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Abstract. In this paper we derive the Integration-by-Parts Formula using the general-
ized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock
integral.
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1. Introduction

The classical stochastic integrals are defined through a non-explicit L2-convergence

procedure. A natural question arises: is it possible to define stochastic integrals as

limits of Riemann-Stieltjes sums? In [1], [6], [7], [10], [11], [12], [13] a general-

ized Riemann approach using non-uniform meshes was used and it turned out that

the integral defined by the generalized Riemann approach encompasses the classi-

cal stochastic integral. At this point, readers are reminded that it has always been

emphasized in literature that it is impossible to define stochastic integrals using

Riemann-Stieltjes sums with uniform mesh.

The generalized Riemann-Stieltjes approach using non-uniform meshes was first

introduced independently by J. Kurzweil and R. Henstock in the 1950s to study the

classical (non-stochastic) integral. It turns out that this integral encompasses the

Riemann-Stieltjes integral and the more general Lebesgue-Stieltjes integral, see [2],

[3], [4].

McShane’s approach in using non-uniform meshes in [6], [7] assumed Vitali’s cov-

ering property. In [12], the assumption of Vitali covering property was replaced by

using any collection of partial divisions. This new definition, which was motivated by
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Henstock’s Lemma, turns out to be simpler and encompasses the classical stochastic

integrals whenever they are defined.

Protter in [9, pp. 58, 76, 223] offered a proof of the Integration-by-Parts Formula

for Fisk-Stratonovich stochastic integrals along the line of the classical stochastic

integrals. In this note, using this generalized Riemann-Stieltjes approach along the

definition given in [12], we offer an alternative proof of the Integration-by-Parts for

our stochastic integral, based on the Kurzweil-Henstock approach.

2. Settings and definition of

Itô-Kurzweil-Henstock stochastic integral

Let (Ω, F , P ) be a probability space, that is, a measure space with P (Ω) = 1,

and {Ft} an increasing family of σ-subfields of F for t ∈ [0, 1], that is, Fr ⊂ Fs

for 0 6 r < s 6 1 with F1 = F . The probability space together with its family of

increasing σ-subfields is called a filtering space and denoted by (Ω, F , {Ft}, P ).

A process ϕ is a family of random variables ϕt on (Ω, F , {Ft}, P ) for each t ∈ [0, 1].

ϕ may be denoted by {ϕt : t ∈ [0, 1]}.
A process ϕ is said to be adapted to the filtration {Ft} if ϕt is Ft-measurable

for all t ∈ [0, 1]. For convenience, we consider the interval [0, 1], although any other

[a, b] ⊂ [0,∞) would suffice.

Definition 1. Let S : Ω → [0,∞) be a random variable defined on (Ω, F , {Ft},
P ). Then S is called a stopping time if

{ω ∈ Ω: S(ω) 6 t} ∈ Ft

for each t > 0.

Some standard properties of the stopping time include the following one: if S and

T are two stopping times and c > 0 is a positive constant, then S + T , min{S, T },
S + c are stopping times. However, S − T or S − c need not be stopping times.

Definition 2. Let δ = {δt : t ∈ [0, 1]} be a positive process, i.e., δt(·) > 0 for

all t. Then δ is called a stochastic gauge if ξ + δξ(·) is a stopping time for each
ξ ∈ [0, 1].

For example, if δ is (i) deterministic; or (ii) adapted to the space (Ω, F , {Ft}, P ),

then δ is a stochastic gauge.

Let S and T be two stopping times with S 6 T 6 1, i.e. S(ω) 6 T (ω) 6 1 for

each ω ∈ Ω. Let (S, T ] be a stochastic interval, i.e. (S, T ] = {(t, ω) : S(ω) < t 6

T (ω) if S(ω) < T (ω); S(ω) = t = T (ω) if S(ω) = T (ω)}. The definition of (S, T ] is
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slightly different from the standard definition in which S < T , see [9]. In this note,

stochastic intervals (ξ, T ], where the left endpoint ξ is a real number, are used very

often in the construction of our integral.

Definition 3. Let δ be a stochastic gauge. A finite collection of stochastic

intervals {(ξi, Ti] : i = 1, 2, 3, . . . , n}, where ξi ∈ [0, 1], is called a δ-fine belated

partial stochastic division of [0, 1] if

1. for each i, (ξi, Ti] is a stochastic interval and for each ω ∈ Ω, (ξi, Ti(ω)], i =

1, 2, . . . , n, are disjoint left-open subintervals of [0, 1] and

2. each (ξi, Ti] is δ-fine belated, i.e. for each ω ∈ Ω we have (ξi, Ti(ω)] ⊂ [ξi, ξi +

δξi
(ω)], i.e., ξi 6 Ti(ω) 6 ξi + δξi

(ω).

For the case ξi = Ti(ω) for all ω ∈ Ω, (ξi, Ti(ω)] is taken to be {ξi}.

Remark. Given any stochastic gauge and any ξ ∈ [0, 1], we can always find a

stochastic interval within [ξ, ξ + δξ(·)], since we can simply take (ξ, ξ + δξ(·)] to be
the half-open interval.

From now onwards a process ϕ = {ϕt : t ∈ [0, 1]} is denoted simply by ϕ. Suppose

T is a stopping time. Then XT denotes the random variable XT (ω) = X(T (ω), ω)

for all ω ∈ Ω. Let L2(Ω) be the space of all square integrable functions on (Ω, F , P ).

Definition 4. A stochastic process u is said to be Itô-Kurzweil-Henstock inte-

grable to a process A on [0, 1] (with respect to a stochastic process X) if for every

ε > 0 there exists a stochastic gauge δ for which

E

(
∣

∣

∣

∣

n
∑

i=1

{uξi
(XTi

− Xξi
) − (ATi

− Aξi
)}

∣

∣

∣

∣

2)

6 ε

for every δ-fine belated partial stochastic division D = {((ξi, Ti], ξi) : i = 1, 2, . . . , n}
of [0, 1].

To ensure that Definition 4 is meaningful, in this note we will always assume that

for each ξ ∈ [0, 1], the random variable uξ ∈ L2(Ω), and for each stopping time T ,

both XT and AT belong to L2(Ω).

We remark that in the above definition, we use any collection of partial divisions

of [0, 1]. This was motivated by Henstock’s Lemma for the classical (non-stochastic)

integral. This type of integrals has been considered by Henstock [3, p. 54], [4, p. 61].

The integral of u over [0, T ] refers to AT − A0.

Definition 5. Two processes F and G are said to be equal up to zero variation

if given any ε > 0, there exists a stochastic gauge δ such that for any δ-fine belated
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partial stochastic division of [0, 1], denoted by D = {(ξ, V ]}, we have

E
(∣

∣

∣
(D)

∑

{(FV − Fξ) − (GV − Gξ)}
∣

∣

∣

2)

6 ε.

It is clear that the integral, if it exists, is unique up to zero variation.

Uniqueness up to zero variation is an equivalence relation. Thus we let

∫ 1

0

ut dXt

denote a member in the equivalence class of the processes A which denote the Itô-

Kurzweil-Henstock integral of u with respect to X over [0, 1].

It has been proved in [11] that if u is classical stochastic integrable with respect to

an L2-martingale on [0, 1], then u is Itô-Kurzweil-Henstock integrable on [0, 1] and

the two integrals coincide.

3. Properties of Itô-Kurzweil-Henstock integral

We shall next state some standard properties of the stochastic integrals without

proofs. The proofs are standard in the theory of Kurzweil-Henstock integration.

However, we shall highlight Lemma 6, which forms the crucial part of the proofs of

the other theorems in this section. The proof of Lemma 6 follows directly from the

definition and the proof of Theorem 7 is standard of Kurzweil-Henstock integration

theory, hence they are omitted.

Lemma 6. Let δi, i = 1, 2, be two locally stopping processes. Then δ =

min(δ1, δ2) is a locally stopping process.

Theorem 7. If ϕi is Itô-Kurzweil-Henstock integrable on [0, 1] for each i = 1, 2,

then ϕ1
t + ϕ2

t is Itô-Kurzweil-Henstock integrable on [0, 1] and

∫ 1

0

ϕ1
t + ϕ2

t dXt =

∫ 1

0

ϕ1
t dXt +

∫ 1

0

ϕ2
t dXt.

Remark. It is easy to see from the definition that if ϕ is Itô-Kurzweil-Henstock

integrable with respect to X on [0, 1], then it is Itô-Kurzweil-Henstock integrable

with respect to X on each [a, b] ⊂ [0, 1] since any δ-fine belated partial stochastic

division of [a, b] is also a division of [0, 1] .
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Theorem 8. If ϕ is Itô-Kurzweil-Henstock integrable on [0, c] and Itô-Kurzweil-

Henstock integrable on [c, 1], where 0 6 c 6 1, then ϕ is Itô-Kurzweil-Henstock

integrable on [0, 1]. Furthermore,

∫ 1

0

ϕt dXt =

∫ c

0

ϕt dXt +

∫ 1

c

ϕt dXt.

Theorem 9. Let ϕ be Itô-Kurzweil-Henstock integrable with respect to X and

Y , and let α, β ∈ ✔ . Then ϕ is Itô-Kurzweil-Henstock integrable with respect to

αX + βY and moreover,

∫ 1

0

ϕt d(αXt + βYt) = α

∫ 1

0

ϕt dXt + β

∫ 1

0

ϕt dYt.

4. Integration-by-parts formula

It is well-known that in the classical theory of Riemann-Stieltjes integration we

have the integration-by-parts formula

(RS)

∫ b

a

f dg + (RS)

∫ b

a

g df = f(b)g(b) − f(a)g(a)

where f and g are deterministic functions on [a, b] and one of f and g is continuous

while the other has bounded variation. So f is integrable with respect to g if and

only if g is integrable with respect to f and the above formula holds true.

Extending pathwise, if f, g : [a, b] × Ω → ✔ are stochastic processes such that
one of them has continuous paths while the other has paths which are of bounded

variation, then we have the integration-by-parts formula. Then it is clear that f is

integrable with respect to g if and only if g is integrable with respect to f and that

∫ b

a

ft dgt +

∫ b

a

gt dft = fbgb − faga.

However, general stochastic processes usually have paths of unbounded variation, so

that the above integration-by-parts formula need not be true in general.

Definition 10. Let ϕ and X be stochastic processes such that there exists a

non-decreasing process H with E(H1) < ∞ such that for any ε > 0 there exists a
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stochastic gauge δ such that for any δ-fine belated partial stochastic division D =

{(ξ, V ]} of [0, 1] we have

E
(∣

∣

∣
(D)

∑

{[ϕV − ϕξ][XV − Xξ] − [HV − Hξ]}
∣

∣

∣

2)

6 ε.

Then H is called the weak quadratic covariance process of ϕ and X , which we shall

denote by ⌊X, ϕ⌋.

Remark. It is clear that ⌊X, Y ⌋ = ⌊Y, X⌋ for any stochastic processes X, Y .

Also, we let ⌊X⌋ denote ⌊X, X⌋ if the latter exists.

Theorem 11. Let ϕ and X be stochastic processes such that ⌊X, ϕ⌋ exists. Then
X is Itô-Kurzweil-Henstock integrable with respect to ϕ on [0, 1] if and only if ϕ is

Itô-Kurzweil-Henstock integrable with respect to X on [0, 1]. Furthermore,

∫ 1

0

ϕt dXt +

∫ 1

0

Xt dϕt = ϕ1X1 − ϕ0X0 − (⌊X, ϕ⌋1 − ⌊X, ϕ⌋0).

✕✗✖✙✘✚✘✜✛
. Let ϕ be integrable with respect to X and Fu =

∫ u

0
ϕt dXt. Let

Gu = ϕuXu −
∫ u

0

ϕt dXt − ⌊ϕ, X⌋u.

We shall prove that X is Itô-Kurzweil-Henstock integrable with respect to ϕ with
∫ 1

0
Xt dϕt = G1 − G0. Given ε > 0 there exists a stochastic gauge δ1 such that for

any δ1-fine belated partial stochastic division D1 = {(ξ, V ]} of [0, 1], we have

(1) E
∣

∣

∣
(D1)

∑

{ϕξ[XV − Xξ] − (FV − Fξ)}
∣

∣

∣

2

<
ε

2
.

By assumption, ⌊X, ϕ⌋ exists. Choose a stochastic gauge δ2 which satisfies the

condition that for every δ2-fine belated partial stochastic division D2 = {(ξ, V ]}
we have

(2) E
∣

∣

∣
(D2)

∑

{[ϕV − ϕξ][XV − Xξ] − (⌊ϕ, X⌋V − ⌊ϕ, X⌋ξ)}
∣

∣

∣

2

6
ε

2
.

Take ε > 0 as above. Consider δ = min(δ1, δ2), which is again a stochastic gauge by

Lemma 6.
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Let D = {(ξ, V ]} be any δ-fine belated partial stochastic division of [0, 1]. Then

(D)
∑

{Xξ(ϕV − ϕξ) − (GV − Gξ)}

= (D)
∑

{ϕV XV − ϕξXξ − (ϕV − ϕξ)(XV − Xξ)

− ϕξ(XV − Xξ) − (GV − Gξ)}
= (D)

∑

{ϕV XV − ϕξXξ − (ϕV − ϕξ)(XV − Xξ) − ϕξ(XV − Xξ)

− (ϕV XV − FV − ⌊X, ϕ⌋V − ϕξXξ + Fξ + ⌊X, ϕ⌋ξ)}
= (D)

∑

{−(ϕV − ϕξ)(XV − Xξ) − ϕξ(XV − Xξ) + FV

− Fξ + ⌊X, ϕ⌋V − ⌊X, ϕ⌋ξ}.

Hence by equations (1) and (2), we get

E
∣

∣

∣
(D)

∑

{Xξ(ϕV − ϕξ) − (GV − Gξ)}
∣

∣

∣

2

< 2
ε

2
+ 2

ε

2
= ε,

thus
∫ 1

0
Xt dϕt = G1 − G0, which completes the proof. �

Corollary 12. Let ϕ and X be stochastic processes such that ⌊X, ϕ⌋ = 0. Then

ϕ is Itô-Kurzweil-Henstock integrable with respect to X on [0, 1] if and only if X is

Itô-Kurzweil-Henstock integrable with respect to ϕ on [0, 1]. Furthermore,

∫ 1

0

ϕt dXt +

∫ 1

0

Xt dϕt = ϕ1X1 − ϕ0X0.

In fact, from the proof of Theorem 11 we have

Theorem 13. Let X and ϕ be stochastic processes such that X is Itô-Kurzweil-

Henstock integrable with respect to ϕ and ϕ is Itô-Kurzweil-Henstock integrable with

respect to X . Then the weak quadratic covariance process ⌊X, ϕ⌋ exists and

⌊X, ϕ⌋t = ϕtXt −
∫ t

0

ϕs dXs −
∫ t

0

Xs dϕs.
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Theorem 14. Let X be a stochastic process such that ⌊X⌋ exists. Then X is

Itô-Kurzweil-Henstock integrable with respect to itself, and

∫ 1

0

Xt dXt =
1

2
X2

1 − 1

2
X2

0 − 1

2
(⌊X⌋1 − ⌊X⌋0).

✕✗✖✙✘✚✘✜✛
. By assumption, ⌊X⌋ exists. Hence given ε > 0, let δ be a stochastic

gauge such that for any δ-fine belated partial stochastic division D = {(ξ, V ]} of
[0, 1] we have

E
∣

∣

∣
(D)

∑

{(XV − Xξ)
2 − (⌊X⌋V − ⌊X⌋ξ)]}

∣

∣

∣

2

6 ε.

Then

E
∣

∣

∣
(D)

∑

{Xξ(XV − Xξ) −
{1

2
(X2

V − X2
ξ ) − 1

2
(⌊X⌋V − ⌊X⌋ξ)

}
∣

∣

∣

2

=
1

4
E

∣

∣

∣
(D)

∑

{−(XV − Xξ)
2 + (⌊X⌋V − ⌊X⌋ξ)}

∣

∣

∣

2

6
1

4
ε,

which completes the proof. �

5. Classical stochastic integral

We shall show that we can derive some of the well-known formulae for classical

stochastic integrals using our general results obtained in the previous sections.

Definition 15. A process X = {Xt : t ∈ [0, 1]} is called a Martingale on
(Ω, F , {Ft}, P ) if

1. X is adapted to {Ft}, that is, Xt is Ft-measurable for each t ∈ [0, 1];

2.
∫

Ω
|Xt| dP is finite for almost all t ∈ [0, 1]; and

3. E(Xt|Fs) = Xs for all t > s, where E(Xt|Fs) is the conditional expectation

of Xt given Fs. By the Radon-Nikodym Theorem, E(Xt|Fs) exists and is

well-defined.

If, in addition,

sup
t∈[0,1]

∫

Ω

|Xt|2 dP

is finite, we say that X is a L2-martingale.
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Definition 16. A process W = {Wt(ω) : t ∈ [0, 1]} defined on (Ω, F , {Ft}, P )

is called a canonical Brownian motion (or Wiener Process) if it has the following

properties:

1. W0(ω) = 0 for all ω ∈ Ω;

2. (normal increments): Wt − Ws has a normal distribution with mean 0 and

variance t− s for all t > s. This implies that Wt has a normal distribution with

mean 0 and variance t;

3. (independence of increments): Wt −Ws is independent of the past, that is, Wu,

0 6 u 6 s < t; and

4. (continuity of paths): W is continuous.

It is well-known that a canonical Brownian motion is in fact a continuous martin-

gale.

Lemma 17. Let ϕ be an adapted process on (Ω, F , {Ft}, P ) such that ϕt(ω),

as a function of t, is right-continuous on [0, 1] for all ω ∈ Ω. Then given any ε > 0

there exists a stochastic gauge δ such that

|ϕ(u(ω), ω) − ϕ(ξ, ω)| < ε

for all u(ω) with 0 < u(ω) − ξ < δ(ξ, ω), where ϕt(ω) is denoted by ϕ(t, ω).

✕✗✖✙✘✚✘✜✛
. Let ε > 0 be given and let ξ ∈ [0, 1]. For any (ξ, ω) ∈ [0, 1]×Ω define a

process δ as

δ(ξ, ω) = inf{u ∈ [0,∞) : |ϕ(u + ξ, ω) − ϕ(ξ, ω)| > ε}.

Then δ is a stochastic gauge since for t > 0,

{ω ∈ Ω: ξ + δ(ξ, ω) 6 t} = {ω ∈ Ω: δ(ξ, ω) 6 t − ξ}
=

⋃

u∈ ✢ ∩[0,t−ξ]

{ω ∈ Ω: |ϕ(ξ + u, ω)− ϕ(ξ, ω)| > ε}

∈ Fξ+(t−ξ) = Ft

so that ξ + δ(ξ, ·) is a stopping time for all ξ ∈ [0, 1]. Hence for any u with u − ξ <

δ(ξ, ω) we have |ϕ(ξ + u, ω) − ϕ(ξ, ω)| < ε. �

Let X be a right-continuous L2-martingale on (Ω, F , {Ft}, P ). Then there exists

a unique predictable (for a definition see, for example, [9, p. 117]) non-decreasing

process 〈X〉 such thatX2−〈X〉 is a right-continuous L2-martingale. The process 〈X〉
is called the quadratic variation process of X .
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Proposition 18. LetX be a (right-continuous) L2-martingale on (Ω, F , {Ft}, P )

and 〈X〉 the associated quadratic variation process. Then ⌊X⌋ = 〈X〉, where ⌊X⌋ is
the weak quadratic covariance process of X and itself, see Definition 10.
✕✗✖✙✘✚✘✜✛

. Given ε > 0, by Lemma 17 there exists a locally stopping process δ

such that whenever 0 < v(ω) − ξ < δ(ξ, ω) then we have

|〈X〉(v(ω), ω) − 〈X〉(ξ, ω)| <
ε

2
and |X(v(ω), ω) − X(ξ, ω)| <

√
ε√
2
.

So if (ξ, V ] is δ-fine, then

(3) E(XV − Xξ)
4 = E[(XV − Xξ)

2(XV − Xξ)
2] 6

ε

2
E(XV − Xξ)

2

and

(4) E(〈X〉V − 〈X〉ξ)2 = E[(〈X〉V − 〈X〉ξ)(〈X〉V − 〈X〉ξ)] 6
ε

2
E(〈X〉V − 〈X〉ξ).

Also, if (ξj , Vj ] and (ξi, Vi] are disjoint intervals, it can be shown by direct computa-

tion that

(5) E[[(XVi
− Xξi

)2 − (〈X〉Vi
− 〈X〉ξi

)][(XVj
− Xξj

)2 − (〈X〉Vj
− 〈X〉ξj

)]] = 0.

Choose a δ-fine belated partial stochastic division D = {((ξ, V ], ξ)}. Then

E
∣

∣

∣

∑

((XV − Xξ)
2 − (〈X〉V − 〈X〉ξ))

∣

∣

∣

2

= E
{

∑

{(XV − Xξ)
2 − (〈X〉V − 〈X〉ξ)}2

}

by (5)

6 2
∑

E(XV − Xξ)
4 + 2

∑

E(〈X〉V − 〈X〉ξ)2 by (3) and (4)

6 ε
∑

E(XV − Xξ)
2 + ε

∑

E(〈X〉V − 〈X〉ξ)
6 4ε(〈X〉1 − 〈X〉0),

which fits Definition 10 with ϕ = X and H = 〈X〉, thereby completing the proof. �

Example 19. Let X be an L2-martingale with quadratic variation denoted

by 〈X〉. By Theorem 14 and Proposition 18 we have
∫ 1

0

Xt dXt =
1

2
X2

1 − 1

2
X2

0 − 1

2
(〈X〉1 − 〈X〉0).

As a special case, if X is a Brownian motion, then 〈X〉t ≡ t (see, for example, [9,

p. 71]). So
∫ 1

0

Xt dXt =
1

2
X2

1 − 1

2
X2

0 − 1

2
.
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