
pairs

keyword

219

playfair

keyword

12 Example: Playfair Cipher

Program file for this chapter:

This project investigates a cipher that is somewhat more complicated than the simple

substitution cipher of Chapter 11. In the Playfair cipher, there is not a single translation

of each letter of the alphabet; that is, you don’t just decide that every B will be turned

into an F. Instead, of letters are translated into other pairs of letters.

Here is how it works. To start, pick a that does not contain any letter more

than once. For example, I’ll pick the word . Now write the letters of that word

in the first squares of a five by five matrix:

K E Y W O

R D

Then finish filling up the remaining squares of the matrix with the remaining letters of

the alphabet, in alphabetical order. Since there are 26 letters and only 25 squares, we

assign I and J to the same square.

WH YD ON TY OU

YI EA ES VK EZ

juice

WH

Y A B IJ WH

YI YJ

Y

W

Y E K

row

kind

220 Chapter 12 Example: Playfair Cipher

K E Y W O

R D A B C

F G H I J L

M N P Q S

T U V X Z

(Actually, when choosing the keyword, besides making sure that no letter appears twice

you must make sure that I and J do not both appear. For example, wouldn’t do as

a keyword.)

To encipher a message, divide it into pairs of letters. Pay no attention to punctuation

or to spaces between words. For example, the sentence “Why, don’t you?” becomes

Now, find each pair of letters in the matrix you made earlier. Most pairs of letters will

form two corners of a smaller square or rectangle within the matrix. For example, in my

matrix, the first pair of letters () are at two corners of a two-by-three rectangle also

containing , , , and . The enciphering of the pair is the pair at the two other

corners of this rectangle, namely . (I could also have chosen , in this case.) It’s

important to be consistent about the order of the new pair: the one that comes first is

the one on the same as the first of the original pair. In this case, is on the same row

as . We can continue to translate the remaining pairs of letters in the same way, ending

up with

Notice that the letter turned into in the second pair of letters, but it turned into in

the fourth pair.

Part of the strategy for keeping a code secret is to hide even the of code being

used. Pairs of letters, to a cryptographer, are a dead giveaway that a Playfair cipher was

Q W

WQ

CO

CO

CO

CO LC

OZ

CO

EW YO WQ

BX

EE YY

DD

Q

do

Chapter 12 Example: Playfair Cipher 221

Yie ae, svkez.

CO ME TO TH EW IN DO W

LC NK ZK VF YO GQ CE BX

TH EB IG WH EE LQ

TH EB IG WH EQ EL

used, so it’s traditional to insert irrelevant spacing and punctuation in the actual written

version of the message, like this:

Of course the recipient of the message, knowing how the message was encoded, ignores

this spacing and punctuation.

As an illustration of some of the special cases that complicate this scheme, consider

the message, “Come to the window.” First we divide it up into pairs:

The first problem is that the message has an odd number of letters. To solve this problem

we simply add an extra letter at the end, generally . In this example, the final becomes

a pair .

If you look up the first pair of letters, , in my matrix, you’ll find that they do not

determine a rectangle, because they are in the same column. (Strictly speaking, they

determine a one-by-two rectangle, but the two diagonals are the same, so that would

be encoded as if we followed the usual rule.) For two letters in the same column, the

rule is to replace each letter by the one below it, so becomes . (If one of the letters

is at the end of the column, it is replaced by the top letter. So, for example, would

become .) Similarly, for two letters in the same row, each is replaced by the letter to its

right. We can now translate the entire message:

The pair , on a single row, has become ; the final pair , on a single column, has

become .

The final exceptional case is the one in which the same letter appears twice in a pair.

For example, the phrase “the big wheel” divides into

The pair is treated specially. It could be translated into (treating it as two letters in

the same row) or into (if you think of it as two letters in the same column). Instead,

though, the rule is to break up the pair by inserting a between the two letters. This

changes all the pairings after that one in the message. The new version is

be on the same row

pairs

222 Chapter 12 Example: Playfair Cipher

WH YJ YI

J

I J

E T A

K F

D Z Y K E O

T Y F

I IT D A Z T

E K Y

W E

B I J Q X I

Q X

GY FK VF ZK

GY HE

the them then VF TH

ZK TO

FK

RT

worth

or to

VF WD LH YJ WN OG

ZK DW KC SE XM ZK DW VF RV LQ VF WN ED MZ LW QE GY VF KD XF MP WC GO

BF MU GY QF UG ZK NZ IM GK FK GY ZS GQ LN DP AB BM CK OQ KL EZ KF DH

YK ZN LK FK EU YK FK KZ RY YD FT PC HD GQ MZ CP YD KL KF EZ CI ON DP

AC WK QS SY QL UN DU RU GY NS

This version can now be translated into

(Notice that I chose to translate into instead of into . You should use some

of each when coding a message. A cipher with no s at all, or one with a simple pattern

of and alternating, is another giveaway that the Playfair cipher was used.)

What about the frequencies of letters in a Playfair-encoded message? You can’t

simply say that the most common letters are likely to represent or or , because a

letter doesn’t represent a single letter that way. But it is still possible to say that a common

letter in the coded version is likely to as one of the frequent letters in

English. For example, here is a well-known text in Playfair-coded form:

The most commonly occurring letters in this coded text are (19 times), (12 times),

and (tied at 11), and (10 times). is on the same row as both and , and can

also represent in the same-column case. is also on the same row. can represent

(especially in the common pair); can represent ; can represent . Of all the

letters that might represent , why should and be the popular ones? The answer is

that they have common letters in their columns as well. In order for to represent , for

example, the other letter of the (cleartext) pair must be , , , , or . Of these, only

is particularly common, and and are downright rare.

If you were trying to break a Playfair cipher, one approach you might take would be

to count the frequencies of of letters. For example, in the message above, the only

pairs that occur more than twice are , four times, and , , and , three times

each. It’s a good guess that each of these corresponds to a commonly occurring pair of

letters in English text. In fact, as it turns out, corresponds to , which is not only a

word by itself but also part of , , , and so on. corresponds to , an

extremely common pair; corresponds to , which is again a word in itself as well as a

constituent of many other words. The other pair that occurs three times in the text, ,

corresponds to . This is not such a common English pair, although it does come up in

words like . But it turns out that in the particular sample text I’m using, this pair

of letters comes up mostly as parts of two words, as in the combination .

Data Redundancy

playfair

Playfair

keyword

mditem

Have His Carcase,

Data Redundancy 223

print playfair "keyword [come to the window]?

lcnkzkvfyogqcebx

make "matrix {{k e y w o} {r d a b c} {f g h i l}

{m n p q s} {t u v x z}}

to letter :rowcol

output mditem :rowcol :matrix

end

* In the tic-tac-toe program, I used a one-dimensional array to represent the board, even though

a tic-tac-toe board is drawn in two dimensions. I could have used an array of three arrays of three

numbers each, but that wouldn’t really have fit with the way that program labels the board. In

tic-tac-toe, the nine squares are named 1 to 9. You ask to move in square 8, for example, not in

row 3, column 2. But in the Playfair program, the row and column numbers are going to be very

important.

If you want to know more about how to break a Playfair cipher, you can see an

example in a mystery novel by Dorothy L. Sayers. In this project, I’m

less ambitious: the program merely enciphers a message, given the keyword and the

cleartext as inputs. The first input to must be a word, the keyword. The

second input must be a list of words, the text. The keyword must meet the criterion of

no duplicated letters, and the cleartext input must contain only words of letters, without

punctuation. Here is an example:

is an operation whose output is a single word containing the enciphered

letters of the original text.

In writing this program, the first question I thought about was how to represent in a Logo

program the matrix of letters used in the coding process. The most natural structure is a

two-dimensional array—that is, an array with five members, each of which is an array of

five letters.* So if the keyword is then the program will, in effect, do this:

The position of a letter in the matrix is represented as a list of two numbers, the row

and the column. The Berkeley Logo procedure library includes an operation

that takes such a list as an input, along with a multi-dimensional array, and outputs the

desired member:

make "a [2 3]

make "w [1 4]

make "z [5 5]

redundant

space/time tradeoff;

224 Chapter 12 Example: Playfair Cipher

I J

keyword

T A T [5 1]

A [2 3]

[5 3] [2 1] letter

V R

Letter

letter

row.and.column

matrix make

matrix

(The actual procedure listed at the end of this section includes a slight complication to

deal with the case of and , but that’s not important right now.)

The Playfair process goes like this: The program is given two letters. It finds each

letter in the matrix, determines each letter’s row and column numbers, then rearranges

those numbers to make new row and column numbers, then looks in the matrix again to

find the corresponding letters. For example, suppose we are given the keyword

and the letters and . The first step is to translate into the row and column list ,

and to translate into . Then the program must combine the row of one letter

with the column of the other, giving the new lists and . Finally, the

procedure shown above will find the letters and in the matrix.

handles the last step of the translation process, but what about the first step?

We need the inverse operation of , one that takes a letter as input and provides

its row and column.

It would be possible to write a procedure that would examine

each letter in the matrix until it located the desired letter. But that procedure would

be both slow and complicated. Instead, I decided to keep information about

the matrix in the form of 26 variables, one for each letter, each of which contains the

coordinates of that letter. That is, the variables take the form

and so on. (As in the case of the variable named above, these instructions

are just illustrative. The actual program does not contain explicit data for this particular

matrix, using this particular keyword!)

The letter variables contain the same information as the variable . Strictly

speaking, they are not needed. By creating the redundant variables for the letters, I’ve

made a the extra variables take up room in the computer’s memory, but

the program runs faster. One of the recurring concerns of a professional programmer

is deciding which way to make such tradeoffs. It depends on the amounts of space and

time required and the amounts available. In this case, the extra space required is really

quite small, compared to the memory of a modern computer, so the decision is clear-cut.

For larger programming problems it is sometimes harder to decide.

lowercase reorderjtoi

remove

wordkeyword matrix

abcdefghiklmnopqrstuvwxyz

setkeyword

Composition of Functions

make

matrix

playfair

J

I

word

J

dataflow

Composition of Functions 225

setkeyword jtoi lowercase :keyword

make "matrix reorder word :word (remove :word "abcdefghiklmnopqrstuvwxyz)

to playfair :keyword :message

local [matrix a b c d e f g h i j k l m n o p q r s t u v w x y z]

output encode (reduce "word :message)

end

to setkeyword :word

make "j :i

end

Earlier I showed a instruction to put a particular coding matrix into the variable

. How does the program create a matrix for any keyword given as input? Here

are two of the relevant procedures:

The keyword that is provided by the user as one of the inputs to the toplevel

procedure goes through several stages as it is transformed into a matrix.

This diagram is very similar to a plumbing diagram from Chapter 2 turned on its

side. The format is a little different to put somewhat more emphasis on the inputs and

outputs, so you can follow the “flow” of information through the arrows.

In English, here’s what the diagram tells us. The keyword given by the user must

be converted to lower case letters. (I could have chosen to use capital letters instead;

the goal is to have some uniform convention.) If the keyword happens to contain a , it

will be represented within the program as an instead. Then, to make the matrix, we

combine (with) two words: the keyword and the result of removing the keyword’s

letters from the alphabet (leaving out). Finally, that combined word must be rearranged

into a five-by-five square.

226 Chapter 12 Example: Playfair Cipher

lowercase word

Jtoi

Remove

reorder

reorder reorder1

Reorder

J I

to jtoi :word

output map [ifelse equalp ? "j ["i] [?]] :word

end

to remove :letters :string

if emptyp :string [output "]

if memberp first :string :letters [output remove :letters bf :string]

output word first :string remove :letters bf :string

end

to reorder :string

output reorder1 :string (mdarray [5 5]) 1 1

end

to reorder1 :string :array :row :column

if :row=6 [output :array]

if :column=6 [output reorder1 :string :array :row+1 1]

mdsetitem (list :row :column) :array first :string

make first :string (list :row :column)

output reorder1 (butfirst :string) :array :row :column+1

end

The advantage of a view such as this one is that each of the small boxes in the diagram

has a relatively simple task. Indeed, and are primitive operations in

Berkeley Logo. is trivial:

is a straightforward recursive operation that outputs the result of removing one

group of letters from another group of letters.

The job of is somewhat messier. It must keep track of what row and column it’s

up to, so is just an initialization procedure for the recursive helper

that does the real work. also creates the two-dimensional Logo array to provide

another input to its helper procedure.

If I were filling in a matrix by hand, instead of writing a computer program, I’d

use a very different approach. I’d handle one letter at a time. First I’d go through the

keyword a letter at a time, stuffing each letter into the next available slot in the matrix.

(If necessary, I’d convert upper to lower case and to in the process.) Then I’d go

through the alphabet a letter at a time, saying “If this letter isn’t in the keyword, then

stuff it into the matrix.”

Many people would find it natural to use that same technique in writing a computer

program, also:

Composition of Functions 227

foreach

foreach not memberp

jtoi lowercase

jtoi

foreach

make "matrix mdarray [5 5]

local [row column]

make "row 1

make "column 1

foreach :keyword [stuff jtoi lowercase ?]

foreach "abcdefghiklmnopqrstuvwxyz ~

[if not memberp ? jtoi :keyword [stuff ?]]

to playfair :keyword :message ;; sequential version

local [matrix a b c d e f g h i j k l m n o p q r s t u v w x y z]

make "j :i

output encode (reduce "word :message)

end

to stuff :letter

mdsetitem (list :row :column) :matrix :letter

make :letter (list :row :column)

make "column :column+1

if :column=6 [make "row :row+1 make "column 1]

end

[stuff jtoi lowercase ?]

foreach "abcdefghiklmnopqrstuvwxyz ~

[if (ifelse equalp ? "i

[not (or (memberp "i :keyword)

(memberp "j :keyword))]

[not memberp ? :keyword])

[stuff ?]]

In this version, the first instruction handles the letters of the keyword.

The second instruction handles the rest of the alphabet. The

test handles the removal of the keyword letters from the alphabet.

My intent in writing this alternate version was to model my idea of how the problem

would be solved without a computer, processing one letter at a time. So, for example, in

the template

it’s worth noting that the operations and are being applied to single-

letter inputs, even though those operations were designed to accept words of any length

as a unit. I cheated, though, by applying to the entire keyword in the second

instruction. I was trying to make the program more readable; the honest

version would be

playfair

readlist

Conversational Front End

operations composition

conversational front end.

228 Chapter 12 Example: Playfair Cipher

to encode.big.message

local [keyword cleartext]

print [Welcome to the Playfair enciphering program.]

print [What keyword would you like to use?]

make "keyword first readlist

print [Now please enter your message, using as many lines as needed.]

print [When you’re done, enter a line containing only a period (.).]

make "cleartext []

read.big.message

print [Here is the enciphered version:]

print []

print playfair :keyword :cleartext

end

to read.big.message

local "line

make "line readlist

if equalp :line [.] [stop]

make "cleartext sentence :cleartext :line

read.big.message

end

Why am I subjecting you to this? My point is that what may seem to be the most

natural way to think about a problem—in this case, handling one letter at a time—may

not be the easiest, most elegant, or most efficient programming solution.

What makes the dataflow-structured version of possible is the use of

in Logo, and the of these operations by using the output from one

as the input to another. This is an important technique, but one that doesn’t seem to

come naturally to everyone. If you’re not accustomed to writing operations, I think it

really pays to train yourself into that habit.

It’s inconvenient to type a long message into the computer in the form of an input to

a procedure. Another approach would be a This is a procedure

that reads the cleartext message using , perhaps accepting the message over

several lines. It’s not hard to write:

Such a top-level procedure may be justified in a project like this, in which a very large

block of text may be used as a datum. But don’t get carried away. Programming languages

that don’t emphasize composition of functions encourage this sort of programming style,

☞

☞

Further Explorations

square

encode

encode

thing

paircode

only

compute

Further Explorations 229

to square :size

repeat 4 [forward :size right 90]

end

to square

local "size

print [Brian’s square program copyright 1985]

print [What size square would you like me to draw?]

make "size first readlist

repeat 4 [forward :size right 90]

print [Thank you, please come again.]

end

to the point where the part of the program that prompts the user and reads the data gets

to be longer than the part that does the actual computation. This preoccupation with

verbose conversation between the program and the user is sometimes justified by the

idea of “good human engineering,” but I don’t think that’s necessarily true. To take an

extreme case, consider the standard elementary school Logo procedure to draw a square:

Compare that to this “human engineered” version:

Not only is the first version (in my opinion) much more pleasant to use, but it is also

more powerful and flexible. The second version can be used as a top-level program,

carrying on a conversation with a human user. The first version can be run at top level,

but it can also be used as a subprocedure of a more complicated drawing program. If it’s

used at top level, some person types in a number, the size, as the input to on the

instruction line. If it’s used inside another procedure, that procedure can the

input.

I haven’t described the part of the program that actually transforms the message: the

procedure and its subprocedures. Read the listing at the end of the chapter,

then answer these questions:

Why does need two base cases?

What purpose is served by the four invocations of at the beginning of

procedure ?

Of course this program can be improved in many ways.

☞

☞

☞

☞

Program Listing

playfair

playfair

230 Chapter 12 Example: Playfair Cipher

Keywords may not have any letter repeated.

t has no value in paircode

to playfair :keyword :message

local [matrix a b c d e f g h i j k l m n o p q r s t u v w x y z]

setkeyword jtoi lowercase :keyword

output encode (reduce "word :message)

end

One straightforward improvement to this program would be to “bulletproof” it so

that it doesn’t die with a Logo error message if, for example, the user provides a bad

keyword. (Instead, the program should give its own message, making it clear what the

problem is. It’s better for the user to see

than

after making that mistake.) Also, what if the cleartext input contains words with characters

other than letters? The program should just ignore those characters and process the

letters in the words correctly.

Another fairly straightforward improvement would be to take the one long word

output by and turn it into a list of words with spacing and punctuation thrown

in at random. The goal is to have the result look more or less like an actual paragraph of

English text, except for the scrambled letters.

Another direction would be to work on deciphering a Playfair-coded message. There

are two problems here: the easy one, in which you know what the keyword is, and the

hard one, in which you know only that a Playfair cipher was used.

The procedure itself will almost work in the first case. It would work

perfectly were it not for the special cases of letters in the same row and column. It’s a

simple modification to handle those cases correctly. An interesting extension would be

to try to restore the original spacing by using a dictionary to guess where words end.

The much harder problem is to try to guess the keyword. I mentioned earlier some

ideas about the approaches you’d have to take, such as exploring the frequencies of use

of pairs of letters. If you want more advice, you’ll have to study books on cryptography.

Program Listing 231

;; Prepare the code array

to setkeyword :word

make "matrix ~

reorder word :word (remove :word "abcdefghiklmnopqrstuvwxyz)

make "j :i

end

to remove :letters :string

if emptyp :string [output "]

if memberp first :string :letters [output remove :letters bf :string]

output word first :string remove :letters bf :string

end

to reorder :string

output reorder1 :string (mdarray [5 5]) 1 1

end

to reorder1 :string :array :row :column

if :row=6 [output :array]

if :column=6 [output reorder1 :string :array :row+1 1]

mdsetitem (list :row :column) :array first :string

make first :string (list :row :column)

output reorder1 (butfirst :string) :array :row :column+1

end

;; Encode the message

to encode :message

if emptyp :message [output "]

if emptyp butfirst :message [output paircode first :message "q]

if equalp (jtoi first :message) (jtoi first butfirst :message) ~

[output word (paircode first :message "q) (encode butfirst :message)]

output word (paircode first :message first butfirst :message) ~

(encode butfirst butfirst :message)

end

232 Chapter 12 Example: Playfair Cipher

to paircode :one :two

local [row1 column1 row2 column2]

make "row1 first thing :one

make "column1 last thing :one

make "row2 first thing :two

make "column2 last thing :two

if :row1 = :row2 ~

[output letters (list :row1 rotate (:column1+1)) ~

(list :row1 rotate (:column2+1))]

if :column1 = :column2 ~

[output letters (list rotate (:row1+1) :column1) ~

(list rotate (:row2+1) :column1)]

output letters (list :row1 :column2) (list :row2 :column1)

end

to rotate :index

output ifelse :index = 6 [1] [:index]

end

to letters :one :two

output word letter :one letter :two

end

to letter :rowcol

output itoj mditem :rowcol :matrix

end

;; I and J conversion

to jtoi :word

output map [ifelse equalp ? "j ["i] [?]] :word

end

to itoj :letter

if :letter = "i [if (random 3) = 0 [output "j]]

output :letter

end

