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Overview: PLS Procedure

The PLS procedure fits models by using any one of a number of linear predictive methods, including

partial least squares (PLS). Ordinary least squares regression, as implemented in SAS/STAT pro-

cedures such as PROC GLM and PROC REG, has the single goal of minimizing sample response

prediction error, seeking linear functions of the predictors that explain as much variation in each

response as possible. The techniques implemented in the PLS procedure have the additional goal of

accounting for variation in the predictors, under the assumption that directions in the predictor space

that are well sampled should provide better prediction for new observations when the predictors

are highly correlated. All of the techniques implemented in the PLS procedure work by extracting

successive linear combinations of the predictors, called factors (also called components, latent

vectors, or latent variables), which optimally address one or both of these two goals—explaining

response variation and explaining predictor variation. In particular, the method of partial least squares

balances the two objectives, seeking factors that explain both response and predictor variation.

Note that the name “partial least squares” also applies to a more general statistical method that is

not implemented in this procedure. The partial least squares method was originally developed in the

1960s by the econometrician Herman Wold (1966) for modeling “paths” of causal relation between

any number of “blocks” of variables. However, the PLS procedure fits only predictive partial least

squares models, with one “block” of predictors and one “block” of responses. If you are interested in

fitting more general path models, you should consider using the CALIS procedure.

Basic Features

The techniques implemented by the PLS procedure are as follows:

� principal components regression, which extracts factors to explain as much predictor sample

variation as possible

� reduced rank regression, which extracts factors to explain as much response variation as possi-

ble. This technique, also known as (maximum) redundancy analysis, differs from multivariate

linear regression only when there are multiple responses.

� partial least squares regression, which balances the two objectives of explaining response

variation and explaining predictor variation. Two different formulations for partial least

squares are available: the original predictive method of Wold (1966) and the SIMPLS method

of de Jong (1993).

The number of factors to extract depends on the data. Basing the model on more extracted factors

improves the model fit to the observed data, but extracting too many factors can cause overfitting—

that is, tailoring the model too much to the current data, to the detriment of future predictions. The

PLS procedure enables you to choose the number of extracted factors by cross validation—that

is, fitting the model to part of the data, minimizing the prediction error for the unfitted part, and

iterating with different portions of the data in the roles of fitted and unfitted. Various methods of
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cross validation are available, including one-at-a-time validation and splitting the data into blocks.

The PLS procedure also offers test set validation, where the model is fit to the entire primary input

data set and the fit is evaluated over a distinct test data set.

You can use the general linear modeling approach of the GLM procedure to specify a model for your

design, allowing for general polynomial effects as well as classification or ANOVA effects. You can

save the model fit by the PLS procedure in a data set and apply it to new data by using the SCORE

procedure.

The PLS procedure now uses ODS Graphics to create graphs as part of its output. For general

information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific

information about the statistical graphics available with the PLS procedure, see the PLOTS options

in the PROC PLS statements and the section “ODS Graphics” on page 5494.

Getting Started: PLS Procedure

Spectrometric Calibration

The example in this section illustrates basic features of the PLS procedure. The data are reported

in Umetrics (1995); the original source is Lindberg, Persson, and Wold (1983). Suppose that you

are researching pollution in the Baltic Sea, and you would like to use the spectra of samples of

seawater to determine the amounts of three compounds present in samples from the Baltic Sea: lignin

sulfonate (ls: pulp industry pollution), humic acids (ha: natural forest products), and optical whitener

from detergent (dt). Spectrometric calibration is a type of problem in which partial least squares

can be very effective. The predictors are the spectra emission intensities at different frequencies in

sample spectrum, and the responses are the amounts of various chemicals in the sample.

For the purposes of calibrating the model, samples with known compositions are used. The calibration

data consist of 16 samples of known concentrations of ls, ha, and dt, with spectra based on 27

frequencies (or, equivalently, wavelengths). The following statements create a SAS data set named

Sample for these data.

data Sample;

input obsnam $ v1-v27 ls ha dt @@;

datalines;

EM1 2766 2610 3306 3630 3600 3438 3213 3051 2907 2844 2796

2787 2760 2754 2670 2520 2310 2100 1917 1755 1602 1467

1353 1260 1167 1101 1017 3.0110 0.0000 0.00

EM2 1492 1419 1369 1158 958 887 905 929 920 887 800

710 617 535 451 368 296 241 190 157 128 106

89 70 65 56 50 0.0000 0.4005 0.00

EM3 2450 2379 2400 2055 1689 1355 1109 908 750 673 644

640 630 618 571 512 440 368 305 247 196 156

120 98 80 61 50 0.0000 0.0000 90.63

EM4 2751 2883 3492 3570 3282 2937 2634 2370 2187 2070 2007
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1974 1950 1890 1824 1680 1527 1350 1206 1080 984 888

810 732 669 630 582 1.4820 0.1580 40.00

EM5 2652 2691 3225 3285 3033 2784 2520 2340 2235 2148 2094

2049 2007 1917 1800 1650 1464 1299 1140 1020 909 810

726 657 594 549 507 1.1160 0.4104 30.45

EM6 3993 4722 6147 6720 6531 5970 5382 4842 4470 4200 4077

4008 3948 3864 3663 3390 3090 2787 2481 2241 2028 1830

1680 1533 1440 1314 1227 3.3970 0.3032 50.82

EM7 4032 4350 5430 5763 5490 4974 4452 3990 3690 3474 3357

3300 3213 3147 3000 2772 2490 2220 1980 1779 1599 1440

1320 1200 1119 1032 957 2.4280 0.2981 70.59

EM8 4530 5190 6910 7580 7510 6930 6150 5490 4990 4670 4490

4370 4300 4210 4000 3770 3420 3060 2760 2490 2230 2060

1860 1700 1590 1490 1380 4.0240 0.1153 89.39

EM9 4077 4410 5460 5857 5607 5097 4605 4170 3864 3708 3588

3537 3480 3330 3192 2910 2610 2325 2064 1830 1638 1476

1350 1236 1122 1044 963 2.2750 0.5040 81.75

EM10 3450 3432 3969 4020 3678 3237 2814 2487 2205 2061 2001

1965 1947 1890 1776 1635 1452 1278 1128 981 867 753

663 600 552 507 468 0.9588 0.1450 101.10

EM11 4989 5301 6807 7425 7155 6525 5784 5166 4695 4380 4197

4131 4077 3972 3777 3531 3168 2835 2517 2244 2004 1809

1620 1470 1359 1266 1167 3.1900 0.2530 120.00

EM12 5340 5790 7590 8390 8310 7670 6890 6190 5700 5380 5200

5110 5040 4900 4700 4390 3970 3540 3170 2810 2490 2240

2060 1870 1700 1590 1470 4.1320 0.5691 117.70

EM13 3162 3477 4365 4650 4470 4107 3717 3432 3228 3093 3009

2964 2916 2838 2694 2490 2253 2013 1788 1599 1431 1305

1194 1077 990 927 855 2.1600 0.4360 27.59

EM14 4380 4695 6018 6510 6342 5760 5151 4596 4200 3948 3807

3720 3672 3567 3438 3171 2880 2571 2280 2046 1857 1680

1548 1413 1314 1200 1119 3.0940 0.2471 61.71

EM15 4587 4200 5040 5289 4965 4449 3939 3507 3174 2970 2850

2814 2748 2670 2529 2328 2088 1851 1641 1431 1284 1134

1020 918 840 756 714 1.6040 0.2856 108.80

EM16 4017 4725 6090 6570 6354 5895 5346 4911 4611 4422 4314

4287 4224 4110 3915 3600 3240 2913 2598 2325 2088 1917

1734 1587 1452 1356 1257 3.1620 0.7012 60.00

;

Fitting a PLS Model

To isolate a few underlying spectral factors that provide a good predictive model, you can fit a PLS

model to the 16 samples by using the following SAS statements:

proc pls data=sample;

model ls ha dt = v1-v27;

run;

By default, the PLS procedure extracts at most 15 factors. The procedure lists the amount of variation

accounted for by each of these factors, both individual and cumulative; this listing is shown in

Figure 67.1.
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Figure 67.1 PLS Variation Summary

The PLS Procedure

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155

2 2.1830 99.6436 24.2435 66.1590

3 0.1781 99.8217 24.5339 90.6929

4 0.1197 99.9414 3.7898 94.4827

5 0.0415 99.9829 1.0045 95.4873

6 0.0106 99.9935 2.2808 97.7681

7 0.0017 99.9952 1.1693 98.9374

8 0.0010 99.9961 0.5041 99.4415

9 0.0014 99.9975 0.1229 99.5645

10 0.0010 99.9985 0.1103 99.6747

11 0.0003 99.9988 0.1523 99.8270

12 0.0003 99.9991 0.1291 99.9561

13 0.0002 99.9994 0.0312 99.9873

14 0.0004 99.9998 0.0065 99.9938

15 0.0002 100.0000 0.0062 100.0000

Note that all of the variation in both the predictors and the responses is accounted for by only 15

factors; this is because there are only 16 sample observations. More important, almost all of the

variation is accounted for with even fewer factors—one or two for the predictors and three to eight

for the responses.

Selecting the Number of Factors by Cross Validation

A PLS model is not complete until you choose the number of factors. You can choose the number of

factors by using cross validation, in which the data set is divided into two or more groups. You fit the

model to all groups except one, and then you check the capability of the model to predict responses

for the group omitted. Repeating this for each group, you then can measure the overall capability of

a given form of the model. The predicted residual sum of squares (PRESS) statistic is based on the

residuals generated by this process.

To select the number of extracted factors by cross validation, you specify the CV= option with

an argument that says which cross validation method to use. For example, a common method

is split-sample validation, in which the different groups are composed of every nth observation

beginning with the first, every nth observation beginning with the second, and so on. You can use the

CV=SPLIT option to specify split-sample validation with n D 7 by default, as in the following SAS

statements:

proc pls data=sample cv=split;

model ls ha dt = v1-v27;

run;
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The resulting output is shown in Figure 67.2 and Figure 67.3.

Figure 67.2 Split-Sample Validated PRESS Statistics for Number of Factors

The PLS Procedure

Split-sample Validation for the Number of Extracted Factors

Number of Root

Extracted Mean

Factors PRESS

0 1.107747

1 0.957983

2 0.931314

3 0.520222

4 0.530501

5 0.586786

6 0.475047

7 0.477595

8 0.483138

9 0.485739

10 0.48946

11 0.521445

12 0.525653

13 0.531049

14 0.531049

15 0.531049

Minimum root mean PRESS 0.4750

Minimizing number of factors 6

Figure 67.3 PLS Variation Summary for Split-Sample Validated Model

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155

2 2.1830 99.6436 24.2435 66.1590

3 0.1781 99.8217 24.5339 90.6929

4 0.1197 99.9414 3.7898 94.4827

5 0.0415 99.9829 1.0045 95.4873

6 0.0106 99.9935 2.2808 97.7681

The absolute minimum PRESS is achieved with six extracted factors. Notice, however, that this is

not much smaller than the PRESS for three factors. By using the CVTEST option, you can perform

a statistical model comparison suggested by van der Voet (1994) to test whether this difference is

significant, as shown in the following SAS statements:
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proc pls data=sample cv=split cvtest(seed=12345);

model ls ha dt = v1-v27;

run;

The model comparison test is based on a rerandomization of the data. By default, the seed for this

randomization is based on the system clock, but it is specified here. The resulting output is shown in

Figure 67.4 and Figure 67.5.

Figure 67.4 Testing Split-Sample Validation for Number of Factors

The PLS Procedure

Split-sample Validation for the Number of Extracted Factors

Number of Root

Extracted Mean Prob >

Factors PRESS T**2 T**2

0 1.107747 9.272858 0.0010

1 0.957983 10.62305 <.0001

2 0.931314 8.950878 0.0010

3 0.520222 5.133259 0.1440

4 0.530501 5.168427 0.1340

5 0.586786 6.437266 0.0150

6 0.475047 0 1.0000

7 0.477595 2.809763 0.4750

8 0.483138 7.189526 0.0110

9 0.485739 7.931726 0.0070

10 0.48946 6.612597 0.0150

11 0.521445 6.666235 0.0130

12 0.525653 7.092861 0.0080

13 0.531049 7.538298 0.0030

14 0.531049 7.538298 0.0030

15 0.531049 7.538298 0.0030

Minimum root mean PRESS 0.4750

Minimizing number of factors 6

Smallest number of factors with p > 0.1 3

Figure 67.5 PLS Variation Summary for Tested Split-Sample Validated Model

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 97.4607 97.4607 41.9155 41.9155

2 2.1830 99.6436 24.2435 66.1590

3 0.1781 99.8217 24.5339 90.6929
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The p-value of 0.1430 in comparing the cross validated residuals from models with 6 and 3 factors

indicates that the difference between the two models is insignificant; therefore, the model with fewer

factors is preferred. The variation summary shows that over 99% of the predictor variation and over

90% of the response variation are accounted for by the three factors.

Predicting New Observations

Now that you have chosen a three-factor PLS model for predicting pollutant concentrations based on

sample spectra, suppose that you have two new samples. The following SAS statements create a data

set containing the spectra for the new samples:

data newobs;

input obsnam $ v1-v27 @@;

datalines;

EM17 3933 4518 5637 6006 5721 5187 4641 4149 3789

3579 3447 3381 3327 3234 3078 2832 2571 2274

2040 1818 1629 1470 1350 1245 1134 1050 987

EM25 2904 2997 3255 3150 2922 2778 2700 2646 2571

2487 2370 2250 2127 2052 1713 1419 1200 984

795 648 525 426 351 291 240 204 162

;

You can apply the PLS model to these samples to estimate pollutant concentration. To do so, append

the new samples to the original 16, and specify that the predicted values for all 18 be output to a data

set, as shown in the following statements:

data all;

set sample newobs;

run;

proc pls data=all nfac=3;

model ls ha dt = v1-v27;

output out=pred p=p_ls p_ha p_dt;

run;

proc print data=pred;

where (obsnam in ('EM17','EM25'));

var obsnam p_ls p_ha p_dt;

run;

The new observations are not used in calculating the PLS model, since they have no response values.

Their predicted concentrations are shown in Figure 67.6.

Figure 67.6 Predicted Concentrations for New Observations

Obs obsnam p_ls p_ha p_dt

17 EM17 2.54261 0.31877 81.4174

18 EM25 -0.24716 1.37892 46.3212
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Finally, if you enable ODS graphics, PLS also displays by default a plot of the amount of variation

accounted for by each factor, as well as a correlations loading plot that summarizes the first two

dimensions of the PLS model. The following statements, which are the same as the previous split-

sample validation analysis but with ODS graphics enabled, additionally produce Figure 67.7 and

Figure 67.8:

ods graphics on;

proc pls data=sample cv=split cvtest(seed=12345);

model ls ha dt = v1-v27;

run;

ods graphics off;

Figure 67.7 Split-Sample Cross Validation Plot
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Figure 67.8 Correlation Loadings Plot

The cross validation plot in Figure 67.7 gives a visual representation of the selection of the optimum

number of factors discussed previously. The correlation loadings plot is a compact summary of

many features of the PLS model. For example, it shows that the first factor is highly positively

correlated with all spectral values, indicating that it is approximately an average of them all; the

second factor is positively correlated with the lowest frequencies and negatively correlated with the

highest, indicating that it is approximately a contrast between the two ends of the spectrum. The

observations, represented by their number in the data set on this plot, are generally spaced well apart,

indicating that the data give good information about these first two factors. For more details on the

interpretation of the correlation loadings plot, see the section “ODS Graphics” on page 5494 and

Example 67.1.
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Syntax: PLS Procedure

The following statements are available in PROC PLS. Items within the angle brackets are optional.

PROC PLS < options > ;

BY variables ;

CLASS variables < / option > ;

EFFECT name = effect-type ( variables < / options > ) ;

ID variables ;

MODEL dependent-variables = effects < / options > ;

OUTPUT OUT=SAS-data-set < options > ;

To analyze a data set, you must use the PROC PLS and MODEL statements. You can use the

other statements as needed. CLASS and EFFECT statements, if present, must precede the MODEL

statement.

PROC PLS Statement

PROC PLS < options > ;

You use the PROC PLS statement to invoke the PLS procedure and, optionally, to indicate the

analysis data and method. The following options are available.

CENSCALE

lists the centering and scaling information for each response and predictor.

CV=ONE

CV=SPLIT < (n) >

CV=BLOCK < (n) >

CV=RANDOM < (cv-random-opts) >

CV=TESTSET(SAS-data-set)

specifies the cross validation method to be used. By default, no cross validation is performed.

The method CV=ONE requests one-at-a-time cross validation, CV=SPLIT requests that every

nth observation be excluded, CV=BLOCK requests that n blocks of consecutive observa-

tions be excluded, CV=RANDOM requests that observations be excluded at random, and

CV=TESTSET(SAS-data-set) specifies a test set of observations to be used for validation

(formally, this is called “test set validation” rather than “cross validation”). You can, optionally,

specify n for CV=SPLIT and CV=BLOCK; the default is n D 7. You can also specify the

following optional cv-random-options in parentheses after the CV=RANDOM option:

NITER=n specifies the number of random subsets to exclude. The default value is 10.

NTEST=n specifies the number of observations in each random subset chosen for ex-

clusion. The default value is one-tenth of the total number of observations.
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SEED=n specifies an integer used to start the pseudo-random number generator for

selecting the random test set. If you do not specify a seed, or specify a value

less than or equal to zero, the seed is by default generated from reading the

time of day from the computer’s clock.

CVTEST < (cvtest-options) >

specifies that van der Voet’s (1994) randomization-based model comparison test be performed

to test models with different numbers of extracted factors against the model that minimizes

the predicted residual sum of squares; see the section “Cross Validation” on page 5490 for

more information. You can also specify the following cv-test-options in parentheses after the

CVTEST option:

PVAL=n specifies the cutoff probability for declaring an insignificant difference.

The default value is 0.10.

STAT=test-statistic specifies the test statistic for the model comparison. You can specify ei-

ther T2, for Hotelling’s T 2 statistic, or PRESS, for the predicted residual

sum of squares. The default value is T2.

NSAMP=n specifies the number of randomizations to perform. The default value is

1000.

SEED=n specifies the seed value for randomization generation (the clock time is

used by default).

DATA=SAS-data-set

names the SAS data set to be used by PROC PLS. The default is the most recently created data

set.

DETAILS

lists the details of the fitted model for each successive factor. The details listed are different

for different extraction methods; see the section “Displayed Output” on page 5493 for more

information.

METHOD=PLS < ( PLS-options ) >

METHOD=SIMPLS

METHOD=PCR

METHOD=RRR

specifies the general factor extraction method to be used. The value PLS requests partial least

squares, SIMPLS requests the SIMPLS method of de Jong (1993), PCR requests principal com-

ponents regression, and RRR requests reduced rank regression. The default is METHOD=PLS.

You can also specify the following optional PLS-options in parentheses after METHOD=PLS:

ALGORITHM=NIPALS | SVD | EIG | RLGW

names the specific algorithm used to compute extracted PLS factors. NI-

PALS requests the usual iterative NIPALS algorithm, SVD bases the ex-

traction on the singular value decomposition of X 0Y , EIG bases the ex-

traction on the eigenvalue decomposition of Y 0XX 0Y , and RLGW is an
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iterative approach that is efficient when there are many predictors. ALGO-

RITHM=SVD is the most accurate but least efficient approach; the default

is ALGORITHM=NIPALS.

MAXITER=n specifies the maximum number of iterations for the NIPALS and RLGW

algorithms. The default value is 200.

EPSILON=n specifies the convergence criterion for the NIPALS and RLGW algorithms.

The default value is 10�12.

MISSING=NONE

MISSING=AVG

MISSING=EM < ( EM-options ) >

specifies how observations with missing values are to be handled in computing the fit. The

default is MISSING=NONE, for which observations with any missing variables (dependent

or independent) are excluded from the analysis. MISSING=AVG specifies that the fit be

computed by filling in missing values with the average of the nonmissing values for the

corresponding variable. If you specify MISSING=EM, then the procedure first computes the

model with MISSING=AVG and then fills in missing values by their predicted values based

on that model and computes the model again. For both methods of imputation, the imputed

values contribute to the centering and scaling values, and the difference between the imputed

values and their final predictions contributes to the percentage of variation explained. You can

also specify the following optional EM-options in parentheses after MISSING=EM:

MAXITER=n specifies the maximum number of iterations for the imputation/fit loop.

The default value is 1. If you specify a large value of MAXITER=, then the

loop will iterate until it converges (as controlled by the EPSILON= option).

EPSILON=n specifies the convergence criterion for the imputation/fit loop. The default

value for is 10�8. This option is effective only if you specify a large value

for the MAXITER= option.

NFAC=n

specifies the number of factors to extract. The default is minf15; p; N g, where p is the number

of predictors (the number of dependent variables for METHOD=RRR) and N is the number

of runs (observations). This is probably more than you need for most applications. Extracting

too many factors can lead to an overfit model, one that matches the training data too well,

sacrificing predictive ability. Thus, if you use the default NFAC= specification, you should

also either use the CV= option to select the appropriate number of factors for the final model

or consider the analysis to be preliminary and examine the results to determine the appropriate

number of factors for a subsequent analysis.

NOCENTER

suppresses centering of the responses and predictors before fitting. This is useful if the

analysis variables are already centered and scaled. See the section “Centering and Scaling” on

page 5491 for more information.
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NOCVSTDIZE

suppresses re-centering and rescaling of the responses and predictors before each model is

fit in the cross validation. See the section “Centering and Scaling” on page 5491 for more

information.

NOPRINT

suppresses the normal display of results. This is useful when you want only the output statistics

saved in a data set. Note that this option temporarily disables the Output Delivery System

(ODS); see Chapter 20, “Using the Output Delivery System” for more information.

NOSCALE

suppresses scaling of the responses and predictors before fitting. This is useful if the analysis

variables are already centered and scaled. See the section “Centering and Scaling” on page 5491

for more information.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >

controls the plots produced through ODS Graphics. When you specify only one plot request,

you can omit the parentheses from around the plot request. For example:

plots=none

plots=cvplot

plots=(diagnostics cvplot)

plots(unpack)=diagnostics

plots(unpack)=(diagnostics corrload(trace=off))

You must enable ODS Graphics before requesting plots—for example, like this:

ods graphics on;

proc pls data=pentaTrain;

model log_RAI = S1-S5 L1-L5 P1-P5;

run;

ods graphics off;

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using

ODS.” If you have enabled ODS Graphics but do not specify the PLOTS= option, then

PROC PLS produces by default a plot of the R-square analysis and a correlation loading plot

summarizing the first two factors. The global plot options include the following:

FLIP

interchanges the X-axis and Y-axis dimensions for the score, weight, and loading plots.

ONLY

suppresses the default plots. Only plots specifically requested are displayed.

UNPACKPANEL

UNPACK

suppresses paneling. By default, multiple plots can appear in some output panels.

Specify UNPACKPANEL to get each plot in a separate panel. You can specify

PLOTS(UNPACKPANEL) to unpack only the default plots. You can also specify

UNPACKPANEL as a suboption for certain specific plots, as discussed in the following.
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The plot requests include the following:

ALL

produces all appropriate plots. You can specify other options with ALL—for example,

to request all plots and unpack only the residuals, specify PLOTS=(ALL RESIDU-

ALS(UNPACK)).

CORRLOAD < (TRACE = ON | OFF) >

produces a correlation loading plot (default). The TRACE= option controls how points

corresponding to the X-loadings in the correlation loadings plot are depicted. By default,

these points are depicted by the name of the corresponding model effect if there are 20

or fewer of them; otherwise, they are depicted by a connected “trace” through the points.

You can use this option to change this behavior.

CVPLOT

produces a cross validation and R-square analysis. This plot requires the CV= option to

be specified, and is displayed by default in this case.

DIAGNOSTICS < (UNPACK) >

produces a summary panel of the fit for each dependent variable. The summary by default

consists of a panel for each dependent variable, with plots depicting the distribution of

residuals and predicted values. You can use the UNPACK suboption to specify that the

subplots be produced separately.

DMOD

produces the DMODX, DMODY, and DMODXY plots.

DMODX

produces a plot of the distance of each observation to the X model.

DMODXY

produces plots of the distance of each observation to the X and Y models.

DMODY

produces a plot of the distance of each observation to the Y model.

FIT

produces both the fit diagnostic panel and the ParmProfiles plot.

NONE

suppresses the display of graphics.

PARMPROFILES

produces profiles of the regression coefficients.

SCORES < (UNPACK | FLIP) >

produces the XScores, YScores, XYScores, and DModXY plots. You can use the

UNPACK suboption to specify that the subplots for scores be produced separately, and

the FLIP option to interchange their default X-axis and Y-axis dimensions.
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RESIDUALS < (UNPACK) >

plots the residuals for each dependent variable against each independent variable. Resid-

ual plots are by default composed of multiple plots combined into a single panel. You

can use the UNPACK suboption to specify that the subplots be produced separately.

VIP

produces profiles of variable importance factors.

WEIGHTS < (UNPACK | FLIP) >

produces all X and Y loading and weight plots, as well as the VIP plot. You can

use the UNPACK suboption to specify that the subplots for weights and loadings be

produced separately, and the FLIP option to interchange their default X-axis and Y-axis

dimensions.

XLOADINGPLOT < (UNPACK | FLIP) >

produces a scatter plot matrix of X-loadings against each other. Loading scatter plot

matrices are by default composed of multiple plots combined into a single panel. You

can use the UNPACK suboption to specify that the subplots be produced separately, and

the FLIP option to interchange the default X-axis and Y-axis dimensions.

XLOADINGPROFILES

produces profiles of the X-loadings.

XSCORES < (UNPACK | FLIP) >

produces a scatter plot matrix of X-scores against each other. Score scatter plot matrices

are by default composed of multiple plots combined into a single panel. You can use the

UNPACK suboption to specify that the subplots be produced separately, and the FLIP

option to interchange the default X-axis and Y-axis dimensions.

XWEIGHTPLOT < (UNPACK | FLIP) >

produces a scatter plot matrix of X-weights against each other. Weight scatter plot

matrices are by default composed of multiple plots combined into a single panel. You

can use the UNPACK suboption to specify that the subplots be produced separately, and

the FLIP option to interchange the default X-axis and Y-axis dimensions.

XWEIGHTPROFILES

produces profiles of the X-weights.

XYSCORES < (UNPACK) >

produces a scatter plot matrix of X-scores against Y-scores. Score scatter plot matrices

are by default composed of multiple plots combined into a single panel. You can use the

UNPACK suboption to specify that the subplots be produced separately.

YSCORES < (UNPACK | FLIP) >

produces a scatter plot matrix of Y-scores against each other. Score scatter plot matrices

are by default composed of multiple plots combined into a single panel. You can use the

UNPACK suboption to specify that the subplots be produced separately, and the FLIP

option to interchange the default X-axis and Y-axis dimensions.
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YWEIGHTPLOT < (UNPACK | FLIP) >

produces a scatter plot matrix of Y-weights against each other. Weight scatter plot

matrices are by default composed of multiple plots combined into a single panel. You

can use the UNPACK suboption to specify that the subplots be produced separately, and

the FLIP option to interchange the default X-axis and Y-axis dimensions.

VARSCALE

specifies that continuous model variables be centered and scaled prior to centering and scaling

the model effects in which they are involved. The rescaling specified by the VARSCALE

option is sometimes more appropriate if the model involves crossproducts between model

variables; however, the VARSCALE option still might not produce the model you expect. See

the section “Centering and Scaling” on page 5491 for more information.

VARSS

lists, in addition to the average response and predictor sum of squares accounted for by each

successive factor, the amount of variation accounted for in each response and predictor.

BY Statement

BY variables ;

You can specify a BY statement with PROC PLS to obtain separate analyses on observations in

groups that are defined by the BY variables. When a BY statement appears, the procedure expects the

input data set to be sorted in order of the BY variables. If you specify more than one BY statement,

only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the PLS proce-

dure. The NOTSORTED option does not mean that the data are unsorted but rather that the

data are arranged in groups (according to values of the BY variables) and that these groups are

not necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS

software).

For more information about BY-group processing, see the discussion in SAS Language Reference:

Concepts. For more information about the DATASETS procedure, see the discussion in the Base

SAS Procedures Guide.
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CLASS Statement

CLASS variables < / TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classifica-

tion variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it

must appear before the MODEL statement statement.

Classification variables can be either character or numeric. By default, class levels are determined

from the entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of

the formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the

CLASS statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT

procedure in the Base SAS Procedures Guide and the discussions of the FORMAT statement and

SAS formats in SAS Language Reference: Dictionary.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE

specifies that class levels should be determined by using only up to the first 16 characters of the

formatted values of CLASS variables. When formatted values are longer than 16 characters,

you can use this option to revert to the levels as determined in releases prior to SAS 9.

EFFECT Statement

EFFECT name = effect-type ( variables < / options > ) ;

The EFFECT statement enables you to construct special collections of columns for design matrices.

These collections are referred to as constructed effects to distinguish them from the usual model

effects formed from continuous or classification variables, as discussed in the section “GLM Parame-

terization of Classification Variables and Effects” on page 410 of Chapter 19, “Shared Concepts and

Topics.”

The following effect-types are available.

COLLECTION is a collection effect that defines one or more variables as a single

effect with multiple degrees of freedom. The variables in a collection

are considered as a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given

period corresponds to the level in the preceding period.

MULTIMEMBER | MM is a multimember classification effect whose levels are determined

by one or more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline

expansions of one or more variables. A spline expansion replaces

the original variable with an expanded or larger set of new variables.
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Table 67.1 summarizes important options for each type of EFFECT statement.

Table 67.1 Important EFFECT Statement Options

Option Description

Options for Collection Effects

DETAILS Displays the constituents of the collection effect

Options for Lag Effects

DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which

each period is defined

Options for Multimember Effects

NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding

design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the

classification effects

Options for Polynomial Effects

DEGREE= Specifies the degree of the polynomial

MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial

STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Options for Spline Effects

BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline expansion

DEGREE= Specifies the degree of the spline transformation

KNOTMETHOD= Specifies how to construct the knots for spline effects

For further details about the syntax of these effect-types and how columns of constructed effects are

computed, see the section “EFFECT Statement (Experimental)” on page 418 of Chapter 19, “Shared

Concepts and Topics.”
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ID Statement

ID variables ;

The ID statement names variables whose values are used to label observations in plots. If you do not

specify an ID statement, then each observations is labeled in plots by its corresponding observation

number.

MODEL Statement

MODEL response-variables = predictor-effects < / options > ;

The MODEL statement names the responses and the predictors, which determine the Y and X

matrices of the model, respectively. Usually you simply list the names of the predictor variables as

the model effects, but you can also use the effects notation of PROC GLM to specify polynomial

effects and interactions; see the section “Specification of Effects” on page 3043 in Chapter 39, “The

GLM Procedure” for further details. The MODEL statement is required. You can specify only one

MODEL statement (in contrast to the REG procedure, for example, which allows several MODEL

statements in the same PROC REG run).

You can specify the following options in the MODEL statement after a slash (/).

INTERCEPT

By default, the responses and predictors are centered; thus, no intercept is required in the

model. You can specify the INTERCEPT option to override the default.

SOLUTION

lists the coefficients of the final predictive model for the responses. The coefficients for

predicting the centered and scaled responses based on the centered and scaled predictors

are displayed, as well as the coefficients for predicting the raw responses based on the raw

predictors.

OUTPUT Statement

OUTPUT OUT= SAS-data-set keyword=names < . . . keyword=names > ;

You use the OUTPUT statement to specify a data set to receive quantities that can be computed for

every input observation, such as extracted factors and predicted values. The following keywords are

available:

PREDICTED predicted values for responses

YRESIDUAL residuals for responses

XRESIDUAL residuals for predictors
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XSCORE extracted factors (X-scores, latent vectors, latent variables, T )

YSCORE extracted responses (Y-scores, U )

STDY standardized (centered and scaled) responses

STDX standardized (centered and scaled) predictors

H approximate leverage

PRESS approximate predicted residuals

TSQUARE scaled sum of squares of score values

STDXSSE sum of squares of residuals for standardized predictors

STDYSSE sum of squares of residuals for standardized responses

Suppose that there are Nx predictors and Ny responses and that the model has Nf selected factors.

� The keywords XRESIDUAL and STDX define an output variable for each predictor, so Nx

names are required after each one.

� The keywords PREDICTED, YRESIDUAL, STDY, and PRESS define an output variable for

each response, so Ny names are required after each of these keywords.

� The keywords XSCORE and YSCORE specify an output variable for each selected model

factor. For these keywords, you provide only one base name, and the variables corresponding

to each successive factor are named by appending the factor number to the base name. For

example, if Nf D 3, then a specification of XSCORE=T would produce the variables T1, T2,

and T3.

� Finally, the keywords H, TSQUARE, STDXSSE, and STDYSSE each specify a single output

variable, so only one name is required after each of these keywords.

Details: PLS Procedure

Regression Methods

All of the predictive methods implemented in PROC PLS work essentially by finding linear combina-

tions of the predictors (factors) to use to predict the responses linearly. The methods differ only in

how the factors are derived, as explained in the following sections.

Partial Least Squares

Partial least squares (PLS) works by extracting one factor at a time. Let X D X0 be the centered and

scaled matrix of predictors and let Y D Y0 be the centered and scaled matrix of response values.

The PLS method starts with a linear combination t D X0w of the predictors, where t is called a score
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vector and w is its associated weight vector. The PLS method predicts both X0 and Y0 by regression

on t:

OX0 D tp0; where p0 D .t0t/�1t0X0

OY0 D tc0; where c0 D .t0t/�1t0Y0

The vectors p and c are called the X- and Y-loadings, respectively.

The specific linear combination t D X0w is the one that has maximum covariance t0u with some

response linear combination u D Y0q. Another characterization is that the X- and Y-weights w

and q are proportional to the first left and right singular vectors of the covariance matrix X0

0Y0 or,

equivalently, the first eigenvectors of X0

0Y0Y0

0X0 and Y0

0X0X0

0Y0, respectively.

This accounts for how the first PLS factor is extracted. The second factor is extracted in the same

way by replacing X0 and Y0 with the X- and Y-residuals from the first factor:

X1 D X0 � OX0

Y1 D Y0 � OY0

These residuals are also called the deflated X and Y blocks. The process of extracting a score vector

and deflating the data matrices is repeated for as many extracted factors as are wanted.

SIMPLS

Note that each extracted PLS factor is defined in terms of different X-variables Xi . This leads to

difficulties in comparing different scores, weights, and so forth. The SIMPLS method of de Jong

(1993) overcomes these difficulties by computing each score ti D Xri in terms of the original

(centered and scaled) predictors X. The SIMPLS X-weight vectors ri are similar to the eigenvectors

of SS0 D X0YY0X, but they satisfy a different orthogonality condition. The r1 vector is just the first

eigenvector e1 (so that the first SIMPLS score is the same as the first PLS score), but whereas the

second eigenvector maximizes

e0

1SS 0e2 subject to e0

1e2 D 0

the second SIMPLS weight r2 maximizes

r0

1SS 0r2 subject to r0

1X 0Xr2 D t0

1t2 D 0

The SIMPLS scores are identical to the PLS scores for one response but slightly different for more

than one response; see de Jong (1993) for details. The X- and Y-loadings are defined as in PLS, but

since the scores are all defined in terms of X, it is easy to compute the overall model coefficients B:

OY D
X

i

ti c0

i

D
X

i

Xri c0

i

D XB; where B D RC0
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Principal Components Regression

Like the SIMPLS method, principal components regression (PCR) defines all the scores in terms of

the original (centered and scaled) predictors X. However, unlike both the PLS and SIMPLS methods,

the PCR method chooses the X-weights/X-scores without regard to the response data. The X-scores

are chosen to explain as much variation in X as possible; equivalently, the X-weights for the PCR

method are the eigenvectors of the predictor covariance matrix X0X. Again, the X- and Y-loadings

are defined as in PLS; but, as in SIMPLS, it is easy to compute overall model coefficients for the

original (centered and scaled) responses Y in terms of the original predictors X.

Reduced Rank Regression

As discussed in the preceding sections, partial least squares depends on selecting factors t D Xw

of the predictors and u D Yq of the responses that have maximum covariance, whereas principal

components regression effectively ignores u and selects t to have maximum variance, subject to

orthogonality constraints. In contrast, reduced rank regression selects u to account for as much

variation in the predicted responses as possible, effectively ignoring the predictors for the purposes of

factor extraction. In reduced rank regression, the Y-weights qi are the eigenvectors of the covariance

matrix OY0

LS
OYLS of the responses predicted by ordinary least squares regression; the X-scores are the

projections of the Y-scores Yqi onto the X space.

Relationships between Methods

When you develop a predictive model, it is important to consider not only the explanatory power of

the model for current responses, but also how well sampled the predictive functions are, since this

affects how well the model can extrapolate to future observations. All of the techniques implemented

in the PLS procedure work by extracting successive factors, or linear combinations of the predictors,

that optimally address one or both of these two goals—explaining response variation and explaining

predictor variation. In particular, principal components regression selects factors that explain as

much predictor variation as possible, reduced rank regression selects factors that explain as much

response variation as possible, and partial least squares balances the two objectives, seeking for

factors that explain both response and predictor variation.

To see the relationships between these methods, consider how each one extracts a single factor from

the following artificial data set consisting of two predictors and one response:

data data;

input x1 x2 y;

datalines;

3.37651 2.30716 0.75615

0.74193 -0.88845 1.15285

4.18747 2.17373 1.42392

0.96097 0.57301 0.27433

-1.11161 -0.75225 -0.25410

-1.38029 -1.31343 -0.04728

1.28153 -0.13751 1.00341

-1.39242 -2.03615 0.45518

0.63741 0.06183 0.40699
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-2.52533 -1.23726 -0.91080

2.44277 3.61077 -0.82590

;

proc pls data=data nfac=1 method=rrr;

model y = x1 x2;

run;

proc pls data=data nfac=1 method=pcr;

model y = x1 x2;

run;

proc pls data=data nfac=1 method=pls;

model y = x1 x2;

run;

The amount of model and response variation explained by the first factor for each method is shown

in Figure 67.9 through Figure 67.11.

Figure 67.9 Variation Explained by First Reduced Rank Regression Factor

The PLS Procedure

Percent Variation Accounted for by

Reduced Rank Regression Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 15.0661 15.0661 100.0000 100.0000

Figure 67.10 Variation Explained by First Principal Components Regression Factor

The PLS Procedure

Percent Variation Accounted for by Principal Components

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 92.9996 92.9996 9.3787 9.3787
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Figure 67.11 Variation Explained by First Partial Least Squares Regression Factor

The PLS Procedure

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 88.5357 88.5357 26.5304 26.5304

Notice that, while the first reduced rank regression factor explains all of the response variation, it

accounts for only about 15% of the predictor variation. In contrast, the first principal components

regression factor accounts for most of the predictor variation (93%) but only 9% of the response

variation. The first partial least squares factor accounts for only slightly less predictor variation than

principal components but about three times as much response variation.

Figure 67.12 illustrates how partial least squares balances the goals of explaining response and

predictor variation in this case.

Figure 67.12 Depiction of First Factors for Three Different Regression Methods
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The ellipse shows the general shape of the 11 observations in the predictor space, with the contours

of increasing y overlaid. Also shown are the directions of the first factor for each of the three methods.

Notice that, while the predictors vary most in the x1 = x2 direction, the response changes most in the

orthogonal x1 = -x2 direction. This explains why the first principal component accounts for little

variation in the response and why the first reduced rank regression factor accounts for little variation

in the predictors. The direction of the first partial least squares factor represents a compromise

between the other two directions.

Cross Validation

None of the regression methods implemented in the PLS procedure fit the observed data any better

than ordinary least squares (OLS) regression; in fact, all of the methods approach OLS as more factors

are extracted. The crucial point is that, when there are many predictors, OLS can overfit the observed

data; biased regression methods with fewer extracted factors can provide better predictability of

future observations. However, as the preceding observations imply, the quality of the observed data

fit cannot be used to choose the number of factors to extract; the number of extracted factors must be

chosen on the basis of how well the model fits observations not involved in the modeling procedure

itself.

One method of choosing the number of extracted factors is to fit the model to only part of the

available data (the training set) and to measure how well models with different numbers of extracted

factors fit the other part of the data (the test set). This is called test set validation. However, it is rare

that you have enough data to make both parts large enough for pure test set validation to be useful.

Alternatively, you can make several different divisions of the observed data into training set and

test set. This is called cross validation, and there are several different types. In one-at-a-time cross

validation, the first observation is held out as a single-element test set, with all other observations as

the training set; next, the second observation is held out, then the third, and so on. Another method is

to hold out successive blocks of observations as test sets—for example, observations 1 through 7,

then observations 8 through 14, and so on; this is known as blocked validation. A similar method is

split-sample cross validation, in which successive groups of widely separated observations are held

out as the test set—for example, observations {1, 11, 21, . . . }, then observations {2, 12, 22, . . . }, and

so on. Finally, test sets can be selected from the observed data randomly; this is known as random

sample cross validation.

Which validation you should use depends on your data. Test set validation is preferred when you

have enough data to make a division into a sizable training set and test set that represent the predictive

population well. You can specify that the number of extracted factors be selected by test set validation

by using the CV=TESTSET(data set) option, where data set is the name of the data set containing the

test set. If you do not have enough data for test set validation, you can use one of the cross validation

techniques. The most common technique is one-at-a-time validation (which you can specify with

the CV=ONE option or just the CV option), unless the observed data are serially correlated, in

which case either blocked or split-sample validation might be more appropriate (CV=BLOCK or

CV=SPLIT); you can specify the number of test sets in blocked or split-sample validation with

a number in parentheses after the CV= option. Note that CV=ONE is the most computationally

intensive of the cross validation methods, since it requires a recomputation of the PLS model for

every input observation. Also, note that using random subset selection with CV=RANDOM might
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lead two different researchers to produce different PLS models on the same data (unless the same

seed is used).

Whichever validation method you use, the number of factors chosen is usually the one that minimizes

the predicted residual sum of squares (PRESS); this is the default choice if you specify any of the CV

methods with PROC PLS. However, often models with fewer factors have PRESS statistics that are

only marginally larger than the absolute minimum. To address this, van der Voet (1994) has proposed

a statistical test for comparing the predicted residuals from different models; when you apply van der

Voet’s test, the number of factors chosen is the fewest with residuals that are insignificantly larger

than the residuals of the model with minimum PRESS.

To see how van der Voet’s test works, let Ri;jk be the j th predicted residual for response k for the

model with i extracted factors; the PRESS statistic is
P

jk R2
i;jk

. Also, let imin be the number of

factors for which PRESS is minimized. The critical value for van der Voet’s test is based on the

differences between squared predicted residuals

Di;jk D R2
i;jk � R2

imin;jk

One alternative for the critical value is Ci D
P

jk Di;jk , which is just the difference between the

PRESS statistics for i and imin factors; alternatively, van der Voet suggests Hotelling’s T 2 statistic

Ci D d0

i;�S
�1
i di;�, where di;� is the sum of the vectors di;j D fDi;j1; : : : ; Di;jNy

g0 and Si is the

sum of squares and crossproducts matrix

Si D
X

j

di;j d0

i;j

Virtually, the significance level for van der Voet’s test is obtained by comparing Ci with the distribu-

tion of values that result from randomly exchanging R2
i;jk

and R2
imin;jk

. In practice, a Monte Carlo

sample of such values is simulated and the significance level is approximated as the proportion of

simulated critical values that are greater than Ci . If you apply van der Voet’s test by specifying the

CVTEST option, then, by default, the number of extracted factors chosen is the least number with an

approximate significance level that is greater than 0.10.

Centering and Scaling

By default, the predictors and the responses are centered and scaled to have mean 0 and standard

deviation 1. Centering the predictors and the responses ensures that the criterion for choosing

successive factors is based on how much variation they explain, in either the predictors or the

responses or both. (See the section “Regression Methods” on page 5485 for more details on how

different methods explain variation.) Without centering, both the mean variable value and the

variation around that mean are involved in selecting factors. Scaling serves to place all predictors and

responses on an equal footing relative to their variation in the data. For example, if Time and Temp

are two of the predictors, then scaling says that a change of std.Time/ in Time is roughly equivalent

to a change of std.Temp/ in Temp.
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Usually, both the predictors and responses should be centered and scaled. However, if their values

already represent variation around a nominal or target value, then you can use the NOCENTER

option in the PROC PLS statement to suppress centering. Likewise, if the predictors or responses are

already all on comparable scales, then you can use the NOSCALE option to suppress scaling.

Note that, if the predictors involve crossproduct terms, then, by default, the variables are not

standardized before standardizing the crossproduct. That is, if the i th values of two predictors are

denoted x1
i and x2

i , then the default standardized i th value of the crossproduct is

x1
i x2

i � meanj .x1
j x2

j /

stdj .x1
j x2

j /

If you want the crossproduct to be based instead on standardized variables

x1
i � m1

s1
�

x2
i � m2

s2

where mk D meanj .xk
j / and sk D stdj .xk

j / for k D 1; 2, then you should use the VARSCALE

option in the PROC PLS statement. Standardizing the variables separately is usually a good idea, but

unless the model also contains all crossproducts nested within each term, the resulting model might

not be equivalent to a simple linear model in the same terms. To see this, note that a model involving

the crossproduct of two standardized variables

x1
i � m1

s1
�

x2
i � m2

s2
D x1

i x2
i

1

s1s2
� x1

i

m2

s1s2
� x2

i

m1

s1s2
C

m1m2

s1s2

involves both the crossproduct term and the linear terms for the unstandardized variables.

When cross validation is performed for the number of effects, there is some disagreement among

practitioners as to whether each cross validation training set should be retransformed. By default,

PROC PLS does so, but you can suppress this behavior by specifying the NOCVSTDIZE option in

the PROC PLS statement.

Missing Values

By default, PROC PLS handles missing values very simply. Observations with any missing inde-

pendent variables (including all classification variables) are excluded from the analysis, and no

predictions are computed for such observations. Observations with no missing independent vari-

ables but any missing dependent variables are also excluded from the analysis, but predictions are

computed.

However, the MISSING= option in the PROC PLS statement provides more sophisticated ways of

modeling in the presence of missing values. If you specify MISSING=AVG or MISSING=EM, then

all observations in the input data set contribute to both the analysis and the OUTPUT OUT= data

set. With MISSING=AVG, the fit is computed by filling in missing values with the average of the

nonmissing values for the corresponding variable. With MISSING=EM, the procedure first computes

the model with MISSING=AVG, then fills in missing values with their predicted values based on that

model and computes the model again. Alternatively, you can specify MISSING=EM(MAXITER=n)

with a large value of n in order to perform this imputation/fit loop until convergence.
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Displayed Output

By default, PROC PLS displays just the amount of predictor and response variation accounted for by

each factor.

If you perform a cross validation for the number of factors by specifying the CV option in the PROC

PLS statement, then the procedure displays a summary of the cross validation for each number of

factors, along with information about the optimal number of factors.

If you specify the DETAILS option in the PROC PLS statement, then details of the fitted model are

displayed for each successive factor. These details for each number of factors include the following:

� the predictor loadings

� the predictor weights

� the response weights

� the coded regression coefficients (for METHOD=SIMPLS, PCR, or RRR)

If you specify the CENSCALE option in the PROC PLS statement, then centering and scaling

information for each response and predictor is displayed.

If you specify the VARSS option in the PROC PLS statement, the procedure displays, in addition

to the average response and predictor sum of squares accounted for by each successive factor, the

amount of variation accounted for in each response and predictor.

If you specify the SOLUTION option in the MODEL statement, then PROC PLS displays the

coefficients of the final predictive model for the responses. The coefficients for predicting the

centered and scaled responses based on the centered and scaled predictors are displayed, as well as

the coefficients for predicting the raw responses based on the raw predictors.

ODS Table Names

PROC PLS assigns a name to each table it creates. You can use these names to reference the table

when using the Output Delivery System (ODS) to select tables and create output data sets. These

names are listed in Table 67.2. For more information about ODS, see Chapter 20, “Using the Output

Delivery System.”

Table 67.2 ODS Tables Produced by PROC PLS

ODS Table Name Description Statement Option

CVResults Results of cross validation PROC CV

CenScaleParms Parameter estimates for centered and

scaled data

MODEL SOLUTION

CodedCoef Coded coefficients PROC DETAILS

MissingIterations Iterations for missing value imputation PROC MISSING=EM
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Table 67.2 continued

ODS Table Name Description Statement Option

ModelInfo Model information PROC default

NObs Number of observations PROC default

ParameterEstimates Parameter estimates for raw data MODEL SOLUTION

PercentVariation Variation accounted for by each factor PROC default

ResidualSummary Residual summary from cross validation PROC CV

XEffectCenScale Centering and scaling information for pre-

dictor effects

PROC CENSCALE

XLoadings Loadings for independents PROC DETAILS

XVariableCenScale Centering and scaling information for pre-

dictor variables

PROC CENSCALE

and VARSCALE

XWeights Weights for independents PROC DETAILS

YVariableCenScale Centering and scaling information for re-

sponses

PROC CENSCALE

YWeights Weights for dependents PROC DETAILS

ODS Graphics

This section describes the use of ODS for creating statistical graphs with the PLS procedure. To

request these graphs you must specify the ODS GRAPHICS statement. For more information about

the ODS GRAPHICS statement, see Chapter 21, “Statistical Graphics Using ODS.”

When the ODS GRAPHICS are in effect, by default the PLS procedure produces a plot of the

variation accounted for by each extracted factor, as well as a correlation loading plot for the first two

extracted factors (if the final model has at least two factors). The plot of the variation accounted for

can take several forms:

� If the PLS analysis does not include cross validation, then the plot shows the total R square for

both model effects and the dependent variables against the number of factors.

� If you specify the CV= option to select the number of factors in the final model by cross

validation, then the plot shows the R-square analysis discussed previously as well as the root

mean PRESS from the cross validation analysis, with the selected number of factors identified

by a vertical line.

The correlation loading plot for the first two factors summarizes many aspects of the two most

significant dimensions of the model. It consists of overlaid scatter plots of the scores of the first

two factors, the loadings of the model effects, and the loadings of the dependent variables. The

loadings are scaled so that the amount of variation in the variables that is explained by the model is

proportional to the distance from the origin; circles indicating various levels of explained variation are

also overlaid on the correlation loading plot. Also, the correlation between the model approximations

for any two variables is proportional to the length of the projection of the point corresponding to one

variable on a line through the origin passing through the point corresponding to the other variable;

the sign of the correlation corresponds to which side of the origin the projected point falls on.
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The R square and the first two correlation loadings are plotted by default when the ODS GRAPHICS

are in effect, but you can produce many other plots for the PROC PLS analysis.

ODS Graph Names

PROC PLS assigns a name to each graph it creates using ODS. You can use these names to reference

the graphs when using ODS. The names are listed in Table 67.3.

To request these graphs you must specify the ODS GRAPHICS statement. For more information

about the ODS GRAPHICS statement, see Chapter 21, “Statistical Graphics Using ODS.”

Table 67.3 ODS Graphics Produced by PROC GLM

ODS Graph Name Plot Description Option

CorrLoadPlot Correlation loading plot (de-

fault)

PLOT=CORRLOAD(option)

CVPlot Cross validation and R-

square analysis (default, as

appropriate)

CV=

DModXPlot Distance of each observation

to the X model

PLOT=DMODX

DModXYPlot Distance of each observation

to the X and Y models

PLOT=DMODXY

DModYPlot Distance of each observation

to the Y model

PLOT=DMODY

DiagnosticsPanel Panel of diagnostic plots for

the fit

PLOT=DIAGNOSTICS

AbsResidualByPredicted Absolute residual by pre-

dicted values

PLOT=DIAGNOSTICS(UNPACK)

ObservedByPredicted Observed by predicted PLOT=DIAGNOSTICS(UNPACK)

QQPlot Residual Q-Q plot PLOT=DIAGNOSTICS(UNPACK)

ResidualByPredicted Residual by predicted values PLOT=DIAGNOSTICS(UNPACK)

ResidualHistogram Residual histogram PLOT=DIAGNOSTICS(UNPACK)

RFPlot RF plot PLOT=DIAGNOSTICS(UNPACK)

ParmProfiles Profiles of regression coeffi-

cients

PLOT=PARMPROFILES

R2Plot R-square analysis (default,

as appropriate)

ResidualPlots Residuals for each depen-

dent variable

PLOT=RESIDUALS

VariableImportancePlot Profile of variable impor-

tance factors

PLOT=VIP

XLoadingPlot Scatter plot matrix of X-

loadings against each other

PLOT=XLOADINGPLOT

XLoadingProfiles Profiles of the X-loadings PLOT=XLOADINGPROFILES

XScorePlot Scatter plot matrix of X-

scores against each other

PLOT=XSCORES
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Table 67.3 continued

ODS Graph Name Plot Description Option

XWeightPlot Scatter plot matrix of X-

weights against each other

PLOT=XWEIGHTPLOT

XWeightProfiles Profiles of the X-weights PLOT=XWEIGHTPROFILES

XYScorePlot Scatter plot matrix of X-

scores against Y-scores

PLOT=XYSCORES

YScorePlot Scatter plot matrix of Y-

scores against each other

PLOT=YSCORES

YWeightPlot Scatter plot matrix of Y-

weights against each other

PLOT=YWEIGHTPLOT

Examples: PLS Procedure

Example 67.1: Examining Model Details

This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data

come from the field of drug discovery. New drugs are developed from chemicals that are biologically

active. Testing a compound for biological activity is an expensive procedure, so it is useful to be able

to predict biological activity from cheaper chemical measurements. In fact, computational chemistry

makes it possible to calculate certain chemical measurements without even making the compound.

These measurements include size, lipophilicity, and polarity at various sites on the molecule. The

following statements create a data set named pentaTrain, which contains these data.

data pentaTrain;

input obsnam $ S1 L1 P1 S2 L2 P2

S3 L3 P3 S4 L4 P4

S5 L5 P5 log_RAI @@;

n = _n_;

datalines;

VESSK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

1.9607 -1.6324 0.5746 1.9607 -1.6324 0.5746

2.8369 1.4092 -3.1398 0.00

VESAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 0.28

VEASK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746

2.8369 1.4092 -3.1398 0.20

VEAAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 0.51

VKAAK -2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902
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2.8369 1.4092 -3.1398 0.11

VEWAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

-4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 2.73

VEAAP -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

-1.2201 0.8829 2.2253 0.18

VEHAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 1.53

VAAAK -2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 -0.10

GEAAK 2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 -0.52

LEAAK -4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 0.40

FEAAK -4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701

0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 0.30

VEGGK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049

2.8369 1.4092 -3.1398 -1.00

VEFAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

-4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 1.57

VELAK -2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701

-4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902

2.8369 1.4092 -3.1398 0.59

;

You would like to study the relationship between these measurements and the activity of the com-

pound, represented by the logarithm of the relative Bradykinin activating activity (log_RAI). Notice

that these data consist of many predictors relative to the number of observations. Partial least squares

is especially appropriate in this situation as a useful tool for finding a few underlying predictive

factors that account for most of the variation in the response. Typically, the model is fit for part of

the data (the “training” or “work” set), and the quality of the fit is judged by how well it predicts the

other part of the data (the “test” or “prediction” set). For this example, the first 15 observations serve

as the training set and the rest constitute the test set (refer to Ufkes et al. 1978, 1982).

When you fit a PLS model, you hope to find a few PLS factors that explain most of the variation

in both predictors and responses. Factors that explain response variation provide good predictive

models for new responses, and factors that explain predictor variation are well represented by the

observed values of the predictors. The following statements fit a PLS model with two factors and

save predicted values, residuals, and other information for each data point in a data set named outpls.

proc pls data=pentaTrain;

model log_RAI = S1-S5 L1-L5 P1-P5;

run;



5498 ✦ Chapter 67: The PLS Procedure

The PLS procedure displays a table, shown in Output 67.1.1, showing how much predictor and

response variation is explained by each PLS factor.

Output 67.1.1 Amount of Training Set Variation Explained

The PLS Procedure

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 16.9014 16.9014 89.6399 89.6399

2 12.7721 29.6735 7.8368 97.4767

3 14.6554 44.3289 0.4636 97.9403

4 11.8421 56.1710 0.2485 98.1889

5 10.5894 66.7605 0.1494 98.3383

6 5.1876 71.9481 0.2617 98.6001

7 6.1873 78.1354 0.2428 98.8428

8 7.2252 85.3606 0.1926 99.0354

9 6.7285 92.0891 0.0725 99.1080

10 7.9076 99.9967 0.0000 99.1080

11 0.0033 100.0000 0.0099 99.1179

12 0.0000 100.0000 0.0000 99.1179

13 0.0000 100.0000 0.0000 99.1179

14 0.0000 100.0000 0.0000 99.1179

15 0.0000 100.0000 0.0000 99.1179

From Output 67.1.1, note that 97% of the response variation is already explained by just two factors,

but only 29% of the predictor variation is explained.

The graphics in PROC PLS, available when ODS Graphics is in effect, make it easier to see features

of the PLS model.

If you enable ODS Graphics, then in addition to the tables discussed previously, PROC PLS displays

a graphical depiction of the R-square analysis as well as a correlation loadings plot summarizing the

model based on the first two PLS factors. The following statements perform the previous analysis

with ODS Graphics enabled, producing Output 67.1.2 and Output 67.1.3.

ods graphics on;

proc pls data=pentaTrain;

model log_RAI = S1-S5 L1-L5 P1-P5;

run;
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Output 67.1.2 Plot of Proportion of Variation Accounted For
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Output 67.1.3 Correlation Loadings Plot

The plot in Output 67.1.2 of the proportion of variation explained (or R square) makes it clear that

there is a plateau in the response variation after two factors are included in the model. The correlation

loading plot in Output 67.1.3 summarizes many features of this two-factor model, including the

following:

� The X-scores are plotted as numbers for each observation. You should look for patterns or

clearly grouped observations. If you see a curved pattern, for example, you might want to add

a quadratic term. Two or more groupings of observations indicate that it might be better to

analyze the groups separately, perhaps by including classification effects in the model. This

plot appears to show most of the observations close together, with a few being more spread out

with larger positive X-scores for factor 2. There are no clear grouping patterns, but observation

13 stands out.

� The loadings show how much variation in each variable is accounted for by the first two

factors, jointly by the distance of the corresponding point from the origin and individually by

the distance for the projections of this point onto the horizontal and vertical axes. That the

dependent variable is well explained by the model is reflected in the fact that the point for

log_RAI is near the 100% circle.
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� You can also use the projection interpretation to relate variables to each other. For example,

projecting other variables’ points onto the line that runs through the log_RAI point and the origin,

you can see that the PLS approximation for the predictor L3 is highly positively correlated with

log_RAI, S3 is somewhat less correlated but in the negative direction, and several predictors

including L1, L5, and S5 have very little correlation with log_RAI.

Other graphics enable you to explore more of the features of the PLS model. For example, you can

examine the X-scores versus the Y-scores to explore how partial least squares chooses successive

factors. For a good PLS model, the first few factors show a high correlation between the X- and

Y-scores. The correlation usually decreases from one factor to the next. When ODS Graphics is in

effect, you can plot the X-scores versus the Y-scores by using the PLOT=XYSCORES option, as

shown in the following statements.

proc pls data=pentaTrain nfac=4 plot=XYScores;

model log_RAI = S1-S5 L1-L5 P1-P5;

run;

The plot of the X-scores versus the Y-scores for the first four factors is shown in Output 67.1.4.

Output 67.1.4 X-Scores versus Y-Scores
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For this example, Output 67.1.4 shows high correlation between X- and Y-scores for the first factor

but somewhat lower correlation for the second factor and sharply diminishing correlation after that.

This adds strength to the judgment that NFAC=2 is the right number of factors for these data and this

model. Note that observation 13 is again extreme in the first two plots. This run might be overly

influential for the PLS analysis; thus, you should check to make sure it is reliable.

As explained earlier, you can draw some inferences about the relationship between individual

predictors and the dependent variable from the correlation loading plot. However, the regression

coefficient profile and the variable importance plot give a more direct indication of which predictors

are most useful for predicting the dependent variable. The regression coefficients represent the

importance each predictor has in the prediction of just the response. The variable importance plot,

on the other hand, represents the contribution of each predictor in fitting the PLS model for both

predictors and response. It is based on the Variable Importance for Projection (VIP) statistic of

Wold (1994), which summarizes the contribution a variable makes to the model. If a predictor has a

relatively small coefficient (in absolute value) and a small value of VIP, then it is a prime candidate

for deletion. Wold in Umetrics (1995) considers a value less than 0.8 to be “small” for the VIP. The

following statements fit a two-factor PLS model and display these two additional plots.

proc pls data=pentaTrain nfac=2 plot=(ParmProfiles VIP);

model log_RAI = S1-S5 L1-L5 P1-P5;

run;

ods graphics off;

The additional graphics are shown in Output 67.1.5 and Output 67.1.6.
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Output 67.1.5 Variable Importance Plots
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Output 67.1.6 Regression Parameter Profile

In these two plots, the variables L1, L2, P2, S5, L5, and P5 have small absolute coefficients and small

VIP. Looking back at the correlation loadings plot in Output 67.1.2, you can see that these variables

tend to be the ones near zero for both PLS factors. You should consider dropping these variables

from the model.

Example 67.2: Examining Outliers

This example is a continuation of Example 67.1.

Standard diagnostics for statistical models focus on the response, allowing you to look for patterns

that indicate the model is inadequate or for outliers that do not seem to follow the trend of the rest of

the data. However, partial least squares effectively models the predictors as well as the responses,

so you should consider the pattern of the fit for both. The DModX and DModY statistics give

the distance from each point to the PLS model with respect to the predictors and the responses,

respectively, and ODS Graphics enables you to plot these values. No point should be dramatically

farther from the model than the rest. If there is a group of points that are all farther from the
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model than the rest, they might have something in common, in which case they should be analyzed

separately.

The following statements fit a reduced model to the data discussed in Example 67.1 and plot a panel

of standard diagnostics as well as the distances of the observations to the model.

ods graphics on;

proc pls data=pentaTrain nfac=2 plot=(diagnostics dmod);

model log_RAI = S1 P1

S2

S3 L3 P3

S4 L4 ;

run;

ods graphics off;

The plots are shown in Output 67.2.1 and Output 67.2.2.

Output 67.2.1 Model Fit Diagnostics
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Output 67.2.2 Predictor versus Response Distances to the Model

There appear to be no profound outliers in either the predictor space or the response space.

Example 67.3: Choosing a PLS Model by Test Set Validation

This example demonstrates issues in spectrometric calibration. The data (Umetrics 1995) consist of

spectrographic readings on 33 samples containing known concentrations of two amino acids, tyrosine

and tryptophan. The spectra are measured at 30 frequencies across the overall range of frequencies.

For example, Figure 67.3.1 shows the observed spectra for three samples, one with only tryptophan,

one with only tyrosine, and one with a mixture of the two, all at a total concentration of 10�6.
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Output 67.3.1 Spectra for Three Samples of Tyrosine and Tryptophan

Of the 33 samples, 18 are used as a training set and 15 as a test set. The data originally appear in

McAvoy et al. (1989).

These data were created in a lab, with the concentrations fixed in order to provide a wide range of

applicability for the model. You want to use a linear function of the logarithms of the spectra to

predict the logarithms of tyrosine and tryptophan concentration, as well as the logarithm of the total

concentration. Actually, because of the possibility of zeros in both the responses and the predictors,

slightly different transformations are used. The following statements create SAS data sets containing

the training and test data, named ftrain and ftest, respectively.

data ftrain;

input obsnam $ tot tyr f1-f30 @@;

try = tot - tyr;

if (tyr) then tyr_log = log10(tyr); else tyr_log = -8;

if (try) then try_log = log10(try); else try_log = -8;

tot_log = log10(tot);

datalines;

17mix35 0.00003 0

-6.215 -5.809 -5.114 -3.963 -2.897 -2.269 -1.675 -1.235

-0.900 -0.659 -0.497 -0.395 -0.335 -0.315 -0.333 -0.377

-0.453 -0.549 -0.658 -0.797 -0.878 -0.954 -1.060 -1.266
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-1.520 -1.804 -2.044 -2.269 -2.496 -2.714

19mix35 0.00003 3E-7

-5.516 -5.294 -4.823 -3.858 -2.827 -2.249 -1.683 -1.218

-0.907 -0.658 -0.501 -0.400 -0.345 -0.323 -0.342 -0.387

-0.461 -0.554 -0.665 -0.803 -0.887 -0.960 -1.072 -1.272

-1.541 -1.814 -2.058 -2.289 -2.496 -2.712

21mix35 0.00003 7.5E-7

-5.519 -5.294 -4.501 -3.863 -2.827 -2.280 -1.716 -1.262

-0.939 -0.694 -0.536 -0.444 -0.384 -0.369 -0.377 -0.421

-0.495 -0.596 -0.706 -0.824 -0.917 -0.988 -1.103 -1.294

-1.565 -1.841 -2.084 -2.320 -2.521 -2.729

... more lines ...

mix6 0.0001 0.00009

-1.140 -0.757 -0.497 -0.362 -0.329 -0.412 -0.513 -0.647

-0.772 -0.877 -0.958 -1.040 -1.104 -1.162 -1.233 -1.317

-1.425 -1.543 -1.661 -1.804 -1.877 -1.959 -2.034 -2.249

-2.502 -2.732 -2.964 -3.142 -3.313 -3.576

;

data ftest;

input obsnam $ tot tyr f1-f30 @@;

try = tot - tyr;

if (tyr) then tyr_log = log10(tyr); else tyr_log = -8;

if (try) then try_log = log10(try); else try_log = -8;

tot_log = log10(tot);

datalines;

43trp6 1E-6 0

-5.915 -5.918 -6.908 -5.428 -4.117 -5.103 -4.660 -4.351

-4.023 -3.849 -3.634 -3.634 -3.572 -3.513 -3.634 -3.572

-3.772 -3.772 -3.844 -3.932 -4.017 -4.023 -4.117 -4.227

-4.492 -4.660 -4.855 -5.428 -5.103 -5.428

59mix6 1E-6 1E-7

-5.903 -5.903 -5.903 -5.082 -4.213 -5.083 -4.838 -4.639

-4.474 -4.213 -4.001 -4.098 -4.001 -4.001 -3.907 -4.001

-4.098 -4.098 -4.206 -4.098 -4.213 -4.213 -4.335 -4.474

-4.639 -4.838 -4.837 -5.085 -5.410 -5.410

51mix6 1E-6 2.5E-7

-5.907 -5.907 -5.415 -4.843 -4.213 -4.843 -4.843 -4.483

-4.343 -4.006 -4.006 -3.912 -3.830 -3.830 -3.755 -3.912

-4.006 -4.001 -4.213 -4.213 -4.335 -4.483 -4.483 -4.642

-4.841 -5.088 -5.088 -5.415 -5.415 -5.415

... more lines ...

tyro2 0.0001 0.0001

-1.081 -0.710 -0.470 -0.337 -0.327 -0.433 -0.602 -0.841

-1.119 -1.423 -1.750 -2.121 -2.449 -2.818 -3.110 -3.467

-3.781 -4.029 -4.241 -4.366 -4.501 -4.366 -4.501 -4.501

-4.668 -4.668 -4.865 -4.865 -5.109 -5.111

;
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The following statements fit a PLS model with 10 factors.

proc pls data=ftrain nfac=10;

model tot_log tyr_log try_log = f1-f30;

run;

The table shown in Output 67.3.2 indicates that only three or four factors are required to explain

almost all of the variation in both the predictors and the responses.

Output 67.3.2 Amount of Training Set Variation Explained

The PLS Procedure

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 81.1654 81.1654 48.3385 48.3385

2 16.8113 97.9768 32.5465 80.8851

3 1.7639 99.7407 11.4438 92.3289

4 0.1951 99.9357 3.8363 96.1652

5 0.0276 99.9634 1.6880 97.8532

6 0.0132 99.9765 0.7247 98.5779

7 0.0052 99.9817 0.2926 98.8705

8 0.0053 99.9870 0.1252 98.9956

9 0.0049 99.9918 0.1067 99.1023

10 0.0034 99.9952 0.1684 99.2707

In order to choose the optimal number of PLS factors, you can explore how well models based on

the training data with different numbers of factors fit the test data. To do so, use the CV=TESTSET

option, with an argument pointing to the test data set ftest. The following statements also employ the

ODS Graphics features in PROC PLS to display the cross validation results in a plot.

ods graphics on;

proc pls data=ftrain nfac=10 cv=testset(ftest)

cvtest(stat=press seed=12345);

model tot_log tyr_log try_log = f1-f30;

run;

The tabular results of the test set validation are shown in Output 67.3.3, and the graphical results are

shown in Output 67.3.4. They indicate that, although five PLS factors give the minimum predicted

residual sum of squares, the residuals for four factors are insignificantly different from those for five.

Thus, the smaller model is preferred.
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Output 67.3.3 Test Set Validation for the Number of PLS Factors

The PLS Procedure

Test Set Validation for the Number of Extracted Factors

Number of Root

Extracted Mean Prob >

Factors PRESS PRESS

0 3.056797 <.0001

1 2.630561 <.0001

2 1.00706 0.0070

3 0.664603 0.0020

4 0.521578 0.3800

5 0.500034 1.0000

6 0.513561 0.5100

7 0.501431 0.6870

8 1.055791 0.1530

9 1.435085 0.1010

10 1.720389 0.0320

Minimum root mean PRESS 0.5000

Minimizing number of factors 5

Smallest number of factors with p > 0.1 4

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 81.1654 81.1654 48.3385 48.3385

2 16.8113 97.9768 32.5465 80.8851

3 1.7639 99.7407 11.4438 92.3289

4 0.1951 99.9357 3.8363 96.1652
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Output 67.3.4 Test Set Validation Plot

The factor loadings show how the PLS factors are constructed from the centered and scaled predictors.

For spectral calibration, it is useful to plot the loadings against the frequency. In many cases, the

physical meanings that can be attached to factor loadings help to validate the scientific interpretation

of the PLS model. You can use ODS Graphics with PROC PLS to plot the loadings for the four PLS

factors against frequency, as shown in the following statements.

proc pls data=ftrain nfac=4 plot=XLoadingProfiles;

model tot_log tyr_log try_log = f1-f30;

run;

ods graphics off;

The resulting plot is shown in Output 67.3.5.
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Output 67.3.5 Predictor Loadings across Frequencies

Notice that all four factors handle frequencies below and above about 7 or 8 differently. For example,

the first factor is very nearly a simple contrast between the averages of the two sets of frequencies,

and the second factor appears to be approximately a weighted sum of only the frequencies in the first

set.

Example 67.4: Partial Least Squares Spline Smoothing

The EFFECT statement makes it easy to construct a wide variety of linear models. In particular, you

can use the spline effect to add smoothing terms to a model. A particular benefit of using spline

effects in PROC PLS is that, when operating on spline basis functions, the partial least squares

algorithm effectively chooses the amount of smoothing automatically, especially if you combine it

with cross validation for the selecting the number of factors. This example employs the EFFECT

statement to demonstrate partial least squares spline smoothing of agricultural data.

Weibe (1935) presents data from a study of uniformity of wheat yields over a certain rectangular plot

of land. The following statements read these wheat yield measurements, indexed by row and column

distances, into the SAS data set Wheat:
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data Wheat; keep Row Column Yield;

input Yield @@;

iRow = int((_N_-1)/12);

iCol = mod( _N_-1 ,12);

Column = iCol*15 + 1; /* Column distance, in feet */

Row = iRow* 1 + 1; /* Row distance, in feet */

Row = 125 - Row + 1; /* Invert rows */

datalines;

715 595 580 580 615 610 540 515 557 665 560 612

770 710 655 675 700 690 565 585 550 574 511 618

760 715 690 690 655 725 665 640 665 705 644 705

665 615 685 555 585 630 550 520 553 616 573 570

755 730 670 580 545 620 580 525 495 565 599 612

745 670 585 560 550 710 590 545 538 587 600 664

645 690 550 520 450 630 535 505 530 536 611 578

... more lines ...

570 585 635 765 550 675 765 620 608 705 677 660

505 500 580 655 470 565 570 555 537 585 589 619

465 430 510 680 460 600 670 615 620 594 616 784

;

The following statements use the PLS procedure to smooth these wheat yields using two spline

effects, one for rows and another for columns, in addition to their crossproduct. Each spline effect

has, by default, seven basis columns; thus their crossproduct has 49 D 72 columns, for a total

of 63 parameters in the full linear model. However, the predictive PLS model does not actually

need to have 63 degrees of freedom. Rather, the degree of smoothing is controlled by the number

of PLS factors, which in this case is chosen automatically by random subset validation with the

CV=RANDOM option.

ods graphics on;

proc pls data=Wheat cv=random(seed=1) cvtest(seed=12345)

plot(only)=contourfit(obs=gradient);

effect splCol = spline(Column);

effect splRow = spline(Row );

model Yield = splCol|splRow;

run;

ods graphics off;

These statements produce the output shown in Output 67.4.1 through Output 67.4.4.
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Output 67.4.1 Default Spline Basis: Model and Data Information

The PLS Procedure

Data Set WORK.WHEAT

Factor Extraction Method Partial Least Squares

PLS Algorithm NIPALS

Number of Response Variables 1

Number of Predictor Parameters 63

Missing Value Handling Exclude

Maximum Number of Factors 15

Validation Method 10-fold Random Subset Validation

Random Subset Seed 1

Validation Testing Criterion Prob T**2 > 0.1

Number of Random Permutations 1000

Random Permutation Seed 12345

Number of Observations Read 1500

Number of Observations Used 1500

Output 67.4.2 Default Spline Basis: Random Subset Validated PRESS Statistics for Number of

Factors

Random Subset Validation for the Number of Extracted Factors

Number of Root

Extracted Mean Prob >

Factors PRESS T**2 T**2

0 1.066355 251.8793 <.0001

1 0.826177 123.8161 <.0001

2 0.745877 61.6035 <.0001

3 0.725181 44.99644 <.0001

4 0.701464 23.20199 <.0001

5 0.687164 8.369711 0.0030

6 0.683917 8.775847 0.0010

7 0.677969 2.907019 0.0830

8 0.676423 2.190871 0.1340

9 0.676966 3.191284 0.0600

10 0.675026 1.334638 0.2390

11 0.673906 0.556455 0.4470

12 0.673653 1.257292 0.2790

13 0.672669 0 1.0000

14 0.673596 2.386014 0.1190

15 0.672828 0.02962 0.8820

Minimum root mean PRESS 0.6727

Minimizing number of factors 13

Smallest number of factors with p > 0.1 8
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Output 67.4.3 Default Spline Basis: PLS Variation Summary for Split-Sample Validated Model

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 11.5269 11.5269 40.2471 40.2471

2 7.2314 18.7583 10.4908 50.7379

3 6.9147 25.6730 2.6523 53.3902

4 3.8433 29.5163 2.8806 56.2708

5 6.4795 35.9958 1.3197 57.5905

6 7.6201 43.6159 1.1700 58.7605

7 7.3214 50.9373 0.7186 59.4790

8 4.8363 55.7736 0.4548 59.9339

Output 67.4.4 Default Spline Basis: Smoothed Yield

The cross validation results in Output 67.4.2 point to a model with eight PLS factors; this is the

smallest model whose predicted residual sum of squares (PRESS) is insignificantly different from

the model with the absolute minimum PRESS. The variation summary in Output 67.4.3 shows that
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this model accounts for about 60% of the variation in the Yield values. The OBS=GRADIENT

suboption for the PLOT=CONTOURFIT option specifies that the observations in the resulting plot,

Output 67.4.4, be colored according to the same scheme as the surface of predicted yield. This

coloration enables you to easily tell which observations are above the surface of predicted yield and

which are below.

The surface of predicted yield is somewhat smoother than what Weibe (1935) settled on originally,

with a predominance of simple, elliptically shaped contours. You can easily specify a potentially

more granular model by increasing the number of knots in the spline bases. Even though the more

granular model increases the number of predictor parameters, cross validation can still protect you

from overfitting the data. The following statements are the same as those shown before, except that

the spline effects now have twice as many basis functions:

ods graphics on;

proc pls data=Wheat cv=random(seed=1) cvtest(seed=12345)

plot(only)=contourfit(obs=gradient);

effect splCol = spline(Column / knotmethod=equal(14));

effect splRow = spline(Row / knotmethod=equal(14));

model Yield = splCol|splRow;

run;

ods graphics off;

The resulting output is shown in Output 67.4.5 through Output 67.4.8.

Output 67.4.5 More Granular Spline Basis: Model and Data Information

The PLS Procedure

Data Set WORK.WHEAT

Factor Extraction Method Partial Least Squares

PLS Algorithm NIPALS

Number of Response Variables 1

Number of Predictor Parameters 360

Missing Value Handling Exclude

Maximum Number of Factors 15

Validation Method 10-fold Random Subset Validation

Random Subset Seed 1

Validation Testing Criterion Prob T**2 > 0.1

Number of Random Permutations 1000

Random Permutation Seed 12345

Number of Observations Read 1500

Number of Observations Used 1500
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Output 67.4.6 More Granular Spline Basis: Random Subset Validated PRESS Statistics for

Number of Factors

Random Subset Validation for the Number of Extracted Factors

Number of Root

Extracted Mean Prob >

Factors PRESS T**2 T**2

0 1.066355 247.9268 <.0001

1 0.652658 20.68858 <.0001

2 0.615087 0.074822 0.7740

3 0.614128 0 1.0000

4 0.615268 0.197678 0.6490

5 0.618001 1.372038 0.2340

6 0.622949 5.035504 0.0180

7 0.626482 7.296797 0.0080

8 0.633316 13.66045 <.0001

9 0.635239 16.16922 <.0001

10 0.636938 18.02295 <.0001

11 0.636494 16.9881 <.0001

12 0.63682 16.83341 <.0001

13 0.637719 16.74157 <.0001

14 0.637627 15.79342 <.0001

15 0.638431 16.12327 <.0001

Minimum root mean PRESS 0.6141

Minimizing number of factors 3

Smallest number of factors with p > 0.1 2

Output 67.4.7 More Granular Spline Basis: PLS Variation Summary for Split-Sample Validated

Model

Percent Variation Accounted for

by Partial Least Squares Factors

Number of

Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 1.7967 1.7967 64.7792 64.7792

2 1.3719 3.1687 6.3163 71.0955
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Output 67.4.8 More Granular Spline Basis: Smoothed Yield

Output 67.4.5 shows that the model now has 360 parameters, many more than before. In Output 67.4.6

you can see that with more granular spline effects, fewer PLS factors are required—only two, in

fact. However, Output 67.4.7 shows that this model now accounts for over 70% of the variation in

the Yield values, and the contours of predicted values in Output 67.4.8 are less inclined to be simple

elliptical shapes.
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