
1

Ashli Crookston
Ashli.Crookston@aggiemail.usu.edu
Work Phone: 435-797-4549

Derek Hampton
Derek.H@aggiemail.usu.edu
Work Phone: 435-797-4549

Rachel Searle
Rachel.Searle@aggiemail.usu.edu
Work Phone: 435-797-4549

March 20, 2009

YangQuan Chen

Department of Electrical Engineering

Utah State University

Dear Dr. Chen:

The following document contains our final design report for Senior Design. It details our
design process. This project was assigned to us and sponsored by the Space Dynamics
Laboratory’s C4ISR (Command, Control, Communications, and Computer Intelligence,
Surveillance, and Reconnaissance) Division. The main components of this project were
to write unit test code for a critical existing function in the C4ISR Division’s code. We
set up our code so that it would be compiled automatically using a nightly build and also
generate and send error reports to the appropriate developers.

Our mentor for this project was Mr. Pete Krull. If you need to contact Mr. Krull, he can
be reached at 435-797-4275 or via email at pete.krull@sdl.usu.edu. Thank you for your
time.

Sincerely,

Ashli Crookston

Derek Hampton

Rachel Searle

2

Final Design Report

Implementation of Automated Testing in a

Continuous Integration Development Environment

ECE 4840—Senior Design III
March 20, 2009

Ashli W. Crookston
Derek E. Hampton

Rachel J. Searle

Instructor Approval ____________________________ ____________

 Dr. YangQuan Chen Date
 Department of Electrical and Computer Engineering
 Utah State University

Supervisor Approval _____________________________ ____________

 Mr. Pete Krull Date

 Software Developer
 The Space Dynamics Laboratory

3

Acknowledgements

We would like to thank the Space Dynamics Laboratory, as well as the Command,
Control, Communications, and Computer Intelligence, Surveillance, and Reconnaissance
Division for sponsoring our senior project. We would also like to thank our managers
and the developers who helped us to perfect and complete our project.

4

Table of Contents

ABSTRACT .. 6

1.0 Introduction... 7

1.1 Background ... 8

1.2 Problem Statement .. 14

1.3 Design Objectives ... 15

1.4 Summary of Design Process ... 15

1.5 Summary of Final Results ... 16

1.6 Organization and Summary of Report .. 16

2.0 Review of Conceptual and Preliminary Design .. 16

2.1 Problem Analysis... 16

2.1.1 Review of Problem .. 16

2.1.2 Summary of Specifications .. 17

2.1.3 Discussion of Main Features .. 17

2.1.4 Summary of Basic Engineering Approach .. 18

2.1.4.1 Basic Design Concept ... 18

2.2 Decision Analysis .. 19

2.2.1 Description of Solution Alternatives ... 19

3.0 Basic Solution ... 21

3.1 System Components and Relationships ... 22

3.2 Component-level Specifications .. 22

4.0 Performance Optimization and Design of System Components 23

4.1 Description of Components and Component-level Specifications 23

4.1.1 Original C4ISR Code .. 23

4.1.2 Boost Test Libraries ... 24

4.1.3 Unit/Integration Test Code .. 24

4.1.4 C++ Compiler ... 24

4.1.5 Build Server .. 25

4.2 Discussion of the Technical Approach Used .. 25

4.3 Discussion of Design Details .. 26

4.3.1 Initialization .. 27

4.3.2 Sensor Pitch .. 27

4.3.3 Sensor Heading ... 28

4.3.4 Sensor Roll .. 28

5

4.3.5 Aircraft Pitch .. 29

4.3.6 Aircraft Roll .. 29

4.3.7 Aircraft Heading ... 30

4.3.8 Integration... 30

4.4 Engineering Drawings and Schematics .. 31

4.5 Summary of Final Design Results ... 33

4.6 Performance Evaluation ... 33

5.0 Project Implementation, Operation, and Assessment ... 34

5.1 Details of Implementation ... 34

5.2 Operational Test Results ... 35

6.0 Final Scope of Work Statement ... 35

6.1 Summarize What has Been Done .. 35

6.2 Lessons Learned and Suggestions for Future Activities 36

6.2 Related Project Management Issues .. 37

7.0 Other Issues .. 37

7.1 Component Suppliers ... 37

7.2 Reliability ... 37

7.3 Global, Economic, and Social Impact .. 38

7.4 Maintenance .. 38

7.5 Contracts and other legal/ethical Issues ... 39

7.6 Product Documentation .. 39

7.7 Operating Procedures ... 39

7.8 Contractor and Supervision .. 39

7.9 Inspection ... 40

7.10 Quality assurance ... 40

8.0 Cost Estimation ... 40

9.0 Project Management Summary ... 42

9.1 Tasks: What Has Been Done ... 42

9.2 Tasks: What still needs to be done .. 42

9.3 Time: Gantt Chart ... 42

9.4 Facilities ... 48

9.5 Personnel ... 48

9.6 Work Breakdown Structure ... 49

10.0 Conclusion ... 51

6

10.1 Purpose of Report... 51

10.2 Objectives ... 51

10.3 Summary of Final Design Selection ... 52

10.4 Costs and Timeline ... 52

Appendices: ... 55

A. Bibliography .. 55

B. Supporting Documents for Project Management .. 56

i. Gant Chart ... 56

ii. WBS ... 57

iii. Engineering Design Task List .. 59

iv. Cost Breakdown info .. 59

List of Tables

Table 1: Cost Estimation...44

List of Figures

Figure 1: Electromagnetic Spectrum...10

Figure 2: Hyper-spectral Imagery...12

Figure 3: Electro-optical Imagery...12

Figure 4: Vantage Screener...13

Figure 5: Vantage Ascent..13

Figure 6: Line of Flight Imagery...,.15

Figure 7: Geo-rectified Imagery..16

Figure 8: Basic System Block Diagram...29

Figure 9: Roll, Pitch, and Yaw Diagram...24

Figure 10: Basic System Block Diagram...35

Figure 11: Build System Diagram...37

Figure 12: Gantt Chart 1..47

Figure 13: Gantt Chart 2..48

Figure 14: Gantt Chart 3..49

Figure 15: Gantt Chart 4..50

Figure 16: Space Dynamics Laboratory Facilities in North Logan, Utah.......................51

Figure 17: Work Breakdown Structure...52

Figure 18: Project Timeline..57

ABSTRACT

7

Ashli Crookston, Derek Hampton, and Rachel Searle, per the request of The

Space Dynamic Laboratory’s Command, Control, Communications, and Computer

Intelligence Surveillance, and Reconnaissance Division (C4ISR), designed unit testing

software for SDL’s image rectification functionality. The unit testing software tests the

C4ISR division’s existing software for newly introduced errors to the code. This

software is automated so that it builds nightly and generates error reports that are sent to

the developers. This report will discuss the background and need for our project, a

detailed description of the design and implementation of our project, and the results, and

also the work breakdown and cost estimates for our project.

1.0 Introduction

Producing and maintaining computer code for a complex program is no easy task.

With all of the upgrades and fixes to the code, unrealized errors can be introduced in the

overall software program; therefore, the Space Dynamics Laboratory (SDL) hires student

testers to perform testing procedures on its software to make sure the software operates

correctly. The process of testing the software manually is extremely time-consuming.

Doing a complete manual test can take up to two weeks to finish, even if several students

are working on it simultaneously. Once the students find the errors or bugs in the code, a

lot of time is spent debugging those errors.

Each time a student tester presses a button or selects a menu option, they are

essentially executing multiple functions and blocks of code. If an error occurs, the

developer looks through the multiple code functions to try and find where the error is

being triggered. If the testing can be automated instead, a separate software program

8

would be written to test each individual function within the code itself. If the automated

test finds an error, it can report to the developer exactly where the error is occurring.

Automatic testing is something that is used in software development to test code on a

regular basis and alert developers if any problems arise. This is referred to as “unit

testing.” The goal of the unit tests is to test every possible input and all limits that are in

the code. This provides developers with the knowledge that if something is received that

is not expected by the code; there is a case in place that handles the corrupted data that is

received. Automating the unit tests supplies a way to handle testing quickly and

generates reports for developers indicating whether or not the code is performing as

expected.

1.1 Background

According to the company website, “SDL, a unit of the USU Research

Foundation, is a nonprofit research corporation owned by Utah State University.

Charged with applying basic research to the technology challenges presented in

the military and science arenas, SDL has developed revolutionary solutions that

are changing the way the world collects and uses data. SDL continues to lead the

way in the development of sensors and supporting technologies.” [1]

One such technology that SDL develops is an image processing software

called “Vantage.” Aircraft with sensors capture aerial views of the earth and then

the software “allows the image analyst to receive, decompress/compress, process,

display, evaluate, exploit, and store imagery data; as well as create/disseminate

processed image products. The Vantage Software Suite can also be customized to

support data from multiple sensor formats.” There are several different types of

9

sensors used, including multi-spectral, hyper-spectral, electro-optical, infrared,

and synthetic aperture radar. Many of these sensors are able to see things that

aren’t visible to the human eye. Figure 1 shows the electromagnetic spectrum.

As you can see, only a small portion of the electromagnetic spectrum is visible to

the human eye.

Figure 1: Electromagnetic Spectrum

Figure 2 shows some hyper-spectral imagery. As you can see, the color of

the lake makes it appear to be dirty. The reason for this is that with hyper-spectral

sensors, different minerals and particles in the water are detected. Even though

the human eye cannot see them, hyper-spectral sensors can. When the computer

converts the hyper-spectral data into the visible color spectrum, that is, the

spectrum that is visible to the human eye, different colors appear which represent

the different mineral deposits. There is also a small body of water in the upper-

10

right-hand corner of the image. It looks like a different color compared to the

larger body of water due to the fact that it has different chemical properties than

the large lake, making it give off a different spectrum of color.

Figure 3 shows a large lake bed that has been dried up for some time. To

the human eye, it would look like normal desert sand, but after being processed

with a multi-spectral camera, the data shows that there is some sort of remaining

deposit, possibly vegetation, left over from the old lake.

The greatest benefit of hyper-spectral imaging is its ability to detect things

that appear invisible to the human eye. Imagine the possibilities of how this could

benefit military efforts in locating objects or sites that are hard to see from high

altitudes.

Figure 2: Hyper-spectral Imagery

11

Figure 3: Electro-optical Imagery

There are also several types of imagery collection, including framing, line-

scanning, and video. Figure 4 shows the Vantage Screener, which “Displays

digital tactical imagery in a robust, near real-time NITF formatted waterfall of

decimated imagery from a live data link, solid state recorder, DVD/CD, or hard

disk.”

Figure 4: Vantage Screener

12

Figure 5 shows Vantage Ascent, which acts as a server for Vantage

Screener. It “configures ground stations for device interface management (Solid-

State Recorders, CDL interface, STANAG 4575, Ethernet feeds, etc.), sensor

interface/processing, NITF formation, and database management.”

Figure 5: Vantage Ascent

One of the key functions in the Command, Control, Communications, and

Computer Intelligence, Surveillance, and Reconnaissance (C4ISR) Division’s

Vantage software is the image rectification function. This function is used

frequently in many different parts of C4ISR’s code. When the imagery on a

user’s screen has the same orientation as it did when the plane flew over and

recorded the imagery, it is called “line of flight” data. During image rectification,

line-of-flight imagery is adjusted so that North is facing up when the imagery is

13

viewed on a screen. Figure 6 shows line of flight imagery, while Figure 7 shows

the same imagery after image rectification (also known as “geo-rectification”).

Figure 6: Line of Flight Imagery

14

Figure 7: Geo-Rectified Imagery

1.2 Problem Statement

The current testing procedure for the C4ISR division consists mainly of

manual testing, which is performed by students, and regression testing, which is

performed primarily by full-time testers. The downside of the current testing

procedure is that it is extremely time-consuming and there is much opportunity

for human errors to overlook certain bugs in the software. Another problem that

can occur is when new functionality for C4ISR’s software affects old

functionality. This happens when improvements to the software cause unwanted

results to other parts of the software. Sometimes, these errors are unexpected and

are not able to be found in a timely manner. For these reasons, unit testing can be

an extremely effective solution to the problem.

15

1.3 Design Objectives

The main objective of our project is to design and set up test automation

that is best-suited for SDL’s C4ISR Division’s software development

environment. First, we will need to research different methods for automation

and write our tests. Next, we will integrate the unit tests that we have written into

the nightly code builds. Once the builds complete, we will need to have the

system set up so that developers will be notified via e-mail if their code

introduced errors. Finally, this email will provide a general location of where the

error occurred.

1.4 Summary of Design Process

Our design process consisted of our technical approach, which involved

researching several different methods of unit testing in order to decide which to

use to write our code. Next, we held several team meetings and discussed project

priorities until we decided on exactly what code to write unit tests for. Originally,

we were tasked to work on Project “Save Matrix,” in which we would write unit

test code for all of the different types of saves that C4ISR’s software is capable of

performing. Priorities changed, however, and we were tasked to work on Project

“Image Rectification,” since this is more important to the functionality of

C4ISR’s existing code. Once this was decided, we had to familiarize ourselves

with the existing code until we knew it well enough to write tests for it. Finally,

we wrote the code and then put it through a series of code reviews and edits until

it was error-free and fully functional.

16

1.5 Summary of Final Results

Once our project was completed, the result was code that compiles and

works correctly. Our code checks for potential problems created from changes to

the image rectification code. Also, once the code is built, e-mails are sent out to

the appropriate developer if something they have done has introduced an error to

the image rectification code. Our managers and the developers involved in the

code reviews are very happy with the project outcome. We are also pleased with

what we have been able to accomplish.

1.6 Organization and Summary of Report

The remainder of this report will discuss our preliminary design, including

a review of the problem, specifications, and the basic engineering approach,

including analysis of decisions that were made. Next, we will discuss our basic

solution, design of specific components, and the implementation of our project.

Finally, we will discuss cost and assignments before concluding our report.

2.0 Review of Conceptual and Preliminary Design

2.1 Problem Analysis

2.1.1 Review of Problem

The current testing procedure for the C4ISR division mainly

consists of manual testing, which is performed by students, and regression

testing, which is performed primarily by full-time testers. The downside

17

of the current testing procedure is that it is extremely time-consuming and

there are many possibilities for human errors to overlook certain bugs in

the software. Another problem that can occur is when new functionality

in the C4ISR software effects old functionality. This happens when

improvements to the software cause unwanted results to other parts of the

software. Sometimes, these errors are unexpected and are not able to be

found in a timely manner. For these reasons, unit testing can be an

extremely effective solution to the problem.

2.1.2 Summary of Specifications

There were several specifications assigned to our project. First of

all, no new software was to be purchased for the project. SDL already had

some testing software for us to consider using. There was also a lot of

freeware available online for us to use. We were also required to write our

unit test code in C++. Finally, once the unit test code was written, we

were required to put our code through code reviews so that it would

comply with SDL’s quality assurance standards.

2.1.3 Discussion of Main Features

The unit testing code has the ability to test every aspect of a

function individually within the Image Rectification Project. This allows

our software to make sure there are no errors while imagery is being geo-

rectified. The unit testing code is added to the build server, which

generates and runs the code automatically overnight. If any errors are

18

detected, an email notification is sent to the appropriate developer. This

email tells them that they have introduced a bug into the original image

rectification code by uploading it to the source repository. Another feature

of our unit testing code is that it was written so that the notification email

also includes the exact location of the error that has been introduced.

2.1.4 Summary of Basic Engineering Approach

2.1.4.1 Basic Design Concept

The unit testing code is designed to work in coordination

with the Boost C++ Libraries. It is to be integrated with SDL’s

build server that compiles and builds the C4ISR Division’s code

overnight. The purpose of the unit testing code is to test each part

of the Image Rectification Project individually.

Each function in our code is given a test argument. The

tested function then returns a value based on the argument that it

was given. This returned value is then compared with an expected

value. This procedure occurs during the build server’s code

compilation. If the two values are equal (up to the desired

precision of .001), then the test passed. If not, the build fails, and

an email is sent to notify the developers that the build failed. The

email also informs developers which test function failed, giving the

location of the build error origin.

19

2.2 Decision Analysis

2.2.1 Description of Solution Alternatives

There were several unit testing platforms that were taken into

consideration in our design process, including hand-written code,

Parasoft’s C++Test, and the Boost Test C++ Libraries. We will discuss

the pros and cons that we found with each platform and why we made the

decision to use the Boost C++ Libraries.

The pros with using purely hand-written code were that we would

not have to worry about learning any new software. Additionally, the

integration into the nightly builds would work the same way the rest of

C4ISR’s code is integrated into the nightly builds. The cons of hand-

written code, however, were that it is very time-consuming and high-

maintenance. The unit test code may also be imperfect, which could cause

further errors in the code instead of fixing them.

According to Parasoft’s website, “Parasoft C++Test is an

integrated solution for automating a broad range of best practices proven

to improve software development team productivity and software quality.

C++Test enables coding policy enforcement, static analysis,

comprehensive code review, and unit and component testing to provide

teams a practical way to ensure that their C and C++ code works as

expected.” The good things about this software were that it generated unit

tests automatically. Supposedly, only a few changes and tweaks would

have to be made to the auto-generated code in order for the unit testing

20

code to perform as desired. This code is also easily used with C4ISR’s

auto-build software. Unfortunately, Parasoft made empty promises in our

case. We found that the C++Test software did not match up well with

SDL’s existing software. It also created unit test codes that were unable to

compile. Some of them contained thousands of errors that we would have

to track down and fix. Parasoft’s C++Test turned out to be a very poor

platform for our project.

Finally, we considered using the Boost Test C++ Libraries. The

good thing about these libraries is that they work well with the C++

standard library and they are easy to use. Many of the developers in the

C4ISR division are already using the Boost Libraries to write unit tests for

their code, so there were several people who we could turn to if we had

any questions. Another great thing about the Boost Test libraries is that

they allow for the tests that are produced to run as part of the nightly build.

Once the code has been compiled, build errors can be double-clicked in

Visual Studio to open the source file and display the exact line of code that

failed. The only bad thing about the Boost Test Libraries was that some of

the code had to be hand-written, but there were so many built-in unit

testing functions that came with these libraries that hand writing the code

was trivial. Choosing to use the Boost Test C++ Libraries as the platform

for our project was obviously the best decision.

21

3.0 Basic Solution

Once we were certain that we would be using the Boost Test C++ Libraries to

write unit test code for the image rectification functionality, we did a lot of research. We

studied the existing Image Rectification code in detail until we understood it very well.

Then we decided what functions we would need to write in order to test every aspect of

image rectification. These functions include the initialization function as well as five unit

testing functions: sensor pitch, sensor roll, sensor heading, aircraft pitch, and aircraft roll,

which will be discussed in detail later in this report. Once the code was written, we sent

it through code reviews and then integrated it into the nightly build. The nightly build

automatically sends out error reports via email to the developers.

22

3.1 System Components and Relationships

Figure 9 shows a basic block diagram of our system. It contains the

original C4ISR code, Boost Test Libraries, unit test code, C++ Compiler, and the

build server. The Boost Test Libraries and Original C4ISR code are used to

create the unit test code. The integrated code is then sent to the C++ Compiler,

which is located on the Build Server, where all of the code is compiled. These

components will be discussed in detail later in the report.

Figure 8: Basic System Block Diagram

3.2 Component-level Specifications

Since the original C4ISR code, Boost Test Libraries, C++ Compiler, and

Build Server were already in existence, we did not need to create new

specifications for those components. Instead, we had many specifications for our

23

unit test code. First of all, we were required to write our unit test code in C++ and

run it through code reviews as mentioned previously. We also had to ensure that

our unit test code was compliant with all of the other components in the system.

Our unit test code had to be developed based on the original image rectification

code and the boost test cases had to be integrated into the unit test code correctly.

We also had to ensure that the unit test code could run through the compiler and

build server just like the original C4ISR code.

4.0 Performance Optimization and Design of System

Components

4.1 Description of Components and Component-level

Specifications

The system contains six main components. These components include,

the original C4ISR code, the Boost Test Libraries, the unit/integration test code, a

C++ Compiler, and a build server.

 4.1.1 Original C4ISR Code

The Original C4ISR Code is the software developed by SDL’s

C4ISR division. The software is called Vantage, and consists of hundreds

of thousands of lines of code and dozens of projects. The project that we

did our unit testing for was the image rectification project. The Image

Rectification project involves Geo-rectifying the imagery so that north is

pointing up and lies correctly on a map of the earth below it.

24

 4.1.2 Boost Test Libraries

The Boost Test Libraries are a set of libraries that contain different

test functions that can be used with C++ code and using Microsoft Visual

Studio. The libraries are freeware found on the internet. We downloaded

these libraries and integrated them with the other libraries that are used

with the Original C4ISR Code. This enabled the boost libraries to be

checked by anyone who checks out the C4ISR Code from the repository

and to use the libraries’ functionality.

 4.1.3 Unit/Integration Test Code

The Unit/Integration Test Code is the code that we wrote to test the

Image Rectification functionality. We used the test functions from the

Boost Test Libraries to help us test the functionality of Image

Rectification. After the unit tests were written and tested, they were

integrated into the Original C4ISR Code.

4.1.4 C++ Compiler

The C++ Compiler is what SDL uses to compile the code. We

used the C++ Compiler to compile the unit tests for Image Rectification to

ensure that the tests compiled without errors. We also used the compiler

after we had integrated the tests into the original code to make sure the

new tests did not introduce any compile errors to the original code.

25

4.1.5 Build Server

The Build Server is used at SDL to do nightly builds of the

software. It also keeps track of changes made in the code repository and

triggers a build upon a change. The Build Server also uses a freeware

called CruiseControl to control emails that are sent to developers if a

changed they made caused build errors. We use the build server to run our

tests on the code every time a build is ran, and if any of the tests failed,

developers are notified of the error that occurred during the build.

4.2 Discussion of the Technical Approach Used

Our technical approach involved a lot of research. We researched the

different methods that we could use to develop our unit tests. The different

methods included handwriting all of the test code, Parasoft’s C++ Test, and the

Boost Test Libraries. Our research results for the different methods are discussed

in section 2.2.1. (We need to link this) Another main aspect to our technical

approach was researching the Image Rectification code that we were assigned to

write unit tests for. This was a critical part because we had to know exactly what

the code was doing in order to test it. Becoming familiar with the Image

Rectification code also lead to needing to research roll, pitch, and yaw angles; this

ended up being a very complicated and a key part to our unit tests.

26

4.3 Discussion of Design Details

After all of our research was completed, we began to write our unit test

code for image rectification. There were six tests and functions that we wrote to

test image rectification. These tests were, the initialization function, sensor pitch,

heading (yaw), and roll, and aircraft pitch and roll. We also tested aircraft

heading, but the tests were built into the other tests.

In order to make the correct geo-rectification calculations, we took several

rotation types into account. These are roll, pitch, and heading, which is

sometimes called “yaw.” They will be discussed in further detail in Section 4.

Roll is the airplane or sensor’s rotation around the z-axis, pitch is the rotation

around the x-axis, and heading is rotation around the y-axis. Figure 8 shows a

diagram of roll, pitch, and yaw with respect to an airplane.

Figure 9: Roll, Pitch, and Yaw Diagram

27

 4.3.1 Initialization

The initialization function is where we made any initial

calculations and initialized any variables. Most of the initialization that

was needed was to enable the function call to the Image Rectification code

we were testing. Most of the values did not affect our test but were

required to be initialized to make the function call. Other variables that

we initialized in this function did affect our testing and had to be

calculated correctly to make the test results correct. Part of our research in

the technical approach involved figuring out these calculations but we also

verified with the developer over the Image Rectification that we were

performing the calculations correctly.

4.3.2 Sensor Pitch

Pitch is the angle that tells you at what degree the sensor is

pointing toward the earth. For example, if the sensor pitch is zero degrees,

the sensor is pointing out toward the front of the plane, and would not see

much of the earth. At a pitch of negative 90 degrees, the sensor is

pointing directly down at the earth. At this angle the sensor direction is

perpendicular to the earth’s surface. If the sensor pitch was -180 degrees,

the sensor would be at the same angle to the earth if the pitch were 0

degrees, except it would be facing toward the rear of the plane instead of

the front. So, to test the sensor pitch, we changed the varied the pitch

angle from the original setting, and verified that the ground latitude and

28

longitude of where the sensor pointed to changed correctly based on the

pitch change.

 4.3.3 Sensor Heading

The sensor heading or yaw is the angle that determines to what

degree the sensor is pointing north, south, east or west. For instance, a

zero degree heading means it is pointing north, 45 degrees is east, negative

45 degrees is west, and 180 and negative 180 is south. However, with the

sensor, the heading is relative to the airplane. This means that if the

aircraft is flying straight east, having a yaw of 45 degrees, the sensor’s

yaw, at zero, would be aligned with the plane also heading east. Testing

this angle was particularly complicated because of the relativity to the

airplane. But the test idea is similar to the sensor pitch. So, we changed

the sensor heading from the original setting and verified that the ground

latitude and longitude changed accordingly. One thing we ran into that

also complicated the testing for sensor heading was for the case that the

sensor pitch is -90 degrees. Through our research of the roll, pitch, and

yaw angles, we found that with a pitch of -90 degrees the ground latitude

and longitude doesn’t change when the heading is changed. So, when we

wrote our tests, we had to account for this specific case.

4.3.4 Sensor Roll

The way the image rectification code uses the roll, pitch, and yaw

angles, the sensor roll does not affect the ground latitude and longitude.

This is not true for all applications though. It just happens that the C4ISR

29

software has been written so that this angle can be neglected. However,

even though this angle is neglected we still had to test for every type of

situation to make sure that the code responded as expected for a change in

sensor roll, meaning the ground latitude and longitude does not change.

4.3.5 Aircraft Pitch

The aircraft pitch test is similar to the sensor pitch test. However,

the aircraft is allowed to have a slight positive pitch, unlike the sensor, and

so tests were added to account for a slight positive pitch of the aircraft.

Also, through our research and discussion with developers we made

decisions that the aircraft would never be pointing straight up or down, or

trying to flip over, so the pitch range for the aircraft that we tested was

between -90 and 90 degrees but never was less than or equal to -90 or

greater than or equal to 90 degrees.

 4.3.6 Aircraft Roll

Unlike sensor roll, aircraft roll had a big affect on the ground

latitude and longitude. This is because the ground latitude and longitude

is based on the orientation of the sensor, so if the aircraft is tilted or rolled

slight left or right, it will greatly change the point on the ground that the

sensor is pointing to. This test was a very complicated test, because how

the ground latitude and longitude changed with different roll angles is

dependent on both the sensor heading and aircraft heading. So, we had to

go through many calculations to make sure that we were correctly

30

checking the ground latitude and longitude when the aircraft roll was

changed.

 4.3.7 Aircraft Heading

The tests for the aircraft heading were different than the other tests.

This was because we incorporated the aircraft heading tests with the other

tests. What this entailed was just changing the aircraft heading alongside

the other angles that needed testing. The aircraft heading is similar to

what was described above for sensor heading, except that if the heading is

zero degrees, then the aircraft is flying directly north. We tested nine

different headings for the aircraft. These headings were, 0, +45 and – 45,

+90 and -90, +135 and -135, and +180 and -180 degrees. For example, at

each heading we tested every sensor pitch angle. This was accomplished

fairly easily using a nested for loop, but made verifying the ground

latitude and longitude very difficult.

4.3.8 Integration

Once our image rectification unit tests were written, our code

underwent a detailed code review by two of the C4ISR division’s full-time

software developers. Our first code reviewer advised two pages worth of

corrections for us to make to our code. Most of these corrections were

simple, stylistic changes. Once we made those changes, he reviewed our

code a second time and then approved it. After that, we passed our code

on to the second code reviewer. He suggested another two pages worth of

31

corrections, and these changes were more critical. First, he required a

major change in the structure of our code. Originally, we wrote our code

in a functional style, but this developer required that our code be changed

to an object-oriented style. The reasons for this were that it made our code

easier to maintain and also improved its readability. In order to do this,

we had to create a separate header file and organize our data into classes

and structs. Once these changes were made, the second developer

reviewed our code again and suggested many stylistic changes. After five

total code reviews between these two developers, our code was greatly

improved. It was much more efficient and the layout was nicer. The code

reviews helped us to better learn how to develop software in a professional

environment. They were critical to our project, and extremely useful for

our professional experience.

4.4 Engineering Drawings and Schematics

The overall unit system for our project consists of the original C4ISR code,

the Boost Test Libraries, our unit testing code, a C++ compiler, and a build

server. The original C4ISR code is currently being developed at SDL and is what

we are writing the unit tests for. It has already been developed by the C4ISR

division at SDL. It consists of hundreds of thousands of lines of code and dozens

of projects. The Boost Test Libraries are the platform that we used to write our

unit test code with. The unit testing code is code written to test specific, existing

C4ISR code thoroughly by exercising all necessary functions with many different

values. The build server is dedicated to nightly builds of the C4ISR division’s

32

software, including our unit testing code. It also tracks changes in the repository

and updates upon a change in the code. Figure 10 shows the block diagram for

our entire project.

Figure 10: Basic System Block Diagram

The integrated code is built using a C++ compiler on the build server.

Automated builds are completed using a program called, “CruiseControl.” Builds

are triggered every night (“nightly build”). Builds are also triggered upon a

change made in the code repository. During this build, error reports are generated

and sent out to the developers. These reports let the developers know if they have

introduced a bug to the code, and if so, where that bug is located.

33

4.5 Summary of Final Design Results

After going through the multiple code reviews, the final design of our

code was extremely improved. Our final revision of the unit testing code cut out

about 2000 lines of code from the original first draft and made our code much

more efficient and readable. Our manager and developers that we worked with on

the design of our code are extremely satisfied with our unit tests and their

performance.

4.6 Performance Evaluation

Our code was tested extensively to verify correct functionality. The unit tests

were introduced into the original C4ISR code without causing any errors. If there

is an error in the image rectification code, meaningful error messages are

displayed and the developers are notified that they introduced an error into the

image rectification code. The developers are satisfied with the unit testing for

image rectification.

34

5.0 Project Implementation, Operation, and Assessment

5.1 Details of Implementation

Once the unit test code was written and perfected, it was time to integrate

it into the system used by C4ISR. Figure 11 is a diagram of how the system

works.

Figure 11: Build System Diagram

It starts out with the developers, in this case Bob, Peter, and Sue. For

example, Bob just finished writing some code and now he wants to integrate it

into the system. First, he would check his changes into the source repository.

The source repository is where all of C4ISR’s code is stored. All of the

developers have access to the source repository, so they can access the code there

by “checking it out.” The build server is notified every time that code is checked

35

into the source repository, which means that there has been a change to the code.

The Build Server then compiles the code. The Build Server also compiles the

code during the “nightly build,” so that the students and developers can obtain a

fresh build of the code every morning when they come into work. When the

Build Server finishes compiling (or an attempt at compiling), if any errors were

encountered, an email notification is sent out to the developers, or in our case, if

our unit testing code finds a bug that was introduced to the image rectification

code, an email notification is also sent out to the developers. These email

notifications contain the exact location of the error or bug so that the developers

can find and fix it in a timely fashion.

5.2 Operational Test Results

Our Unit Test code was integrated into the system successfully. Once it

was checked into the source repository, a build was triggered on the Build Server

and it compiled successfully. Email notifications are sent out to developers if a

bug has been introduced to the original image rectification code. Our project

works perfectly with the rest of the system. We did not need to make any changes

based on our design and testing results.

6.0 Final Scope of Work Statement

6.1 Summarize What has Been Done

At this point, our project is complete. We started our project by

researching unit testing, including different methods of unit testing and various

36

platforms that we could use for our testing. We started work on the “Save

Matrix” Unit Testing Project, but through discussions with our manager,

determined that the “Image Rectification” Unit Testing Project was higher

priority, so we re-directed our focus. We researched image rectification,

including how it works and the math behind it. We became very familiar with the

existing image rectification code so that we could write the best unit tests possible

for it. We completed our code and then refined and perfected it through code

reviews. Next our code was integrated into the nightly build and set up so that

error reports would go out to any necessary developers. Our project was a

success and will have a great impact on the C4ISR Division’s code.

6.2 Lessons Learned and Suggestions for Future

Activities

Throughout the course of this project, we learned some very important

principles of software engineering. First of all, too many function blocks within

the same file can make it difficult for others to understand the functionality of our

code. Using C++ classes helps to organize similar function blocks into more

understandable events that others can follow. Good code is created by

understanding and reviewing the desired purposes and goals that the code will

accomplish and then writing code according to those goals. Reviewing the code

on your own and having others review it via code reviews are critical elements to

software design. It is important to fine-tune the code until it is as efficient and

readable as possible. Chances are good that someone else will have to read,

understand, and then edit your code someday, so they will greatly appreciate this.

37

6.2 Related Project Management Issues

The unit testing code that was created is used for only one of the several

projects involved in SDL’s software. The unit test project demonstrates that

software can test other software more efficiently and effectively than manual

regression testing by a human can. SDL is now transitioning to asking student

employees to write unit test code instead of having them do purely manual testing.

This will allow SDL to have a better testing procedure since unit testing is more

efficient and effective than manual testing.

7.0 Other Issues

7.1 Component Suppliers

All of the components for our project were supplied by the Space

Dynamics Laboratory.

7.2 Reliability

Our unit test code has been tested extensively. The compilation results

show that the code is reliable and error-free. In case of an error in the original

code, the unit test code performs the desired results, meaning it detects the error

and emails the software developers with the location of the error so that it can be

fixed as quickly as possible.

38

7.3 Global, Economic, and Social Impact

Our unit testing software has a global impact because it is perfecting

software that can and has saved many lives on both sides of war efforts.

Automated testing will also produce higher quality software which will be used in

future Department of Defense efforts.

The societal impact of our project is that those working at SDL will be

able to spend less time debugging (which is often boring and monotonous) and

more time enhancing the software, which is typically a more enjoyable part of any

software development job.

The economic impact of our project is that automated testing will allow

SDL to produce a better product. This will increase customer confidence. The

developers will be able to use their time more efficiently because they will be able

to focus on spending more time enhancing the software than trying to track down

pesky bugs. It is also commonly known that the longer a bug goes undetected, the

more expensive it is to fix. Our code will catch errors in the code the same day

that they were created.

7.4 Maintenance

Because of the style and commenting of our unit testing code, it will be

easy for C4ISR’s software developers to maintain. Our code flows well, it is

object-oriented, and it is filled with detailed comments. A specific developer ahs

been assigned to maintain our code, however, no immediate maintenance issues

are foreseen.

39

7.5 Contracts and other legal/ethical Issues

Our code is owned by the C4ISR Division at the Space Dynamics

Laboratory. Our code is proprietary; therefore it may not be released to the

public.

7.6 Product Documentation

Since our project did not change the actual functionality of C4ISR’s

software, no new documentation or changes in SDL’s software documentation

were required. Our project was well documented by following the guidelines

given to us for the senior design course. We also took care of documentation for

our project by writing very detailed, well-commented code.

7.7 Operating Procedures

The operation of our system is extremely simple. Since our code is

integrated into the build server, as soon as it was completed and checked in, it

runs automatically. The error reports sent to the developers are also generated

and sent out automatically.

7.8 Contractor and Supervision

The contractor for our project was the Space Dynamics Laboratory. We

worked under the supervision of Mr. Pete Krull, Control Manager of the C4ISR

Division.

40

7.9 Inspection

Our software was inspected via code reviewers. In the future, it will be

inspected by the developer assigned to the original image rectification code.

7.10 Quality assurance

To ensure that our code met SDL’s quality assurance standards, we were

required to make sure that the format of the introduced code was in harmony with

the previously existing code. We also had to ensure that the new code was

necessary, efficient, readable, and understandable. The code reviews helped us to

meet all of these requirements.

8.0 Cost Estimation

Table 1 shows a breakdown of the costs for our project. We used Microsoft

Visual Studio 2005 to develop our code. A license for this product typically costs $2100,

but since SDL already owned licenses for this product prior to our commencement on our

senior project, we do not consider it to be a direct cost to our project. We also used the

Boost C++Libraries and CruiseControl.NET to create our project, but both of these

products have open source licenses, so they are free to use. The only expense for our

project was the man hours charged to the Space Dynamics Laboratory for the

development of our unit test code. We estimated that this cost was just under $10,000.

41

Table 1: Cost Estimation

42

9.0 Project Management Summary

9.1 Tasks: What Has Been Done

*Research on unit testing

*Research on possible unit testing platforms

*Unit tests auto-generated by Parasoft C++Test

*Correction of auto-generated unit tests

*Familiarization with Boost Test Libraries

*Refocus of project to work on Image Rectification

*Write unit test code

*Major reformatting of code

*Code reviews

*Editing of code

*Integration of code into the system

*Testing our project

*Completion of project

9.2 Tasks: What still needs to be done

*Basic upkeep of code

*Some documentation

9.3 Time: Gantt Chart

The next four figures are Gantt charts, which show the activities that were

completed for our project, as well as the duration and the order of each of these

43

activities. The first three (Figures 12, 13, and 14) Gantt Charts cover the original

plans for our Save Matrix Unit Testing project. The fourth Gantt chart (Figure

15) shows everything from October 27th (when our project changed to Image

Rectification Unit Testing) until the completion of the project.

44

Figure 12: Gantt Chart 1

45

Figure 13: Gantt Chart 2

46

Figure 14: Gantt Chart 3

47

Figure 15: Gantt Chart 4

48

9.4 Facilities

Our project was completed using the Space Dynamics Laboratory’s North

Logan facilities. “SDL is headquartered in the 140,000-square foot Jake Garn

Space Research Complex near the Utah State University campus in Logan, Utah.”

They are located at:

1695 North Research Park Way
North Logan, Utah

84341

Figure 16: Space Dynamics Laboratory Facilities in North Logan

9.5 Personnel

The personnel used to complete this project’s design were Ashli

Crookston and Derek Hampton, who are seniors in Computer Engineering at Utah

State University, and Rachel Searle, who is a senior in Electrical Engineering at

Utah State University. All three work as software testers at the Space Dynamics

Laboratory.

49

9.6 Work Breakdown Structure

The following diagram shows the work breakdown structure for our

project. The project can be broken into five phases: design, research, coding,

review, and implementation.

50

Figure 17: Work Breakdown Structure

51

Within the design phase, we looked at the Save Matrix as a test subject and

researched Boost C++Test, C++Test, and handwritten unit tests. In the design phase,

we also switched to the image rectification project and looked into different ways of

implementing it. During the research phase of our project, we familiarized ourselves

with the existing code and worked on understanding how to use the Boost C++ Test

Libraries. During the coding phase, we wrote the initialization function, which

performs calculations and initializes values needed throughout the code. We also

wrote our unit testing functions, which included aircraft pitch and roll as well as

sensor heading, roll, and pitch. In the review phase, we went through code reviews

with developers one and two, whom suggested changes to our code, let us fix it, and

then approved it. In the implementation phase, we uploaded our code to the

repository, configured the build server to run our code in the nightly build, and made

sure that error emails were sent out to the developers.

10.0 Conclusion

10.1 Purpose of Report

The purpose of this report was to discuss the background and need for our

project, a detailed description of the design and implementation of our project and

the results, and also the work breakdown and cost estimates for our project.

10.2 Objectives

The Space Dynamics Laboratory hires testers to manually test each

function of their software. This is time consuming and inefficient. Our objective

52

was to create a better method of testing by implementing an automated testing

system. This involved writing unit test code created with the Boost Test

Libraries, integrating this code into the nightly build server, and allowing the

system to email the error reports generated by the nightly build to code owners so

that they might be able to find and fix their errors as quickly as possible.

10.3 Summary of Final Design Selection

We were able to successfully complete our project. Our unit testing code

compiles and works correctly. The code checks for potential problems created by

changes to the image rectification code. Emails are sent out to the appropriate

developer if an error is introduced. Our code is very important because it helps to

ensure that a key functionality of the C4ISR division’s software is working error-

free before it is sent to the customer. Our managers and the software developers

are very pleased with our work.

10.4 Costs and Timeline

Since all of the software and systems used for our project were freeware or

already paid for or owned by SDL, we did not have to make any purchases

throughout the course of our project. The only project-related charges to SDL

were the man hours that we put into the project. Since we worked on our project

during normal working hours, SDL didn’t have to pay us any extra on top of our

normal hourly wages for this project. When the time charged for this project was

added up, it totaled to about $10,000.

53

Figure 18 shows a timeline of our projects milestones. It covers events

occurring between April, 2008, and March, 2009. The timeline is broken up into

five main phases: design, research, coding, review, and implementation.

54

Figure 18: Project Timeline

55

Appendices:

A. Bibliography
1. "C4ISR System s." Products and Capabilit ies.2009. The Space

Dynam ics Laboratory. < ht tp: / / www.sdl.usu.edu/ products-

capabilit ies/ c4isr> .
< ht tp: / / www.sdl.usu.edu/ products-capabilit ies/ c4isr> .

2. “The Elect rom agnet ic Spect rum .” Glossary of Term s. Laboratory for

Com putat ional Science and Engineering. < www.lcse.um n.edu> .
3. “Vantage Software Suite.” Products and Capabilit ies. 2009 The

Space Dynam ics Laboratory. < ht tp: / / www.sdl.usu.edu/ products-

capabilit ies/ vantage> .
4. DeChristopher, Robert . “Roll, Pitch, and Yaw.” Mr. D.’s World of

Math and Science. Novem ber 14, 2005.

< ht tp: / / fifthpostulate.net / roll_pitch_and_yaw.htm > .
5. "Logan, UT Facilit y." About SDL.2009. The Space Dynam ics

Laboratory. < ht tp: / / www.sdl.usu.edu/ about / logan- facilit y> .
6. “C+ + Test Product Overview” . Parasoft C+ + Test . Parasoft . 2009.

< ht tp: / / www.parasoft .com / j sp/ products/ hom e.j sp?product= Wizard

&/ > .
7. Teo, Y.M., Tay, S.C., and Gozali, J.P. “Dist r ibuted Geo- rect ificat ion

of Satellite Im ages using Grid Com put ing” . Cent re for Rem ote

Im aging, Sensing and Processing. Departm ent of Com puter

Science, Nat ional University of Singapore. April 2003.

< ht tp: / / www.com p.nus.edu.sg/ ~ teoym / pub/ 03/ ipdps03.pdf> .

56

B. Supporting Documents for Project Management

i. Gant Chart

57

ii. WBS

58

59

iii. Engineering Design Task List

*Write initialization function-Rachel

 *Write unit testing functions
 -Sensor pitch function-Ashli
 -Sensor roll function -Derek
 -Sensor heading function -Ashli
 -Aircraft pitch function -Rachel
 -Aircraft roll function-Derek

iv. Cost Breakdown info

