Name:
Period: \qquad

WS - 4.1 \& 4.2

Graph the function on graph paper. Label the vertex and axis of symmetry.

1. $y=3 x^{2}-6 x+4$
2. $y=-4 x^{2}+8 x+2$
3. $f(x)=-6 x^{2}-4 x-5$
4. $g(x)=-4(x-2)^{2}+4$
5. $y=2(x+1)^{2}-3$
6. $y=\frac{1}{2}(x-3)^{2}+2$
7. $y=(x+3)(x-3)$
8. $f(x)=-2(x-3)(x+4)$

Problem Solving. Show your work on a separate sheet of paper.

9. A woodland jumping mouse hops along a parabolic path given by $y=-0.2 x^{2}+1.3 x$ where x is the mouse's horizontal position (in feet) and y is the corresponding height (in feet). Can the mouse jump over a fence that is 3 feet high. Explain.
10. Each cable joining the two towers on the Golden Gate Bridge can be modeled by the function

$$
y=\frac{1}{9000} x^{2}-\frac{7}{15} x+500
$$

where x and y are measured in feet. What is the height h above the road of a cable at its lowest point?

11. The function $y=-0.03(x-14)^{2}+6$ models the jump of a red kangaroo where x is the horizontal distance (in feet) and y is the corresponding height (in feet). What is the kangaroo's maximum height? How long is the kangaroo's jump?
12. Although a football field appears to be flat, its surface is actually shaped like a parabola so that rain runs off to both sides. The cross section of a field with synthetic turf can be modeled by $y=-0.000234 x(x-160)$ where x and y are measured in feet. a. What is the field's width?
b. What is the maximum height of the field's surface?

13. The arch of the Gateshead Millennium Bridge forms a parabola with equation $y=-0.016(x-52.5)^{2}+45$ where x is the horizontal distance (in meters) from the arch's left end and y is the distance (in meters) from the base of the arch. What is the width of the arch?
14. Find the number of units that produce a maximum revenue $R=900 x-0.1 x^{2}$ where R is the total revenue in dollars and x is the number of units sold.
15. A manufacturer of lighting fixtures has daily production costs of $C=800-10 x+.25 x^{2}$ where C is the total cost in dollars and x is the number of units produced. How many fixtures should be produced each day to yield a minimum cost?
16. The profit for a company is given by $P=-0.0002 x^{2}+140 x-250000$ where x is the number of units sold. What sales level will yield a maximum profit?
17. The height y (in feet) of a ball thrown by a child is given by $y=-\frac{1}{2} x^{2}+2 x+4$ where x is the horizontal distance (in feet) from where the ball is thrown (see figure).
a. How high is the ball when it leaves the child's hand? (Note: Find y when $x=0$.)
b. How high is the ball when it is at its maximum height?
c. How far from the child does the ball strike the ground?

18. The path of a diver is given by $y=-\frac{4}{9} x^{2}+\frac{24}{9} x+12$ where y is the height in feet and x is the horizontal distance from the end of the diving board in feet. What is the maximum height of the dive?
19. A jump on a pogo stick with a conventional spring can be modeled by
$y=-0.5(x-6)^{2}+18$, and a jump on a pogo stick with a bow spring can be modeled by $y=-1.17(x-6)^{2}+42$, where x and y are measured in inches.
a. Compare the maximum heights of the jumps on the two pogo sticks.
b. Which constants in the functions affect the maximum heights of the jumps?
c. Which constants do not affect the heights of the jumps?

