

Title	Steric influence of N-phosphorus-arylimines on the rhodium- catalyzed asymmetric arylation
Author(s)	Hao, Xinyu; Chen, Qian; Yamada, Ken-ichi; Yamamoto, Yasutomo; Tomioka, Kiyoshi
Citation	Tetrahedron (2011), 67(35): 6469-6473
Issue Date	2011-09
URL	http://hdl.handle.net/2433/145977
Right	© 2011 Elsevier Ltd.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Steric influence of *N*-phosphorus-arylimines on the rhodium-catalyzed asymmetric arylation[#]

Xinyu Hao^a, Qian Chen^a, Ken-ichi Yamada^a, Yasutomo Yamamoto^b and Kiyoshi Tomioka^{ab}*

^aGraduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Sakyo Kyoto 606-8501, Japan ^bFaculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo Kyotanabe 610-0395, Japan

[#] Dedicated to Prof. Satoshi Omura on the celebration of Tetrahedron Prize 2011. * Corresponding author. Tel.: +81-774-65-8676; fax: +81-774-65-8658; e-mail: tomioka@pharm.kyoto-u.ac.jp

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Bulkiness Hydrolysis Enantioselectivity Imine Boroxine

1. Introduction

Diarylmethylamines are key building blocks and potential intermediates for some biologically significant pharmaceuticals.¹ Our studies directed towards the catalytic asymmetric addition reaction of an N-PMP (4-methoxyphenyl)-imine were disclosed first in 1990 by using 5 mol% of chiral aminoether as a catalytic controller for the reaction of organolithium reagents.² This strategy³ was successfully extended to the chiral diether⁴ or aminoether⁵-controlled asymmetric Mannich-type addition of lithium ester enolate to imines. Chiral amidophosphanecopper(II) catalyst was the second generation for asymmetric alkylation of N-sulfonylimine with diorganozinc reagents.⁶⁷ The continuing studies of catalytic carbon-carbon bond forming reaction resulted in the amidophosphane-rhodium(I) complexcatalyzed asymmetric arylation of N-Ts (toluenesulfonyl)arylimine with arylboronic acids as an aryl group source in 2004,⁸ in which *ortho*-trimethylsilyl substituent of arylimine was the key for high enantioselectivity.⁹ Then, the more general asymmetric arylation of a N-Dpp (diphenylphosphonyl)arylimine 1 was developed by relying on chiral amidophosphane 2a, tuned sterically by introducing 2-methyl substituent on diphenyl-phosphane group as one of the keys which was anticipated by the stereochemical analysis of an imine-Rh(I)amidophosphane complex (Scheme 1).¹⁰ Produced N-Dpp-amide was easily deprotected to the corresponding free amine by mild acidic hydrolysis, being contrasting to the N-Ts protecting group

ABSTRACT

Examination of the rhodium-catalyzed asymmetric arylation of benzaldehyde-imines bearing ethoxy, isopropoxy, phenyl, cyclohexyl, 3,5-xylyl, and 2,4,6-mesityl *N*-phosphorus activating/protecting groups revealed that bulky *N*-phosphorus groups retarded the arylation and at the same time prevented the competitive hydrolysis of an imine. Although the level of enantioselectivity was dependent favorably on the bulkiness ranging from 88% ee to 53% ee, the reactivity was drastically decreased along with bulkiness ranging from 95% to 3%.

2009 Elsevier Ltd. All rights reserved.

which requires rather harsh conditions to remove off.⁹ On the contrary, the major problem in the arylation of *N*-Dpp (diphenyl-phosphonyl)-arylimine was the competitive imine hydrolysis that was overcome by using water-removing conditions^{10a} or water-free conditions^{10b}. One of the purposes of the present study is the screening of phosphorus *N*-activating/protecting groups that prevent competitive imine hydrolysis.

Scheme 1. Sterically tuned-up amidomonophosphane 2a-Rh(I)-catalyzed arylation under water-removing or water-free conditions.

In our hypothetical model the C=N double bond of *N*-Dppimine **1** is expected to coordinate to rhodium(I) on the *re*-face as shown in **A** to give the product with the observed *S*-configuration (Figure 1).^{10a} Coordination on the *si*-face (**B**) is unfavorable due to steric repulsion between the axial phenyl of the phosphorus (**2b**) and the phenyl group of Dpp. This analysis indicated that the bulkiness of the phenyl group on the phosphorus atom of **a** ligand favors **A** over **B**, and therefore increased bulkiness around

Tetrahedron

this ligand part is expected to improve the enantioselectivity of the reaction.

Figure 1. Imine-Rh(I)-amidophosphane 2b complexes A and B.

In order to experimentally confirm this hypothetical model the steric modification of phosphane ligand as shown in 2a was found to be one certain approach, and examination of the steric influence of imine *N*-phosphorous part should be another possibility that is also another purpose of the present study. We describe the steric influence of *N*-phosphous-arylimines on reactivity, competitive hydrolysis and enantioselectivity.

2. Influences of aryl substituents on reactivity, competitive hydrolysis and enantioselectivity

At first the influence of aryl substituent of the N-Dpparylimines 1 was examined on the reactivity and enantioselectivity under the established conditions⁹ for *N*-Ts-imines by using 6.6 mol% of our prototype diphenylphosphino-ligand 2b, 6 mol% of Rh(I) and 1.67 equiv of 4-phenylphenylboroxine as an aryl source in n-propanol at 60 °C for 2-5 h (Table 1). 4-Phenylphenylation of benzaldehyde-imine 1a and bulkier 2trimethylsilylbenzaldehyde-imine 1b gave the corresponding addition product 3a with 70% ee in good 95% yield and 3b with higher 81% ee in 74% yield, respectively, as has been described^{10a} (entries 1 and 2). The enantioselectivity was determined by chiral stationary phase HPLC (See Experimental). 1-Naphthaldimine 1c afforded 3c with 78% ee in 93% yield (entry 3). 4-Methylbenzaldehyde-imine 1d was converted to the corresponding product 3d with 69% ee in 91% yield (entry 4). Such small reactivity and moderate enantioselectivity dependencies on the bulkiness of aryl substituent indicated the usefulness of the model **A** and **B** where steric interaction may be critical at the N-protecting/activating site. Additional support to this hypothetical model is the fact that benzaldehyde-imine bearing a smaller N-Ts group was converted to the corresponding amide with somewhat poorer 66% ee in 83% yield,⁹ indicating that *N*-Dpp should be a little bit bulkier than *N*-Ts group.

The reaction of **1a** was further examined at lower 40 °C for prolonged 9 h to give **3a** with 59% ee in 36% yield. The reaction in a different solvent, dioxane, at 100 °C for 2 h gave **3a** with 56% ee in 65% yield, indicating *n*-propanol at 60°C is the suitable conditions.

 Table 1. Rh(I)-2b-catalyzed asymmetric 4-phenylphenylation of imines 1

3. Preparation of N-phosphorus imines

Other benzaldehyde-imines 6 bearing ethoxy, isopropoxy, cyclohexyl, 3,5-xylyl, and 2,4,6-mesityl *N*-phosphorus groups, 6a,¹¹ 6b-e,¹² were prepared by the condensation of benzaldehyde 4 or its acetal 7 with the corresponding amides $5a^{11}$, $5b^{13}$, $5c^{12}$, $5d^{14}$, and $5e^{15}$ (Scheme 2).

Scheme 2. Preparation of imine 6a-e bearing *N*-phosphorus activating/protecting groups.

4. Asymmetric 4-phenylphenylation of N-phosphorus imines

Diethoxyphosphorimide 6a and isopropoxy derivative 6b were converted to the corresponding products 8a with 61% ee in 74% yield and 8b with 53% ee in 76% yield, suggesting that alkoxy substituents on the phosphorus is not bulky enough than a phenyl group in 1a (Table 2, entries 1-3). It is important to note the formation of benzaldehyde in each 15% yields by competitive hydrolysis of imines 6a and 6b. Dicyclohexyl-phosphorimide 6c was better than 1a with regards to enantioselectivity, 78% ee vs 70% ee, however, the reactivity is rather poorer than that of 1a to give 8c in only 10% yield and recover 6c in 81% yield without hydrolysis after 22 h heating at 100 °C (entry 4). Although 3,5xylyl phosphorimide 6d was converted to 8d in 42% yield at 60 °C for 20 h, the enantioselectivity was 67% ee and 6d was recovered in 40% yield without substantial detection of benzaldehyde (entry 5). Imine 6e bearing the bulkiest 2,4,6mesitylphosphorus group was converted to 8e with expectedly high 88% ee. However, the yield was unsatisfactorily low of only 3% after 8 h at 100 °C and starting imine 6e was recovered in 89% yield without hydrolysis (entry 6).¹⁶

Table 2. 4-Phenylphenylation of benzaldehyde-imines **6** with various phosphorus *N*-activating/protecting groups.

^a Recovery % of benzaldehyde. ^b The data is duplicated from entry 1, Table 1 for easy comparison. ^c Recovery % of starting imine **6** without hydrolysis.

5. Conclusion

Possibility in the control of reactivity, enantioselectivity and competitive hydrolysis of *N*-phosphorus arylimine was pursued by examining the steric influencies of *N*-phosphorus groups on arylation. Although the bulky cyclohexyl and 2,4,6-mesityl *N*-phosphous groups retarded hydrolysis, but arylation was also blocked. As has been expected from imine-Rh(I)-amido-phosphane complex model, the bulkiest mesityl derivative gave the highest enantioselectivity of 88% although the yield was poorest. These clearly indicated the reality and utility of imine-Rh(I)-amidophosphane complex model as the fundamental of our further approach.

6. Experimental

6.1. General All NMR was recorded at 500 MHz (¹H), 125 MHz (¹³C), and 202 MHz (³¹P) in CDCl₃. Chemical shift was expressed in δ ppm. Specific rotation was measured in CHCl₃.

6.2. P,P-Diphenyl-N-(2-(trimethylsilyl)benzylidene)phosphi-

nic amide (1b).¹⁷ Colorless oil. ¹H NMR: 0.33 (9H, s), 7.40-7.55 (8H, m), 7.64 (1H, d, J = 6.1 Hz), 7.92 (4H, dd, J = 7.9, 11.7 Hz), 8.33 (1H, d, J = 7.6 Hz), 9.59 (1H, d, J = 32.4 Hz). ¹³C NMR: 0.7 (CH₃), 128.46 (CH), 128.51 (d, J = 12.4 Hz, CH), 129.4 (CH), 131.7 (d, J = 8.7 Hz, CH), 131.8 (d, J = 2.1 Hz, CH), 132.2 (CH), 132.8 (d, J = 126 Hz, C), 135.0 (CH), 140.9 (C), 144.8 (C), 174.7 (d, J = 7.2 Hz, CH). IR (KBr): 1585, 1123, 702, 621 cm⁻¹. EIMS *m/z*: 377 (M⁺). Anal. Calcd for C₂₂H₂₄NOPSi: C, 70.00; H, 6.41; N, 3.71. Found: C, 69.72; H, 6.65; N, 3.54.

6.3. Diisopropyl benzylidenephosphoramidate (6b).¹² Colorless oil. ¹H NMR: 1.35 (6H, d, J = 6.1 Hz), 1.39 (6H, d, J = 6.1 Hz), 4.70-4.85 (2H, m), 7.45-7.55 (2H, m), 7.58 (1H, m), 7.90-8.00 (2H, m), 9.08 (1H, d, J = 32.4 Hz). ¹³C NMR: 23.7 (CH₃), 23.9 (CH₃), 72.0 (d, J = 6.2 Hz, CH₃), 128.9 (CH), 130.4 (CH), 133.8 (CH), 135.5 (d, J = 29.9 Hz, C), 175.1 (d, J = 5.2 Hz, CH). IR (KBr): 1631, 995 cm⁻¹. EIMS *m/z*: 269 (M⁺). HRMS-EI *m/z*: Calcd for C₁₃H₂₀NO₃P, 269.1181; Found, 269.1178.

6.4. *N*-Benzylidene-*P*,*P*-dicyclohexylphosphinic amide (6c).¹² Colorless solid of mp 127-128 °C. ¹H NMR: 1.15-1.55 (10H, m), 1.60-1.71 (2H, m), 1.72-1.88 (6H, m), 1.90-2.10 (4H, m), 7.45-7.55 (2H, m), 7.56 (1H, m), 7.91 (2H, d, J = 7.6 Hz), 9.06 (1H, d, J = 29.3 Hz). ¹³C NMR: 24.8 (d, J = 3.1 Hz, CH₂), 25.3 (d, J = 4.1 Hz, CH₂), 25.9 (CH₂), 26.2 (CH₂), 26.3 (CH₂), 26.4 (CH₂), 34.4 (CH), 35.0 (CH), 128.9 (CH), 129.8 (CH), 133.1 (CH), 136.0 (d, J = 22.6 Hz, C), 174.2 (d, J = 9.2 Hz, CH). ³¹P NMR: 47.3. IR

(KBr): 1627, 1180 cm⁻¹. EIMS m/z: 317 (M⁺). HRMS-EI m/z: Calcd for C₁₉H₂₈NOP, 317.1909; Found, 317.1914.

6.5. *N*-Benzylidene-*P*,*P*-bis(3,5-xylyl)phosphinic amide (6d).¹² Colorless solid of mp 75-76 °C. ¹H NMR: 2.33 (12H, s), 7.12 (2H, m), 7.45-7.65 (7H, m), 7.02 (2H, d, J = 7.3 Hz), 9.30 (1H, d, J = 31.8 Hz). ¹³C NMR: 21.2 (CH₃), 129.1 (d, J = 25.7 Hz, CH), 129.2 (CH), 130.2 (CH), 132.7 (d, J = 126 Hz, C), 133.5 (CH), 133.6 (d, J = 3.1 Hz, CH), 136.0 (d, J = 24.7 Hz, C), 138.1 (C), 138.2 (C), 173.3 (d, J = 8.2 Hz, CH). IR (KBr): 1126, 694 cm⁻¹. EIMS *m/z*: 361 (M⁺). HRMS-EI *m/z*: Calcd for C₂₃H₂₄NOP, 361.1596; Found, 361.1601.

6.6. *N*-Benzylidene-*P*,*P*-bis(2,4,6-mesityl)phosphinic amide (**6e**).¹² Colorless solid of mp 149-150 °C. ¹H NMR: 2.25 (6H, s), 2.42 (12H, s), 6.82 (2H, s), 6.83 (2H, s), 7.48 (2H, m), 7.54 (1H, m), 7.93 (2H, d, J = 7.9 Hz), 9.30 (1H, d, J = 33.0 Hz). ¹³C NMR: 20.9 (CH₃), 23.0 (d, J = 3.1 Hz, CH₃), 128.9 (CH), 129.2 (d, J = 121 Hz, C), 130.2 (CH), 130.8 (d, J = 13.4 Hz, CH), 133.1 (CH), 136.6 (d, J = 24.7 Hz, C), 140.9 (d, J = 3.1 Hz, C), 142.0 (d, J = 10.3 Hz, C), 171.4 (d, J = 7.2 Hz, CH). IR (KBr): 1454, 1377, 825 cm⁻¹. EIMS *m/z*: 389 (M⁺). Anal. Calcd for C₂₅H₂₈NOP: C, 77.10; H, 7.25; N, 3.60. Found: C, 77.37; H, 7.27; N, 3.54.

6.7. General procedure for the catalytic asymmetric 4-phenylphenylation of an imine with boroxine: Under argon atmosphere, a reaction flask was charged with Rh(acac)(C²H⁴)² (15.5 mg, 0.06 mmol), **2b** (31.0 mg, 0.066 mmol), imine **1** (**6**) (1 mmol), and (4-PhC₆H₄BO)³ (902 mg, 1.67 mmol). To the flask was added *n*-PrOH (2.5 mL). The reaction mixture was put in a preheated oil bath (60 °C or 100 °C), and then stirred for 2 to 22 h at the same temperature. After dilution with AcOEt, the mixture was washed with brine, dried over Na²SO⁴, and then concentrated. The resulting residue was purified through silica gel column chromatography to give **3** (**8**).

6.8. (-)-(S)-N-[Biphenyl-4-yl(phenyl)methyl]-P,P-diphenyl-

phosphinic amide (3a). Chromatography (hexane/Acetone = 5/1) gave **3a** (438 mg, 95%) as colorless solid of mp 190-191 °C. $[α]^{25}_{D} -27.0$ (c 0.56). 70% ee (HPLC, Daicel Chiralpak AD, hexane/*i*-PrOH = 4/1, 1.0 mL/min, 254 nm, major 14.2 min and minor 17.4 min). ¹H NMR: 3.66 (1H, dd, J = 6.4, 9.8 Hz), 5.50 (1H, dd, J = 9.8, 11.6 Hz), 7.24-7.35 (8H, m), 7.36-7.40 (4H, m), 7.41-7.49 (4H, m), 7.52 (2H, d, J = 8.2 Hz), 7.57 (2H, d, J = 8.2 Hz), 7.84-7.88 (4H, m). ¹³C NMR: 58.3 (CH), 127.1 (CH), 127.2 (CH), 127.3 (CH), 127.6 (CH), 128.1 (CH), 128.4 (d, J = 13.4 Hz, CH), 132.31 (d, J = 129 Hz, C), 132.39 (d, J = 8.8 Hz, CH), 132.41 (d, J = 129 Hz, C), 140.1 (C), 140.8 (C), 142.4 (d, J = 4.1 Hz, C), 143.3 (d, J = 4.1 Hz, C). ³¹P NMR: 22.3. IR (KBr): 1184, 725, 694 cm⁻¹. EIMS m/z: 459 (M⁺). Anal. Calcd for C₃₁H₂₆NOP: C, 81.03; H, 5.70; N, 3.05. Found: C, 80.75; H, 5.87; N, 3.08.

6.9. (-)-N-[Biphenyl-4-yl-(2-trimethylsilylphenyl)methyl]di-

Chromatography phenylphosphinic amide (**3b**). (hexane/Acetone = 5/1) gave **3b** (395 mg, 74%) as colorless solid of mp 211-212 °C. $[\alpha]_{D}^{25}$ –27.6 (c 1.00). 81% ee (HPLC, Daicel Chiralpak OD-H, hexane/i-PrOH = 10/1, 1.0 mL/min, 254 nm, major 7.8 min and minor 14.9 min). ¹H NMR: -0.17 (9H, s), 3.74 (1H, dd, J = 6.1, 9.8 Hz), 5.83 (1H, dd, J = 9.8, 11.0 Hz), 7.25 (1H, m), 7.32-7.36 (5H, m), 7.39-7.44 (5H, m), 7.47-7.49 (4H, m), 7.53-7.57 (3H, m), 7.73-7.77 (3H, m), 7.91-7.95 (2H, m). ¹³C NMR: 0.04 (CH₃), 56.7 (CH), 126.5 (CH), 127.0 (CH), 127.1 (CH), 127.3 (CH), 128.3 (d, J = 12.4 Hz, CH), 128.6 (d, J = 12.4 Hz, CH), 128.8 (CH), 129.3 (CH), 129.4 (CH), 131.7 (CH), 131.80 (CH), 131.83 (d, J = 129 Hz, C), 131.9 (CH), 132.5 (d, J = 129 Hz, C), 133.1 (d, J = 10.3 Hz, CH), 134.8 (CH), 138.4 (C), 140.0 (C), 140.7 (C), 143.6 (d, J= 3.1 Hz, C), 143.6 (d, J = 4.1 Hz, C). ³¹P NMR: 20.2. IR (KBr): 1126, 845 cm⁻¹. EIMS *m/z*: 531

(M⁺). HRMS-EI m/z: Calcd for C₃₄H₃₄NOPSi: 531.2147. Found: 531.2153.

6.10. (-)-N-[Biphenyl-4-yl(naphthylmethyl)diphenylphos-

phinic amide (3c). Chromatography (hexane/Acetone = 5/1) gave 3c (473 mg, 93%) as colorless solid of mp 228-229 °C. $[\alpha]_{D}^{25}$ –12.5 (c 1.04). 78% ee (HPLC, Daicel Chiralpak OD-H, hexane/i-PrOH = 4/1, 1.0 mL/min, 254 nm, major 6.8 min and minor 10.4 min). ¹H NMR: 3.76 (1H, dd, J = 6.8, 9.5 Hz), 6.23 (1H, dd, J = 9.5, 12.5 Hz), 7.30-7.34 (2H, m), 7.37-7.43 (9H, m), 7.45-7.48 (3H, m), 7.50-7.55 (3H, m), 7.70 (1H, m), 7.72-7.91 (8H, m). ¹³C NMR: 55.6 (CH), 123.9 (CH), 125.3 (CH), 125.4 (CH), 125.6 (CH), 126.2 (CH), 127.0 (CH), 127.3 (CH), 128.3 (CH), 128.4 (d, J = 6.2 Hz, CH), 128.5 (d, J = 12.4 Hz, CH), 128.7 (CH), 128.8 (CH), 130.5 (C), 131.82 (d, J = 127 Hz, C), 131.84 (d, J = 2.1 Hz, CH), 131.9 (d, J= 2.1 Hz, CH), 132.0 (d, J = 9.3 Hz, CH), 132.4 (d, J = 9.5 Hz, CH), 132.7 (d, J = 127 Hz, C), 134.0 (C), 138.4 (d, J= 5.2 Hz, C), 140.0 (C), 140.7 (C), 142.4 (d, J= 3.1 Hz, C). IR (KBr): 1184, 752, 698 cm⁻¹. EIMS m/z: 509 (M⁺). Anal. Calcd for C₃₅H₂₈NOP: C, 82.49; H, 5.54; N, 2.75. Found: C, 82.23; H, 5.84; N, 2.63.

6.11. (-)-*N*-[Biphenyl-4-yl-(4-methylphenyl)methyl]diphenyl**phosphinic amide** (3d). Chromatography (hexane/Acetone = 5/1) gave **3d** (429 mg, 91%) as colorless solid of mp 187-188 °C. $[\alpha]_{D}^{22}$ -16.3 (c 1.09). 69% ee (HPLC, Daicel Chiralpak AD, hexane/i-PrOH = 4/1, 1.0 mL/min, 254 nm, major 17.0 min and minor 19.2 min). ¹H NMR: 2.33 (3H, s), 3.64 (1H, dd, J = 6.7, 10.1 Hz), 5.47 (1H, dd, J = 10.1, 11.3 Hz), 7.12 (2H, d, J = 7.9 Hz), 7.19 (2H, d, J = 7.9 Hz), 7.32-7.41 (7H, m), 7.42-7.48 (4H, m), 7.49 (2H, d, J = 7.9 Hz), 7.56 (2H, d, J = 7.9 Hz), 7.84-7.88 (4H, m). ¹³C NMR: 21.0 (CH₃), 58.1 (CH), 127.1 (CH), 127.2 (CH), 127.3 (CH), 127.5 (CH), 128.0 (CH), 128.4 (d, J = 12.4 Hz, CH), 128.8 (CH), 129.3 (CH), 131.9 (CH), 132.3 (d, J = 8.8 Hz, CH), 132.36 (d, J = 8.8 Hz, CH), 132.39 (d, J = 129 Hz, C), 132.5 (d, J = 129 Hz, C), 136.9 (C), 140.0 (C), 140.4 (d, J = 5.2 Hz, C), 140.8 (C), 142.6 (d, J = 4.1 Hz, C). ³¹P NMR: 22.2. IR (KBr): 1184, 725, 694 cm⁻¹. EIMS *m/z*: 473 (M⁺). Anal. Calcd for C32H28NOP: C, 81.16; H, 5.96; N, 2.96. Found: C, 80.99; H, 5.91; N, 2.88.

6.12. (–)-**Diethyl** [**biphenyl-4-yl(phenyl)methyl]phosphoramidate** (**8a**). Chromatography (hexane/AcOEt = 4/1) gave **8a** (294 mg, 74%) as colorless solid of mp 124-125 °C. $[\alpha]^{24}_{D}$ –13.5 (c 0.48). 61% ee (HPLC, Daicel Chiralpak OD-H, hexane/*i*-PrOH = 15/1, 1.0 mL/min, 254 nm, major 7.9 min and minor 10.2 min). ¹H NMR: 1.19 (3H, dt, J = 0.9, 7.0 Hz), 1.20 (3H, dt, J = 0.9, 7.0 Hz), 3.38 (1H, dd, J = 9.8, 9.8 Hz), 3.83-3.91 (2H, m), 3.98-4.06 (2H, m), 5.47 (1H, dd, J = 9.8, 9.8 Hz), 7.27-7.36 (8H, m), 7.43 (2H, m), 7.54-7.58 (4H, m). ¹³C NMR: 15.9 (d, J = 3.1 Hz, CH₃), 16.0 (d, J = 3.1 Hz, CH₃), 59.0 (CH), 62.4 (d, J = 3.1 Hz, CH₂), 127.1 (CH), 127.2 (CH), 127.3 (CH), 127.4 (CH), 127.6 (CH), 128.6 (CH), 128.8 (CH), 140.2 (C), 140.7 (C), 142.3 (d, J = 5.1 Hz, C), 143.2 (d, J = 5.1 Hz, C). ³¹P NMR: 4.55. IR (KBr): 1223, 763, 702 cm⁻¹. EIMS *m/z*: 395 (M⁺). Anal. Calcd for C₂₃H₂₆NO₃P: C, 69.86; H, 6.63; N, 3.54. Found: C, 70.02; H, 6.73; N, 3.53.

6.13. (–)-**Diisopropyl [biphenyl-4-yl(phenyl)methyl]phosphoramidate (8b).** Chromatography (hexane/AcOEt = 4/1) gave **8b** (320 mg, 76%) as a white solid of mp 126-127 °C. $[\alpha]^{25}_{D}$ –9.8 (c 1.05). 53% ee (HPLC, Daicel Chiralpak OD-H, hexane/*i*-PrOH = 15/1, 1.0 mL/min, 254 nm, major 4.6 min and minor 5.5 min). ¹H NMR: 1.10 (3H, d, J = 6.1 Hz), 1.11 (3H, d, J = 6.1 Hz), 1.29 (6H, d, J = 6.1 Hz), 3.29 (1H, dd, J = 9.8, 9.8 Hz), 4.52-4.55 (2H, m), 5.47 (1H, dd, J = 9.8, 9.8 Hz), 7.26 (1H, m), 7.31-7.36 (7H, m), 7.41-7.44 (2H, m), 7.53-7.58 (4H, m). ¹³C NMR: 23.4 (d, J = 5.1 Hz), 23.5 (d, J = 5.1 Hz, CH₃), 23.7 (d, J = 4.1 Hz, CH₃), 58.9 (CH), 71.0 (d, J = 5.1 Hz, CH), 127.1 (CH), 127.2 (CH), 127.3 (CH), 127.7 (CH), 128.5 (CH), 128.8 (CH), 140.1

(C), 140.7 (C), 142.6 (d, J = 5.1 Hz, C), 143.4 (d, J = 5.1 Hz, C). ³¹P NMR: 2.64. IR (KBr): 1254, 891, 759 cm⁻¹. EIMS *m/z*: 423 (M⁺). Anal. Calcd for C₂₅H₃₀NO₃P: C, 70.90; H, 7.14; N, 3.31. Found: C, 70.70; H, 7.15; N, 3.25.

6.14. (–)-*N*-[**Biphenyl-4-yl(phenyl)methyl**] **dicyclohexylphosphinic amide (8c).** Chromatography (hexane/Acetone = 5/1) gave **8c** (48 mg, 10%) as colorless solid of mp 245-246 °C. $[\alpha]^{23}_{D}$ –15.3 (c 0.30). 78% ee (HPLC, Daicel Chiralpak AD, hexane/*i*-PrOH = 15/1, 1.0 mL/min, 254 nm, major 46.7 min and minor 42.2 min). ¹H NMR: 1.10-1.16 (6H, m), 1.20-1.50 (4H, m), 1.60-1.80 (10H, m), 1.85-1.99 (2H, m), 2.69 (1H, dd, J = 9.5, 9.5 Hz), 5.71(1H, dd, J = 9.5, 9.5 Hz), 7.32-7.39 (8H, m), 7.43 (2H, t, J = 7.9 Hz), 7.52-7.61 (4H, m). ¹³C NMR: 25.38 (CH₂), 25.40 (CH₂), 25.71 (CH₂), 25.74 (CH₂), 25.77 (CH₂), 25.9 (CH₂), 26.4 (d, J = 3.1 Hz, CH₂), 26.5 (d, J = 4.1 Hz, CH₂), 36.3 (d, J = 11.3 Hz, CH), 37.0 (d, J = 12.4 Hz, CH), 127.1 (CH), 127.2 (CH), 127.3 (CH), 127.6 (CH), 128.1 (CH), 128.5 (CH), 128.8 (CH), 139.9 (C), 140.8 (C), 143.4 (d, J = 3.1 Hz, C), 144.2 (d, J = 3.1 Hz, C). ¹P NMR: 45.03 IR (KBr): 1164, 702 cm⁻¹. EIMS *m/z*: 471 (M⁺). HRMS-EI *m/z*: Calcd for C₃₁H₃₈NOP: 471.2691. Found: 471.2684.

6.15. (-)-N-[Biphenyl-4-yl(phenyl)methyl] bis(3,5-xylyl)phosphinic amide (8d). Chromatography (hexane/ $Et_2O = 5/1$) gave **8d** (218 mg, 42%) as colorless solid of mp 218-219 °C. $[\alpha]_{D}^{23}$ – 17.4 (c 1.00). 67% ee (HPLC, Daicel Chiralpak AD, hexane/i-PrOH = 15/1, 1.0 mL/min, 254 nm, major 17.5 min and minor 20.2 min). ¹H NMR: 2.249 (6H, s), 2.254 (6H, s), 3.60 (1H, dd, J = 6.7, 10.1 Hz), 5.49 (1H, dd, J = 10.1, 11.9 Hz), 7.07 (2H, m), 7.25-7.35 (8H, m), 7.42-7.45 (6H, m), 7.52-7.58 (4H, m). ¹³C NMR: 21.1 (CH₃), 58.2 (CH), 127.1 (d, J = 10.3 Hz, CH), 127.3 (d, J = 8.2 Hz, CH), 127.7 (CH), 128.2 (CH), 128.5 (CH), 128.8 (CH), 129.9 (d, J = 5.1 Hz, CH), 130.0 (d, J = 5.1 Hz, CH), 133.56 (CH), 133.59 (CH), 138.1 (d, J = 11.3 Hz, C), 140.0 (C), 140.9 (C), 142.7 (d, J = 3.1 Hz, C), 143.5 (d, J = 5.1 Hz, C). ³¹P NMR: 22.17. IR (KBr): 1195, 825, 652 cm⁻¹. EIMS *m/z*: 515 (M^+) . HRMS-EI *m/z*: Calcd for C₃₅H₃₄NOP: 515.2378. Found: 515.2374.

6.16. (-)-N-[Biphenyl-4-yl(phenyl)methyl] bis(2,4,6-mesityl)phosphinic amide (8e). Chromatography (hexane/Acetone = 5/1) gave 8e (14 mg, 3%) as colorless solid of mp 122-123 °C. $\left[\alpha\right]_{D}^{23}$ –18.1 (c 0.35). 88% ee (HPLC, Daicel Chiralpak AD, hexane/i-PrOH = 4/1, 1.0 mL/min, 254 nm, major 11.5 min and minor 27.4 min). ¹H NMR: 2.23 (3H, s), 2.24 (3H, s), 2.27 (6H, s), 2.28 (6H, s), 3.68 (1H, dd, J = 5.2, 9.2 Hz), 5.34 (1H, dd, J = 9.2, 10.4 Hz), 6.74 (2H, s), 6.75 (2H, s), 7.19-7.27 (7H, m), 7.32 (1H, t, J = 7.6 Hz), 7.42 (2H, t, J = 7.6 Hz), 7.46 (2H, d, J = 8.3 Hz), 7.54 (2H, d, J = 7.3 Hz). ¹³C NMR: 20.9 (CH₃), 22.92 (CH₃), 22.96 (CH₃), 22.99 (CH₃), 59.9 (CH), 127.0 (CH), 127.1 (CH), 127.2 (CH), 127.5 (CH), 127.9 (CH), 128.4 (CH), 128.7 (CH), 129.9 (d, J = 121 Hz, C), 131.0 (d, J = 122 Hz, C), 130.9 (d, J = 12.4 Hz, CH), 139.8 (C), 140.45 (C), 140.48 (C), 140.51 (C), 140.9 (C),141.4 (d, J = 10.3 Hz, C), 141.6 (d, J = 10.5 Hz, C), 143.0 (d, J = 5.1 Hz, C), 143.8 (d, J = 5.1 Hz, C). IR (KBr): 1161, 721, 648 cm⁻¹. EIMS m/z: 544 (M+1). Anal. Calcd for C37H38NOP: C, 81.74; H, 7.04; N, 2.58. Found: C, 81.91; H, 7.18; N, 2.53.

Acknowledgments

This research was partially supported by a Grant-in-Aid for Young Scientists (B) and a Grant-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References and notes

¹ (a) Spencer, C. M.; Foulds, D.; Peters, D. H. Drugs 1993, 46, 1055–1080.
(b) Bishop, M. J.; McNutt, R. W. Bioorg. Med. Chem. Lett. 1995, 5, 1311–1314. (c) Sakurai, S.; Ogawa, N.; Suzuki, T.; Kato, K.; Ohashi, T.; Yasuda, S.; Kato, H.; Ito, Y. Chem. Pharm. Bull. 1996, 44, 765–777.

² (a) Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. *Tetrahedron Lett.* **1990**, *31*, 6681-6684.

³ Tomioka, K. Synthesis, 1990, 541-549.

⁴ (a) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. J. Am. Chem. Soc. **1997**, 119, 2060–2061. (b) Kambara, T.; Tomioka, K. J. Org. Chem. **1999**, 64, 9282–9285.

⁵ Tomioka, K.; Fujieda, H.; Hayashi, S.; Hussein, M. A.; Kambara, T.; Nomura, Y.; Kanai, M.; Koga, K. *Chem. Commun.* **1999**, 715-716.

⁶ (a) For review of copper-catalyzed reaction see: Yamada, K.; Tomioka, K. *Chem. Rev.* **2008**, *108*, 2874-2886. (b) Fujihara, H.; Nagai, K.; Tomioka, K. *J. Am. Chem. Soc.* **2000**, *122*, 12055–12056. (c) Soeta, T.; Nagai, K.; Fujihara, H.; Kuriyama, M.; Tomioka, K. *J. Org. Chem.* **2003**, *68*, 9723–9727.

⁷ For dimethylzinc-mediated radical addition of acetal to enantiomerically pure imine, see: (a) Akindele, T.; Yamada, K.; Tomioka, K. *Acc. Chem. Res.* **2009**, *42*, 345-355. (b) Akindele, T.; Yamamoto, Y.; Maekawa, M.; Umeki, H.; Yamada, K.; Tomioka, K. *Org. Lett.* **2006**, *8*, 5729-5732. (c) Akindele, T.; Yamada, K.; Sejima, T.; Maekawa, M.; Yamamoto, Y.; Nakano, M.; Tomioka, K. *Chem. Pharm. Bull.* **2010**, *58*, 265-269.

⁸ Select examples of Rh-catalyzed asymmetric additions of arylboron reagents to imines: (a) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. *J. Am. Chem. Soc.* **2004**, *126*, 13584–13585. (b) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. *Org. Lett.* **2005**, *7*, 307–310. (c) Weix, D. J.; Shi, Y.; Ellman, J. A. *J. Am. Chem. Soc.* **2005**, *127*, 1092–1093. (d) Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett.

2006, *8*, 2567–2569. (e) Jagt, R. B. C.; Toullec, P. Y.; Geerdink, D.; de Vries, J. G.; Feringa, B. L; Minnaard, A. J. *Angew. Chem., Int. Ed.* **2006**, *45*, 2789–2791. (f) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. **2007**, *129*, 5336–5337. (g) Nakagawa, H.; Rech, J. C.; Sindelar, W. R.; Ellman, J. A. Org. Lett. **2007**, *9*, 5155–5157. (h) Trincado, M.; Ellman, J. A. Angew. Chem., Int. Ed. **2008**, *47*, 5623–5626. (i) Kurihara, K.; Yamamoto, Y.; Miyaura, N. Adv. Synth. Catal. **2009**, *351*, 260–270.

⁹ Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. **2004**, *126*, 8128–8129.

¹⁰ (a) Hao, X.; Kuriyama, M.; Chen, Q.; Yamamoto, Y.; Yamada, K.; Tomioka, K. *Org. Lett.* **2009**, *11*, 4470-4473. (b) Hao, X.; Chen, Q.; Yamamoto, Y.; Kuriyama, M.; Yamada, K.; Tomioka, K. *Catal. Sci. Technol.* **2011**, 1, 62-64.

¹1 Zwierzak, A.; Napieraj, A. J. Tetrahedron 1996, 52, 8789–8794.

 ¹² (a) Yamada, K.; Harwood, S. J.; Gröger, H.; Shibasaki, M. Angew. Chem., Int. Ed. **1999**, 38, 3504-3506. (b) Jennings, W. B.; Lovely, C. J. Tetrahedron **1991**, 47, 5561–5568.

¹³ For amide: Sosnovsky, G.; Zaret, E. H. J. Org. Chem. **1969**, *34*, 968–9704
 ¹⁴ For amide: Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.;

Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H. J. Org. Chem. **1994**, *59*, 3064–3076.

¹⁵ For amide; (a) Harger, M. J. P.; Shimmin, P. A. J. Chem. Soc., Perkin Trans. 1 **1993**, 227–232. (b) Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 **1980**, 154–160.

¹⁶ The reaction under the established conditions described in ref. 9a did not give **8e** probably because of too much bulkiness.

¹⁷ Prepared according to the procedure reported in Lauzon, C.; Desrosiers, J.; Charette, A. B. *J. Org. Chem.* **2005**, *70*, 10579–10580.

* Corresponding author. Tel.: +81-774-65-8676; fax: +81-774-65-8658; e-mail: tomioka@pharm.kyoto-u.ac.jp

¹ (a) Spencer, C. M.; Foulds, D.; Peters, D. H. Drugs 1993, 46, 1055–1080.
 (b) Bishop, M. J.; McNutt, R. W. Bioorg. Med. Chem. Lett. 1995, 5, 1311–1314.
 (c) Sakurai, S.; Ogawa, N.; Suzuki, T.; Kato, K.; Ohashi, T.; Yasuda, S.; Kato, H.; Ito, Y. Chem. Pharm. Bull. 1996, 44, 765–777.
 ² (a) Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. Tetrahedron Lett. 1990, 31,

⁶ (a) Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. *Tetrahedron Lett.* **1990**, *31*, 6681-6684.

³ Tomioka, K. Synthesis, **1990**, 541-549.

⁴ (a) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. J. Am. Chem. Soc. **1997**, 119, 2060–2061. (b) Kambara, T.; Tomioka, K. J. Org. Chem. **1999**, 64, 9282–9285.

⁵ Tomioka, K.; Fujieda, H.; Hayashi, S.; Hussein, M. A.; Kambara, T.; Nomura, Y.; Kanai, M.; Koga, K. *Chem. Commun.* **1999**, 715-716.

⁶ (a) For review of copper-catalyzed reaction see: Yamada, K.; Tomioka, K. *Chem. Rev.* **2008**, *108*, 2874-2886. (b) Fujihara, H.; Nagai, K.; Tomioka, K. *J. Am. Chem. Soc.* **2000**, *122*, 12055–12056. (c) Soeta, T.; Nagai, K.; Fujihara, H.; Kuriyama, M.; Tomioka, K. *J. Org. Chem.* **2003**, *68*, 9723–9727.

⁷ For dimethylzinc-mediated radical addition of acetal to enantiomerically pure imine, see: (a) Akindele, T.; Yamada, K.; Tomioka, K. *Acc. Chem. Res.* **2009**, *42*, 345-355. (b) Akindele, T.; Yamamoto, Y.; Maekawa, M.; Umeki, H.; Yamada, K.; Tomioka, K. *Org. Lett.* **2006**, *8*, 5729-5732. (c) Akindele, T.; Yamada, K.; Sejima, T.; Maekawa, M.; Yamamoto, Y.; Nakano, M.; Tomioka, K. *Chem. Pharm. Bull.* **2010**, *58*, 265-269.

⁸ Select examples of Rh-catalyzed asymmetric additions of arylboron reagents to imines: (a) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584–13585. (b) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307–310. (c) Weix, D. J.; Shi, Y.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 1092–1093. (d) Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567–2569. (e) Jagt, R. B. C.; Toullec, P. Y.; Geerdink, D.; de Vries, J. G.; Feringa, B. L; Minnaard, A. J. Angew. Chem., Int. Ed. 2006, 45, 2789–2791. (f) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–5337. (g) Nakagawa, H.; Rech, J. C.; Sindelar, W. R.; Ellman, J. A. Org. Lett. 2007, 9, 5155–5157. (h) Trincado, M.; Ellman, J. A. Angew. Chem., Int. Ed. 2008, 47, 5623–5626. (i) Kurihara, K.; Yamamoto, Y.; Miyaura, N. Adv. Synth. Catal. 2009, 351, 260–270.

⁹ Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. **2004**, *126*, 8128–8129.

¹⁰ (a) Hao, X.; Kuriyama, M.; Chen, Q.; Yamamoto, Y.; Yamada, K.; Tomioka, K. *Org. Lett.* **2009**, *11*, 4470-4473. (b) Hao, X.; Chen, Q.; Yamamoto, Y.; Kuriyama, M.; Yamada, K.; Tomioka, K. *Catal. Sci. Technol.* **2011**, 1, 62-64.

¹¹ Zwierzak, A.; Napieraj, A. J. Tetrahedron 1996, 52, 8789-8794.

 ¹² (a) Yamada, K.; Harwood, S. J.; Gröger, H.; Shibasaki, M. Angew. Chem., Int. Ed. **1999**, *38*, 3504-3506. (b) Jennings, W. B.; Lovely, C. J. Tetrahedron **1991**, *47*, 5561–5568.

¹³ For amide: Sosnovsky, G.; Zaret, E. H. J. Org. Chem. **1969**, *34*, 968–9704

¹⁴ For amide: Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H. *J Org. Chem* **1994** 59 3064–3076

J. Org. Chem. 1994, 59, 3064–3076.
 ¹⁵ For anide; (a) Harger, M. J. P.; Shimmin, P. A. J. Chem. Soc., Perkin Trans. 1993, 227–232. (b) Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 1980, 154–160.

¹⁶ The reaction under the established conditions described in ref. 9a did not give **8e** probably because of too much bulkiness.

 give 8e probably because of too much outkines.
 ¹⁷ Prepared according to the procedure reported in Lauzon, C.; Desrosiers, J.; Charette, A. B. J. Org. Chem. 2005, 70, 10579–10580.

[#] Dedicated to Prof. Satoshi Omura on the celebration of Tetrahedron Prize 2011.