrupts from the interrupt controller. Before

UART interrupts are enabled, the UART Rx circular buffer structure is initialized

with the correct length and location of the global buffer. Now the UART core

interrupt and the UART interrupt in the interrupt controller are enabled so the

UART interrupt handler may begin buffering data. A call is made to the BSD

sockets “accept“ function, which blocks until a connection request is made. Once

a connection request has been made, the connection is accepted and a check to

see if there is a Serial-to-Ethernet session in progress is made. If there is a

Serial-to-Ethernet session in progress, the socket is closed as we can only have

one Serial-to-Ethernet session currently. If there is no Serial-to-Ethernet session

in progress, a new Serial-to-Ethernet thread is created to handle the request and

 26

the Session In Progress flag is set to true. The main_application_thread goes

back to waiting for new connection requests.

Create TCP Socket

Bind Socket to Port

Set Socket to Listen

Register UART Interrupt
Handler

Initialize UART Rx Circular
Buffer

Enable UART Interrupt

Connection
Request?

NO

Create Serial to Ethernet
Thread

YES

Session In
Progress?

NO

YES
Close New Socket

Start

Session In Progress=True

Figure 3.8: main_application_thread Flowchart

 27

3.4.3 se_thread Thread Description

Read Password

Decrement Activity Timer

Password
Correct?

NO

Any IP RX
Data?

NO

YES

Make IP Read NON Blocking

Any UART
RX Data?

YES

NO

Activity Timer
Expired?

YES

NO

Close Socket

Session In Progress = False

Send to UART &
Reset Activity Timer

Send IP & Reset
Activity Timer

Connected?
NO

YES

Reset Activity Timer

End

Start

Init

YES

Yield

Figure 3.9: se_thread Thread Flowchart

 28

When a Serial-to-Ethernet thread (se_thread) is spawned, the activity

timer and counters are initialized. A password authentication process is then

started to validate the device trying to connect is allowed to communicate with

the TASC Systems Inc. monitoring hardware. If the password is incorrect, the

socket is closed, the Session In Progress flag (Fig 3.9) is set to false, and the

thread is destroyed. If the authentication is successful, the BSD sockets read

function is set to non-blocking and a check for data received over the TCP/IP link

is done. If valid data has been received, the activity timer is reset signifying that

there is activity on the link, and the data is sent to the TASC Systems Inc.

hardware via the UART. When the data has been sent or if there was no valid

data received, a check is done to see if there is valid data received in the UART

receive buffer. If valid data has been received, the activity timer is reset

signifying that there is activity on the link, and the data is sent to the TASC

Systems Inc. software over the TCP/IP link. To determine when to send the data

received from the UART, a timer of sixteen milliseconds is used. Once the last

byte has been received, the SEC waits sixteen milliseconds before the data is

sent to make sure there is no more data to be sent. This additional time is

compensated for in the TASC Systems Inc. protocol by increasing the timing

windows. When the data has been sent or if there was no valid data received, a

check is done to see if the fifteen second activity timer has expired. If the activity

timer hasn’t expired, the timer is decremented and the thread yields the

processor to another thread. If the activity timer has expired, a check is done to

see if the connection is still up by sending data to the TASC Systems Inc.

 29

software. If it is, the activity timer is reset and the thread yields the processor to

another thread. If there is no response, the socket is closed, the Session In

Progress flag is set to false, and the thread is destroyed.

Currently the se_thread thread is a polling thread and in order to make it a

non-polling thread a couple of things would need to be changed. The thread

would need to be split into two threads: uart_to_ip and ip_to_uart. The uart_to_ip

thread would send the data received by the UART over the TCP/IP link. It would

wait on a semaphore from the UART interrupt handler which would be posted

when data is received on the serial port. The ip_to_uart thread would block on

the BSD sockets read function and wait for TCP/IP data to be received. Once

valid data has been received, it would transmit the data over the serial link.

In order to port this software into a larger system, the se_thread would

most likely have to be split up per the proposed non-polling method. As of right

now, the polling thread is always either ready-to-run or running and therefore can

delay other threads from being scheduled on the processor when useful work

arrives for them to do. In order to increase the efficiency of the software, the yield

primitive is utilized to quickly release the processor when there is no useful work

waiting for the se_thread to do. This implementation is sufficient for the current

product as there are a limited number of threads but for larger systems, further

degradation in performance may be observed.

 30

4 SYSTEM DESIGN AND PERFORMANCE

4.1 Boot-loading the Hardware Design

In order to have the Spartan 3A DSP FPGA operate as a SEC on power

up, it must program itself from the SPI serial flash. The Spartan 3A DSP FPGA

board has a built-in SPI interface to communicate with the serial flash and using

the MODE pins, it is set to program itself from the serial flash.

The serial flash must be programmed with the appropriate bitstream in

order for the FPGA to program itself. A bitstream is made up of programming

bits and can be directly loaded onto the FPGA via JTAG using Xilinx’s iMPACT

software. If we want to store this bitstream on the serial flash, we must convert it

into MCS format using the iMPACT software. The Xilinx EDK software integrates

the boot-loader application into the MicroBlaze’s Local BRAM bitstream using

Xilinx’s DATA2MEM utility. The main software is in the executable and linkable

format (ELF) and must be converted to MCS format. Since the MicroBlaze

Interrupt Vector Table (IVT) needs to be stored in BRAM and the main software

needs to be stored in DDR2 SDRAM, the ELF file must first be separated into

two binary files (app.b, vectors.b). Once separated, Xilinx’s xmcsutil utility

software is used to convert the binary files to MCS format. The three files

(app.mcs, vectors.mcs, bitstream.mcs) then are combined into a single file

(combined.mcs) by xmcsutil. Using the combined.mcs file, the serial flash is then

programmed with Xilinx’s xip utility software.

 31

In the creation of the combined.mcs file, an offset has to be specified for

each of the MCS files that defines the location of the individual files in the

combined file. In order to determine the offsets, an understanding of the size of

each file is required. The bitstream is 1024660 (0xFA294) bytes in size and is

placed at the starting of the serial flash (Figure 4.1). The main software’s size is

1167724 (0x11D16C) bytes and is started at sector 17. The MicroBlaze vectors

size can be a maximum of 80 (0x50) bytes and is started at sector 50, providing

room for the main software to grow in the future. The remaining memory of the

serial flash can be used for non volatile storage.

0x110000 (Sector 17)

Bitstream

0x320000 (Sector 50)

Main Software

MicroBlaze IVT

0x000000 (Sector 0)

0x800000

Figure 4.1: Serial Flash Memory Map

 32

4.2 System Performance

4.2.1 TCP Throughput

The TCP throughput was not tested but is documented on pg 174 of [1].

The maximum TCP throughput is 7 Mbps in socket mode on any Spartan 3

FPGA with MicroBlaze and the Ethernet Lite core using a system frequency of 66

MHz [1]. This design uses a system frequency of 62.5 MHz, which may have

reduced the throughput below 7 Mbps, but the existing throughput is sufficient for

the purpose of the current design.

4.2.2 Comparison of Local and Serial-to-Ethernet Connections

Local
Port

Laptop

Local Connection

TASC Monitoring

Hardware TASC Configuration

Software

Local
Port

LaptopTASC Monitoring

Hardware

TASC Serial to

Ethernet Converter

TASC Configuration

Software

Ethernet Crossover

Cable (6 ft)

Serial Cable

(6 ft)

Serial

Cable

(6 ft)

Serial-to-Ethernet Connection

Figure 4.2: Test Setup

Testing was also performed on the TASC Systems Inc. remote monitoring

system. Referring to Figure 4.2, the local connection uses a standard serial

cable to connect the hardware to the computer and this is the baseline as it is the

fastest connection. The SEC is connected to the TASC Systems Inc. hardware

using a null-modem serial cable and connected directly to the computer using an

 33

Table 4: Completion Time of Typical Commands

Test Function
SEC Time

(ms)

Local
Time
(ms)

SEC
Latency

(ms)

Number
of

Packets

Number
of

Bytes

Proprietary
Device

Time (ms)

Read Contact Status 290 90 200 2 22 251

Read Temperature Status 310 97 213 2 32 273

Read Analog Status 320 100 220 2 36 281

Table 5: Network Protocol Analyzer Output of Read Contact Status Function

Time
(millisecond) Source Destination

TCP Packet
Type

Data
Length

0 Monitoring Software Serial-to-Ethernet Data 8

39 Serial-to-Ethernet Monitoring Software ACK 0

136 Serial-to-Ethernet Monitoring Software Data 14

290 Monitoring Software Serial-to-Ethernet ACK 0

Ethernet crossover cable. Table 4 summarizes the time required for completion

of some typical commands used in the TASC Systems Inc. remote monitoring

system. Three test functions were executed: Read Contact Status, Read

Temperature Status, and Read Analog Status. The Listen32 serial line data

monitor and the Wireshark network protocol analyzer were installed on the laptop

computer shown in Figure 4.2 and used to determine the timing results for the

local, SEC, and the proprietary device connections. The latency is determined

by taking the difference between the local time and the SEC time. The total

number of bytes transferred and the number of packets used is shown as well.

By averaging the SEC latency, it can be seen that it takes approximately

211 milliseconds (ms) longer on average to perform the functions using the SEC.

The proprietary device completion times are shown as well with it requiring an

additional 173 ms (average of proprietary device latency) on average to perform

the functions. Table 5 shows a network protocol analyzer output that breaks

 34

down the time required to perform a read contact status function. It can be seen

that initially the monitoring software sends a request data packet to the

monitoring hardware. The TCP packet is then acknowledged by the SEC 39 ms

later and 97 ms after that, the monitoring hardware’s response is received. 154

ms later, the monitoring software sends a TCP acknowledgement to the SEC.

From Table 5, the latency of the SEC for the read contact status function is 136

ms minus the baseline of 90 ms from Table 4 which gives a latency of 46 ms.

Further investigation is required to determine why the monitoring software takes

154 ms to acknowledge the response as this increases the Serial-to-Ethernet

solution latency to approximately 200 ms. Even with the additional latency from

the monitoring software, the results are well within the requirements of TASC

Systems Inc.

 35

5 CONCLUSION

TASC Systems Inc. (www.tascsystems.com) provides remote monitoring

solutions that require TCP/IP connectivity. Currently a proprietary device is used

to accomplish this functionality but the costs associated with using a proprietary

solution have resulted in TASC Systems Inc. wanting to investigate the design of

its own SEC.

The implementation platform used is the Xilinx MicroBlaze Spartan-3A

DSP 1800A Embedded Development Board. The hardware design is

implemented on the development board as a prototype for the final design. The

core of the hardware logic design is the MicroBlaze processor, which is

connected to the following peripherals: MPMC, SPI controller, EMAC, timer,

UART Lite, LED and DIP switch GPIO, and an interrupt controller. The design

uses 32 KB of local BRAM memory and the external memory is composed of 128

MB DDR2 SDRAM of which the design requires 1.2MB to store the main

software. A 64 Mb serial flash is used to store the hardware design bitstream

along with the software.

A six layer architecture is used in the Serial-to-Ethernet design with the

first and second layers being the implementation platform and hardware design

respectively. The third layer contains the Board Support Package (BSP) and the

high and low-level drivers. The fourth and fifth layers contain the kernel

(Xilkernel) and the TCP/IP stack (lwIP) respectively. The last layer is made up of

 36

the main and boot-loader applications. The boot-loader software has the

responsibility of loading and starting the main software. The main software has

the primary function of accepting TCP/IP connections from the TASC Systems

Inc. monitoring software and redirecting the data over the serial port to the

remote monitoring hardware and vice versa.

Performance testing was completed by sending typical commands over

the Serial-to-Ethernet link and comparing the results with a local serial link. The

results showed that the Serial-to-Ethernet latency was well within TASC Systems

Inc. requirements.

The testing showed that there may be an issue with TASC Systems Inc.

configuration software as it takes 154 ms to acknowledge a read contact status

response. In the future, further investigation into the effect of varying cache sizes

on performance may be investigated along with changing the kernel’s scheduling

policy to pre-emptive and adjusting thread priorities. In order to make the SEC

software more scalable, the proposed modification of the se_thread with the use

of semaphores would be required.

 37

REFERENCES

[1] Xilinx (July 30, 2008). OS and Libraries Document Collection. [Online].
Available:

http://www.xilinx.com/support/documentation/sw_manuals/edk10_oslib_rm
.pdf

[2] Xilinx (September 18, 2008). EDK Concepts, Tools, and Techniques.
[Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/edk_ctt.pdf

[3] Xilinx (2008). Embedded Systems Tools Reference Manual. [Online].
Available:

http://www.xilinx.com/support/documentation/sw_manuals/edk10_est_rm.
pdf

[4] Xilinx (July 14, 2008). MicroBlaze Processor Reference Guide UG081
(v9.3).

[5] Xilinx (July 28, 2008). Local Memory Bus (LMB) V1.0 (v1.00a).

[6] Xilinx (July 28, 2008). Processor Local Bus (PLB) v4.6 (v1.03a).

[7] Xilinx (July 28, 2008). LMB BRAM Interface Controller (v2.10a).

[8] Xilinx (September 26, 2007). Multi-Port Memory Controller (MPMC)
(v3.00a).

[9] Xilinx (March 12, 2007). Block RAM (BRAM) Block (v1.00a).

[10] Xilinx (June 25, 2008). MicroBlaze Debug module (MDM) (v1.00d).

[11] Xilinx (March 15, 2007). Clock Generator (v1.00a).

[12] Xilinx (July 29, 2008). Processor System Reset Module (v2.00a)

[13] Xilinx (January 14, 2008). XPS Ethernet Lite Media Access Controller
(v1.00a).

[14] Xilinx (July 22, 2008). XPS General Purpose Input/Output (GPIO)
(v1.00a).

[15] Xilinx (July 22, 2008). XPS Interrupt Controller (v1.00a).

[16] Xilinx (April 17, 2008). XPS Serial Peripheral Interface (SPI) (v1.00a).

 38

[17] Xilinx (April 21, 2008). XPS Timer/Counter (v1.00a).

[18] Xilinx (July 18, 2008). XPS UART Lite (v1.00a).

[19] Stang, Pascal. (2006). Proycon AVRlib. [Online]. Available:

http://www.mil.ufl.edu/~chrisarnold/components/microcontrollerBoard/AVR
/avrlib/docs/html/index.html

[20] Velusamy, Siva. (April 11, 2008). Lightweight IP (lwIP) Application
Examples. [Online]. Available:

http://www.xilinx.com/support/documentation/application_notes/xapp1026.
pdf

[21] Fletcher, Bryan. (February 19, 2008). Remote Configuration Update on
the Xilinx 3SD1800AP. [Online]. Available:

https://www.em.avnet.com/common/filetree/0,2740,RID%253D%2526CID
%253D42106%2526CAT%253D0%2526CCD%253DUSA%2526SID%253
D32214%2526DID%253DDF2%2526SRT%253D1%2526LID%253D3223
2%2526PRT%253D0%2526PVW%253D%2526PNT%253D%2526BID%2
53DDF2%2526CTP%253DEVK,00.html

