Investigation on Energy Efficiency of Electrical Power System in Macau Coloane Power Plant

by

Chan Lai Cheong alias Eduardo Chan

M-A5-6532-8

Master of Science in Electromechanical Engineering

2012

Faculty of Science and Technology University of Macau

Investigation on Energy Efficiency of Electrical Power System in Macau Coloane Power Plant

by

Chan Lai Cheong alias Eduardo Chan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Electromechanical Engineering

Faculty of Science and Technology University of Macau

2012

Approved by	Supervisor	
	澳門大學	
Date		

In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Macau, I agree that the Library and the Faculty of Science and Technology shall make its copies freely available for inspection. However, reproduction of this thesis for any purposes or by any means shall not be allowed without my written permission. Authorization is sought by contacting the author at

Telephone: +853 66817289

Fax:

E-mail: chanlaicheong@gmail.com

University of Macau

Abstract

INVESTIGATION ON ENERGY EFFICIENCY OF ELECTRICITY POWER SYSTEM IN MACAU COLOANE POWER PLANT

by Chan Lai Cheong alias Eduardo Chan

Thesis Supervisor: Assistant Professor Yan Su Electromechanical Engineering

The dynamical energy efficiencies of electrical power systems in Macau Coloane power plant had been investigated. Thermodynamic models for the efficiency of a simple cycle water injection gas turbine with rotor air cooling application and multi-shaft combined cycle power plant (CCPP) were developed and validated by comparing to the real data from the power plant in Macau, which is composed by two water injection gas turbines (WIGT) fueled by natural gas, two heat recovery boilers and one steam turbine. The result obtained from the present model has higher accuracy compared to previous models due to the application of dynamic values of the parameters such as injected water ratio. The optimal value for the ratio of injected water is obtained based on the present thermodynamic model and validated by the measured electrical efficiency. The present model is helpful in the operation of the water injection gas turbine power plant and the CCPP system. Besides, the present study also developed a new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly averages are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R². The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9am to 4pm) very well but not accurate for the growth and decay phases where the system

efficiencies are near zero. It is shown that the maximum monthly average minutely efficiencies vary over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.

Keywords: Combined Cycle Power Plant; Gas Turbine; Photovoltaic Systems

TABLE OF CONTENTS

List of FIGURES	viii
List of TABLES	X
NOMENCLATURE	xi
GREEK SYMBOL	xiii
SUBSCRIPTS	xiv
Chapter 1: INTRODUCTION	1
1.1 INTRODUCTION OF THE STUDIED POWER GENERATION	
SYSTEM	1
1.1.1 INTRODUCTION OF THE SIMPLE CYCLE GAS TURBINE	2
1.1.2 INTRODUCTION OF THE CCPP	3
1.1.3 INTRODUCTION OF SOLAR PV SYSTEM	
Chapter 2: ANALYSIS ON SIMPLE CYCLE EFFICIENCY OF THE	
WATER INJECTION GAS TURBINE WITH ROTOR AIR COOLING	9
2.1 INFORMATION FROM THE GAS TURBINE IN MACAU	9
2.2 THERMODYNAMIC MODEL OF THE GAS TURBINE	10
2.2.1 COMPRESSION PROCESS (1 TO 2)	11
2.2.2 COMBUSTION PROCESS (2 TO 3)	12
2.2.3 EXPANSION PROCESS (3 TO 4)	13
2.3 RESULT	14
Chapter 3: A THERMODYNAMIC MODEL FOR EFFICIENCY OF A	
MULTI-SHAFT COMBINED CYCLE POWER PLANT	24
3.1 INFORMATION FROM THE CCPP IN MACAU	24
3.2 THERMODYNAMIC MODEL OF THE CCPP	26
3.2.1 GAS TURBINE PROCESS (1 TO 4)	27
3.2.1.1 Compressor Process of the GTs (1 to 2)	27
3.2.1.2 Combustion Process of the GTs (2 to 3)	28
3.2.1.3 Expansion Process of the GTs (3 to 4)	29
3 2 1 4 Gas Turbine Cycle Efficiency	30

3.2.2 HEAT RECOVERY BOILER (4a \rightarrow 4g, 8 \rightarrow 10 and 9 \rightarrow 11)	30
3.2.3 STEAM TURBINE CYCLE $(5 \rightarrow 6 \rightarrow 7 \rightarrow (8 \rightarrow 10 \& 9 \rightarrow 11) \rightarrow 5)$	32
3.2.4 THE EFFICIENCY OF THE CCPP SYSTEM (5 \rightarrow 6 \rightarrow 7 \rightarrow (8 \rightarrow 10 &	
9→11)→5)	34
3.3 RESULT	35
3.3.1 MODEL VALIDATION	35
3.3.2 EFFECTS OF WATER INJECTION RATIO ON THE	
ELECTRICAL EFFICIENCY	37
3.3.3 THE ENHANCEMENT OF THE ELECTRICAL EFFICIENCY	
DUE TO THE STEAM TURBINCE CYCLE	38
Chapter 4: REAL-TIME PREDICTION MODELS FOR OUTPUT POWER	
AND EFFICIENCY OF GRID-CONNECTED SOLAR	
PHOTOVOLTAIC SYSTEMS	39
4.1 THE GRID-CONNECTED PV SYSTEM IN MACAU	39
4.2 THE PREDICTION MODEL FOR OUTPUT POWER	40
4.2.1 PREDICTION OF THE ANNUAL MEAN MINUTELY OUTPUT	
POWER	44
4.2.2 PREDICTION OF THE MONTHLY MEAN MINUTELY OUTPUT	
POWER	45
4.3 THE PREDICTION MODEL FOR SYSTEM EFFICIENCY	
4.3.1 THE PREDICTION MODEL FOR SOLAR IRRADIANCE	47
4.3.2 PREDICTION OF YEARLY AND MONTHLY MEAN	
MINUTELY SYSTEM EFFICIENCY	51
Chapter 5: CONCLUSION	58
DEEEDENCE	60

LIST OF FIGURES

Number		Page
Fig. 1.1:	The schematic diagram of the major power generation systems in	
	Macau Coloane Power Plant	1
Fig. 2.1:	The schematic diagram for a gas turbine in Macau Coloane Power	
	Plant	9
Fig. 2.2:	T-S diagram for the gas turbine cycle	10
Fig. 2.3:	Comparison of present model results with previous model of	
	Rahman [70] and the measured data from gas turbine of the power	
	plant in Macau	18
Fig. 2.4:	The transient air and water ratio	19
Fig. 2.5:	The relationship between the air ratio and the water ratio	20
Fig. 2.6:	The transient simple cycle thermal efficiency and the ratio of water	
	to fuel gas	21
Fig. 2.7:	The relationship between the cycle thermal efficiency and the water	
	ratio	22
Fig. 2.8:	The measured data from the real water injection gas turbine with	
	rotor cooling air for $\Delta \eta_{th}/\Delta r_w$ versus $1-r_p^{(1-\gamma g)}/\gamma_g](c_{p,w}T_w-LH_w)\eta_t/(Q_{in}/Q_{in})$	
	$\dot{m}_{\it f}$	23
Fig. 2.9:	The relationship between the electrical efficiency and the water	
	ratio	24
Fig. 3.1:	The schematic diagram for CCPP in Macau Coloane Power Plant	25
Fig. 3.2:	T-S diagram for the CCPP	27
Fig. 3.3:	The schematic diagram for HRSG temperature profile	32
Fig. 3.4:	Comparison of present model results with previous models and the	
	measured data from Macau Coloane Power Plant	36
Fig. 3.5:	The effects of the ratio of injected water on the gas turbine and	
	steam turbine efficiency	37

Fig. 3.6:	The transient ratio of the model electrical efficiency for the gas	
	turbines, steam turbine and CCPP, respectively	38
Fig. 3.7:	The transient ratio of the model energy ratio for the gas turbines,	
	steam turbine over the CCPP	38
Fig. 4.1:	The daily profiles of output power generated from the PV system	
	during the four days from March 4 to March 7, 2011	41
Fig. 4.2:	(a) Yearly and (b) monthly averages of the minutely output power	42
Fig. 4.3:	The daily profiles of solar irradiance measured during the four days	
	from March 4 to March 7, 2011	47
Fig. 4.4:	(a) Yearly and (b) monthly averages of the minutely solar	
	irradiance	50
Fig. 4.5:	Comparisons of predicted and measured yearly mean minutely	
	system efficiency	54
Fig. 4.6:	Monthly average solar irradiance, ambient temperature, and wind	
	speed	55
Fig. 4.7:	Comparison of predicted and measured monthly mean minutely	
	system efficiency	57

LIST OF TABLES

Number	Page
Table 4.1: PV module specifications	
Table 4.2: Estimated Gaussian parameters based on the monthly average	
minutely output power	46
Table 4.3: Estimated Gaussian parameters based on the monthly average	
minutely solar irradiance	52
Table 4.4: The prediction model for the monthly average minutely system	
efficiency	56
A	

NOMENCLATURE

A estimate of peak parameter for the Gaussian model

C_p specific heat at constant pressure, J/kg-K

C_v specific heat at constant volume, J/kg-K

in mass flow rate, kg/s

LHV lower heating value of fuel, J/m³

LH_w latent heat of water to steam, J/kg

p pressure, N/m²

P output power, W

ratio based on mass flow rate over fuel

T temperature, K

W work, W

 Q_{in} input heat flux, J/m^3

t time

d day

 $N_{\rm y}$ number of days in a year

 N_m number of days in a month

 $\overline{P}_{v}(t)$ yearly average minutely output power

 $\overline{P}_m(t)$ monthly average minutely output power

 $\widehat{\overline{P}}_{y}(t)$ fitted value of $\overline{P}_{y}(t)$

 $\widehat{\overline{P}}_m(t)$ fitted value of $\overline{P}_m(t)$

 R_{td} solar irradiance at time t in day d

 $\overline{R}_{v}(t)$ yearly average minutely solar irradiance $\overline{R}_m(t)$ monthly average minutely solar irradiance $\widehat{\overline{R}}_{y}(t)$ fitted value of $\overline{R}_y(t)$ $\widehat{\overline{R}}_m(t)$ fitted value of $\overline{R}_m(t)$ $\overline{\eta}_{y}(t)$ yearly average minutely system efficiency $\overline{\eta}_m(t)$ monthly average minutely system efficiency $\widehat{\overline{\eta}}_{y}(t)$ fitted value of $\bar{\eta}_{v}(t)$ $\widehat{\overline{\eta}}_m(t)$ fitted value of $\overline{\eta}_m(t)$ $\widehat{\overline{\eta}}^*_{m}(t)$ maximum of $\widehat{\overline{\eta}}_m(t)$ R^2 coefficient of determination

GREEK SYMBOL

η	efficiency
γ	specific heat ratio, Cp/Cv
μ	estimate of mean for the Gaussian model
ρ	density, kg/m ³
σ	estimate of standard deviation for the Gaussian model
ω	works per unit of mass, W/kg

SUBSCRIPTS

air a compressor celectrical energy elfuel gas exhaust gas from combustion chamber g index number of shaft index number of state point mechanical energy mtotal number of the shafts N rotor cooling air *RAC* steam turbine stgas turbine t td at time t in day dthermal energy th water 1-11 state point number

ACKNOWLEDGMENTS

I am grateful to many people who have been supporting me during this MSc study: my teachers, friends, and family. First, I would like to appreciate Dr. Yan Su, my supervisor, for her patience and helpful guidance for this research project. Second, I would like to thanks Mr. Chu Iat Lau for his valuable comments on the problems of gas turbines. Finally, I would like to appreciate my family for supporting my study for so many years.

VITA OF AUTHOR

PUBLICATIONS

- 1. Su, Yan, Chan L.-C., Shu, L.J., and Tsui, K.-L., "Real-time Prediction Models for Output Power and Efficiency of Grid-Connected Solar Photovoltaic Systems," Applied Energy, 93, 319-326, 2012.
- 2. Su, Yan, and Chan L.-C., "Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System," Proceedings of ICEE International Conference on Energy and Environment, Tokyo, Japan, May, 2012.

EDUCATION

- 1. 2005, "University of Macau, Macau S.A.R, Bachelor Degree of Electromechanical Engineering"
- 2. 2001, "St. Paul School, Macau S.A.R, Secondary-School"

