Ch 3 Atomic Structure and the Periodic Table

Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10^5

Atoms are very small and spherical.

Atomic Mass example: 1 H atom = $1.673 \times 10^{-24} \text{ g}$ latomic mass unit (amu) = $1.6605 \times 10^{-24} \text{ g}$ For H: $1.673 \times 10^{-24} \text{ g} \times \frac{1 \text{ amu}}{1.6605 \times 10^{-24} \text{ g}}$ = 1.008 amu

Ch 3.1 Internal Structure of an Atom

Subatomic particles

An atom is characterized by the number of protons (**p**) that it contains. A proton has a positive electrical charge.

p charge = 1.60×10^{-19} coulombs = +1 relative charge p mass = 1.6726×10^{-24} g = _____ amu

A neutron (n) has no charge associated with it. n mass = $1.6750 \times 10^{-24} \text{g}$ = _____ amu

An electron (e) has a negative electrical charge. e charge = -1.60×10^{-19} coulombs = -1 relative charge e mass = 9.109×10^{-28} = ______ amu

mass of $p \sim \text{mass of } n >>> \text{mass of } e^{-1}$ mass of e^{-1} is often ignored 3

Ch 3.2 Atomic Number and Mass Number

Atomic number = Z = # of protons (unique physical property of each element)

Mass number = A = # of protons + # of neutrons

of neutrons =

For a neutral atom, net electrical charge = zero # of electrons = # of protons =

Ch 3.3 Isotopes and Atomic Masses

Isotopes are atoms of an element that have the same number of protons and electrons but different numbers of neutrons.

- isotopes have nearly identical chemical properties
- most elements have at least two isotopes

1	Hydrogen	2	Helium	3	Lithium
$^{2}_{1}$ H 2.	008 amu 99.985% 014 amu 0.015% 016 amu trace		3.016 amu trace 4.003 amu 100%		015 amu 7.42% 016 amu 92.58%
4	Beryllium	5	Boron	6	Carbon
⁹ ₄ Be 9	0.012 amu 100%	and the second	0.013 amu 19.6% 1.009 amu 80.4%	¹³ ₆ C 13	2.000 amu 98.89% 3.003 amu 1.11% 4.003 amu trace
7	Nitrogen	8	Oxygen	9	Fluorine
	4.003 amu 99.63% 5.000 amu 0.37%	¹⁷ ₈ O 10	5.995 amu 99.759% 6.999 amu 0.037% 7.999 amu 0.204%	¹⁹ 9F 18	.998 amu 100%
10	Neon	11	Sodium	12	Magnesium
$^{21}_{10}$ Ne 2	9.992 amu 90.92% 20.994 amu 0.26% 21.991 amu 8.82%	²³ 11Na 2	22.990 amu 100%	²⁵ ₁₂ Mg	23.985 amu78.70%24.986 amu10.13%25.983 amu11.17%

Table 3.2 Elements with Z = 1 through 12

The atomic mass of an element is the calculated weighted average mass for the isotopes.

Chem 101 Grading Scheme

Quizzes	180 points	180/1000 = 0.18
Labs	160 points	160/1000 = 0.16
Exams	<u>660 points</u>	660/1000 = 0.66
	1000	1.00

Sample calculation of weighted average

Quizzes $85 \% \times 0.18 = 15.3 \%$ Labs $95 \% \times 0.16 = 15.2 \%$ Exams $55 \% \times 0.66 = 36.3 \%$ Average % Weighted Average

35	37
C1	C1
17	17
34.96885 amu 75.77 %	36.96590 amu 24.23 % natural abundance
atomic mass of Cl =	= weighted average mass for the isotopes
34.96885 x 75.77/1	00 = 25.60
36.96590 x 24.23/1	00 = 8.957
	35.46 amu
63	65
Cu	Cu
29	29
62.9298 amu	64.9278 amu
Atomio woicht Cu-	-62516 areas

Atomic weight Cu = 63.546 amu Which isotope is the more abundant?

Answer:

Ch. 3.4 The Periodic Law and the Periodic Table Figure 3.2 Dmitri Ivanovich Mendeleev (1834-1907)

In 1869 grouped 63 known elements in 1st periodic table based on atomic weights and similar properties within a group.

Modern periodic law - when elements are arranged in order of increasing atomic number, elements with similar chemical properties occur at periodic intervals.

1.1	gu	пc	5	.+																											
1																															2
3	4																									5	6	7	8	9	10
11	12																									13	14	15	16	17	18
19	20	21															22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
37	38	39															40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116		118

Periods of Elements Figure 3.3

1 1	1 Group IA																	18 Group VIIIA
1	1 H 1.01	2 Group HA			24 Cr 52.0	S	tomic 1 ymbol tomic 1				Nonmet Metals 4		13 Group IIIA	14 Group IVA	15 Group VA	16 Group VIA	17 Group VIIA	2 He 4.00
2	3 Li 6.94	4 Be 9.01			1								5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	3 Group IIIB	4 Group IVB	5 Group VB	6 Group V1B	7 Group VIIB	8 Group ←──	9 Group VIIIB	10 Group →	11 Group IB	12 Group 11B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
Period 4	19 K 39.10	20 Ca 40.08	21 Se 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.41	31 Ga 69.72	32 Ge 72.64	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 ¥ 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 1 126.90	54 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	57 La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (263)	105 Db (262)	106 Sg (266)	107 Bh (267)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 (285)	(284)	114 (289)	(288)	(292)		118 (294)
					58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	65 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97
					90 Th (232)	91 Pa (231)	92 U (238)	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Periods	# of elements	
1	2	H, He
2 + 3	8	
4 + 5	18	
6 + 7	> 18	

Groups of Elements (Ch 3.4 & 3.9)

Groups	IA – VIIIA IA IIA VIIA VIIIA	representative elements alkali metals alkaline earth metals halogens noble gases
	IB – VIIIB Outside rows	transition metals inner transition elements lanthanides & actinides

Ch. 3.5 Metals and Nonmetals

Metals Semimetals/Metalloids Nonmetals

Semimetals/Metalloids

Used in semiconductors. They have physical properties closer to those of metals, whereas their chemical properties are closer to those of nonmetals.

(a) Metals

Fig 3.5

solids at RT, except Hg metallic luster malleable & ductile high thermal & electrical

 $Al \mathop{Pb}_{clockwise from \, left} Sn Zn$

(b) Nonmetals

Fig 3.5

gas or solid at RT, except Br₂ variety of colors solids are brittle poor ______ (except graphite) good ______ (except diamond) nonductile

 $S_8 Br_2 P_4$

Ch 3.6 Electron Arrangements within Atoms Supplemental material: Line Spectra and the Bohr Atom Each element has a unique line spectrum

demo: noble gas discharge tubes

Energies of electrons are quantized = limited to certain values.

An "excited" atom releases energy in form of light when an electron "falls" back to its lower orbit (ground state).

It is now known that electrons do not exist in planet-like orbits but rather they occupy regions of space about the nucleus called orbitals.

Figure 3.8 shapes of orbitals (a) s orbital (b) p orbital (c) d orbital (d) f orbital

The space in which electrons move rapidly about a nucleus is divided into shells, subshells, and orbitals.

Electron Shells

• are specific energy levels

n = 1, 2, 3, 4...

increasing average distance from nucleus increasing average energy of shells

- electrons occupy the lowest shell available
- max # of electrons allowed in a shell =

 $\begin{array}{ll} n = 1 & 2 \ e^{-} \\ n = 2 & 8 \ e^{-} \\ n = 3 & 18 \ e^{-} \end{array} \quad etc.$

Drill question: Where are the electrons of Mg located?

Z = 12 12 p = 12 e- 1^{st} shell (n = 1) = 2 e 2^{nd} shell (n = 2) = 8 e 3^{rd} shell (n = 3) = _____e **Electron Subshells**

- Each shell (n) consists of subshells
- Subshells are designated s, p, d, f
- Energy levels increase s
- Max # of subshells = n (shell) 1^{st} shell n = 1 s 2^{nd} shell n = 2 s + p 3^{rd} shell n = 3 s + p + d 4^{th} shell n = 4 s + p + d + f
- Max # of electrons in subshells s = 2 ep = 6 ed = 10 ef = 14 e

Drill Problems

- 1. What is the max # of electrons in a 5 d subshell? Shell # (n) \rightarrow 5 d \leftarrow subshell max # for d always _____ e, regardless of n
- 2. What is the max # of electrons in the 4th shell? s = 2 p = 6 d = 10 f = 14 total: 32 e also can use: 2 $n^2 = 2 (4)^2 = 32$ e

Electron Orbital is a region of space within a subshell where an electron with a specific energy is most likely to be found.

max of 2 e can be found in 1 orbital

subshell	# of e	# of orbitals
S	2	1
р	6	3
d	10	5
f	14	7

Characteristics of Orbitals:

• Each type has a specific shape.

• Within the same subshell, orbitals differ mainly in orientation.

- Within a given subshell each orbital has the same
- Volume, average distance, and energy increase with increasing shell number (n).
- Electrons move rapidly and "occupy" the entire orbital volume.
- A pair of electrons in the same orbital must be of opposite _____.

Electron Spin

Clockwise "spin up" ↑ Counterclockwise "spin down" ↓ A pair of electrons of opposite spin can occupy the same

orbital but electrons prefer to be alone – Hund's Rule

Ch 3.7 Electron Configurations and Orbital Diagrams

- fill lower energy levels first
- for a given subshell, first place single electrons
- pair electrons only with opposite spins

Electron Configuration for P: $1s^22s^22p^63s^23p^3$

Shorthand representation for P:

$$1s^22s^22p^63s^23p^3 = [Ne]3s^23p^3$$

Electron-Dot Symbols

Electrons in the s & p orbitals of the outermost shell (valence shell) are called valence electrons and can be shown in an electron-dot symbol or Lewis symbol (also see Chapter 4.2)

For the isolated (non-bonded) carbon atom:

4 valence electrons in the 2nd shell

2 valence e in s are paired, 2 e in p are unpaired

- all 4 sides in the symbol are equal
- unpaired electrons must be shown as single dots
- paired electrons must be shown as pairs

For the isolated (non-bonded) oxygen atom: valence electrons in the 2nd shell valence e paired, _____ e unpaired

Note: The group number of the representative elements corresponds to the ______ of valence electrons in the element

Fig 3.10 Order of filling electron subshells

Figure 3.11 Mnemonic device for remembering subshell filling order

Ch 3.8 The Electronic Basis for the Periodic Law and the Periodic Table

₃ Li	$1s^22s^1$
11Na	$1s^{2}2s^{2}2p^{6}3s^{1}$
19K	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{1}$
37Rb	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{6}5s^{1}$

Group IA _____ valence electron in s orbital

Figure 3.12 Electron configuration and the position of elements in the periodic table.

						fare	a						
f^1	f^2	f^3	f^4	f^5	f^6	f^7	f^8	f^9	f^{10}	f^{11}	f^{12}	f^{13}	f^{14}
_					1	4 colı	imns	-					•

Supplemental Material & Ch 5.9

Properties of Atoms and the Periodic Table

A. Chemical properties of an element are related to the position of an element in the periodic table.

demo: compare reactivity of Li, Na, K, Ca, Mg with H₂O

same		same	similar
group	=	valence =	chemical
		electrons	properties

B. Periodic trends in metallic character for representative elements.

- Metallic character increases with increasing shell number (n) in a group.
- It decreases with increasing number of valence electrons.

C. Periodic trends in atomic radii (pm) for representative elements.

H 37	IIA		IIIA	IVA	VA	VIA	VIIA	He 50
Li	Be		B	C	N	0	F	Ne
152	111		88	77	70	66	64	70
Na	Mg	-	Al	Si	P	S	C1	Ar
186	160		143	117	110	104	99	94
K	Ca		Ga	Ge	As	Se	Br	Kr
231	197		122	122	121	117	114	109
Rb	Sr		In	Sn	Sb	Te	I	Xe
244	215		162	140	141	137	133	130
65	Ba		Tl	Pb	Bi	Po	At	Rn
262	217		171	175	146	150	140	140

- Within a group, radii increase with increasing shell number (i.e. increasing distance from the nucleus).
- Across a period, radii decrease as the number of protons in the nucleus increase (i.e. increasing nuclear charge).

D. The type and number of bonds an element forms are related to its position in the periodic table.

Electronegativity is a measure of the relative attraction that an atom has for the shared electrons in a covalent bond.

Figure 5.11 in Stoker

E. Periodic trends in ionization energies for representative elements.

Li•	\rightarrow	Li ⁺	+	e
neutral atom		positive ion		electron
		cation		

Ionization of atoms requires Ionization Energy (I.E.)

- Within a period I.E. increases with increasing Z.
- Down a group I.E. decreases with increased atomic radius.