\qquad

Algebra 2 and Trigonometry - Unit 6 - Quadratic Functions
 Review Problem Set 3

A2.A.46a I can write a quadratic function in vertex form and identify it's vertex, direction of opening and dilation factor
Write the below in vertex form and identify the vertex

1. $y-24=x^{2}-14 x$
2. $y+18 x=3 x^{2}+15$

A2.A.46b I can perform transformations with quadratic

 functions1. Write the equation of the function $y=x^{2}$ that has been shifted 2 units to the left, 6 units up and opens downward
2. Write the equation of the below graph

A2.A. 3 I can solve systems that involve one quadratic

 and one linear equation1. At how many places do the graphs of $x=4$ and $y=(x+8)^{2}+3$ intersect?
2. Solve the system algebraically $(x+1)^{2}+(y-2)^{2}=4 \quad y=3-x$
3. Solve the system algebraically
$y=2 x^{2}-8 x$
$y=2 x$

A2.A.4al can solve quadratic inequalities in one variable and graph the solution set.

Solve the below inequalities algebraically and write your solution set in interval notation

1. $x^{2}-2 x-35<0$
2. $4 x^{2}-16 x+12 \leq 0$
3. $x^{2} \geq 5 x$

I can solve quadratic inequalities in two variables and graph the solution set.

1. Graph the inequality $-2 x^{2}+3 x<y$ and state a point in the solution set.

2. Graph the system of inequalities and state a point in the solution set

$$
y-(x+2)^{2}+5 \geq 0 \quad y<7
$$

