Ashli Crookston
Ashli.Crookston@aggiemail.usu.edu
Work Phone: 435-797-4549

Derek Hampton
Derek.H@ageiemail.usu.edu
Work Phone: 435-797-4549

Rachel Searle
Rachel.Searle@aggiemail.usu.edu
Work Phone: 435-797-4549

March 20, 2009

YangQuan Chen

Department of Electrical Engineering
Utah State University

Dear Dr. Chen:

The following document contains our final design report for Senior Design. It details our
design process. This project was assigned to us and sponsored by the Space Dynamics
Laboratory’s C4ISR (Command, Control, Communications, and Computer Intelligence,
Surveillance, and Reconnaissance) Division. The main components of this project were
to write unit test code for a critical existing function in the C4ISR Division’s code. We
set up our code so that it would be compiled automatically using a nightly build and also
generate and send error reports to the appropriate developers.

Our mentor for this project was Mr. Pete Krull. If you need to contact Mr. Krull, he can
be reached at 435-797-4275 or via email at pete.krull@sdl.usu.edu. Thank you for your

time.

Sincerely,

Ashli Crookston
Derek Hampton

Rachel Searle

Final Design Report

Implementation of Automated Testing in a
Continuous Integration Development Environment

ECE 4840—Senior Design III
March 20, 2009

Ashli W. Crookston

Derek E. Hampton
Rachel J. Searle

Instructor Approval

Dr. YangQuan Chen Date
Department of Electrical and Computer Engineering
Utah State University

Supervisor Approval

Mr. Pete Krull Date
Software Developer
The Space Dynamics Laboratory

Acknowledgements

We would like to thank the Space Dynamics Laboratory, as well as the Command,
Control, Communications, and Computer Intelligence, Surveillance, and Reconnaissance
Division for sponsoring our senior project. We would also like to thank our managers
and the developers who helped us to perfect and complete our project.

Table of Contents

ABSTRACT ...ttt ettt ettt et st e sttt e et e bt e st e e st e seenteeneenseenseeneenseeneas 6
L0 IRIPOAUCTION. ...ttt ettt sttt st 7
L. BACKGEOUNC ...ttt et ate e et e e s e e s aae e s saaennseaens 8
1.2 Problem STQIEMENLccccueiiuiiiiuiiiiiiieeiteee ettt ettt 14
1.3 DESIGN ODJECIIVESeocuveeeieeieieiieeieeiee et eeiteete et e sae et e steebeessseeseesaseenseesnseenseas 15
1.4 Summary Of DeSIZN PFOCESScccceeeeeieeeeieeeeiieeeieeesieeesveeesaeesiseesseeesseeesnseees 15
1.5 Summary of Final RESUILScccouveeeieeeeiieeeiie ettt saae e aae e s 16
1.6 Organization and SUMMATY Of REPOTLccvevcueevuieeiieiieeiieeieeeie e e sve e 16
2.0 Review of Conceptual and Preliminary DeSig..............ccoueeeeueeeecueeeeiieeeiieeeieeennnens 16
2.1 Problem ANGLYSIS..........cueecceeeeeieeeee ettt 16
2.1.1 ReVIEW Of PPODIEMcceeeeieieeiieieeeeeee e 16
2.1.2 Summary of SPeCIfiCALIONSccccuueeecuieeiiieeciieeeiie e 17
2.1.3 Discussion of Main FeQturesccoueeeeeeecieesieeeeiieeeeieeeeeeeseeeesens 17
2.1.4 Summary of Basic Engineering Approachcccccceeveecveeeencnnennnn. 18
2.1.4.1 Basic DeSign CONCEPLccccuueeiuieeiiieeiieeeeiieeeiee et et siee et saee e 18

2.2 DeCiSION ANALYSISoveeeeeeeiieeieeeeieeeeiee et e et eeaaeestae e e aaeesraeesnsaeesnneeens 19
2.2.1 Description of Solution AIternativescccoeeveeeeevceeeceeeneeeieeneeenn, 19

3.0 BASIC SOIUIION ...ttt 21
3.1 System Components and RelationShipsccc.cccoueeecueeeecveeescreeniieeeeieesereeennnes 22
3.2 Component-level SpecCifiCAtiONScccccueeueecuieiiesieeiieeieecie et see e 22
4.0 Performance Optimization and Design of System COmMpOnents 23
4.1 Description of Components and Component-level Specifications 23
4.1.1 Original C4ISR COde............ooccueeieiaaiieiieieeieeeee et 23
4.1.2 BOOSt TSt LIDFATIES ...ttt 24
4.1.3 Unit/Integration Test COAEccueeeueeeeeeeeiieeeciieeeieeeeieeeeieeesaeesvaeesveees 24
414 CAt COMPILET ..ottt 24
4.1.5 BUILA SEFVEF ..ottt 25

4.2 Discussion of the Technical Approach UsSedccoueevcueevcueeeevieencieenirneanns 25
4.3 Discussion of DeSign Detailscccoeceeveemeueeiieeieeiieeiieeiieeieesiee e eiee s 26
4.3] IRIHALIZATION ...t 27
4.3.2 SENSOF PIICH ..ottt 27
4.3.3 Sensor HeAdiNgccccoeeeeicuieiiiiiiieiieeeecieeee et 28
4.3.4 SeNSOT ROlc.oooiieiiiiiiiiiiiiet ettt 28

4.3.5 AGFCHAST PIECH oottt 29

4.3.6 AIVCraft ROILoveeeieeeeeeeeee ettt e e e 29
4.3.7 AIrcraft HEAAINGcccuveeeeeieaiiieeieeeee et e sae e saae e s 30
G.3.8 INIEGEAIION. ..ottt ettt 30

4.4 Engineering Drawings and SCREMALICScccvueeecuveeeiueeeiieeeeieeecieeeereeeeenes 31
4.5 Summary of Final DeSign REeSUILScccueeeueeecieeeiieeeiieeeieeeeiee e seee e 33
4.6 Performance EVAIUGLIONccccoeeeeeeeieiieiiieiieeieeeeeeie et eee e 33
5.0 Project Implementation, Operation, and ASSESSMENLtc.ceeeueeeevueeeeueenieeans 34
5.1 Details of IMPLeMEntALIONc..ccecveeeeieeeiieeeiieeeiee e rae e svee e 34
5.2 Operational Test RESUILSccocceeecueeeceieiieeieeieeeie et 35
6.0 Final Scope of Work StAtementc.oeeeueeeceeeecieeeiieeeieeeeieeeevee e svae e 35
6.1 Summarize What has Been DOnecccocoevceiioiiniiiniiiiiiiieneeeeseee 35
6.2 Lessons Learned and Suggestions for Future ACtivitiescccocouevvvercuennne.. 36
6.2 Related Project Management ISSUEScccuueeeueeeeueeeecreeesireeesseeesseeesisseenneens 37
7.0 OBREY ISSUCS ...ttt ettt ettt st et ens 37
7.1 COMPONENE SUPPLIETSooeueeeeieieiieeiieeieeeeeeiee ettt et ettt e s e 37
7.2 ReIADILILY ..ottt e aae e 37
7.3 Global, Economic, and Social IMPACL.................cccvueeecieeiciieaeieeeeieeeeiee e 38
74 MOATNICHANICE ...ttt e 38
7.5 Contracts and other legal/ethical ISSUEScccoeveeeeieeecieiiaaiieiieeieeieeens 39
7.6 Product DOCUMERIALIONccccueveuiiiiiiiiiiieeitesite ettt 39
7.7 Operating PrOCOAUITEScc.ccoeeeiesieaiieiieeiieesiieeieesiae e eiee e esaeesse s 39
7.8 Contractor and SUPEFVISTONcc.ceoueecueesieeiiieniieeieesieesieesiee e enaeesseensee s 39
7.9 IRSPECHION ..ottt e et e e ettt e e e st a e e e rta e e e enaaeeeenans 40
710 QUALIEY QSSUFANCE........eeeeeeeeeeieeieeeieesiee et eeiee ettt e saeessaesveeseessaeeseeenseeseeenns 40
8.0 COSE ESHIMATION ...ttt ettt s 40
9.0 Project Management SUMMIATYccc.uueeeeeeeeeeeeiiieeeesiieeeeseeeeeesneaeeeesnsneeesnneees 42
9.1 Tasks: What Has Been DORNe................cccccueeeeeecueeeieeieeiieeieeeiee e sae e 42
9.2 Tasks: What still needs t0 be donecccccueveeeceieiciiiciieiieeieeeie e, 42
9.3 Time: GANIE CRAFTooeiiiiiieieee ettt ettt 42
9.4 FACIIITIOS ...ttt sttt 48
9.5 POFSOMNEL. ...t 48
9.6 Work BreakdOWn SIFUCIHUFEccccoiuieiiiiiiiiiieieee ettt 49
0.0 CONCIUSTON ...ttt ettt sttt st 51

L10.1 PUFPOSE Of REPOTL ...ttt ettt st snae e 51

L0.2 ODBJECHIVES ..oouveeeeeeeee e eeiee et s e ete e et eeeve e e aaeeesseeesaeessseessseesseeessseeas 51
10.3 Summary of Final Design SeleCtionccouvueeeceeeecueeeiiieeeiieeeiieeeiieennens 52
10.4 CoStS ANA TIiMELINEc..ooeeiieiiiiiiiiieeeesee ettt 52
APPEOIAICESt e e e e e st e e s e e et e e e ssbae e saeeesseesssseessseeeeseeesnseeennseaens 55
A BiblioGraphyooooooeeieeiaiiie ettt e e 55
B. Supporting Documents for Project Managementcccccueeeeueeennnn.. 56
Lo GARE CRAFL ...ttt 56
Bl WVBS ..ottt ettt ettt et 57
iii. Engineering DeSign TaASK LIStccccoueuvuieeienieeiienieeeiieeie e eaeesee e 59
V. COSt BreaRdOWN IOoooveieeiiieiiieeee ettt 59
List of Tables
Table 1: COSt ESHMALION.cc.cciuiiiiiiiieiee ettt 44
List of Figures
Figure 1: Electromagnetic SPeCtVUM...............ccc.oecueieiiueeiiieeeeiieeeiieeeeeesiaeeesee e 10
Figure 2: Hyper-spectral IMAZETY..............ccccoeeieiiuieeieeiieeie e 12
Figure 3: Electro-optical IMAZeTy..............cc..ccoouieiiiueiiiiiiiieeecieeee e 12
Figure 4: VantaAge SCreEMNErcccceeiuiiiiiiiiiii ettt 13
Figure 5: Vantage ASCENL............cc...oouiueeiieiiiiiee ettt s 13
Figure 6: Line of FIIGNt IMAZETY...........c..cccooviiiiiiiiieieeeeeee ey 15
Figure 7: Geo-rectified IMAZery..................ccceevvuiieeiiiieiiiiesiie e 16
Figure 8: Basic System Block Diagram......................cccoccueieiaiieiiiaiieiiieiie e 29
Figure 9: Roll, Pitch, and Yaw DiA@Vami...................ccccueeviueeeiiieiiiieeieieeecie e eeiee e 24
Figure 10: Basic System BlOck Dia@ram...................cccoovvueieiiiieiiiiaiieieeeie e 35
Figure 11: Build System DiG@VAM...................ccccueeviviaeiiieeiieeeeiee e 37
Figure 12: Gantt CRAFE ©...........ccoocouiiiiiiiiiieeeee et 47
Figure 13: GAntt CRATE 2........c...ooecueeeeiieeee et s 48
Figure 14: GAntt CRAFT 3.......c..ocoueiiiieiieeieee ettt 49
Figure 15: GAntt CRATE 4.......ccoooeeeeeeeeeeeee ettt 50
Figure 16: Space Dynamics Laboratory Facilities in North Logan, Utah....................... 51
Figure 17: Work BreakdOWn StrUCHUFe................cccveevcueeeiiiieecieeeciee e 52
Figure 18: Project TiMeLliNe.cc.cccooiiiiiieiiieiieee et 57

ABSTRACT

Ashli Crookston, Derek Hampton, and Rachel Searle, per the request of The
Space Dynamic Laboratory’s Command, Control, Communications, and Computer
Intelligence Surveillance, and Reconnaissance Division (C4ISR), designed unit testing
software for SDL’s image rectification functionality. The unit testing software tests the
C4ISR division’s existing software for newly introduced errors to the code. This
software is automated so that it builds nightly and generates error reports that are sent to
the developers. This report will discuss the background and need for our project, a
detailed description of the design and implementation of our project, and the results, and

also the work breakdown and cost estimates for our project.

1.0 Introduction

Producing and maintaining computer code for a complex program is no easy task.
With all of the upgrades and fixes to the code, unrealized errors can be introduced in the
overall software program; therefore, the Space Dynamics Laboratory (SDL) hires student
testers to perform testing procedures on its software to make sure the software operates
correctly. The process of testing the software manually is extremely time-consuming.
Doing a complete manual test can take up to two weeks to finish, even if several students
are working on it simultaneously. Once the students find the errors or bugs in the code, a

lot of time is spent debugging those errors.

Each time a student tester presses a button or selects a menu option, they are
essentially executing multiple functions and blocks of code. If an error occurs, the
developer looks through the multiple code functions to try and find where the error is

being triggered. If the testing can be automated instead, a separate software program

would be written to test each individual function within the code itself. If the automated
test finds an error, it can report to the developer exactly where the error is occurring,.
Automatic testing is something that is used in software development to test code on a
regular basis and alert developers if any problems arise. This is referred to as “unit
testing.” The goal of the unit tests is to test every possible input and all limits that are in
the code. This provides developers with the knowledge that if something is received that
is not expected by the code; there is a case in place that handles the corrupted data that is
received. Automating the unit tests supplies a way to handle testing quickly and
generates reports for developers indicating whether or not the code is performing as

expected.

1.1 Background

According to the company website, “SDL, a unit of the USU Research
Foundation, is a nonprofit research corporation owned by Utah State University.
Charged with applying basic research to the technology challenges presented in
the military and science arenas, SDL has developed revolutionary solutions that
are changing the way the world collects and uses data. SDL continues to lead the
way in the development of sensors and supporting technologies.” [1]

One such technology that SDL develops is an image processing software
called “Vantage.” Aircraft with sensors capture aerial views of the earth and then
the software “allows the image analyst to receive, decompress/compress, process,
display, evaluate, exploit, and store imagery data; as well as create/disseminate
processed image products. The Vantage Software Suite can also be customized to

support data from multiple sensor formats.” There are several different types of

sensors used, including multi-spectral, hyper-spectral, electro-optical, infrared,
and synthetic aperture radar. Many of these sensors are able to see things that
aren’t visible to the human eye. Figure 1 shows the electromagnetic spectrum.
As you can see, only a small portion of the electromagnetic spectrum is visible to

the human eye.

Uisible

Radio Microwaves Infrared Ultravielet H-ray Gamma Ray

RVAVAVAVAVARVARUOLI

Figure 1: Electromagnetic Spectrum

Figure 2 shows some hyper-spectral imagery. As you can see, the color of
the lake makes it appear to be dirty. The reason for this is that with hyper-spectral
sensors, different minerals and particles in the water are detected. Even though
the human eye cannot see them, hyper-spectral sensors can. When the computer
converts the hyper-spectral data into the visible color spectrum, that is, the
spectrum that is visible to the human eye, different colors appear which represent

the different mineral deposits. There is also a small body of water in the upper-

right-hand corner of the image. It looks like a different color compared to the
larger body of water due to the fact that it has different chemical properties than
the large lake, making it give off a different spectrum of color.

Figure 3 shows a large lake bed that has been dried up for some time. To
the human eye, it would look like normal desert sand, but after being processed
with a multi-spectral camera, the data shows that there is some sort of remaining
deposit, possibly vegetation, left over from the old lake.

The greatest benefit of hyper-spectral imaging is its ability to detect things
that appear invisible to the human eye. Imagine the possibilities of how this could
benefit military efforts in locating objects or sites that are hard to see from high

altitudes.

B il s T
n.Ht‘\;;“.-‘\

Figure 2: Hyper-spectral Imagery

10

Figure 3: Electro-optical Imagery

There are also several types of imagery collection, including framing, line-

scanning, and video. Figure 4 shows the Vantage Screener, which “Displays

digital tactical imagery in a robust, near real-time NITF formatted waterfall of

decimated imagery from a live data link, solid state recorder, DVD/CD, or hard

disk.”

T Welstd) cLRIGWH

R s e MR el MR

S0 hd AANKE #& & wEOW D% K
o L]

A M k4 o~
Ll B -
onud L - |

i W

s 5 et b [P o P e

Figure 4: Vantage Screener

11

Figure 5 shows Vantage Ascent, which acts as a server for Vantage
Screener. It “configures ground stations for device interface management (Solid-
State Recorders, CDL interface, STANAG 4575, Ethernet feeds, etc.), sensor

interface/processing, NITF formation, and database management.”

™ Vantage Moeni

Die o= Jeck [eip
Sereir row ax f —
- om —
o A P (eedalit @ Dak-Ram OO O STAR SO0 -
Db Mol
B leage oo l) Frren -
@ Tunbnsd Sorgremor u n
@ sadoChipper 15 %offler 00000 |[ses=ss |
B Fie ey
& b bierfas = Wiy il Primegeore] Opmire
o SRAR-SO00F Inkarlace
A3 Dk P D e
i)
= Stabintcs Faport
Coran; Cownt = T Hess Corame Percsntage= 0
Moy Satic Cound=- | M= Miunion Dad e Cofiog= 2
Moy oo Data Torgele I L0 Lirnini Couribm T544
B et Cotm B S48 magery Counl= 0
i Chekmm e = 0
Byben Procesused Per Sacords 1570446
M2 i) e
WFF = EIE Lerghie: Farkagdenverll_I00R0A04_|5150% kg
Topa T Froas Psiage 4
1) ot 1508004 L. Ll gt o i Ty T Pl Lok Chuik Pkl
L Information RS04) ot b chores g chireg for e bachineg Spach: Ml
i) informadon 1RE5N1 SercerPleder Mewr colachion arbed
Mizmon: JIOEHIAITIR
Inaipre Bavac (AT
Faris E00T
-
i »

Figure 5: Vantage Ascent
One of the key functions in the Command, Control, Communications, and
Computer Intelligence, Surveillance, and Reconnaissance (C4ISR) Division’s
Vantage software is the image rectification function. This function is used
frequently in many different parts of C4ISR’s code. When the imagery on a
user’s screen has the same orientation as it did when the plane flew over and
recorded the imagery, it is called “line of flight” data. During image rectification,

line-of-flight imagery is adjusted so that North is facing up when the imagery is

12

viewed on a screen. Figure 6 shows line of flight imagery, while Figure 7 shows

the same imagery after image rectification (also known as “geo-rectification”).

Figure 6: Line of Flight Imagery

13

Figure 7: Geo-Rectified Imagery

1.2 Problem Statement

The current testing procedure for the C4ISR division consists mainly of
manual testing, which is performed by students, and regression testing, which is
performed primarily by full-time testers. The downside of the current testing
procedure is that it is extremely time-consuming and there is much opportunity
for human errors to overlook certain bugs in the software. Another problem that
can occur is when new functionality for C4ISR’s software affects old
functionality. This happens when improvements to the software cause unwanted
results to other parts of the software. Sometimes, these errors are unexpected and
are not able to be found in a timely manner. For these reasons, unit testing can be

an extremely effective solution to the problem.

14

1.3 Design Objectives

The main objective of our project is to design and set up test automation
that is best-suited for SDL’s C4ISR Division’s software development
environment. First, we will need to research different methods for automation
and write our tests. Next, we will integrate the unit tests that we have written into
the nightly code builds. Once the builds complete, we will need to have the
system set up so that developers will be notified via e-mail if their code
introduced errors. Finally, this email will provide a general location of where the

error occurred.

1.4 Summary of Design Process

Our design process consisted of our technical approach, which involved
researching several different methods of unit testing in order to decide which to
use to write our code. Next, we held several team meetings and discussed project
priorities until we decided on exactly what code to write unit tests for. Originally,
we were tasked to work on Project “Save Matrix,” in which we would write unit
test code for all of the different types of saves that C4ISR’s software is capable of
performing. Priorities changed, however, and we were tasked to work on Project
“Image Rectification,” since this is more important to the functionality of
C4ISR’s existing code. Once this was decided, we had to familiarize ourselves
with the existing code until we knew it well enough to write tests for it. Finally,
we wrote the code and then put it through a series of code reviews and edits until

it was error-free and fully functional.

15

1.5 Summary of Final Results

Once our project was completed, the result was code that compiles and
works correctly. Our code checks for potential problems created from changes to
the image rectification code. Also, once the code is built, e-mails are sent out to
the appropriate developer if something they have done has introduced an error to
the image rectification code. Our managers and the developers involved in the
code reviews are very happy with the project outcome. We are also pleased with

what we have been able to accomplish.

1.6 Organization and Summary of Report

The remainder of this report will discuss our preliminary design, including
a review of the problem, specifications, and the basic engineering approach,
including analysis of decisions that were made. Next, we will discuss our basic
solution, design of specific components, and the implementation of our project.

Finally, we will discuss cost and assignments before concluding our report.

2.0 Review of Conceptual and Preliminary Design

2.1 Problem Analysis

2.1.1 Review of Problem

The current testing procedure for the C4ISR division mainly
consists of manual testing, which is performed by students, and regression

testing, which is performed primarily by full-time testers. The downside

16

of the current testing procedure is that it is extremely time-consuming and
there are many possibilities for human errors to overlook certain bugs in
the software. Another problem that can occur is when new functionality
in the C4ISR software effects old functionality. This happens when
improvements to the software cause unwanted results to other parts of the
software. Sometimes, these errors are unexpected and are not able to be
found in a timely manner. For these reasons, unit testing can be an

extremely effective solution to the problem.

2.1.2 Summary of Specifications

There were several specifications assigned to our project. First of
all, no new software was to be purchased for the project. SDL already had
some testing software for us to consider using. There was also a lot of
freeware available online for us to use. We were also required to write our
unit test code in C++. Finally, once the unit test code was written, we
were required to put our code through code reviews so that it would

comply with SDL’s quality assurance standards.

2.1.3 Discussion of Main Features

The unit testing code has the ability to test every aspect of a
function individually within the Image Rectification Project. This allows
our software to make sure there are no errors while imagery is being geo-
rectified. The unit testing code is added to the build server, which

generates and runs the code automatically overnight. If any errors are

17

detected, an email notification is sent to the appropriate developer. This
email tells them that they have introduced a bug into the original image
rectification code by uploading it to the source repository. Another feature
of our unit testing code is that it was written so that the notification email

also includes the exact location of the error that has been introduced.

2.1.4 Summary of Basic Engineering Approach

2.1.4.1 Basic Design Concept

The unit testing code is designed to work in coordination
with the Boost C++ Libraries. It is to be integrated with SDL’s
build server that compiles and builds the C4ISR Division’s code
overnight. The purpose of the unit testing code is to test each part

of the Image Rectification Project individually.

Each function in our code is given a test argument. The
tested function then returns a value based on the argument that it
was given. This returned value is then compared with an expected
value. This procedure occurs during the build server’s code
compilation. If the two values are equal (up to the desired
precision of .001), then the test passed. If not, the build fails, and
an email is sent to notify the developers that the build failed. The
email also informs developers which test function failed, giving the

location of the build error origin.

18

2.2 Decision Analysis

2.2.1 Description of Solution Alternatives

There were several unit testing platforms that were taken into
consideration in our design process, including hand-written code,
Parasoft’s C++Test, and the Boost Test C++ Libraries. We will discuss
the pros and cons that we found with each platform and why we made the
decision to use the Boost C++ Libraries.

The pros with using purely hand-written code were that we would
not have to worry about learning any new software. Additionally, the
integration into the nightly builds would work the same way the rest of
C4ISR’s code is integrated into the nightly builds. The cons of hand-
written code, however, were that it is very time-consuming and high-
maintenance. The unit test code may also be imperfect, which could cause
further errors in the code instead of fixing them.

According to Parasoft’s website, “Parasoft C++Test is an
integrated solution for automating a broad range of best practices proven
to improve software development team productivity and software quality.
C++Test enables coding policy enforcement, static analysis,
comprehensive code review, and unit and component testing to provide
teams a practical way to ensure that their C and C++ code works as
expected.” The good things about this software were that it generated unit
tests automatically. Supposedly, only a few changes and tweaks would

have to be made to the auto-generated code in order for the unit testing

19

code to perform as desired. This code is also easily used with C4ISR’s
auto-build software. Unfortunately, Parasoft made empty promises in our
case. We found that the C++Test software did not match up well with
SDL’s existing software. It also created unit test codes that were unable to
compile. Some of them contained thousands of errors that we would have
to track down and fix. Parasoft’s C++Test turned out to be a very poor
platform for our project.

Finally, we considered using the Boost Test C++ Libraries. The
good thing about these libraries is that they work well with the C++
standard library and they are easy to use. Many of the developers in the
C4ISR division are already using the Boost Libraries to write unit tests for
their code, so there were several people who we could turn to if we had
any questions. Another great thing about the Boost Test libraries is that
they allow for the tests that are produced to run as part of the nightly build.
Once the code has been compiled, build errors can be double-clicked in
Visual Studio to open the source file and display the exact line of code that
failed. The only bad thing about the Boost Test Libraries was that some of
the code had to be hand-written, but there were so many built-in unit
testing functions that came with these libraries that hand writing the code
was trivial. Choosing to use the Boost Test C++ Libraries as the platform

for our project was obviously the best decision.

20

3.0 Basic Solution

Once we were certain that we would be using the Boost Test C++ Libraries to
write unit test code for the image rectification functionality, we did a lot of research. We
studied the existing Image Rectification code in detail until we understood it very well.
Then we decided what functions we would need to write in order to test every aspect of
image rectification. These functions include the initialization function as well as five unit
testing functions: sensor pitch, sensor roll, sensor heading, aircraft pitch, and aircraft roll,
which will be discussed in detail later in this report. Once the code was written, we sent
it through code reviews and then integrated it into the nightly build. The nightly build

automatically sends out error reports via email to the developers.

21

3.1 System Components and Relationships

Figure 9 shows a basic block diagram of our system. It contains the
original C4ISR code, Boost Test Libraries, unit test code, C++ Compiler, and the
build server. The Boost Test Libraries and Original C4ISR code are used to
create the unit test code. The integrated code is then sent to the C++ Compiler,
which is located on the Build Server, where all of the code is compiled. These

components will be discussed in detail later in the report.

Original IS&R Boost Test

Code Libraries

\/

Unit/Integration
Test Code

C++ Compiler

)

Build Server

Figure 8: Basic System Block Diagram

3.2 Component-level Specifications
Since the original C4ISR code, Boost Test Libraries, C++ Compiler, and
Build Server were already in existence, we did not need to create new

specifications for those components. Instead, we had many specifications for our

22

unit test code. First of all, we were required to write our unit test code in C++ and
run it through code reviews as mentioned previously. We also had to ensure that
our unit test code was compliant with all of the other components in the system.
Our unit test code had to be developed based on the original image rectification
code and the boost test cases had to be integrated into the unit test code correctly.
We also had to ensure that the unit test code could run through the compiler and

build server just like the original C4ISR code.

4.0 Performance Optimization and Design of System
Components

4.1 Description of Components and Component-level
Specifications

The system contains six main components. These components include,

the original C4ISR code, the Boost Test Libraries, the unit/integration test code, a

C++ Compiler, and a build server.

4.1.10riginal C4ISR Code

The Original C4ISR Code is the software developed by SDL’s
C4ISR division. The software is called Vantage, and consists of hundreds
of thousands of lines of code and dozens of projects. The project that we
did our unit testing for was the image rectification project. The Image
Rectification project involves Geo-rectifying the imagery so that north is

pointing up and lies correctly on a map of the earth below it.

23

4.1.2 Boost Test Libraries

The Boost Test Libraries are a set of libraries that contain different
test functions that can be used with C++ code and using Microsoft Visual
Studio. The libraries are freeware found on the internet. We downloaded
these libraries and integrated them with the other libraries that are used
with the Original C4ISR Code. This enabled the boost libraries to be
checked by anyone who checks out the C4ISR Code from the repository

and to use the libraries’ functionality.

4.1.3 Unit/Integration Test Code

The Unit/Integration Test Code is the code that we wrote to test the
Image Rectification functionality. We used the test functions from the
Boost Test Libraries to help us test the functionality of Image
Rectification. After the unit tests were written and tested, they were

integrated into the Original C4ISR Code.

4.1.4 C++ Compiler

The C++ Compiler is what SDL uses to compile the code. We
used the C++ Compiler to compile the unit tests for Image Rectification to
ensure that the tests compiled without errors. We also used the compiler
after we had integrated the tests into the original code to make sure the

new tests did not introduce any compile errors to the original code.

24

4.1.5 Build Server

The Build Server is used at SDL to do nightly builds of the
software. It also keeps track of changes made in the code repository and
triggers a build upon a change. The Build Server also uses a freeware
called CruiseControl to control emails that are sent to developers if a
changed they made caused build errors. We use the build server to run our
tests on the code every time a build is ran, and if any of the tests failed,

developers are notified of the error that occurred during the build.

4.2 Discussion of the Technical Approach Used

Our technical approach involved a lot of research. We researched the
different methods that we could use to develop our unit tests. The different
methods included handwriting all of the test code, Parasoft’s C++ Test, and the
Boost Test Libraries. Our research results for the different methods are discussed
in section 2.2.1. (We need to link this) Another main aspect to our technical
approach was researching the Image Rectification code that we were assigned to
write unit tests for. This was a critical part because we had to know exactly what
the code was doing in order to test it. Becoming familiar with the Image
Rectification code also lead to needing to research roll, pitch, and yaw angles; this

ended up being a very complicated and a key part to our unit tests.

25

4.3 Discussion of Design Details

After all of our research was completed, we began to write our unit test
code for image rectification. There were six tests and functions that we wrote to
test image rectification. These tests were, the initialization function, sensor pitch,
heading (yaw), and roll, and aircraft pitch and roll. We also tested aircraft
heading, but the tests were built into the other tests.

In order to make the correct geo-rectification calculations, we took several
rotation types into account. These are roll, pitch, and heading, which is
sometimes called “yaw.” They will be discussed in further detail in Section 4.
Roll is the airplane or sensor’s rotation around the z-axis, pitch is the rotation
around the x-axis, and heading is rotation around the y-axis. Figure 8 shows a

diagram of roll, pitch, and yaw with respect to an airplane.

Figure 9: Roll, Pitch, and Yaw Diagram

26

4.3.1Initialization

The initialization function is where we made any initial
calculations and initialized any variables. Most of the initialization that
was needed was to enable the function call to the Image Rectification code
we were testing. Most of the values did not affect our test but were
required to be initialized to make the function call. Other variables that
we initialized in this function did affect our testing and had to be
calculated correctly to make the test results correct. Part of our research in
the technical approach involved figuring out these calculations but we also
verified with the developer over the Image Rectification that we were

performing the calculations correctly.

4.3.2Sensor Pitch

Pitch is the angle that tells you at what degree the sensor is
pointing toward the earth. For example, if the sensor pitch is zero degrees,
the sensor is pointing out toward the front of the plane, and would not see
much of the earth. At a pitch of negative 90 degrees, the sensor is
pointing directly down at the earth. At this angle the sensor direction is
perpendicular to the earth’s surface. If the sensor pitch was -180 degrees,
the sensor would be at the same angle to the earth if the pitch were 0
degrees, except it would be facing toward the rear of the plane instead of
the front. So, to test the sensor pitch, we changed the varied the pitch
angle from the original setting, and verified that the ground latitude and

27

longitude of where the sensor pointed to changed correctly based on the
pitch change.
4.3.3Sensor Heading

The sensor heading or yaw is the angle that determines to what
degree the sensor is pointing north, south, east or west. For instance, a
zero degree heading means it is pointing north, 45 degrees is east, negative
45 degrees is west, and 180 and negative 180 is south. However, with the
sensor, the heading is relative to the airplane. This means that if the
aircraft is flying straight east, having a yaw of 45 degrees, the sensor’s
yaw, at zero, would be aligned with the plane also heading east. Testing
this angle was particularly complicated because of the relativity to the
airplane. But the test idea is similar to the sensor pitch. So, we changed
the sensor heading from the original setting and verified that the ground
latitude and longitude changed accordingly. One thing we ran into that
also complicated the testing for sensor heading was for the case that the
sensor pitch is -90 degrees. Through our research of the roll, pitch, and
yaw angles, we found that with a pitch of -90 degrees the ground latitude
and longitude doesn’t change when the heading is changed. So, when we

wrote our tests, we had to account for this specific case.

4.3.4Sensor Roll

The way the image rectification code uses the roll, pitch, and yaw
angles, the sensor roll does not affect the ground latitude and longitude.

This is not true for all applications though. It just happens that the C4ISR

28

software has been written so that this angle can be neglected. However,
even though this angle is neglected we still had to test for every type of
situation to make sure that the code responded as expected for a change in

sensor roll, meaning the ground latitude and longitude does not change.

4.3.5 Aircraft Pitch

The aircraft pitch test is similar to the sensor pitch test. However,
the aircraft is allowed to have a slight positive pitch, unlike the sensor, and
so tests were added to account for a slight positive pitch of the aircratft.
Also, through our research and discussion with developers we made
decisions that the aircraft would never be pointing straight up or down, or
trying to flip over, so the pitch range for the aircraft that we tested was
between -90 and 90 degrees but never was less than or equal to -90 or

greater than or equal to 90 degrees.

4.3.6 Aircraft Roll

Unlike sensor roll, aircraft roll had a big affect on the ground
latitude and longitude. This is because the ground latitude and longitude
is based on the orientation of the sensor, so if the aircraft is tilted or rolled
slight left or right, it will greatly change the point on the ground that the
sensor is pointing to. This test was a very complicated test, because how
the ground latitude and longitude changed with different roll angles is
dependent on both the sensor heading and aircraft heading. So, we had to

go through many calculations to make sure that we were correctly

29

checking the ground latitude and longitude when the aircraft roll was

changed.

4.3.7 Aircraft Heading

The tests for the aircraft heading were different than the other tests.
This was because we incorporated the aircraft heading tests with the other
tests. What this entailed was just changing the aircraft heading alongside
the other angles that needed testing. The aircraft heading is similar to
what was described above for sensor heading, except that if the heading is
zero degrees, then the aircraft is flying directly north. We tested nine
different headings for the aircraft. These headings were, 0, +45 and — 45,
+90 and -90, +135 and -135, and +180 and -180 degrees. For example, at
each heading we tested every sensor pitch angle. This was accomplished
fairly easily using a nested for loop, but made verifying the ground

latitude and longitude very difficult.

4.3.8Integration

Once our image rectification unit tests were written, our code
underwent a detailed code review by two of the C4ISR division’s full-time
software developers. Our first code reviewer advised two pages worth of
corrections for us to make to our code. Most of these corrections were
simple, stylistic changes. Once we made those changes, he reviewed our
code a second time and then approved it. After that, we passed our code

on to the second code reviewer. He suggested another two pages worth of

30

corrections, and these changes were more critical. First, he required a
major change in the structure of our code. Originally, we wrote our code
in a functional style, but this developer required that our code be changed
to an object-oriented style. The reasons for this were that it made our code
easier to maintain and also improved its readability. In order to do this,
we had to create a separate header file and organize our data into classes
and structs. Once these changes were made, the second developer
reviewed our code again and suggested many stylistic changes. After five
total code reviews between these two developers, our code was greatly
improved. It was much more efficient and the layout was nicer. The code
reviews helped us to better learn how to develop software in a professional
environment. They were critical to our project, and extremely useful for

our professional experience.

4.4 Engineering Drawings and Schematics

The overall unit system for our project consists of the original C4ISR code,
the Boost Test Libraries, our unit testing code, a C++ compiler, and a build
server. The original C4ISR code is currently being developed at SDL and is what
we are writing the unit tests for. It has already been developed by the C4ISR
division at SDL. It consists of hundreds of thousands of lines of code and dozens
of projects. The Boost Test Libraries are the platform that we used to write our
unit test code with. The unit testing code is code written to test specific, existing
C4ISR code thoroughly by exercising all necessary functions with many different

values. The build server is dedicated to nightly builds of the C4ISR division’s

31

software, including our unit testing code. It also tracks changes in the repository
and updates upon a change in the code. Figure 10 shows the block diagram for

our entire project.

Original IR&R Boost Test

Libraries

Code

\/

Unit/Integraticon
Test Code

C++ Compiler

)

Build Zerver

Figure 10: Basic System Block Diagram
The integrated code is built using a C++ compiler on the build server.
Automated builds are completed using a program called, “CruiseControl.” Builds
are triggered every night (“nightly build”). Builds are also triggered upon a
change made in the code repository. During this build, error reports are generated
and sent out to the developers. These reports let the developers know if they have

introduced a bug to the code, and if so, where that bug is located.

32

4.5 Summary of Final Design Results

After going through the multiple code reviews, the final design of our
code was extremely improved. Our final revision of the unit testing code cut out
about 2000 lines of code from the original first draft and made our code much
more efficient and readable. Our manager and developers that we worked with on
the design of our code are extremely satisfied with our unit tests and their

performance.

4.6 Performance Evaluation

Our code was tested extensively to verify correct functionality. The unit tests
were introduced into the original C4ISR code without causing any errors. If there
is an error in the image rectification code, meaningful error messages are
displayed and the developers are notified that they introduced an error into the
image rectification code. The developers are satisfied with the unit testing for

image rectification.

33

5.0 Project Implementation, Operation, and Assessment

5.1 Details of Implementation
Once the unit test code was written and perfected, it was time to integrate
it into the system used by C4ISR. Figure 11 is a diagram of how the system

works.

Bob

Source
Repository

Peter >;

Sue i ’T‘
|

Build Server

|Fmai] N -:-tifimti-:-n|

Figure 11: Build System Diagram

It starts out with the developers, in this case Bob, Peter, and Sue. For
example, Bob just finished writing some code and now he wants to integrate it
into the system. First, he would check his changes into the source repository.
The source repository is where all of C4ISR’s code is stored. All of the
developers have access to the source repository, so they can access the code there

by “checking it out.” The build server is notified every time that code is checked

34

into the source repository, which means that there has been a change to the code.
The Build Server then compiles the code. The Build Server also compiles the
code during the “nightly build,” so that the students and developers can obtain a
fresh build of the code every morning when they come into work. When the
Build Server finishes compiling (or an attempt at compiling), if any errors were
encountered, an email notification is sent out to the developers, or in our case, if
our unit testing code finds a bug that was introduced to the image rectification
code, an email notification is also sent out to the developers. These email
notifications contain the exact location of the error or bug so that the developers

can find and fix it in a timely fashion.

5.2 Operational Test Results

Our Unit Test code was integrated into the system successfully. Once it
was checked into the source repository, a build was triggered on the Build Server
and it compiled successfully. Email notifications are sent out to developers if a
bug has been introduced to the original image rectification code. Our project
works perfectly with the rest of the system. We did not need to make any changes

based on our design and testing results.

Final Scope of Work Statement

6.1 Summarize What has Been Done
At this point, our project is complete. We started our project by

researching unit testing, including different methods of unit testing and various

35

platforms that we could use for our testing. We started work on the “Save
Matrix” Unit Testing Project, but through discussions with our manager,
determined that the “Image Rectification” Unit Testing Project was higher
priority, so we re-directed our focus. We researched image rectification,
including how it works and the math behind it. We became very familiar with the
existing image rectification code so that we could write the best unit tests possible
for it. We completed our code and then refined and perfected it through code
reviews. Next our code was integrated into the nightly build and set up so that
error reports would go out to any necessary developers. Our project was a

success and will have a great impact on the C4ISR Division’s code.

6.2 Lessons Learned and Suggestions for Future
Activities

Throughout the course of this project, we learned some very important
principles of software engineering. First of all, too many function blocks within
the same file can make it difficult for others to understand the functionality of our
code. Using C++ classes helps to organize similar function blocks into more
understandable events that others can follow. Good code is created by
understanding and reviewing the desired purposes and goals that the code will
accomplish and then writing code according to those goals. Reviewing the code
on your own and having others review it via code reviews are critical elements to
software design. It is important to fine-tune the code until it is as efficient and
readable as possible. Chances are good that someone else will have to read,

understand, and then edit your code someday, so they will greatly appreciate this.

36

7.0

6.2 Related Project Management Issues

The unit testing code that was created is used for only one of the several
projects involved in SDL’s software. The unit test project demonstrates that
software can test other software more efficiently and effectively than manual
regression testing by a human can. SDL is now transitioning to asking student
employees to write unit test code instead of having them do purely manual testing.
This will allow SDL to have a better testing procedure since unit testing is more

efficient and effective than manual testing.

Other Issues

7.1 Component Suppliers
All of the components for our project were supplied by the Space

Dynamics Laboratory.

7.2 Reliability

Our unit test code has been tested extensively. The compilation results
show that the code is reliable and error-free. In case of an error in the original
code, the unit test code performs the desired results, meaning it detects the error
and emails the software developers with the location of the error so that it can be

fixed as quickly as possible.

37

7.3 Global, Economic, and Social Impact

Our unit testing software has a global impact because it is perfecting
software that can and has saved many lives on both sides of war efforts.
Automated testing will also produce higher quality software which will be used in
future Department of Defense efforts.

The societal impact of our project is that those working at SDL will be
able to spend less time debugging (which is often boring and monotonous) and
more time enhancing the software, which is typically a more enjoyable part of any
software development job.

The economic impact of our project is that automated testing will allow
SDL to produce a better product. This will increase customer confidence. The
developers will be able to use their time more efficiently because they will be able
to focus on spending more time enhancing the software than trying to track down
pesky bugs. It is also commonly known that the longer a bug goes undetected, the
more expensive it is to fix. Our code will catch errors in the code the same day

that they were created.

7.4 Maintenance

Because of the style and commenting of our unit testing code, it will be
easy for C4ISR’s software developers to maintain. Our code flows well, it is
object-oriented, and it is filled with detailed comments. A specific developer ahs
been assigned to maintain our code, however, no immediate maintenance issues

are foreseen.

38

7.5 Contracts and other legal/ethical Issues
Our code is owned by the C4ISR Division at the Space Dynamics
Laboratory. Our code is proprietary; therefore it may not be released to the

public.

7.6 Product Documentation
Since our project did not change the actual functionality of C4ISR’s
software, no new documentation or changes in SDL’s software documentation

were required. Our project was well documented by following the guidelines

given to us for the senior design course. We also took care of documentation for

our project by writing very detailed, well-commented code.

7.7 Operating Procedures

The operation of our system is extremely simple. Since our code is
integrated into the build server, as soon as it was completed and checked in, it
runs automatically. The error reports sent to the developers are also generated

and sent out automatically.

7.8 Contractor and Supervision
The contractor for our project was the Space Dynamics Laboratory. We
worked under the supervision of Mr. Pete Krull, Control Manager of the C4ISR

Division.

39

7.9 Inspection
Our software was inspected via code reviewers. In the future, it will be

inspected by the developer assigned to the original image rectification code.

7.10 Quality assurance

To ensure that our code met SDL’s quality assurance standards, we were
required to make sure that the format of the introduced code was in harmony with
the previously existing code. We also had to ensure that the new code was
necessary, efficient, readable, and understandable. The code reviews helped us to

meet all of these requirements.

8.0 Cost Estimation

Table 1 shows a breakdown of the costs for our project. We used Microsoft
Visual Studio 2005 to develop our code. A license for this product typically costs $2100,
but since SDL already owned licenses for this product prior to our commencement on our
senior project, we do not consider it to be a direct cost to our project. We also used the
Boost C++Libraries and CruiseControl.NET to create our project, but both of these
products have open source licenses, so they are free to use. The only expense for our
project was the man hours charged to the Space Dynamics Laboratory for the

development of our unit test code. We estimated that this cost was just under $10,000.

40

Boost C++ Libranies - Software License

CruseContrel NET Platforin License

Time Charged to Space Dynamics Lab for Development

Ashli Crookston 12.00 4 h @ ~270 Hours
\Derek Hampton 12.00 ¢ h @ ~270 Hours
Fachel Searle 12.00 f h @ ~270 Hours

* Mot & direct cost of the project, but is used for development zo it is included in cost estimatation

Table 1: Cost Estimation

Microsoft Visual Studio 2005 Team Edition For Software Dievelopers With Ivsdn

Cpen Source License

Open Source License

$2,100.00 *

FREE

FREE

$2.240.00

§3,240.00
§3.240.00

$9,720.00

Total Cost Estimation

$11,820.00

41

Project Management Summary

9.1 Tasks: What Has Been Done

*Research on unit testing

*Research on possible unit testing platforms
*Unit tests auto-generated by Parasoft C++Test
*Correction of auto-generated unit tests
*Familiarization with Boost Test Libraries
*Refocus of project to work on Image Rectification
*Write unit test code

*Major reformatting of code

*Code reviews

*Editing of code

*Integration of code into the system

*Testing our project

*Completion of project

9.2 Tasks: What still needs to be done

*Basic upkeep of code

*Some documentation

9.3 Time: Gantt Chart

The next four figures are Gantt charts, which show the activities that were

completed for our project, as well as the duration and the order of each of these

42

activities. The first three (Figures 12, 13, and 14) Gantt Charts cover the original
plans for our Save Matrix Unit Testing project. The fourth Gantt chart (Figure
15) shows everything from October 27™ (when our project changed to Image

Rectification Unit Testing) until the completion of the project.

43

]

2
a
- S e e e e e S e e
z Sz 2o 2o D daif 28 aie
WBS Tasks Task Lead Start __End =2 e e e e et b b ol ot oo Bl o e Pl
1000 Multispectral Sensor D Harrpon sz 1zoeme 7z |
1400 Single Image Save sezme ooz sa
1410 Geocomected Imagery gzing 1oname 22 D
1111 Rezearch & Understanding Code Q2208 [52605 4 .
1442 kit unit test code 9/29/08 100308 4 .
1113 Accuracy Testing FO040E 100708 3 I
1144 Integration into nighty build 1 0:0?:08_'1 otiog 4 .
1445 Check final results for accuracy 104108 1014058 3 I
1120 Hon-Geocorrected
1421 Rezearch & Understanding Code 10M4m8 104708 3 I
1422 Wite wnittest code 10708 102108 4 |
1123 Decuracy Testing TO8210E 102405 3 I
1124 Integration vt rightly build 10i4me 100608 4 I
1125 Check final results for accuracy TORE0E 10305 3 I
1.2.00 Muhlidmage save
1240 Geocomected Imagery
1214 Research & Understanding Code 1003108 110305 3 I
1212 Write unittest code 11mzme 10T 4 [|
1243 dccurmcy Testing 140708 1140058 3 I
1214 Integration into nighty build 11410008 "inans 4 .
1215 Check final result: for accuracy 1114008 11MT08 3 I
1220 Non-Geocormected
1.2.21 Research & Understanding Code TINTNE 112005 3 I
1222 Write wittest code 11008 112408 4 i
1223 Aecuracy Testing 11624008 1142705 3 l
1224 Integration into nightly build 1ezme 120 0s 4 l
1225 Checkfinal resulis for accuracy 120408 120408 3 I
1000 HyperSpectral D. Hatnpton 1204108 21500 73 T
1400 Single Image Save 12M4i08 17208 33 i
1110 Geocorected Imagery 1M0diE 120108 AT i
o B Fezearch & Understanding Code 1204008 1206805 2 I
142 lirdte unit test code 12mans 12108 2 I
1443 Decuracy Testing 12M208 1245108 3 I
194 Inteqration into nightiy build 121508 121808 3 I
1.1.1.5 Check final resultz for accuracy 12M8M8 122108 3 I
1420 HNonGeocormected
11.21 Fesearch & Understanding Code 122108 1224008 3 I
1422 Uirte unittest code t2meins” 1mzns 4 B
1423 beouracy Testing 10203 10509 3 I
1124 Integration into pightiy build 1osma” 1oang 4 .
1425 Check final results for accuracy 1003 M09 3 I
1.2.00 HMulidmage save
1.21.0 Geocomected Imagery
1244 Rezearch & Understanding Code AM209 1M509 3 I
1212 ite unittest code 1hs0a” 1nams 4 |
1.21.53 lecuracy Tezting 18898 122109 3 I
1244 Integration vt nighthy build troome” 112609 4 I
1.21.5 Check final results for acouracy 162603 128008 3 I
1220 NonGeocorrected
1.221 Research & Understanding Code 1029008 20M0e 3 I
1222 White unittest code 201" 20508 4 |
1.223 lecuracy Testing 20509 X009 3 I
1224 Integration vt nighthy build a0E0a” 2ra0d 4 I
1.225 Check final results for accuracy 2M2M3 2M508 3 I

Figure 12: Gantt Chart 1

44

i
a 0000 0o 0o 00 o 00000
g 88s8882980828880 528,,
B mgecfiinsrdize s RB S e e s
WBS Tasks Task Lead Stat End & [EGEiSRiSisisiniz YN NRI 2 ITIZIAR
|
2000 Gimbaled Video R Seatle gizns 1ongns 1g ' [
2100 Single Image Save Q22008 1053108 39 i _
2110 Geocorrected Imagery Q22008 10M405 22 1 -
2111 Research & Understanding Code Qp22108 92608 4 I
2112 Wirite unit test code /28008 100305 4 I
2113 Beeuracy Testing 108408 1007038 3 I
2444 Infegration int nighthy kuild om7Toe 104108 4 .
2115 Check final results for accuracy 10M 105 101405 3 I
2020 Non-Geocorrected
2021 Research & Understanding Cocle 10M 4808 104703 3 .
2022 Write unit test code 00 705 '1 2ns 4 i
2023 Decuwracy Testing 102108 102408 3 I
2024 Integration into nighdy Build 1024me 102808 4 l
2025 Check final results for accuracy TOM2E05 1053105 3 I
2200 Hulidmage save
2210 Geocomrected Imagery
2211 Eezearch & Understanding Code 10531008 1103108 3 !
22412 Write unit test code 110305 '1 10708 4 I
2213 Beeuracy Testing 110708 114008 3
2214 Inearation vt nighlly build 1oms 1 mans . 4 .
2215 Check final results for accuracy T 405 111705 3
2220 HonGeocomected
2221 PRezearch & Understanding Code 1M T8 1172008 3 l
2222 Write unit test code 112008 '1 12408 4 I
2223 Deeuracy Testing 11024008 112708 3 !
2224 Inegration ivto nighthy kuild 1e70e 1200s 4 I
2223 Gheck final results for accuracy 1201008 120405 3 i
2000 Line Scanner R Searle fomams 2nama T T]
24.00 Single Image Save 1210408 1M009 18 ' -
2110 Geocorrected Imagery 12084008 1252408 18 t -
2141 Rezearch & Understanding Code 1204008 120708 3 I
2412 Wiite unittest code 12H008 121308 3 I
2113 Beeuracy Testing 121408 12107058 3 I
2114 Intearation into nighly build 120708 122108 4 I
2115 Check final results for accuracy 12021008 1272408 3 I
2020 HonGeocomected
2021 Research & Understanding Code 12124008 1202708 3 I
2022 Wite unit test code 2T 05 '1 2010 4 I
2023 Deeuwracy Testing 1231008 10303 3 I
2024 Integration inta nighthy kuild 1oane’ oTne 4 l
2025 GCheck final results for accuracy 1oF0s 1HMomns 3 I
2200 Multidmage save
2210 Geocomected Imagery
2211 Research & Understanding Code 180003 1M303 3 I
2212 Wirite unit test code TH 309 i Hroe 4 l
2213 Beeuracy Testing 1H708 152009 3 I
2214 Integration into nigky build 1008 10409 4 l
2215 Check final results for acouracy 12408 12709 3 I
2220 Hon-Geocomected
2221 Rezearch & Understanding Code HATI09 173009 3 I
2222 Write unit test code 13009 i 20309 4 I
2223 Boouracy Testing 20308 20603 3 I
2224 Integration into nighdy build soEna’ 2nomg 4 l
2225 Check final results for accuracy 21008 2M303 3 I

Figure 13: Gantt Chart 2

45

A
4

Z
a
= S g o e 4 e e e e S e B
e i b L i ol g i i o PR S
WBS Tasks Task Lead Stat___End 3 e e e e e o e e e i i
3140 Color Framing 1. Crookston S22 120408 T3 I_
3111 Single Image Save szing osioe 3o
3112 Geocorrected Imagery aoms 1onams 22 [
3143 Research & Understanding Code Q2208 2603 4 .
3144 Wkite unit test code 9i2a/0a 100308 4 l
3445 Aooumcy Texting 1060408 100708 3 I
3406 Intesration into nighty build 100708 100108 4 .
3447 Check final rezufts for accuracy 10M108 104058 3 I
3120 MHonGeocomected
3124 Fesearch & Understanding Code 10M4/08 1047058 3 I
3422 Write unittest code 1on7me mins 4 |
3123 Acoumcy Testing 1002108 1002408 3 I
3124 Integration into nighdy build 10408 1002608 4 l
3425 Check final rezults for accuracy 1002808 13108 3 I
3200 Hulidmage save
3210 Geocorrected Imagery
3244 Rezearch & Understanding Code 1083108 110308 3 I
3242 Write unittest oode 1103me 1oTe 4 B
3213 Acouracy Testing TT0E 110058 3 I
3244 Integration into nighthy build 1mome 114408 4 l
3215 Check final rezults for accuracy TIN408 11H705 3 I
3220 HonGeocomected
3221 Research & Understanding Code JAMT0E 112008 3 I
3222 Wit unitest oode T1o0me 11Ra0e 4 |
3223 lcouwrcy Testing 12408 112708 3 I
3224 Integration into nighty build 1ETme 12008 4 |
3.225 GCheck final rezults for accuracy 120108 1204058 3 I
3110 SAR L. Crookston 120408 22709 TRREF!
3411 Single Image Save 1204108 1i24M08 51]
3112 Geocormected Imagery 120408 10708 34]
3143 Research & Understanding Code 120408 120708 3 I
3444 Writs unit st oode 1z0ma 12n4ne 4 |
3445 Acouwracy Testing 12M8M08 121808 3 I
3446 Integration inta nighty huild 12i8mE 120208 4 |
3447 Check final rezults for accuracy 10408 10709 3 I
31200 NonGeocomected
3124 Fezearch & Understanding Code HOFOe . 1M00e 3 I
3422 Wrie unittest code fitong” 14408 4 |
3123 bcoumcy Testing 1408 4AMT09 3 I
3124 Intewration into nighy build 1izoa” 1eins 4 |
3125 Check final rezults for accuracy Ae208 102409 3 I
3200 Hulidmage save
3210 Geocorrected Imagery
33244 Rezearch & Understanding Code f2409 102709 3 I
3242 Wit unittest code tiTma’ Etne 4 [|
3213 Acouracy Testing TaEme 205309 3
3204 Intearation into nighly build amamg” 2oToo 4 l
3215 Check final results for accuracy 20708 2n009 3
3220 HonGeocomected
3221 Research & Understanding Code 2008 2M309 3 I
3222 Writs unittst code 21309 21708 4 |
3223 lcouracy Testing 2MFAY- 2020009 3
3224 Integration irto nightly build 202009 4 22409 4
3225 Checkfinal resulis for accuracy 22408 22703 3

Figure 14: Gantt Chart 3

46

Image Rectification
Space Dynamics Labaratory

Project Supervisor: Pete Krull

Start Date: 10/27./2008 _ (Mon) i &l ¥
o
a _ .
§ [ELE88-ntiafBSe s 0 fiaa B8
= Db b bbb et it e ol et R ol
wes Tasks Tasklead Start End & Sz zimzi@ofoezziiizasRalsssses
1 Initialization Rachel woere zoows s (N
%4 Research & anzeng iinens 17 (D
12 Write unittest code 11405 121505 31 I
13 Gode Reviews 120005 20508 45]
14 Code Adjustments / 12029008 202809 E1]
15 Integration into nighthy BMENI 2090d 3 |
15 Check final results for amama 32008 11 [|
1 Sensor Pitch Ashl werme szons 140 (N
4 Research fe 102808 1MA408 . 17 []
12 Write unit test code 114408 121508 31 e
13 Code Reviews 1202208 20509 45]
14 Code Adjustments / 122808 20808 61]
15 Integration into nighth: 3MEMNS 30909 3 |
18 Check final results for A0ama 32008 1 [|
1 Sensor Heading Ashli weres zeong 14 (NN
4 Research & qozene iinene 17 (N
12 Write unittest code 111408 121508 31 I
13 Code Reviews 120005 20509 45]
14 Code Adjustments / 120908 212808 61]
15 Integration into nighthy B0 30909 8 .
18 Chesk final results for 30903 32009 11 []
1 Aircraft Roll Derek werme seons 144 [N
%4 Research & 1oeeng 1asns 17 [
1.2 Wirite unit test code 111408 121508 31 -
13 Gode Reviews A2momE 20508 45]
14 Code Adjustments ¢ 120005 202809 B]
15 Integration into nighthy 30603 300 3 |
16 Check final results for 30909 32009 11 ||
1 SensorRoll Derek werme zzona 144 [N
%1 Research & 1weens 1asns 17 [N
12 Write unittest code A1H40E 121505 31 I
13 Code Reviews 1222008 20503 45]
1.4 Code Adjustments / 12/29/08 202809 61]
15 Integration into nighthy BMOEM0I Z09mg 3 |
15 Check final results for 30908 32009 1 ||
1 Aircraft Pitch rRachel sozms azone 4s (N
K Research & 10/28/08 11A408 17 []
12 Write unittest code 111408 121508 31 I
13 Gode Reviews 2208 20509 45]
14 (Gode Adjustments / 12029008 22809 B]
15 Integration into nighthy 30603 30aME 3 |
16 Check final results for 30908 302009 11 ||

Figure 15: Gantt Chart 4

47

9.4 Facilities

Our project was completed using the Space Dynamics Laboratory’s North
Logan facilities. “SDL is headquartered in the 140,000-square foot Jake Garn
Space Research Complex near the Utah State University campus in Logan, Utah.”

They are located at:

1695 North Research Park Way
North Logan, Utah
84341

Figure 16: Space Dynamics Laboratory Facilities in North Logan

9.5 Personnel

The personnel used to complete this project’s design were Ashli
Crookston and Derek Hampton, who are seniors in Computer Engineering at Utah
State University, and Rachel Searle, who is a senior in Electrical Engineering at
Utah State University. All three work as software testers at the Space Dynamics

Laboratory.

48

9.6 Work Breakdown Structure
The following diagram shows the work breakdown structure for our
project. The project can be broken into five phases: design, research, coding,

review, and implementation.

49

Design Phase

Unit Test Project

Research Phase

Learn Current
Code

l Coding Phase

Save Matrix Image Rectification
Test individual
C++ Unit test funtions
Handwritten Unit Boost Unit Tests |
Test Report bugs via
Email

Understanding
Boost

Review Phase
| |
Initialization Unit Testing Developer 1 Developer 2
Function Functions I I
_ ’_‘_‘ Suggested Suggested
Perfol_m Changes Changes
Calculations Rireraft Sensor
Initialize Values L{Fi)t & confirm| L{Fix & Confirm |
Pitch| Heading |
Roll| Roll
Pitch

Figure 17: Work Breakdown Structure

Implementation

Upload to Code
Repository

Configure Build
Server for Hightly
Builds

L Send emails
reporting bugs and

thier code location

50

Within the design phase, we looked at the Save Matrix as a test subject and
researched Boost C++Test, C++Test, and handwritten unit tests. In the design phase,
we also switched to the image rectification project and looked into different ways of
implementing it. During the research phase of our project, we familiarized ourselves
with the existing code and worked on understanding how to use the Boost C++ Test
Libraries. During the coding phase, we wrote the initialization function, which
performs calculations and initializes values needed throughout the code. We also
wrote our unit testing functions, which included aircraft pitch and roll as well as
sensor heading, roll, and pitch. In the review phase, we went through code reviews
with developers one and two, whom suggested changes to our code, let us fix it, and
then approved it. In the implementation phase, we uploaded our code to the
repository, configured the build server to run our code in the nightly build, and made

sure that error emails were sent out to the developers.

10.0 Conclusion

10.1 Purpose of Report
The purpose of this report was to discuss the background and need for our
project, a detailed description of the design and implementation of our project and

the results, and also the work breakdown and cost estimates for our project.

10.2 Objectives

The Space Dynamics Laboratory hires testers to manually test each

function of their software. This is time consuming and inefficient. Our objective

51

was to create a better method of testing by implementing an automated testing
system. This involved writing unit test code created with the Boost Test
Libraries, integrating this code into the nightly build server, and allowing the
system to email the error reports generated by the nightly build to code owners so

that they might be able to find and fix their errors as quickly as possible.

10.3 Summary of Final Design Selection

We were able to successfully complete our project. Our unit testing code
compiles and works correctly. The code checks for potential problems created by
changes to the image rectification code. Emails are sent out to the appropriate
developer if an error is introduced. Our code is very important because it helps to
ensure that a key functionality of the C4ISR division’s software is working error-
free before it is sent to the customer. Our managers and the software developers

are very pleased with our work.

10.4 Costs and Timeline

Since all of the software and systems used for our project were freeware or
already paid for or owned by SDL, we did not have to make any purchases
throughout the course of our project. The only project-related charges to SDL
were the man hours that we put into the project. Since we worked on our project
during normal working hours, SDL didn’t have to pay us any extra on top of our
normal hourly wages for this project. When the time charged for this project was

added up, it totaled to about $10,000.

52

Figure 18 shows a timeline of our projects milestones. It covers events
occurring between April, 2008, and March, 2009. The timeline is broken up into

five main phases: design, research, coding, review, and implementation.

53

Design

Research |5f5 Received project approval from Dr. Chen

Coding

Review

Implermentation

=/ Begin Unit Testing Research

12/3 Majar re-farmatting of
unit test code beging

9/15 Switch to Boost Test Libraries|

BT Unit Test code all

3/9 Testing beqing

1/28 Code Review 3

generated, but there arg 1045 Install Boostfstart
thousands of errors lzarning how to use it 12115 Finished Inltlal
Unit Test Code
741 Start trying to 10/25 Priarity Change:
eliminate errors Write Irmage Rectification
test code instead

\

[3/20 Project completd

272 Code Review 4

=] Apr08 | May08 | JunO8

Julo8 | AugD8 | Sep-08 | Oct08 | WowDd | Dec-08 | Jan09 | Feb-09 | Mar09 |

4/29 Senior Project Kickoff Meeting
Decided on Unit Testing Project
for Save Matrix

5/16 Decided to use
Parazoft's C+4+ Test
and installed it

10426 Begin research on

.

|E.-QU Began set-up afautabuildv Image Rectification

|9a‘14 Wrote project pmposal|

[10/22 Gave PDR Presentation]

[5/29 Generated first Unit Tests|

1117 Begin writing unit
test code

12;*22 Code Review 1

[3/6 Code checked into repository]

1/23 Code Review 2

Figure 18: Project Timeline

25 Code Review 5

54

Appendices:

A. Bibliography

1.

"C41SR Systems." Products and Capabilities.2009. The Space
Dynamics Laboratory. < http://www.sdl.usu.edu/products-
capabilities/c4isr> .
<http://www.sdl.usu.edu/products-capabilities/c4isr> .

“The Electromagnetic Spectrum.” Glossary of Terms. Laboratory for
Computational Science and Engineering. <www.lcse.umn.edu>.
“Vantage Software Suite.” Products and Capabilities. 2009 The
Space Dynamics Laboratory. <http://www.sdl.usu.edu/products-
capabilities/vantage> .

DeChristopher, Robert. “Roll, Pitch, and Yaw.” Mr. D.’s World of
Math and Science. November 14, 2005.

< http://fifthpostulate.net/roll_pitch_and_yaw.htms>.

"Logan, UT Facility." About SDL.2009. The Space Dynamics
Laboratory. <http://www.sdl.usu.edu/about/logan-facility> .
“C+ + Test Product Overview”. Parasoft C+ + Test. Parasoft. 2009.
< http://www.parasoft.com/jsp/products/home.jsp?product= Wizard
&/>.

Teo, Y.M., Tay, S.C., and Gozali, J.P. “Distributed Geo-rectification
of Satellite Images using Grid Computing”. Centre for Remote
Imaging, Sensing and Processing. Department of Computer
Science, National University of Singapore. April 2003.
<http://www.comp.nus.edu.sg/~teoym/pub/03/ipdps03.pdf>.

55

B. Supporting Documents for Project Management
i. Gant Chart
Image Rectification

Space Dynarmics Laboratory

Project Supervisor: Pete Krull

Stant Date: 102772008 (hon) s 1] ¥

T
=
z
] | }
ot oo 0000 a0 0o o
T Be228.0BEE8 ko | lals | oaw
o B = . e R e B o o R) A e o |
= IR B T o B Rt B BE =Bt = R b B o Bl =]
e e e G
WES Tasks Tasklead Stat End &5 2C- - 20000 - -cannmnmom
1 Initialization Rachel — ozros acons 1o [
71 Research & RICEICIRIVEIC T |
12 Wit unit test code 111408 124508 3 |
13 Code Reviews 1222108 20509 45]
14 Code Adjustnents / 1200108 22808 51]
15 Integration into nighthy: 3ME0Y 30909 3 |
16 Check final results for 30908 3009 11 ||
I SensorPich Ashi - omres soooe e |
1 Research & soneng 11nsne 17 [
12 Write unittest code 11408 124508 31 N
13 Code Reviews 12022108 20508 45]
14 Code Adjustnents / 120908 20809 B []
15 Integration into nighthy J0B03 30909 3 |
16 Check final results for 30908 32008 1 |]
1 Sensor Heading Ashi ooz acons 1o [
r
11 Research & RILEIRINEL R |
12 Write unit test code 11114108 124508 31 |
13 Code Reviews 120008 20608 45]
14 Code Adjustments / 1209108 20808 1]
15 Integration into nighth =T =T = R .
16 Check final results for 30808 32008 11 [|
1 Aireratt Roll Derek wozzoe acone 144 [
%1 Research & tomang 1idame 17 [
12 Wirite unit test code A1H40E 121508 31 -
13 Code Reviews 2208 20509 45]
14 Code Adjustrents / 1208108 20808 61 []
15 Integration into nighthy 30E0I 30909 3 |
16 Check final results for 30ans 32009 1 B
1 SenserRoll Derek aozios anons 1ee [
%1 Research & 1ozens 1140 17 [
12 it unit test code 111408 121508 31 |
13 Code Reviews 1202208 20509 45]
14 Code Adustments / 1208108 22808 61 []
15 Integration into nighthy F0EDY 30909 3 |
18 Check final results for 30909 32009 1 B
1 Aireratt Pitch Rachel anzzns snons s [
.
11 Research & sozems 11sne 17 [
12 it unit test code 1114108 124508 31 |
13 Code Reviews 20208 20509 45]
14 Code Adjustments / 1209108 22808 61 []
15 Integration into nighthy I0B03 30909 3 |
18 Check final results for 30909 32009 1 B

il.

WBS

57

pue shing Guntodal

10| 203 2L}

SpEWR puag

sping
Awbyy 10} 120195
ping aanfiyuos

fopsoday
apos} o projdy

ucneuawadug

[Buipeay [ymnd
[wnpuoy g EJ [wmues g EJ
: 108U35 : : Ye By :
saliueyy gabueyy
pasabiiing paysabibing 7|_L

: 7 1adojanag 7 7

7 7 :oﬂ_o_o.ﬁi 7

SUDIRIUN
Bunsa) wun

aseyd Mainay

sanjep, azyeniu|

suonena|es)
wiopag

uonaung
uonEZIEIIY|

15009
Buipueys Iapuy)

aseyq Guipo?)

apo7)
W2 Lng uma

aseyd yaieasay

[s1521 wup 15004

152]
MU USRLIMPLEH

SUGHUNY
|enpiapu 183

12N ++D

159] Juj) 15004

: uoneamaay %.“E; 7

: XLIE} 2AeS 7 7

Palold1sa] wup

ased ubisag

58

iii. Engineering Design Task List

*Write initialization function-Rachel

*Write unit testing functions
-Sensor pitch function-Ashli
-Sensor roll function -Derek
-Sensor heading function -Ashli
-Aircraft pitch function -Rachel
-Aircraft roll function-Derek

iv. Cost Breakdown info

. Nhcrosoft Visual Studio 2005 Team Edition For Software Developers With Msdn $2,100.00 *
| (@ bOOSf Boost C++ Libraries - Software License Open Source License FREE
C cruise . CruiseControl. NET Platform License Open Source License FREE
Time Charged to Space Dvnamics Lab for Development

Ashli Crookston 12.00 / h @ ~270 Hours $3,240.00

Derek Hampton 12.00 / h @ ~270 Hours $3,240.00

Rachel Searle 12,00/ h @ ~270 Hours $3,240.00

$9,720.00

Total Cost Estimation $11.820.00

* Mot & direct cost of the project, but is used for development so it iz included in cost estimatation

59

