Chapter 15 Energy

Calculating Potential Energy

A 60.0-kg person is standing on the edge of a pier that is 2.5 m above the surface of a lake. How much higher would the pier have to be to raise the gravitational potential energy of this person by 10 percent?

1. Read and Understand

What information are you given? Mass of person = m = 60.0 kg Height above lake level = h = 2.5 m Acceleration due to gravity = g = 9.8 m/s²

2. Plan and Solve

What variable are you trying to determine? Gravitational potential energy = ?

What formula contains the given variables?

Gravitational potential energy (PE) = *mgh*

Initial PE = $(60.0 \text{ kg})(9.8 \text{ m/s}^2)(2.5 \text{ m}) = 1500 \text{ J}$

Determine the 10-percent increase of PE. (1500 J)(0.10) = 150 J

Final PE = 1500 J + 150 J = 1650 J

Rearrange the equation to determine the final height. $h = PE/mg = 1650 \text{ J}/(60.0 \text{ kg})(9.8 \text{ m/s}^2) = 2.8 \text{ m}$ The height increase for the pier would be 2.8 m - 2.5 m = 0.3 m.

3. Look Back and Check

Is your answer reasonable?

This is a reasonable answer because 0.3 m is about 10 percent of 2.5 m. A 10-percent increase in h should result in a 10-percent increase in the gravitational PE.

Math Practice

On a separate sheet of paper, solve the following problems.

- **1.** A 300-gram toy car and a 500-gram toy car are sitting on a shelf that is 2 meters higher than the floor. By what percent is the PE of the 500-g car greater than the PE of the 300-g car?
- **2.** An 80-kg rock climber is standing on a cliff so that his gravitational PE = 10,000 J. What percent increase in height is required to raise his PE by 3500 J?

Math Skill: Percents and Decimals

You may want to read more about this **Math Skill** in the **Skills and Reference Handbook** at the end of your textbook.