Basic Definitions

with Detailed Explanations and Examples

Charts: A chart is a diagram, pictorial representation, or list of inf ormation. This can include numbers that are not represented in columns or rows.

T- Chart

Example: Classroom survey: "How many of you like to eat peas?" *

Yes	No
x	x
x	
	x
	x
	x
	x

* This activity could have been done without a T - Chart, if the teacher just tallied the numbers in her head or just wrote down the votes without headings. But, by trying to use them in as many circumstances as possible, students can see everyday items as "dat a collection."

Basic Charts - can come in many forms, some may include pictures.
Example: Create a chart showing the different types of pets we have in the classroom. Place them in categories.

Our classroom

Graphs: A graph contains an " x " and " y " axis showing the relationship between two variables.

The " x " axis is ALWAYS the horizont al axis and is used for the independent variable (the one that you control). The "y" axis is ALWAYS the vertical axis and is used for the dependent variable (the one that you have no control over). The " y " axis should always display the numbers (this is how coordinate geometry sets up graphs, so if we do it this way in science as well, it will help not to confuse students).

Graph title should go here

Marks should be evenly spaced and numbered appropriately. For element ary st udents, this should all be labeled before they start plotting any point s.

The point where the two axis' meet is called the
ORIGIN. For Element ary st udents, this should always be zero.

Both the " y " and " x " ax is should be labeled. In element ary grades, the teacher can provide the label when appropriate. Secondary st udents should be able to come up with their own labels, for example; the "y" axis might be "time in seconds" and the "x" axis might be "distance traveled in centimeters." Always require units!

There are three basic types of graphs; LINE, BAR, and PIE.

- A LINE graph is typically used when showing change over time.

A good example is a growth chart. Each time the student visits the doct or, their height is recorded. When these measurements are plotted on growth chart (sorry -it's called a chart, but it's really a graph - Americans are strange...why is there no "ham" in a "hamburger"?) they can show a pattern over time. Doct or's can even predict what height the student will attain when full grown.

As an activity, students can plot their height on the chart and see what percent ile they are in. You could have them create a comparison bet ween other students in class as well. Also, this is a great way to practice using the meter stick! Centimeters and inches are both on the chart, so it is a great comparison.

- A BAR graph is typically used when showing a comparison bet ween items.

This bar graph appears every month on your utility bill. It compares the use of electricity at your home from month to month for a year! Graphs are everywhere!

- A PIE graph is typically used to show how different parts make up a whole.

Example: What do you do most of the day? Make a dat a table to show how you spend your time, then make a pie graph with your data.

My Day

Type of activit y

Sleeping
Eating
In class at School

Homework
Chores
T.V / Phone / Comput er

Other
Approximate time spent in minutes
660 60 360 1520225

The pie graph gives an overall pict ure of how the whole is divided up. Inthis case, a whole day or 1440 minutes (24 hours).

Tables: A table is a numerical display made up of columns and rows.

Example: How long did it take for the rat to complete the maze?

Without vertical headings	First Trial	Second Trial	Third Trial
	10 min .	9 min .	7 min .

With vertical headings	Type of Rat	First Trial	Second Trial	Third Trial
	White	10 min	9 min	7 min
	Hooded	9 min	9 min	6 min

Example: What is my heart rate during different types of exercises?

Independent Variable	Dependent Variable
Type of Exercise	Heart Rate
$@$ Rest	70
Walking	75
Brisk Walk	80
J OG	90
Run	100

> From this chart, you could create a graph.

