Ch 3 Atomic Structure and the Periodic Table

Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus $=10^{5}$

Atoms are very small and spherical.

Radii Range

$$
\begin{gathered}
0.9 \times 10^{-10} \text { to } 2.4 \times 10^{-10} \mathrm{~m} \\
90-240 \mathrm{pm}
\end{gathered}
$$

Atomic Mass

example: 1 H atom $=1.673 \times 10^{-24} \mathrm{~g}$
1atomic mass unit $(\mathrm{amu})=1.6605 \times 10^{-24} \mathrm{~g}$
For H: $1.673 \times 10^{-24} \mathrm{~g} \quad \mathrm{x} \frac{1 \mathrm{amu}}{1.6605 \times 10^{-24} \mathrm{~g}}$
$=1.008 \mathrm{amu}$

Ch 3.1 Internal Structure of an Atom

Subatomic particles
An atom is characterized by the number of protons (p) that it contains. A proton has a positive electrical charge.
p charge $=1.60 \times 10^{-19}$ coulombs $=+1$ relative charge
p mass $=1.6726 \times 10^{-24} \mathrm{~g}=\quad \mathrm{amu}$
A neutron (\mathbf{n}) has no charge associated with it. n mass $=1.6750 \times 10^{-24} \mathrm{~g}=\quad \mathrm{amu}$

An electron (e) has a negative electrical charge. e charge $=-1.60 \times 10^{-19}$ coulombs $=-1$ relative charge e mass $=9.109 \times 10^{-28}=$ \qquad amu
mass of $\mathrm{p} \sim$ mass of $\mathrm{n} \ggg$ mass of e^{-} mass of e^{-}is often ignored

Ch 3.2 Atomic Number and Mass Number

Atomic number = Z = \# of protons (unique physical property of each element)

Mass number $=A=\#$ of protons $+\#$ of neutrons \# of neutrons $=\square$

For a neutral atom, net electrical charge $=$ zero $\#$ of electrons $=\#$ of protons $=\square$

A
E complete chemical symbol notation
Z
A 23

E

Z
11

$$
\# \mathrm{p}=\mathrm{Z}=
$$

$$
\# \mathrm{n}=\mathrm{A}-\mathrm{Z}=\square=\square
$$

$$
\# \mathrm{e}^{-}=\# \mathrm{p}=
$$

Ch 3.3 Isotopes and Atomic Masses

Isotopes are atoms of an element that have the same number of protons and electrons but different numbers of neutrons.
12

6

13

6

14

6

- isotopes have nearly identical chemical properties
- most elements have at least two isotopes

Table 3.2 Elements with $\mathrm{Z}=1$ through 12

The atomic mass of an element is the calculated weighted average mass for the isotopes.

Chem 101 Grading Scheme
Quizzes $\quad 180$ points $\quad 180 / 1000=0.18$
Labs $\quad 160$ points $\quad 160 / 1000=0.16$
Exams $\frac{660 \text { points }}{1000} \quad 660 / 1000=\underline{0.66}$

Sample calculation of weighted average
Quizzes $85 \% \times 0.18=15.3 \%$
Labs $\quad 95 \% \times 0.16=15.2 \%$
Exams $55 \% \times 0.66=\underline{36.3} \%$
Average __ \% $\%$
\% Weighted
Average
35 37
Cl17
34.96885 amu 36.96590 amu75.77 \% 24.23 \% natural abundance the isotopes
$34.96885 \times 75.77 / 100=25.60$
$36.96590 \times 24.23 / 100=\frac{8.957}{35.46} \mathrm{amu}$

63

Cu
29
62.9298 amu

65
Cu
29
64.9278 amu

Atomic weight $\mathrm{Cu}=63.546 \mathrm{amu}$ Which isotope is the more abundant?

Answer:

Ch. 3.4 The Periodic Law and the Periodic Table

Figure 3.2 Dmitri Ivanovich Mendeleev (1834-1907)

In 1869 grouped 63 known elements in $1^{\text {st }}$ periodic table based on atomic weights and similar properties within a group.

Modern periodic law - when elements are arranged in order of increasing atomic number, elements with similar chemical properties occur at periodic intervals.

Figure 3.4

Periods of Elements
Figure 3.3

Periods	\# of elements	
1	2	H, He
$2+3$	8	
$4+5$	18	
$6+7$	>18	

Groups of Elements (Ch $3.4 \& 3.9$)
Groups IA - VIIIA representative elements
IA
IIA
VIIA
VIIIA

Note: The noble gases are also representative elements.

Ch. 3.5 Metals and Nonmetals

Metals Semimetals/Metalloids Nonmetals

Semimetals/Metalloids

Used in semiconductors. They have physical properties closer to those of metals, whereas their chemical properties are closer to those of nonmetals.

(a) Metals

Fig 3.5
solids at RT, except Hg metallic luster
malleable \& ductile high thermal \& electrical

Al $\mathrm{Pb} \quad \mathrm{Sn} \quad \mathrm{Zn}$ clockwise from left

(b) Nonmetals

Fig 3.5
gas or solid at RT, except Br_{2} variety of colors solids are brittle poor \qquad (except graphite)
good \qquad (except diamond) nonductile

Ch 3.6 Electron Arrangements within Atoms

 Supplemental material: Line Spectra and the Bohr AtomEach element has a unique line spectrum

demo: noble gas discharge tubes

Bohr Model

Energies of electrons are quantized $=$ limited to certain values.

An "excited" atom releases energy in form of light when an electron "falls" back to its lower orbit (ground state).

It is now known that electrons do not exist in planet-like orbits but rather they occupy regions of space about the nucleus called orbitals.

Figure 3.8 shapes of orbitals

(a) s orbital

(b) p orbital

(c) d orbital

(d) f orbital

The space in which electrons move rapidly about a nucleus is divided into shells, subshells, and orbitals.

Electron Shells

- are specific energy levels

$$
\underset{\rightarrow}{\mathrm{n}=1,2,3,4 \ldots \ldots \ldots}
$$

increasing average distance from nucleus increasing average energy of shells

- electrons occupy the lowest shell available
- max \# of electrons allowed in a shell $=$

$$
\begin{array}{lrl}
\mathrm{n}=1 & 2 \mathrm{e}^{-} & \\
\mathrm{n}=2 & 8 \mathrm{e}^{-} & \\
\mathrm{n}=3 & 18 \mathrm{e}^{-} & \text {etc. }
\end{array}
$$

Drill question: Where are the electrons of Mg located?

$$
\begin{aligned}
& \mathrm{Z}=12 \quad 12 \mathrm{p}=12 \mathrm{e}- \\
& 1^{\text {st }} \text { shell }(\mathrm{n}=1)=2 \mathrm{e} \\
& 2^{\text {nd }} \text { shell }(\mathrm{n}=2)=8 \mathrm{e} \\
& 3^{\text {rd }} \text { shell }(\mathrm{n}=3)=\square \mathrm{e}
\end{aligned}
$$

Electron Subshells

- Each shell (n) consists of subshells
- Subshells are designated $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f} \ldots$...
- Energy levels increase $\mathrm{s}<\mathrm{p}<\mathrm{d}<\mathrm{f}$
- Max \# of subshells = n (shell)

$1^{\text {st }}$ shell	$\mathrm{n}=1$	s
$2^{\text {nd }}$ shell	$\mathrm{n}=2$	$\mathrm{~s}+\mathrm{p}$
$3^{\text {rd }}$ shell	$\mathrm{n}=3$	$\mathrm{~s}+\mathrm{p}+\mathrm{d}$
$4^{\text {th }}$ shell	$\mathrm{n}=4$	$\mathrm{~s}+\mathrm{p}+\mathrm{d}+\mathrm{f}$

- Max \# of electrons in subshells $\mathrm{s}=2 \mathrm{e}$

$$
\mathrm{p}=6 \mathrm{e}
$$

$$
\mathrm{d}=10 \mathrm{e}
$$

$$
\mathrm{f}=14 \mathrm{e}
$$

Figure 3.7 Summary so far

Drill Problems

1. What is the max \# of electrons in a 5 d subshell?

Shell \# (n) $\rightarrow 5 \mathrm{~d} \leftarrow$ subshell $\max \#$ for d always ___ e , regardless of n
2. What is the $\max \#$ of electrons in the $4^{\text {th }}$ shell?

$$
\begin{aligned}
& \mathrm{s}=2 \mathrm{p}=6 \mathrm{~d}=10 \mathrm{f}=14 \quad \text { total: } 32 \mathrm{e} \\
& \text { also can use: } 2 \mathrm{n}^{2}=2(4)^{2}=32 \mathrm{e}
\end{aligned}
$$

Electron Orbital is a region of space within a subshell where an electron with a specific energy is most likely to be found.
max of 2 e can be found in 1 orbital

subshell	\# of e	\# of orbitals
s	2	1
p	6	3
d	10	5
f	14	7

Characteristics of Orbitals:

- Each type has a specific shape.

(a) s orbital

(b) p orbital

(c) d orbital

(d) f orbital \quad Fig 3.8
- Within the same subshell, orbitals differ mainly in orientation.

Fig 3.9

- Within a given subshell each orbital has the same
\qquad .
- Volume, average distance, and energy increase with increasing shell number (n).
- Electrons move rapidly and "occupy" the entire orbital volume.
- A pair of electrons in the same orbital must be of opposite \qquad .

Electron Spin

Clockwise
Counterclockwise
"spin up" \uparrow

A pair of electrons of opposite spin can occupy the same orbital but electrons prefer to be alone - Hund's Rule

Ch 3.7 Electron Configurations and Orbital Diagrams

- fill lower energy levels first
- for a given subshell, first place single electrons
- pair electrons only with opposite spins

Orbital Diagram for Phosphorus

1s
$1 \mathrm{~s}^{2}$

2s
$2 \mathrm{~s}^{2}$

$2 p$
$2 p^{6}$

3s
$3 s^{2}$

$3 p$
$3 \mathrm{p}^{3}$

Electron Configuration for $\mathrm{P}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$
Shorthand representation for P :

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}=[\mathrm{Ne}] 3 s^{2} 3 p^{3}
$$

Electron-Dot Symbols

Electrons in the s \& p orbitals of the outermost shell (valence shell) are called valence electrons and can be shown in an electron-dot symbol or Lewis symbol (also see Chapter 4.2)

For the isolated (non-bonded) carbon atom:
4 valence electrons in the $2^{\text {nd }}$ shell
2 valence e in s are paired, 2 e in p are unpaired

- all 4 sides in the symbol are equal
- unpaired electrons must be shown as single dots
- paired electrons must be shown as pairs

For the isolated (non-bonded) oxygen atom: valence electrons in the $2^{\text {nd }}$ shell valence e paired, \qquad e unpaired

Note: The group number of the representative elements corresponds to the \qquad of valence electrons in the element

Fig 3.10 Order of filling electron subshells

Figure 3.11
Mnemonic device for remembering subshell filling order

Ch 3.8 The Electronic Basis for the Periodic Law and the Periodic Table

${ }_{3} \mathrm{Li}$	$1 s^{2} 2 s^{1}$
${ }_{11} \mathrm{Na}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
${ }_{19} \mathrm{~K}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
${ }_{37} \mathrm{Rb}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}$

Group IA
___ valence electron in s orbital
$\begin{array}{ll}{ }_{9} \mathrm{~F} & 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5} \\ { }_{17} \mathrm{Cl} & 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5} \\ { }_{35} \mathrm{Br} & 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{5} \\ { }_{53} \mathrm{I} & 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{5}\end{array}$
Group VIIA __ valence electrons $s^{2} \& p^{5}$

Figure 3.12 Electron configuration and the position of elements in the periodic table.

Period = Principal energy level number,

Blocks $=$ specific subshells

$3 d$	
$4 d$	
$5 d$	
$6 d$	

$2 p$
$3 p$
$4 p$
$5 p$
$6 p$

Supplemental Material \& Ch 5.9
Properties of Atoms and the Periodic Table
A. Chemical properties of an element are related to the position of an element in the periodic table.
demo: compare reactivity of $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$ with $\mathrm{H}_{2} \mathrm{O}$
same
group $=$

same
valence
electrons
:---
chemical
properties

B. Periodic trends in metallic character for representative elements.

- Metallic character increases with increasing shell number (n) in a group.
- It decreases with increasing number of valence electrons.
C. Periodic trends in atomic radii (pm) for representative elements.

- Within a group, radii increase with increasing shell number (i.e. increasing distance from the nucleus).
- Across a period, radii decrease as the number of protons in the nucleus increase (i.e. increasing nuclear charge).
D. The type and number of bonds an element forms are related to its position in the periodic table.

Electronegativity is a measure of the relative attraction that an atom has for the shared electrons in a covalent bond.

Figure 5.11 in Stoker

2.0 to 2.3 \square 2.4 to 4.0

E. Periodic trends in ionization energies for representative elements.

Ionization of atoms requires Ionization Energy (I.E.)

- Within a period I.E. increases with increasing Z.
- Down a group I.E. decreases with increased atomic radius.

