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ABSTRACT 

TASC Systems Inc. requires Transmission Control Protocol/Internet 

Protocol (TCP/IP) communications between their remote monitoring hardware 

and software run on the user’s local work station.  The Serial-to-Ethernet 

Converter receives serial (RS232) data from the remote monitoring hardware and 

sends it to the monitoring software on the user’s local work station via Ethernet 

and vice versa.  It is implemented using Xilinx’s Spartan 3A FPGA with Xilinx’s 

MicroBlaze soft processor and Ethernet MAC.  The hardware is designed using 

Xilinx’s EDK software and the Serial-to-Ethernet software utilizes the open 

source lightweight Internet Protocol (lwIP) TCP/IP stack along with Xilinx’s 

Xilkernel multithreaded kernel. 

 
Keywords: FPGA; Ethernet; Remote Monitoring; MicroBlaze 
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1  INTRODUCTION 
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Figure 1.1: TASC Systems Inc. Remote Monitoring System 

TASC Systems Inc. (www.tascsystems.com) provides remote monitoring 

solutions to various industries such as public safety, utilities, and 

telecommunications.  Figure 1.1 shows a block diagram of a simple remote 

monitoring system utilizing the TASC Systems Inc. product.  The monitoring 

hardware is provided with external inputs from the equipment being monitored at 

the remote site. A client configuration utility installed on the laptop is used to 

configure the monitoring hardware through the local serial port (RS232).  The 

monitoring hardware must be configured to communicate with the monitoring 

software at the Network Operations Centre (NOC) using serial (RS232), wireless 

radio (FFSK), or PSTN modem communications.  The problem is that using 

these communication protocols to communicate with the NOC increase 
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communication latencies and decrease throughput.  Therefore, Transmission 

Control Protocol/Internet Protocol (TCP/IP) communication is required; however,  

it is currently only available with the purchase of a proprietary device (available 

from multiple manufacturers).  The motivation for this project is that the costs 

associated with using a proprietary solution are significant, causing TASC 

Systems Inc. to investigate designing its own Serial-to-Ethernet Converter (SEC).  

The objective is to design a SEC that accepts TCP/IP connections from the 

TASC Systems Inc. monitoring software at the NOC and redirects the data over 

the serial port to the remote monitoring hardware and vice versa.  When utilizing 

the SEC, the remote monitoring hardware is configured to communicate serially 

(RS232) and is not aware that it is connected to the SEC.  The SEC is 

transparent as the remote monitoring hardware has no knowledge of the SEC 

and thinks it is communicating serially with the monitoring software at the NOC.  

On the other end, the monitoring software is configured to talk to the monitoring 

hardware using a TCP/IP interface and therefore requires knowledge of the SEC. 

The SEC is designed using Xilinx’s MicroBlaze Spartan-3A DSP 1800A 

Embedded Development Kit (EDK).  The kit consists of the Spartan-3A DSP 

1800A Field Programmable Gate Array (FPGA) development board along with 

Xilinx’s EDK software.  The SEC’s hardware and software are designed using 

Xilinx’s EDK software and incorporate the open source lwIP TCP/IP stack along 

with Xilinx’s Xilkernel multithreaded kernel.  Custom software drivers were also 

created and used along with the drivers provided by Xilinx. 
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This report is organized as follows. Chapter 2 describes the hardware and 

Chapter 3 the software. Chapter 4 describes the final system’s operation and 

verification and Chapter 5 concludes the report and presents opportunities for 

future work. 
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2  HARDWARE DESIGN 

This chapter describes the hardware system designed for the SEC.  The 

implementation platform used is the Xilinx MicroBlaze Spartan-3A DSP 1800A 

Embedded Development Board.  It utilizes the Xilinx Spartan XC3SD1800A-

4FG676 FPGA and includes a 125 Megahertz (MHz) System Clock, an RS232 

serial port, 8 Dual Inline Package (DIP) switches, 8 Light Emitting Diodes (LED), 

a Joint Test Action Group (JTAG) connector, a 10/100/1000 Ethernet port, a 64 

Megabit (Mb) SPI flash, and 128 MegaBytes (MB) of Double Data Rate Two 

(DDR2) Synchronous Dynamic Random Access Memory (SDRAM).  The 

hardware design is implemented on the development board as a prototype for 

the final design.   

 

Figure 2.1: Xilinx MicroBlaze Spartan-3A DSP 1800A Development Board 
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2.1 System Description 
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Figure 2.2: Hardware System 

Figure 2.2 shows the components that make up all the hardware required 

to design the SEC.  The hardware design is implemented on the FPGA using 

Xilinx’s EDK with no custom cores.  The on-board memory is 128 MB DDR2 

SDRAM of which the design requires 1.2 MB and the entire 64 Mb of serial flash 

memory.  An Ethernet transceiver (PHY) is used to connect the SEC to the TASC 

Systems Inc. monitoring software via an Ethernet network.  A RS232 transceiver 

is used to connect the SEC to the TASC Systems Inc. monitoring hardware.  The 

eight LEDs and DIP switches are only used for hardware debugging purposes 



 

 6 

and the JTAG connector is used for connecting to a host Personal Computer 

(PC) for software debugging.   

2.1.1 MicroBlaze Processor 

 

Figure 2.3: MicroBlaze Block Diagram [4] 

The MicroBlaze is a soft 32-bit RISC Harvard architecture processor with 

32 32-bit general purpose registers, an Arithmetic Logic Unit (ALU), and many 

other optional features as shown in Figure 2.3 [4].  The optional features used in 

this design are the barrel shifter, integer multiplier, and pattern comparator to 

improve software performance. The barrel shifter executes any shifting 

instructions in two cycles and the hardware multiplier executes any integer 

multiplication in 3 cycles.  The pattern comparator (not shown in Figure 2.3) 

enhances any compare instructions by completing a byte-wise comparison with a 

32 bit word in one cycle.  The processor is implemented using a three-stage 
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pipeline instead of five to conserve area, as the additional performance is not 

required.  A system clock frequency of 62.5MHz is used as it is a multiple of the 

125 MHz clock used for the DDR2 memory.  Instruction and data caching are 

utilized in this design; an 8 KB instruction cache and 4 KB data cache meet the 

design requirements when used in conjunction with 32KB of shared BRAM for 

the local data memory (2KB) and local instruction memory (11KB).  The cache is 

created using Block RAM (BRAM) (see section 2.1.6) and interfaces with 

MicroBlaze via the CacheLink (XCL) busses.  For more details, [4] may be 

referenced. 

2.1.2 Processor Local Bus (PLB) v4.6 

The Xilinx Processor Local Bus (PLB) v4.6 is used by MicroBlaze to 

connect to all the peripherals in the system.  It has separate address, data, and 

control paths.  This design uses 32 bits for the address bus and 64 bits for the 

data bus.  For more details, [6] may be referenced. 

2.1.3 Multi-Port Memory Controller (MPMC) and DDR2 Memory 

The Multi-Port Memory Controller (MPMC) provides an interface between 

the DDR2 memory and the CacheLink (XCL) and PLB busses.  The MPMC has 

eight input ports that can be used by various peripherals to access the DDR2 

memory.  In the current design, three ports are used: the PLB, the Data 

CacheLink (DXCL), and the Instruction CacheLink (IXCL).  1.2 MB of DDR2 

SDRAM memory is used to store the main software, which is comprised of the 
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code and data sections (see section 3.1).  For more details, [8] may be 

referenced. 

2.1.4 XPS SPI Interface and Serial Flash Memory 

The Xilinx Platform Studio (XPS) Serial Peripheral Interface (SPI) provides 

an interface between the MicroBlaze processor (using the PLB bus) and the 

64Mb Intel S33 serial flash memory.  The optional sixteen byte transmit and 

receive buffers are utilized to minimize the impact on system performance.  The 

system boots from the serial flash memory and thus the FPGA bitstream, the 

boot-loader software, and the main software are stored in the serial flash 

memory.  For more details, [16] may be referenced. 

2.1.5 XPS Ethernet Lite Media Access Controller (EMAC) 

The XPS Ethernet Lite MAC (EMAC) provides an interface between the 

Physical Layer (PHY) device using the IEEE Std. 802.3 Media Independent 

Interface (MII) and MicroBlaze via the PLB interface.  The EMAC can operate at 

10 Megabits per second (Mbps) or 100 Mbps.  It has 2 KB transmit and receive 

buffers (ping buffers) for holding data for a single Ethernet packet and optional 2 

KB transmit and receive buffers (pong buffers) to provide ping-pong buffering.  

Ping-Pong buffering is utilized in the current design to provide maximum 

throughput.  The core also provides transmit and receive interrupts that are 

utilized by the software.  For more details, [13] may be referenced. 



 

 9 

2.1.6 Block RAM (BRAM) 

BRAM is made up of SRAM cells embedded within the FPGA and 

organized in eighteen kilobit (Kb) blocks.  The SEC uses 32 KB of BRAM for 

local memory to store the stack, heap, and boot-loader software.  A summary of 

all the devices using BRAM is given in Table 1 and for more details on BRAM, [9] 

may be referenced. 

Table 1: BRAM Distribution 

 

Peripheral BRAMs 

MicroBlaze (Cache) 8 

Local Memory 16 

MPMC (First In First Out (FIFO)) 11 

EMAC (Buffer) 4 

2.1.7 XPS Timer/Counter 

The XPS Timer/Counter is a 32-bit timer that interfaces to the MicroBlaze 

processor via the PLB bus.  It is used by Xilkernel (see section 3.2.3) in the main 

software as the clock tick timer to schedule threads.  For more details, [17] may 

be referenced. 

2.1.8 XPS UART Lite 

The XPS Universal Asynchronous Receiver Transmitter (UART) Lite 

peripheral provides a PLB interface for the external RS232 transceiver to the 

MicroBlaze.  It has sixteen character transmit and receive FIFO buffers that run 

independently of each other (i.e. full duplex mode).  It is programmed to run at 

9600 bits per second (bps) with eight data bits, no parity bits, and one stop bit as 
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those are the parameters used by the TASC Systems Inc. monitoring hardware.  

For more details, [18] may be referenced. 

2.1.9 XPS Interrupt Controller (INTC) 

The XPS Interrupt Controller (INTC) takes up to 32 interrupts from various 

peripheral devices and produces a single output.  The INTC is required in this 

design because the MicroBlaze processor has only one interrupt input and there 

are three interrupt generating peripherals (EMAC, Timer, and UART).  Priority 

structure of the interrupts in this system is (highest to lowest): Timer, EMAC, and 

UART.  The timer is given the highest priority as it is the reference for all the 

software timers and the kernel’s scheduler.  The EMAC is next as it can only 

buffer two Ethernet packets and the Ethernet link is faster than the UART link.  

Finally, the UART is given the lowest priority as it runs significantly slower than 

the rest of the system.  For more details, [15] may be referenced. 

2.1.10 XPS General Purpose Input/Output (GPIO) 

Two XPS General Purpose Input/Output (GPIO) modules are used for the 

LED’s and DIP switches.  The modules provide an interface between the 

MicroBlaze processor (via the PLB Bus) and the LEDs and DIP switches.  They 

are configured to use 8 bits as that corresponds to the number of LEDs and 

switches available on the board.  For more details, [14] may be referenced. 
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2.1.11 MicroBlaze Debug Module (MDM) 

The MicroBlaze Debug Module connects to the host PC for software 

debugging via a JTAG interface.  It connects to the MicroBlaze processor using 

the debug bus.  For more details, [10] may be referenced. 

2.1.12 Clock Generator 

The Clock Generator module provides the clocks required by the system 

by automatically instantiating Digital Clock Manager (DCM) modules.  The board 

used for the prototype has a 125 MHz oscillator that is used to generate the three 

clocks required by the current design: 125 MHz, 125 MHz with a 90 degree 

phase shift (125MHz_90), and 62.5 MHz. The DDR2 MPMC uses the 125 MHz 

and 125MHz_90 clocks and the MicroBlaze and all the other peripherals use the 

62.5 MHz clock.  For more details, [11] may be referenced. 

2.1.13 Processor System Reset (PSR) Module 

The Processor System Reset (PSR) module allows the sequencing of 

reset signals to different peripherals.  After a reset, the first thing to come up is 

the PLB bus followed by the peripherals (sixteen clocks delay) and lastly, 

MicroBlaze (sixteen clocks delay).  For more details, [12] may be referenced. 
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2.2 System Resource Utilization 

Tables 2 summarizes the resource requirements of the entire hardware 

design and the percent utilization of the FPGA. 

Table 2: Hardware Resource Utilization 

 
Resource Type Used % of  

XC3SD1800A 

Flip Flops 4881 14 

4 Input LUTs 5801 17 

IOBs 110 21 

BRAMs 39 46 
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3  SOFTWARE DESIGN 

This section will describe the design of the software for the SEC. In the 

design of the SEC, the software is divided into two parts: the boot-loader 

software and main software.  The boot-loader software has the responsibility of 

loading and starting the main software.  The main software has the primary 

function of accepting TCP/IP connections from the TASC Systems Inc. 

monitoring software and redirecting the data over the serial port to the remote 

monitoring hardware and vice versa.   

3.1 System Description 

Figure 3.1 shows the layers of the SEC system architecture with the first 

layer being the implementation platform and the second layer containing the 

hardware design.  The Board Support Package and the low-level and high-level 

drivers make up the third layer.  The Board Support Package (BSP) is used to 

access processor specific functions such as interrupt handling, instruction and 

data cache handling, and exception handling.  Xilinx’s low-level drivers act as a 

direct interface to the hardware and are typically implemented using macros and 

manifest constants.  The high-level drivers or device drivers, provided by Xilinx 

and designed as part of this project provide abstraction from hardware changes.  

The fourth and fifth layers contain the kernel (Xilkernel) and the TCP/IP stack 

(lwIP) respectively.  The Xilkernel is a small, robust, modular, and free kernel, 
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which makes it a great choice for memory-and cost-constrained applications 

such as this one.  “lightweight IP” (lwIP) is an open source (Berkeley Software 

Distribution (BSD) license) TCP/IP stack designed for embedded systems.  The 

last layer is made up of two applications: “main” and “boot-loader”.  The main 

software is comprised of layers three to five and the “main” application of layer 

six.  The boot-loader software is comprised of layer three and the “boot-loader” 

application of layer six.  The SEC software is comprised of the main and boot-

loader software. 

Drivers (Low Level)

BSP

Xilkernel

lwIP

Hardware Design

Drivers
(High Level)

Application
(Boot-loader, Main)

Implementation Platform

Software

 

                                      Figure 3.1: Serial-to-Ethernet Software Layered Architecture 

3.2 System Components 

3.2.1 Board Support Package (BSP) 

The BSP is used to access processor specific functions such as interrupt 

handling, instruction and data cache handling, and exception handling.  It is 

generated by the EDK software using the Library Generator (Libgen) utility 
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provided by Xilinx.  Along with the low-level drivers, it makes up the lowest layer 

of software modules. 

3.2.2 Drivers 

Xilinx’s low and high-level drivers are used as well as a custom SPI serial 

flash driver and UART interrupt handler. 

3.2.2.1   Xilinx’s Low-level Drivers 

Xilinx’s low-level drivers use macros and manifest constants to allow a 

developer to create small applications or custom high-level drivers.  They 

typically have the following characteristics: 

• Constants that define registers offsets and bit fields, and simple 
macros to access hardware registers 

• Small memory footprint 

• Little to no error checking 

• Minimal abstraction 

• Polled I/O operation only 

The UART and SPI controller low-level drivers are utilized in the software 

as they are more efficient than the high-level drivers. 

3.2.2.2   Xilinx’s High-level Drivers 

The high-level drivers or device drivers provide abstraction from hardware 

changes.  They are implemented with macros and functions and designed to 

allow the developer to take advantage of all the features of the hardware.  They 

are built partly upon the low-level drivers and are independent of operating 
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systems and processors making them highly portable.  They typically have the 

following characteristics: 

• An abstract interface isolates developer from hardware changes 

• Error checking 

• Polled and interrupt driven I/O 

• Larger memory footprint 

Xilinx’s high-level drivers are used for all of the peripherals except for the 

UART and SPI controller. 

3.2.2.3   Custom SPI Serial Flash Driver 

A custom SPI master serial flash driver is used to alleviate the complexity 

and size of Xilinx’s driver for interfacing to the Intel S33 serial flash.  The driver 

needs to be small and efficient to prevent extensive memory usage and long boot 

up delays as it is used in the boot-loader software.  The SPI controller is to 

operate as a master and therefore, the driver is written only for an SPI master 

interface to the serial flash.  The driver is built upon Xilinx’s SPI controller low-

level driver and consists of three functions: flash_read_start, flash_read_stop, 

and flash_rw_data.  The driver currently provides the ability to only read from the 

serial flash as writing capability will be added in the future if required. 

3.2.2.3.1 flash_rw_data Function 

The flash_rw_data function reads and writes data to the SPI Intel S33 

serial flash.  The inputs to the function are two buffers, rxdata and txdata, and a 

counter rw_bytes.  The buffers store the data to be received and transmitted and 

the counter determines the number of bytes to be transmitted and received.  In 
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the SPI protocol, for every byte sent, a byte is received.  Thus, in order to read 

data from the serial flash, a known string of bytes is sent to the flash and the data 

requested is received by the SPI controller.  Referring to Figure 3.2, a check is 

done to see if the rw_bytes counter is zero.  If the rw_bytes counter is not zero, a 

byte is sent to the flash and then a byte is received from the flash.  The rw_bytes 

counter is then decremented and the loop continues until all the bytes have been 

transmitted and received from the flash.  Next, the data in the receive buffer of 

the SPI controller is transferred to the rxdata buffer.   

rw_bytes=0?
NO Send txdata Byte to

Flash

End

Start

YES Decrement rw_bytes

SPI Rx Buffer
Empty?

NO Read Byte into rxdata
Buffer

YES

 

Figure 3.2: flash_rw_data Function Flowchart 

3.2.2.3.2 flash_read_start and flash_read_stop Functions 

The flash_read_start function initializes the serial flash to start transmitting 

data from a specified serial flash sector.  The inputs to the function are the base 

address of the SPI controller and the flash sector address.  Figure 3.3 shows the 

flowchart of the flash_read_start function.  The function starts off by enabling the 

SPI controller and selects the serial flash.  The sector address is then set in the 
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txdata buffer and sent to the flash_rw_data function for transmitting the read 

command.    

Enable SPI Controller &
Select Flash

Set Sector Address

Send Read Command to
Flash

Start

End
 

Figure 3.3: flash_read_start Function Flowchart 

The flash_read_stop function is very simple as it takes in the base 

address of the SPI controller and disables the SPI controller and de-selects the 

flash.   

3.2.2.4 Custom Uart Interrupt Handler 

A custom UART handler was developed as Xilinx’s interrupt handler has a 

lot of overhead.  The custom handler is very simple as required and utilizes 

Xilinx’s UART low-level driver.  The UART generates an interrupt when it finishes 

transmitting data or when it receives data.  In the software, it is used only to 

buffer the receive data.  Referring to Figure 3.4, the handler checks to see if the 

interrupt is a receive event and if it is, it stores the data in the buffer. 
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Start

Rx Event?

Buffer UART RX Data

End

NO

YES

 

Figure 3.4: UART Interrupt Handler 

3.2.3 Xilkernel 

Xilkernel is an embedded processor kernel that can be tailored to a great 

extent for different embedded system applications.  It has the key features of 

embedded kernels such as multi-tasking, priority-driven pre-emptive scheduling, 

inter-process communication, synchronization facilities, and interrupt handling.  

Xilkernel is small (~22KB), robust, modular, and free, which makes it a great 

choice for memory and cost constrained applications.   

3.2.4 lightweight IP (lwIP) 

lightweight IP (lwIP) is an open source (BSD license) TCP/IP stack 

designed for embedded systems.  lwIP provides both a RAW interface and a 

BSD sockets style interface to the TCP/IP stack.  The BSD sockets interface is 

used in the design of the SEC as it provides a well known standard interface.  

lwIP supports the following protocols: 

• Internet Protocol (IP) 

• Internet Control Message Protocol (ICMP) 

• User Datagram Protocol (UDP) 
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• Transmission Control Protocol (TCP) 

• Address Resolution Protocol (ARP) 

• Dynamic Host Configuration Protocol (DHCP) 

3.3 Boot-loader Software 

The boot-loader software reads the main software and MicroBlaze vectors 

from the flash memory and stores them in DDR2 RAM and BRAM respectively.  

Once that is complete, the “main” application is started as shown in Figure 3.5. 

3.3.1 Description 

Referring to Figure 3.5, the “boot-loader” application starts off by 

initializing and enabling the data and instruction cache.  Initialization of the data 

and instruction cache requires invalidating the entire cache memories.  Enabling 

the cache sets up MicroBlaze to start using the cache.  Next the SPI controller is 

initialized by making sure it is set up to operate as a master and the slave select 

is set to select nothing.  The SPI controller is then enabled making it ready to 

start sending/receiving data.  The serial flash is organized into 64 KB sectors and 

the main application software stored at sector 17 and on.  The read command 

tells the serial flash to go into read mode and start reading from the specified 

address (i.e. sector 17). 
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Initialize & Enable Cache

Initialize SPI Controller

Enable SPI Controller

Read Main Application Data

and Store in DDR2 RAM

Verified 1000
Bytes?

NO

YES

Enable Flash Read from
Main Application Sector

Read Vectors Data and Store
in Block RAM

Verified
Vectors?

YES

Enable Flash Read from
Vectors Sector

NO

Disable Flash Read

Disable Flash Read

Print Main App Error

Print Vector Error

Start Main Application

Enable Flash Read from
Main Application Sector

Disable Flash Read

Enable Flash Read from
Vectors Sector

Disable Flash Read

End

Start

 

Figure 3.5: “Boot-loader” Application Flowchart 
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The main software is then transferred from the flash memory and stored 

into the DDR2 memory.  Then the flash memory is deselected.  To verify the data 

was transferred properly, the flash memory is reselected and 1000 bytes are 

read and compared with the data in the DDR2 RAM.  Only 1000 bytes is used for 

verification as it takes longer to verify the entire software.  Again after the read, 

the flash is deselected.   

The MicroBlaze vectors are the next set of data that get transferred.  The 

vectors need to be loaded into BRAM from address 0x00 to 0x50. The next steps 

are the same as with the loading the main software data except that the vectors 

are stored in BRAM and sector 50 of the flash is used to retrieve the data.  Once 

that is complete, the “main” application is launched.   

3.4 Main Software 

The main software has the primary function of accepting TCP/IP 

connections from the TASC Systems Inc. monitoring software and redirecting the 

data over the serial port to the remote monitoring hardware and vice versa.  

Table 3 outlines the threads used in the main software. 
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Table 3: Main Software Threads 

Thread Creator Active Function 

main_thread Main Temporary First thread called after Xilkernel 
initialization.  Used to initialize 
lwIP (spawns tcpip_thread), and 
the network interface. Spawns 
xemacif_input_thread and 
main_application_thread. 

tcpip_thread Main Always Processes TCP/IP packets.  
Provided by lwIP. 

xemacif_input_thread Main Always Recieves data processed by the 
EMAC interrupt handlers and 
passes it to the tcpip_thread.  
Provided by Xilinx. 

main_application_thread Main Always Waits for a connection request 
and spawns the se_thread 

se_thread Main Temporary Spawned by the 
main_application_thread. 
Performs the function of 
converting serial data to 
Ethernet and vice versa. 

Idle Xilkernel Temporary Is run if there are no other 
threads ready to run.  Provided 
by Xilinx. 

3.4.1 Initialization Description 

Initialize & Enable Cache

Start

Initialize Xilkernel

End
 

Figure 3.6: “Main” Application Initialization Flowchart 
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Referring to Figure 3.6, the “main” application starts off by initializing and 

enabling the data and instruction cache.  Initialization of the data and instruction 

cache requires invalidating the entire cache memories.  Enabling the cache sets 

up the MicroBlaze to start using the cache.  Xilkernel is then initialized and 

started, which involves starting the kernel, enabling interrupts, and starting the 

main_thread thread.  All threads in the system have the same priority as per the 

recommendation on page 167 of [1] and thus Xilkernel is using a round robin 

scheduling policy.   

Initialize lwIP

Initialize Network Interface

Start xemacif_input_thread

Start
main_application_thread

End

Start

 

Figure 3.7: main_thread Thread Flowchart 

Referring to Figure 3.7, the main_thread thread starts off by initializing the 

lwIP TCP/IP stack, which involves initializing data structures for the stats, 

system, memory, pbufs, ARP, IP, UDP, and TCP layers.  The tcpip_thread 

thread (provided by lwIP) is also spawned in the lwIP initialization.  Initializing the 

network interface is done by providing the IP address, network mask, gateway IP 

address, EMAC address, and the base address of the XPS Ethernet Lite core to 
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lwIP.  The initialized network interface is set to be the default interface (in our 

case we only have one) to be used by lwIP.  Once lwIP has been notified that the 

network interface is ready, Xilinx’s EMAC input thread (xemacif_input_thread) is 

started.  This thread receives data processed by the EMAC interrupt handlers, 

and passes it to the lwIP tcpip_thread thread.  Once that is complete, the 

main_application_thread thread is started.   

3.4.2 main_application_thread Thread Flowchart Description 

Referring to Figure 3.8, the main_application_thread uses the BSD 

sockets interface provided by lwIP.  First a TCP socket is created to provide an 

endpoint for communication and then bound to a port number.  The “listen” 

function call then turns the socket into a listening socket that can accept 

incoming connections.  The UART interrupt handler is then registered with 

Xilkernel as it processes all the interrupts from the interrupt controller.  Before 

UART interrupts are enabled, the UART Rx circular buffer structure is initialized 

with the correct length and location of the global buffer.  Now the UART core 

interrupt and the UART interrupt in the interrupt controller are enabled so the 

UART interrupt handler may begin buffering data.  A call is made to the BSD 

sockets “accept“ function, which blocks until a connection request is made.  Once 

a connection request has been made, the connection is accepted and a check to 

see if there is a Serial-to-Ethernet session in progress is made.  If there is a 

Serial-to-Ethernet session in progress, the socket is closed as we can only have 

one Serial-to-Ethernet session currently.  If there is no Serial-to-Ethernet session 

in progress, a new Serial-to-Ethernet thread is created to handle the request and 
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the Session In Progress flag is set to true.  The main_application_thread goes 

back to waiting for new connection requests.  

Create TCP Socket

Bind Socket to Port

Set Socket to Listen

Register UART Interrupt
Handler

Initialize UART Rx Circular
Buffer

Enable UART Interrupt

Connection
Request?

NO

Create Serial to Ethernet
Thread

YES

Session In
Progress?

NO

YES
Close New Socket

Start

Session In Progress=True

 

Figure 3.8: main_application_thread Flowchart 
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3.4.3 se_thread Thread Description 

Read Password

Decrement Activity Timer

Password
Correct?

NO

Any IP RX
Data?

NO

YES

Make IP Read NON Blocking

Any UART
RX Data?

YES

NO

Activity Timer
Expired?

YES

NO

Close Socket

Session In Progress = False

Send to UART &
Reset Activity Timer

Send IP & Reset
Activity Timer

Connected?
NO

YES

Reset Activity Timer

End

Start

Init

YES

Yield

 

Figure 3.9: se_thread Thread Flowchart 
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When a Serial-to-Ethernet thread (se_thread) is spawned, the activity 

timer and counters are initialized.  A password authentication process is then 

started to validate the device trying to connect is allowed to communicate with 

the TASC Systems Inc. monitoring hardware.  If the password is incorrect, the 

socket is closed, the Session In Progress flag (Fig 3.9) is set to false, and the 

thread is destroyed.  If the authentication is successful, the BSD sockets read 

function is set to non-blocking and a check for data received over the TCP/IP link 

is done.  If valid data has been received, the activity timer is reset signifying that 

there is activity on the link, and the data is sent to the TASC Systems Inc. 

hardware via the UART.  When the data has been sent or if there was no valid 

data received, a check is done to see if there is valid data received in the UART 

receive buffer.  If valid data has been received, the activity timer is reset 

signifying that there is activity on the link, and the data is sent to the TASC 

Systems Inc. software over the TCP/IP link.  To determine when to send the data 

received from the UART, a timer of sixteen milliseconds is used.  Once the last 

byte has been received, the SEC waits sixteen milliseconds before the data is 

sent to make sure there is no more data to be sent.  This additional time is 

compensated for in the TASC Systems Inc. protocol by increasing the timing 

windows.  When the data has been sent or if there was no valid data received, a 

check is done to see if the fifteen second activity timer has expired.  If the activity 

timer hasn’t expired, the timer is decremented and the thread yields the 

processor to another thread.  If the activity timer has expired, a check is done to 

see if the connection is still up by sending data to the TASC Systems Inc. 
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software.  If it is, the activity timer is reset and the thread yields the processor to 

another thread.  If there is no response, the socket is closed, the Session In 

Progress flag is set to false, and the thread is destroyed. 

Currently the se_thread thread is a polling thread and in order to make it a 

non-polling thread a couple of things would need to be changed.  The thread 

would need to be split into two threads: uart_to_ip and ip_to_uart.  The uart_to_ip 

thread would send the data received by the UART over the TCP/IP link.  It would 

wait on a semaphore from the UART interrupt handler which would be posted 

when data is received on the serial port.  The ip_to_uart thread would block on 

the BSD sockets read function and wait for TCP/IP data to be received.  Once 

valid data has been received, it would transmit the data over the serial link.   

In order to port this software into a larger system, the se_thread would 

most likely have to be split up per the proposed non-polling method.  As of right 

now, the polling thread is always either ready-to-run or running and therefore can 

delay other threads from being scheduled on the processor when useful work 

arrives for them to do. In order to increase the efficiency of the software, the yield 

primitive is utilized to quickly release the processor when there is no useful work 

waiting for the se_thread to do.  This implementation is sufficient for the current 

product as there are a limited number of threads but for larger systems, further 

degradation in performance may be observed.    



 

 30 

4  SYSTEM DESIGN AND PERFORMANCE 

4.1 Boot-loading the Hardware Design 

In order to have the Spartan 3A DSP FPGA operate as a SEC on power 

up, it must program itself from the SPI serial flash.  The Spartan 3A DSP FPGA 

board has a built-in SPI interface to communicate with the serial flash and using 

the MODE pins, it is set to program itself from the serial flash. 

The serial flash must be programmed with the appropriate bitstream in 

order for the FPGA to program itself.  A bitstream is made up of programming 

bits and can be directly loaded onto the FPGA via JTAG using Xilinx’s iMPACT 

software.  If we want to store this bitstream on the serial flash, we must convert it 

into MCS format using the iMPACT software.  The Xilinx EDK software integrates 

the boot-loader application into the MicroBlaze’s Local BRAM bitstream using 

Xilinx’s DATA2MEM utility.  The main software is in the executable and linkable 

format (ELF) and must be converted to MCS format.  Since the MicroBlaze 

Interrupt Vector Table (IVT) needs to be stored in BRAM and the main software 

needs to be stored in DDR2 SDRAM, the ELF file must first be separated into 

two binary files (app.b, vectors.b).  Once separated, Xilinx’s xmcsutil utility 

software is used to convert the binary files to MCS format.  The three files 

(app.mcs, vectors.mcs, bitstream.mcs) then are combined into a single file 

(combined.mcs) by xmcsutil.  Using the combined.mcs file, the serial flash is then 

programmed with Xilinx’s xip utility software. 
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In the creation of the combined.mcs file, an offset has to be specified for 

each of the MCS files that defines the location of the individual files in the 

combined file.  In order to determine the offsets, an understanding of the size of 

each file is required. The bitstream is 1024660 (0xFA294) bytes in size and is 

placed at the starting of the serial flash (Figure 4.1).  The main software’s size is 

1167724 (0x11D16C) bytes and is started at sector 17.  The MicroBlaze vectors 

size can be a maximum of 80 (0x50) bytes and is started at sector 50, providing 

room for the main software to grow in the future.  The remaining memory of the 

serial flash can be used for non volatile storage. 

         

0x110000 (Sector 17)

Bitstream

0x320000 (Sector 50)

Main Software

MicroBlaze IVT

0x000000 (Sector 0)

0x800000

 

Figure 4.1: Serial Flash Memory Map 
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4.2 System Performance 

4.2.1 TCP Throughput 

The TCP throughput was not tested but is documented on pg 174 of [1].  

The maximum TCP throughput is 7 Mbps in socket mode on any Spartan 3 

FPGA with MicroBlaze and the Ethernet Lite core using a system frequency of 66 

MHz [1].  This design uses a system frequency of 62.5 MHz, which may have 

reduced the throughput below 7 Mbps, but the existing throughput is sufficient for 

the purpose of the current design. 

4.2.2 Comparison of Local and Serial-to-Ethernet Connections 

Local
Port

Laptop

Local Connection

TASC Monitoring

Hardware TASC Configuration

Software

Local
Port

LaptopTASC Monitoring

Hardware

TASC Serial to

Ethernet Converter

TASC Configuration

Software

Ethernet Crossover

Cable (6 ft)

Serial Cable

(6 ft)

Serial

Cable

(6 ft)

Serial-to-Ethernet Connection

 

Figure 4.2: Test Setup 

Testing was also performed on the TASC Systems Inc. remote monitoring 

system.  Referring to Figure 4.2, the local connection uses a standard serial 

cable to connect the hardware to the computer and this is the baseline as it is the 

fastest connection.  The SEC is connected to the TASC Systems Inc. hardware 

using a null-modem serial cable and connected directly to the computer using an 
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Table 4: Completion Time of Typical Commands 

 
 

Test Function 
SEC Time 

(ms) 

Local 
Time 
(ms) 

SEC 
Latency 

(ms) 

Number 
of 

Packets 

Number 
of 

Bytes 

Proprietary 
Device 

Time (ms) 

Read Contact Status 290 90 200 2 22 251 

Read Temperature Status  310 97 213 2 32 273 

Read Analog Status 320 100 220 2 36 281 

 

Table 5: Network Protocol Analyzer Output of Read Contact Status Function 

 

Time 
(millisecond) Source Destination 

TCP Packet 
Type 

Data 
Length 

0 Monitoring Software Serial-to-Ethernet Data 8 

39 Serial-to-Ethernet Monitoring Software ACK 0 

136 Serial-to-Ethernet Monitoring Software Data 14 

290 Monitoring Software Serial-to-Ethernet ACK 0 

 

Ethernet crossover cable.  Table 4 summarizes the time required for completion 

of some typical commands used in the TASC Systems Inc. remote monitoring 

system.  Three test functions were executed: Read Contact Status, Read 

Temperature Status, and Read Analog Status. The Listen32 serial line data 

monitor and the Wireshark network protocol analyzer were installed on the laptop 

computer shown in Figure 4.2 and used to determine the timing results for the 

local, SEC, and the proprietary device connections.  The latency is determined 

by taking the difference between the local time and the SEC time.  The total 

number of bytes transferred and the number of packets used is shown as well. 

By averaging the SEC latency, it can be seen that it takes approximately 

211 milliseconds (ms) longer on average to perform the functions using the SEC.  

The proprietary device completion times are shown as well with it requiring an 

additional 173 ms (average of proprietary device latency) on average to perform 

the functions.  Table 5 shows a network protocol analyzer output that breaks 
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down the time required to perform a read contact status function.  It can be seen 

that initially the monitoring software sends a request data packet to the 

monitoring hardware.  The TCP packet is then acknowledged by the SEC 39 ms 

later and 97 ms after that, the monitoring hardware’s response is received.  154 

ms later, the monitoring software sends a TCP acknowledgement to the SEC.  

From Table 5, the latency of the SEC for the read contact status function is 136 

ms minus the baseline of 90 ms from Table 4 which gives a latency of 46 ms.  

Further investigation is required to determine why the monitoring software takes 

154 ms to acknowledge the response as this increases the Serial-to-Ethernet 

solution latency to approximately 200 ms.  Even with the additional latency from 

the monitoring software, the results are well within the requirements of TASC 

Systems Inc. 
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5  CONCLUSION 

TASC Systems Inc. (www.tascsystems.com) provides remote monitoring 

solutions that require TCP/IP connectivity.  Currently a proprietary device is used 

to accomplish this functionality but the costs associated with using a proprietary 

solution have resulted in TASC Systems Inc. wanting to investigate the design of 

its own SEC.   

The implementation platform used is the Xilinx MicroBlaze Spartan-3A 

DSP 1800A Embedded Development Board.  The hardware design is 

implemented on the development board as a prototype for the final design.  The 

core of the hardware logic design is the MicroBlaze processor, which is 

connected to the following peripherals: MPMC, SPI controller, EMAC, timer, 

UART Lite, LED and DIP switch GPIO, and an interrupt controller.  The design 

uses 32 KB of local BRAM memory and the external memory is composed of 128 

MB DDR2 SDRAM of which the design requires 1.2MB to store the main 

software.  A 64 Mb serial flash is used to store the hardware design bitstream 

along with the software.   

A six layer architecture is used in the Serial-to-Ethernet design with the 

first and second layers being the implementation platform and hardware design 

respectively.  The third layer contains the Board Support Package (BSP) and the 

high and low-level drivers.  The fourth and fifth layers contain the kernel 

(Xilkernel) and the TCP/IP stack (lwIP) respectively.  The last layer is made up of 
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the main and boot-loader applications.  The boot-loader software has the 

responsibility of loading and starting the main software.  The main software has 

the primary function of accepting TCP/IP connections from the TASC Systems 

Inc. monitoring software and redirecting the data over the serial port to the 

remote monitoring hardware and vice versa.   

Performance testing was completed by sending typical commands over 

the Serial-to-Ethernet link and comparing the results with a local serial link.  The 

results showed that the Serial-to-Ethernet latency was well within TASC Systems 

Inc. requirements.  

The testing showed that there may be an issue with TASC Systems Inc. 

configuration software as it takes 154 ms to acknowledge a read contact status 

response.  In the future, further investigation into the effect of varying cache sizes 

on performance may be investigated along with changing the kernel’s scheduling 

policy to pre-emptive and adjusting thread priorities.  In order to make the SEC 

software more scalable, the proposed modification of the se_thread with the use 

of semaphores would be required. 
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