\qquad
\qquad

13-3 Study Guide and Intervention Volumes of Spheres

Volumes of Spheres A sphere has one basic measurement, the length of its radius. If you know the radius of a sphere, you can calculate its volume.

Volume of a Sphere	If a sphere has a volume of V cubic units and a radius of r units, then $V=\frac{4}{3} \pi r^{3}$.

Example 1 Find the volume of a sphere with radius 8 centimeters. $V=\frac{4}{3} \pi r^{3} \quad$ Volume of a sphere
$=\frac{4}{3} \pi(8)^{3} \quad r=8$

≈ 2144.7 Simplify.
The volume is about 2144.7 cubic centimeters.

Example 2 A sphere with radius 5 inches just fits inside

 a cylinder. What is the difference between the volume of the cylinder and the volume of the sphere? Round to the nearest cubic inch.The base of the cylinder is $25 \pi \mathrm{in}^{2}$ and the height is 10 in ., so the
 volume of the cylinder is $250 \pi \mathrm{in}^{3}$. The volume of the sphere is $\frac{4}{3} \pi(5)^{3}$ or $\frac{500 \pi}{3} \mathrm{in}^{3}$. The difference in the volumes is $250 \pi-\frac{500 \pi}{3}$ or about $262 \mathrm{in}^{3}$.

Exercises

Find the volume of each solid. Round to the nearest tenth.
1.

2.

3.

4.

5.

6.

7. A hemisphere with radius 16 centimeters just fits inside a rectangular prism. What is the difference between the volume of the prism and the volume of the hemisphere? Round to the nearest cubic centimeter.
\qquad
\qquad

13-3 Study Guide and Intervention (continued)
 Volumes of Spheres

Solve Problems Involving Volumes of Spheres If you want to know if a sphere can be packed inside another container, or if you want to compare the capacity of a sphere and another shape, you can compare volumes.

Example Compare the volumes of the sphere and the cylinder. Determine which quantity is greater.
$V=\frac{4}{3} \pi r^{3} \quad$ Volume of sphere

$$
\begin{aligned}
V & =\pi r^{2} h & & \text { Volume of cylinder } \\
& =\pi r^{2}(1.5 r) & & h=1.5 r \\
& =1.5 \pi r^{3} & & \text { Simplify. }
\end{aligned}
$$

Compare $\frac{4}{3} \pi r^{3}$ with $1.5 \pi r^{3}$. Since $\frac{4}{3}$ is less than 1.5 , it follows that the volume of the sphere is less than the volume of the cylinder.

Exercises

Compare the volume of a sphere with radius r to the volume of each figure below. Which figure has a greater volume?
1.

2.

3.

4.

5.

6.

