Chemical Names and Formulas

Significance	To describe the atomic makeup of compounds chemists					
of a	use systematic methods for naming compounds and for					
Chemical	writing chemical formulas.					
Formula	• A indicates the					
	relative of of each kind in a					
	chemical compound.					
	• For a compound, the chemical					
	formula gives the number of atoms of each element					
	contained in a single of the					
	compound. Example: octane – C_8H_{18}					
	• The chemical formula for an					
	compound represents one					
	unit – the simplestof the					
	compound's (+) ions and its (-) ions. Example:					
Monatomic	aluminum sulfate − Al ₂ (SO ₄) ₃ . • Ions are ions formed from a					
Ions	atom (Na ⁺).					
	Monatomic are identified by the					
	element's(Na ⁺ is Sodium). When					
	naming monatomic, you drop the ending					
	of the element's name and add -ide $(F^-, Fluorine \rightarrow Fluoride)$					
	Many of the metals lose different					
	numbers of and follow the					
	system of naming ions and elements.					
	Example: copper(I) \rightarrow Cu ⁺ or copper(II) \rightarrow Cu ²⁺					
Binary	• Compounds are					
Ionic	compounds composed ofdifferent elements.					
Compounds	• The total number of positive and negative charges must					
_	be					
	• The method is a method of					
	the charges between the ions in					
	an ionic compound.					
Polyatomic	• In aion, two or more atoms are					
Ions	bonded together.					
	• Together, they carry a					
	 When balancing charges in an ionic compound, the 					
	Then building charges in an forme compound, the					

	polyatomic ion acts as a unit of charge.					
Naming	• The, or naming system, of					
Binary	• The, or naming system, of binary ionic compounds involves combining the names of					
Ionic	the compound's and					
Compounds	ions.					
	The name of the is given,					
	followed by the name of the (-ide).					
	Example: Al_2O_3 – aluminum oxide.					
	Some elements such as iron, form two or more					
	withcharges.					
	The System of nomenclature uses a					
	numeral to indicate an ion's charge.					
	The numeral is enclosed in and					
	placed immediately after the metal's name. Example:					
	Fe^{2+} - iron(II), Fe^{3+} - iron(III).					
Compounds	Most polyatomic ions are					
containing	charged and are					
Polyatomic	• Compounds containing polyatomic ions are named in the					
Ions	same way as binary ionic compounds. Name the					
	first, then the					
	 If more than one oxyanion is formed by the same two 					
	elements (Ex. N and O) the mostion is					
	given the ending –ate. The one with one					
	oxygen ends in $-ite$. Example: NO_2^- - nitrite, NO_3^- -					
	nitrate.					
	• Some elements can formthan two					
	of oxyanions. Example: chlorine can					
	form ClO (hypochlorite), ClO ₂ (chlorite), ClO ₃					
	(chlorate), and ClO ₄ (perchlorate).					
Naming	• The naming ofcompounds is					
Binary	based on the use of(CO is carbon					
Molecular	monoxide, CO_2 is carbon dioxide, P_4O_{10} is					
Compounds	tetraphosphorus decaoxide).					
	• The electronegative element is given first. It					
	is given a prefix only if it contributes more than					
	atom to a molecule.					
	• The second element is named by (a) giving					
	number of atoms contributed (b) the of the name					
	of the second element, and (c) the ending <i>-ide</i> .					