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Tensegrity structures are three dimensional assemblages formed of rigid 

and elastic elements. They hold the promise of novel applications. However their 

behavior is not completely understood at this time. This research addresses the 

static analysis problem and determines the position assumed by the structure 

when external loads are applied. The derivation of the mathematical model  for 

the equilibrium positions of the structure is based on the virtual work principle 

together with concepts related to geometry of lines. The solution for the resultant 

equations is performed using numerical methods. Several examples are 

presented to demonstrate this approach and all the results are carefully verified. 

A software that is able to generate and to solve the equilibrium equations is 

developed. The software also permits one to visualize different equilibrium 

positions for the analyzed structure and in this way to gain insight in the physics 

and the geometry of tensegrity systems.  
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CHAPTER 1  
INTRODUCTION 

Tensegrity structures are spatial structures formed by a combination of 

rigid elements (the struts) and elastic elements (the ties). No pair of struts touch 

and the end of each strut is connected to three non-coplanar ties [1]. 

The struts are always in compression and the ties in tension. The entire 

configuration stands by itself and maintains its form solely because of the internal 

arrangement of the ties and the struts [2]. 

Tensegrity is an abbreviation of tension and integrity. Figure 1.1 shows a 

number of anti-prism tensegrity structures formed with 3, 4 and 5 struts 

respectively. 

 
Figure 1.1. Tensegrity structures conformed by 3, 4 and 5 struts. 

The development of tensegrity structures is relatively new and the works 

related have only existed for the 25 years. Kenner [3] establishes the relation 

between the rotation of the top and bottom ties. Tobie [2] presents procedures for 

the generation of tensile structures  by physical and graphical means. Yin [1] 
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obtains Kenner�s results using energy consideration and finds the equilibrium 

position for the unloaded tensegrity prisms. Stern [4] develops generic design 

equations to find the lengths of the struts and elastic ties needed to create a 

desired geometry. Since no external forces are considered his results are 

referred to the unload position of the structure. Knight [5] addresses the problem 

of stability of tensegrity structures for the design of a deployable antenna. 

The problem of the determination of the equilibrium position of a tensegrity 

structure when external forces and external moments act on the structure has not 

been studied previously. This is the focus of this research. 

It is known that when the systems can store potential energy, as in the 

case of the elastic ties of a tensegrity structure, the energy methods are 

applicable. For this reason the virtual work formulation was selected from several 

possible approaches to solve the current problem. 

Despite their complexity, anti-prism tensegrity structures exhibit a pattern 

in their configuration. This fact is used to develop a consistent nomenclature valid 

for any structure and with this basis to develop the equilibrium equations. To 

simplify the derivation of a mathematical model some assumptions are included. 

Those simplifications are related basically with the absence of internal dissipative 

forces and with the number and fashion that external loads are applied to the 

struts of the structure.  

Even for the simplest case the resultant equations are lengthy and highly 

coupled. Numerical methods offer an alternative to solve the equations. Parallel 

to the research presented here a software in Matlab was developed. Basically 
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the software is able to develop the equilibrium equations for a given tensegrity 

structure and to solve them when the external loads are given. The software 

uses the well known Newton Raphson method which is implemented by the 

function fsolve of Matlab. To avoid the limitations of numerical methods to 

converge to an answer, the proper selection of the initial conditions was 

considered carefully together with the guidance of the solution through small 

increments of the external loads. 

Once the equations are solved, the output data consists of basically listing 

of the various coordinates of the ends of the structure expressed in a global 

coordinate system for the equilibrium position. When dealing with three 

dimensional systems, the numerical results by themselves are not sufficient to 

understand the behavior of the systems. To assist to the comprehension of the 

results the software developed provides graphic outputs. In this way the complex 

equilibrium equations are connected in an easy way to the physical situation. 

One important question that arose was the validity of the numerical 

results. This point is specially important when one considers the complexity of 

the equations. An independent validation of the results was realized using 

Newton�s Third Law. 

This thesis is basically as follows: Chapter 2 introduces the basic concepts 

related to the tools required to develop the mathematical model for a tensegrity 

structure, Chapter 3 develops a systematic nomenclature for the elements of a 

tensegrity structure and presents the mathematical model. Chapter 4 provides 

examples to illustrate the application of the model. 
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CHAPTER 2 
BASIC CONCEPTS 

The main objective of this research is to find the final equilibrium position 

of a general anti-prism tensegrity structure after an arbitrary load and or moment 

has been applied. In this chapter the main concepts involved in the derivations of 

the equations that govern the statics of the structure are presented.  

2.1 The Principle of Virtual Work 

The principle of virtual work for a system of rigid bodies for which there is 

no energy absorption at the points of interconnection establishes that the system 

will be in equilibrium if [6] 

0
1

=⋅= �
=

N

i

ii rFW δδ                       (2.1) 

where 

:Wδ virtual work. 

:iF force applied to the system at point i. 

:irδ virtual displacement of the vector ir . 

:N   number of applied forces. 

The virtual displacement represents imaginary infinitesimal changes irδ  of 

the position vector ir  that are consistent with the constraints of the system but 

otherwise arbitrary [7]. The symbol δ  is used to emphasize the virtual character 
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of the instantaneous variations. The virtual displacements obey the rules of 

differential calculus. 

If the system has p  degrees of freedom there are p  generalized 

coordinates pk qkq ,...,2,1, = , then the variation of ir  must be evaluated 

with respect to each generalized coordinate. 

( )
pii qqqrr ,...,, 21=  

p

p

iii
i q

q

r
q

q

r
q

q

r
r δδδδ

∂
∂++

∂
∂+

∂
∂= ...2

2

1

1

 

k

k

i
p

k

i q
q

r
r δδ

∂
∂= �

=1

             (2.2) 

The principle of virtual work can be modified to allow for the inclusion of 

internal conservative forces in terms of potential functions [6]. In general the 

virtual work includes the contribution of both conservative and non-conservative 

forces 

cnc WWW δδδ +=              (2.3) 

where the subscripts nc  and c  denote conservative and non-conservative virtual 

work respectively. 

The virtual work performed by the non-conservative forces can be 

expressed as 

inci

n

i

nc rFW δδ .
1

�
=

=              (2.4) 
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where nciF  is the non-conservative force i  and n  is the number of non-

conservative forces. Substituting (2.2) into (2.4) yields, 

k

k

i
nci

n

i

p

k

nc q
q

r
FW δδ

∂
∂= ��

==

.
11

            (2.5) 

The  virtual work performed by the conservative force j  can be expressed 

in the form [7]  

jcj VW δδ −=               (2.6) 

where ),...,,( 21 pjj qqqVV =  is the potential energy associated with the 

conservative force j . Therefore 

�
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�
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1

         (2.7) 

And the total virtual work performed by the conservative forces is given by 

�
�
�
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�
�
�

�

∂
∂
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==
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j
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k

c q
q

V
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            (2.8) 

where m  is the number of conservative forces. 
 

With the aid of  (2.5) and (2.8), equation (2.3) can be rewritten in the form 

k

k

j
m

j

p

kk

i
nci

n

i

p

k

q
q

V

q

r
FW δδ �

�
�

�
�
�
�

�

∂
∂

−
∂
∂⋅= ����

==== 1111
    

k

k

j
m

jk

i
nci

n

i

p

k

q
q

V

q

r
F δ�

�
�

�
�
�
�

�

∂
∂

−
∂
∂⋅= ���

=== 111

          (2.9) 
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The principle of virtual work requires that the preceding expression 

vanishes for the equilibrium. Because the generalized virtual displacements kqδ  

are all independent and hence entirely arbitrary, (2.9) can be satisfied [7], if and 

only if 

0
11

=
∂
∂

−
∂
∂⋅ ��

== k

j
m

jk

i
nci

n

i q

V

q

r
F  
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q

V
Q

k

j
m

j

k ,,2,1,0
1

�==
∂
∂

− �
=

         (2.10) 

where 

k

i
nci

n

i

k
q

r
FQ

∂
∂⋅= �

=1

           (2.11) 

The term kQ  is known as the generalized forces and despite its name may 

include both the virtual work due to external non-conservative forces and the 

virtual work due to external non-conservative moments. 

If the lower ends of the struts of a tensegrity system are constrained to 

move on the horizontal plane and also the rotation about the longitudinal axis of 

the strut is constrained, then each strut has 4 degrees of freedom and the whole 

system has  

strutsnp _*4=             (2.12) 

degrees of freedom where strutsn _  is the number of struts of the structure. 
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2.2 Plücker Coordinates 

The coordinates of a line joining two finite points with coordinates 

),,( 111 zyx  and ),,( 222 zyx  can be written as 

�
�

�
�
�

�
=

oS

S
$              (2.13) 

where S  is in the direction along the line and 0S  is the moment of the line about 

the origin O . S  and 0S  can be evaluated from the coordinates of the points as 

follows [8] 

�
�
�

�

�

�
�
�

�

�

=
N

M

L

S  (2.14)  where  
2

1

1

1

x

x
L =                (2.15) 

      
2

1

1

1

y

y
M =       (2.16) 

      
2

1

1

1

z

z
N =       (2.17) 

and 

�
�
�

�

�

�
�
�

�

�

=
R

Q

P

S o  (2.18)  where  
22

11

zy

zy
P =       (2.19) 

      
22

11

xz

xz
Q =       (2.20) 

      
22

11

yx

yx
R =       (2.21) 
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The numbers QPNML ,,,,  and R  are called the Plücker line 

coordinates and they cannot be simultaneously equal to zero. 

The Plücker line coordinates can be expressed in unitized form by dividing 

the vectors S  and 0S  by 222 NML ++  provided ML, and N  are not all equal 

to zero. 

�
�

�
�
�

�
=�

�

�
�
�

�

++
=

∧

oo s

s

S

S

NML 222

1
$          (2.22) 

A force F  can be expressed as a scalar multiple of the unit vector s  

bound to the line. The moment of the force about a reference point O  can be 

expressed as a scalar multiple of the moment vector 0s  [9], therefore 

�
�

�
�
�

�
==

∧

o

F
s

s
ff $$            (2.23) 

where f  stands for the magnitude of the force F . 

If ML, and N  are all equal to zero the unitized Plücker line coordinates 

have the form 

�
�

�
�
�

�
=�

�

�
�
�

�

++
=

∧

oo sSRQP

001
$

222
         (2.24) 

And the  Plücker line coordinates of a pure moment are 

�
�

�
�
�

�
==

∧

o

M
s

mm
0

$$            (2.25) 

where m  stands for the magnitude of the moment. 
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Consider two coordinates systems shown in Figure 2.1. The origin of 

system ''' ZYX  is translated  by ),,( zyx  and rotated arbitrarily with respect to 

system XYZ . The Plücker coordinates of the line $  expressed in the system 

''' ZYX  can be transformed to the system XYZ  using the following relation [9], 

$'$ e=              (2.26) 

where  

:$  Plücker coordinates of the line expressed in the system XYZ  

:$'  Plücker coordinates of the line expressed in the system ''' ZYX  

and 

�
�

�
�
�

�
=

RRA

OR
e

A

B

A

B

A

B

3

3             (2.27) 

where 

:RAB rotation matrix of the system ''' ZYX  with respect to the system XYZ  

:3O  zeroes 3x3 matrix 

�
�
�

�

�

�
�
�

�

�

−
−

−
=

0

0

0

3

xy

xz

yz

A            (2.28) 

Conversely if the Plücker coordinates of the line are given in the system 

''' ZYX  and it is desired to express them in the system XYZ , from (2.26) 

$'$ 1−= e              (2.29) 
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Figure 2.1. General change of a coordinate system. 

where 

�
�
�

�

�

�
�
�

�

�

=−

TA

B

TTA

B

TA

B

RAR

OR

e

3

3
1            (2.30) 

2.3 Transformation Matrices 

Figure 2.2 shows an arbitrary point 2P  located on a strut of length sL . In a 

reference system D  whose z  axis is along the axis of the strut and with its origin 

is located at the lower end of the strut, the coordinates of 2P
D

 are simply ),0,0( l . 

However frequently is more convenient for purposes of analysis to express the 

location of 2P  in the global reference system A. This can be accomplished by a 

transformation matrix. 

If the lower end of the strut is constrained to move on the horizontal plane 

)( yx AA , and also the rotation about its longitudinal axis is constrained, the strut 
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can be modeled by an universal joint. In this way the joint provides the 4 degrees 

of freedom associated with the strut. 

x
y

z

z

P

Po
P

L
s

l

rA

A

A

D

1

2

 
Figure 2.2. Strut in an arbitrary position. 

The  alignment of the z  axis on the fixed system with the axis of the rod 

can be accomplished using the following three consecutive transformations [10] : 

Translation, )0,,( bat = , Figure 2.3. Note that the coordinate z  is zero 

because of the restriction imposed to the movement of the lower end of the strut. 

Rotation �, about the current x  axis ( x
B

), Figure 2.4. 

Rotation �, about the current y  axis ( y
C

), Figure 2.5. 
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Figure 2.3. Translation )0,,( ba  in the system A . 

 
Figure 2.4. Rotation � about x axis in the B system. 
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Figure 2.5. Rotation � about current y axis in the C  system. 

The coordinates of 2P  measured in the global reference system are 

20,,2 PTTTP
DC

D

B

Cba

A

B

A

βε=                 (2.31)  

where: 

�
�
�
�

�

�
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�
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=
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0100
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001
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B
           (2.32) 
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εT
B

C          (2.33) 
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=
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0cos0sin

0010

0sin0cos

ββ

ββ

βT
C

D          (2.34) 
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�
�
�
�

�

�

�
�
�
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�
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=

1

0

0

2
l

P
D

            (2.35) 

Substituting the above previous expressions into (2.31) yields 

�
�
�
�

�

�

�
�
�
�

�

�

+−
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=

�
�
�
�

�
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1

coscos
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sin

1

2 βε
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β

l

bl

al

z

y

x

P
A

         (2.36) 

When the values of ),,( zyx  are known, the angles � and � can be 

calculated from (2.36) and 

z

yb−=εtan              (2.37) 

�
�

�
�
�

� −
−=

ε

β

sin

tan
yb

ax

             (2.38) 

or 

�
�

�
�
�

�

−=

ε

β

cos

tan
z

ax
             (2.39) 

As the signs are known for each numerator and denominator, equations 

(2.37) through (2.39) give unique values for � and �. 

The generalized coordinates associated with the degrees of freedom of 

the strut are  ,,, εba  and β ; therefore the  virtual displacement rδ  of 2Pr
A=  

given by (2.36) can be evaluated using (2.2) as follows 
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and therefore, 

βδβδδ coslax +=            (2.40) 

βδβεβδεεδδ sinsincoscos llby +−=         (2.41) 

βδβεβδεεδ sincoscossin llz −−=         (2.42) 

2.4 Reaction Forces and Reaction Moments 

The virtual work approach does not yield the reaction forces and reaction 

moments. They are obtained using Newton�s Third Law. 

Several external forces have been applied at arbitrary points on the strut 

shown in Figure 2.6a together with an external moment which is the resultant of 

the external moments applied along the axis of the universal joint. Both external 

forces and external moment are expressed in the global reference system A . 

Figure 2.6b shows the reaction force and the reaction moment exerted by the 

support. 

The equilibrium equation using Plücker coordinates expressed in the 

global reference system A  is 

0$$$$
1

=+++�
=

RM

A

R

A

M

A

F

A
n

i
i

           (2.43) 
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(a) 

 
 

 
 

(b) 
 

Figure 2.6. Static analysis of a strut. 
            a) External loads; b) Reactions 

where: 

Fi

A
$  : Plücker coordinates of the external force i . 

M

A
$  : Plücker coordinates of the external moment. 

R

A
$  : Plücker coordinates of the reaction force. 

2F
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1F
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A
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M
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RM

A
$  : Plücker coordinates of the reaction moment. 

n : number of external forces 

Since M

A
$  and RM

A
$  are pure moments (2.43) can be rewritten in the 

form 

0
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i
A

i
A

i
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n

i

     (2.44) 

Usually the first and second terms together with the position vector t  in 

the third term of (2.44) are known because they correspond to known data or as 

a result of the virtual work analysis. Hence the reaction force R
A

 and the reaction 

moment RM
A

can be solved easily from (2.44). 

2.5 Numerical Example 

The following example helps to clarify the concepts discussed so far and 

also introduces to the numerical techniques employed to solve the resultant 

equations. 

Figure 2.7 shows a massless strut of length sL  joined to the horizontal 

plane by an universal joint without friction in its moving parts. The support of one 

of the axis of the universal joint is firmly attached to the ground therefore the joint 

cannot perform any longitudinal displacement. 

The strut is initially in equilibrium and the coordinates of the upper end, 

iniP ,2 ,  in  the A  system are  known for  the initial position. Then a constant  force 
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Figure 2.7. Data for the static analysis of a strut. 

and two constant moments along the axis of the universal joint are applied as it is 

shown in Figure 2.7. The force F
A

 is expressed in a global reference system 

whose origin is located at the intersection of the axes of the universal joint. Since 

the coordinates systems Aand B  are coincident, the vector t  which represents 

the location of the origin of  the B system with respect to the A  system is 0 . 

It is required to determine the final equilibrium position of the strut and the 

reaction force and the reaction moment in the support of the strut. The numerical 

values for iniP ,2 , F
A

, and the magnitudes of the moments εM  and βM are 

illustrated in Figure 2.7. 

zz
BA

,

βM

y
C

yy
BA

,

xxx
CBA

,,

εM

z
C

F
A

ini

A
P ,2

sL
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Four coordinates systems are defined following the guidelines presented 

on Figures 2. 3 through 2.5. 

System :A  global reference coordinate system. 

System :B  obtained after a translation )0,0,0(  of system A . 

System :C  obtained after a rotation ε  about x
B

. 

System :D  obtained after a rotation β  about y
C

. 

Systems A , B  and C  are shown in Figure 2. 7. With this notation εM  and βM  

expressed in the C  system are 

mNMM
C ⋅

�
�
�

�

�

�
�
�

�

�−
=

�
�
�

�

�

�
�
�

�

�−
=

0

0

1

15.0

0

0

1

εε          (2.45) 

mNMM
C ⋅

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

=
0

1

0

30.0

0

1

0

ββ          (2.46) 

The strut has 2 degrees of freedom given by the rotations of the universal 

joint. The solution of the problem consists on finding the value of that rotations, ie 

ε  and β . 

The final position of the upper end of the strut can be found with the aid of 

(2.36) noting that fin
A
Pr ,2= , sLl = , 0=a and 0=b . 

�
�
�

�

�

�
�
�

�

�

−==
βε
βε

β

coscos

cossin

sin

,2

s

s

s

A

L

L

L

finPr          (2.47) 
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where r  has been expressed in rectangular coordinates instead of 

homogeneous coordinates. The virtual displacement rδ  is obtained from (2.2) 

noting that ),( βεrr = . 

δβ
β

δε
ε

δ
∂
∂+

∂
∂= rr

r  

From (2.47) 

δβ
βε

βε
β

δε
βε
βεδ

�
�
�

�

�

�
�
�

�

�

−
+

�
�
�

�

�

�
�
�

�

�

−
−=

sincos

sinsin

cos

cossin

coscos

0

s

s

s

s

s

L

L

L

L

Lr        (2.48) 

Noting that the external force has no y component, the virtual work FWδ  

performed by the external force  F is given by 

�
�

�
�

�

�
�

�
�

�

�
�
�

	




�
�
�

�



−
+

�
�
�

	




�
�
�

�



−
−⋅

�
�
�

	




�
�
�

�



== δβ
βε

βε
β

δε
βε
βεδδ

sincos

sinsin

cos

cossin

coscos

0

0.

s

s

s

s

sF

L

L

L

L

L

Fz

Fx

rFW  

And after simplifying 

βδβεβδεεβδβδ sincoscossincos SzSzSxF LFLFLFW −−=       (2.49) 

The virtual work due to the external moments MWδ  is given by 

βδεδεδ β ⋅+⋅= MMWM           (2.50) 

As the scalar or dot product is invariant under coordinate transformation 

the last expression can be evaluated easily if the terms on the right side are 

expressed in the C system. Since 
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�
�
�

�

�

�
�
�

�

�

=
0

0

1

εεC and 

�
�
�

�

�

�
�
�

�

�

=
0

1

0

ββC  

then 

δεεδ
�
�
�

�

�

�
�
�

�

�

=
0

0

1
C

            (2.51) 

and 

δββδ
�
�
�

�

�

�
�
�

�

�

=
0

1

0
C             (2.52) 

Substituting (2.45), (2.46), (2.51) and (2.52) into (2.50) the virtual work 

due to the external moments is simply 

δβδεδ βε MMWM +=            (2.53) 

The total virtual work  is given by the sum of (2.49) and (2.53) and in the 

equilibrium must be zero, then 

0sincoscossincos =++−− δβδεβδβεβδεεβδβ βε MMLFLFLF SzSzSx  

And re-grouping 

( ) ( ) 0sincoscoscossin =+−++− δββεβδεβε βε MLFLFMLF SzSxSz      (2.54) 

Since equation (2.54) is valid for all values of δε  and δβ  which are not in 

general equal to zero then 
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0cossin =+− εβε MLF Sz            (2.55) 

and 

0sincoscos =+− ββεβ MLFLF SzSx          (2.56) 

For this example the resultant equations (2.55) and (2.56) are not strongly 

coupled and it is possible to obtain a solution in closed form, however in the most 

general problems this is not the case and it will be shown that numerical 

solutions are easier to implement. 

A very well known numerical technique is the Newton-Raphson method. 

The function fsolve of Matlab is used to implement the Newton-Raphson 

algorithm. In order to use it is necessary to specify the set of equations to be 

solved, for instance (2.55) and (2.56) in the current example, together with the 

initial values of � and �. 

The initial values of � and �, ( 0ε  and 0β ) can be calculated from (2.37) 

and (2.38) noting that 0== ba . 

134.0

150.0
tan =−=

z

y
oε   ∴  °= 2.48oε  

�
�

�
�
�

�

°

−=
�
�

�
�
�

� −
=

2.48sin

15.0

148.0

sin

tan

ε

β
y

x
o   ∴  °−= 3.36oβ  

 With these initial conditions the results given by the software are 

 o5.72=ε   and  o7.71−=β            (2.57) 

Substituting these values and the value of sL into (2.47) yields 
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mfinP
A

�
�
�

�

�

�
�
�

�

�

−
−
−

=
024.0

080.0

237.0

,2            (2.58) 

The result is illustrated in Figure 2.8. 

 
Figure 2.8. Final equilibrium position of the strut. 

A solution by numerical methods is highly sensitive to a correct selection 

of the initial values. For this example the location of ini
A
P ,2  was given explicitly 

and this fact permitted to evaluate 0ε  and 0β , but in the analysis of tensegrity 

structures it is necessary to find them using another approach. This topic will be 

discussed in detail in Section 3.4. 

 Table 2.1 shows the results obtained when arbitrarily another set of 

angles 0ε  and 0β  are chosen as initial guesses. Although the Newton-Raphson 

algorithm still yields numerical results and that results are equilibrium positions, 

the solutions listed in Table 2.1 are not compatible with the initial conditions of 

this exercise. In general if the initial values are not correct the algorithm will not 

converge to a solution or to find answers that cannot be realized practically. 

z
A

y
C

y
A

x
A

z
C

εβ
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Table 2.1. Numerical solutions for different initial conditions. 

0ε  0β  � � 

35º -20º 18.7º 20.7º 
125º 30º 107.5º 71.7º 
135º 15º 161.3º -20.7º 

 

Another important consideration to assure the quality of the numerical 

solutions is to avoid large increments in the input values. It is always possible to 

increase gradually the value of the external moments and forces, for the static 

case. In this way the numerical solution is guided without difficulty.  

Once the equilibrium position is solved the next step is to evaluate the 

reaction force and the reaction moment. For this example there is only a single 

external force and it is applied at the upper end of the strut, and due to the fact 

systems A  and B  are coincident, the vector t  is zero, as shown in Figure 2.7. 

For the final equilibrium position of the strut, (2.44) becomes 

0
0

0

0

0

0

0

0

0

0

,2

=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

×

z

A

y

A

x

A

z

A

y

A

x

A

z

A

y

A

x

A

A
fin

A

A

RM

RM

RM

R

R

R

M

M

M

FP

F

       (2.59) 

fin
A
P ,2  in (2.59) is given by (2.47). Using this result the first term of (2.59) 

can be expanded as 
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( )
( )
( ) ��

�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+
−
+−

=
�
�
�

�

�
�
�

�

×

ββε
ββε
εεβ

sincossin

sincoscos

sincoscos
,2

y

A

x

A

z

A

x

A

z

A

y

A

z

A

y

A

x

A

A

fin

A

A

FFLs

FFLs

FFLs

F

F

F

FP

F
        (2.60) 

The external moment is generated by the external moments εM  and βM . 

However they were expressed in the C  system, (see Figure 2.7). However (2.59) 

requires them to be expressed in system A . It is not difficult to establish the 

geometric relationships between systems C  and A . Here the use of the general 

relations (2.26) to (2.28) is preferred because they are more useful in more 

complex situations. 

As M

A
$  is the resultant of εM  and βM  both expressed in the A  system 

)$$($ β
C

e

C

M

A
e +=           (2.61) 

where 

 e :   matrix that transforms a line expressed in the C  system into the A  system. 

ε$
C

: Plücker coordinates of εM
C

in the C  system. 

β$
C

: Plücker coordinates of βM
C

in the C  system. 

Matrix e  is obtained using (2.27) and for this case 

�
�

�
�
�

�
=

RRA

R
e

A

C

A

C

A

C

3

30
             (2.62) 

Since the origins of systems A  and C are coincident then 3A  (see (2.28)) 

is given by  
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�
�
�

�

�

�
�
�

�

�

=
000

000

000

3A              (2.63) 

The rotation matrix RAC  is obtained from the following transformation 

ε,x
B

C

A

B

A

C RRR =              (2.64) 

From Figure 2.7 is apparent that systems A  and B are parallel, then 

�
�
�

�

�

�
�
�

�

�

=
100

010

001

RAB             (2.65) 

From Figures 2.4 and 2.7 is clear that system B  is obtained after a 

rotation ε  about x
B

, then 

�
�
�

�

�

�
�
�

�

�

−=
εε
εε

cossin0

sincos0

001

RBC             (2.66) 

From (2.65) and (2.66) is apparent that 

�
�
�

�

�

�
�
�

�

�

−=
εε
εε

cossin0

sincos0

001

RAC          (2.67) 

Substituting (2.67) together with (2.63) into (2.62) yields 
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�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

−

=

εε
εε

εε
εε

cossin0

sincos00

001

cossin0

0sincos0

001

e         (2.68) 

The Plücker coordinates of εM
C

 given by (2.45) are 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
=

0

0

1

0

0

0

$ εε M
C

            (2.69) 

The Plücker coordinates of βM
C

 given by (2.46) are 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

0

1

0

0

0

0

$ ββ M
C

            (2.70) 

Substituting (2.68), (2.69) and (2.70) into (2.61) yields 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

ε
ε

β

β

ε

sin

cos

0

0

0

0

0

0

$

M

M

M

M

M

M

z

A

y

A

x

AM

A
          (2.71) 

Substituting (2.60) and (2.71) into (2.59) and solving for unknowns 
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x

A

x

A FR −=  

y

A

y

A FR −=         

z

A

z

A FR −=  

 
 

( ) εεεβ MFFLRM z

A

y

A

Sx

A ++= sincoscos         (2.72) 

 

( ) εββε β cossincoscos MFFLRM z

A

x

A

Sx

A −−−=    

 

( ) εββε β sinsincossin MFFLRM y

A

x

A

Sy

A −+−=  

Recalling the data provided by Figure 2.7 and the results obtained in 

(2.57) 

NF
A

�
�
�

�

�

�
�
�

�

�

−

−
=

2

0

2

 mLS 25.0=   

mNM

mNM

⋅=

⋅=

30.0

15.0

β

ε

 

°−=

°=

7.71

5.72

β

ε
 

The reaction force and reaction moment can be obtained from (2.72). 

Their numerical values are 

 

mNRM

mNRM

mNRM

NR

NR

NR

z

A

y

A

x

A

z

A

y

A

x

A

⋅−=

⋅=

⋅=

=

=

=

136.0

432.0

0

2

0

2
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2.6 Verification of the Numerical Results 

As it will be shown in the next chapter the analysis of tensegrity structures 

involves very complex and lengthy equations. If there is an error in the derivation 

of the equation the numerical methods still give an answer. However the answer 

does not of course correspond to the real situation.  

It is desirable to verify the validity of the answers obtained using the virtual 

work approach. Newton�s Third Law assists the verification. Basically the idea is 

to state the equilibrium equation in such a way that some of the reactions vanish. 

The resultant equation depends only on the input data and on the generalized 

coordinates. If the numerical values of the generalized coordinates obtained 

using the virtual work approach are correct, they must satisfy the equilibrium 

equations obtained using the Newtonian approach. These concepts are 

demonstrated using the last example. 

The equilibrium equation (2.43) in the C  system for the strut of Section 

2.5 is 

0$$$$ =+++ RM

C

R

C

M

C

F

C
           (2.74) 

F

C
$  is obtained expressing F

A
$  in the C  system using (2.29) and (2.30) 

and noting that the term corresponding to the translation displacement is zero 

F

A

F

C
e $$ 1−=             (2.75) 

where 

�
�

�
�
�

�
=−

TA

C

TA

C

RO

OR
e

3

31             (2.76) 
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RAC  was obtained in (2.67). Substituting the transpose of (2.67) into (2.76) 

yields 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

−
=−

εε
εε

εε
εε

cossin0

sincos00

001

cossin0

0sincos0

001

1e         (2.77) 

F

A
$  is given by (2.60). Substituting (2.77) and (2.60) into (2.75) yields 

( )
( )

( ) �
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+
−+
+−

+−
+

=

εεβ
βεβεβ

εεβ
εε
εε

sincossin

sincossinsincos

sincoscos

cossin

sincos

$

z

A

y

A

S

z

A

y

A

x

A

S

z

A

y

A

S

z

A

y

A

z

A

y

A

x

A

F

C

FFL

FFFL

FFL

FF

FF

F

                (2.78) 

M

C
$  is given by the Plücker coordinates of εM  and βM , equations (2.69) 

and (2.70) 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
=

0

0

0

0

0

0

0

0

0

0

0

0

0

0

$

β

ε

β

ε

M

M

M

MM

C
         (2.79) 

R

C
$  is given by the Plücker coordinates of a force passing through the 

origin of  the C  system, therefore it always has the form 
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�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

0

0

0
$

Rz

Ry

Rx

C

C

C

R

C
             (2.80) 

Finally in the system C  the universal joint cannot provide moment 

reactions along its moving axes, then RM

C
$  has the form 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

RMzC

RM

C

0

0

0

0

0

$              (2.81) 

Substituting (2.78), (2.79), (2.80) and (2.81) into (2.74) yields 

( )
( )

( )

0

0

0

0

0

0

0

0

0

0

0

0

0

sincossin

sincossinsincos

sincoscos

cossin

sincos

=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+
−+
+−

+−
+

z

C

z

C

y

C

x

C

z

A

y

A

S

z

A

y

A

x

A

S

z

A

y

A

S

z

A

y

A

z

A

y

A

x

A

RM

R

R

R

M

M

FFL

FFFL

FFL

FF

FF

F

β

ε

εεβ
βεβεβ

εεβ
εε
εε

 

              (2.82) 

From the forth and fifth rows in (2.82) is possible to define 1g  and 2g  as 

( ) εεεβ MFFLg z

A

y

A

S −+−= sincoscos1         (2.83) 

( ) ββεβεβ MFFFLg z

A

y

A

x

A

S +−+= sincossinsincos2       (2.84) 
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Equations (2.83) and (2.84) involve only the input data and the 

generalized coordinates � and � whose values are known from the virtual work 

approach. After substituting � and � and the input data into (2.83) and (2.84), 1g  

and 2g  must be zero if the values of � and � correspond to an equilibrium 

position. 

Substituting back the values for SL , x

AF , y

AF , z

AF , � and � given by 

Figure 2. 7 and (2.57) into the last expressions yields 

015.0)5.72sin()2)(7.71cos(25.01 =−−−−= ��g  

030.0))7.71sin()5.72cos()2()7.71cos(2(25.02 =+−−−−−= ���g  

As both 1g  and 2g  vanish, the results obtained using the virtual work for 

calculating � and � correspond to an equilibrium position. 
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CHAPTER 3 
GENERAL EQUATIONS FOR THE STATICS OF TENSEGRITY STRUCTURES 

When an external wrench is applied to a tensegrity structure the ties are 

deformed and the struts go to a new equilibrium position. This new position 

would be perfectly defined using the coordinates of the lower and upper ends of 

the struts in a global reference system. However they are unknown. Equations 

are developed in this section using the principle of virtual work to solve this 

problem.  

Tensegrity structures exhibit a pattern in their configuration and it is 

possible to take advantage of that situation to generate general equations for the 

static analysis. Before starting to implement the method it is necessary to 

establish the nomenclature for the system and some assumptions to simplify the 

problem. 

Figure 3.1a shows a tensegrity structure conformed by n struts each one 

of length SL . Figure 3.1b shows the same structure but with only some of its 

struts. The selection of the first strut is arbitrary but once it is chosen it should not 

be changed. The bottom ends of the strut are labeled consecutively as 

nj EEEE ,,,,, 21 ��  where 1 identifies the first strut and n  stands for the last 

strut. Similarly the top ends of the struts are labeled as nj AAAA ,,,,, 21 �� , 

as shown in Figure 3.1 b. 
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Connecting tie

Top tie

Bottom tie

Strut n

Strut 1
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Strut 2

 
(a) 
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T
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1
1

1

1

1

2

2

 

(b) 

Figure 3.1. Nomenclature for tensegrity structures. 
      a) Generic names; b) Specific nomenclature. 
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In every structure it is possible to identify the top ties, the bottom ties and 

the lateral or connecting ties, as shown in Figure 3.1a. The current length of the 

top, bottom and lateral ties are called BT , and L  respectively. 

The top tie jT  extends between the top ends jA  and 1+jA  if  nj <  and 

between nA  and 1A  if  nj = . 

The bottom tie jB  extends between the bottom  ends jE  and 1+jE  if  nj <  

and between nE  and 1E  if  nj = . 

The lateral tie jL  extends between the top  end jA  and the bottom 

end 1+jE  if  nj <  and between nA  and 1E  if  nj = . 

In Section 2.3 it was established that the motion of an arbitrary strut can 

be described by modeling its lower end with a universal joint constrained to move 

in the horizontal plane. The same model is used now for the derivation of the 

equilibrium equations for a general tensegrity structure. In addition the following 

assumptions are made without loss of generality: 

• The external moments are applied along the axes of the universal joints. 

• The struts are massless. 

• All the struts have the same length. 

• Only one external force is applied per strut. 

• There are no dissipative forces acting on the system. 

• All the ties are in tension at the equilibrium position; i.e.,  the current 
lengths of the ties are longer than their respective free lengths. 

 
• The free lengths of the top ties are equal. 

• The free lengths of the bottom ties are equal. 
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• The free lengths of the connecting ties are equal. 

• There are no interferences between struts. 

• The stiffness of all the top ties is the same. 

• The stiffness of all the bottom ties is the same. 

• The stiffness of all the connecting ties is the same. 

• The bottom ends of the strut remain in the horizontal plane for all the 
positions of the structure. 

 
3.1 Generalized Coordinates 

Due to the fact the lower end of each strut is constrained to move in the 

horizontal plane and there is no motion along the longitudinal axis since it is 

constrained by a universal joint, each strut has four degrees of freedom and the 

total system has n∗4  degrees of freedom which means there are n∗4  

generalized coordinates. 

For each strut the generalized coordinates are the horizontal 

displacements jj ba , , as illustrated in Figure 3.2, of the lower end of the strut 

together with  two rotations about the axes of the universal joint. The angular 

coordinates associated with the strut j  are jε   and jβ  where jε  corresponds to 

the rotation of the strut about the current x
B

 axis and jβ  corresponds to the 

rotation about y
C

 axis, as it was shown in Figures 2.4 and 2.5. Table 3.1 shows 

the generalized coordinates associated with each strut. 
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Figure 3.2. Coordinates of the ends of a strut in the global reference system A  

      with reference point AO . 

Table 3.1. Generalized coordinates associated with each strut. 
Strut Generalized coordinates 

1 
1a  1b  1ε  1β  

2 
2a  

2b  2ε  2β  

 �  �  �  �  
j  

ja  
jb  jε  jβ  

�  �  �  �  �  
n  

na  
nb  nε  nβ  

 

3.2 The Principle of Virtual Work for Tensegrity Structures 

Equations (2.10) and (2.11) of Section 2.1 established the conditions for 

the equilibrium of a system of rigid bodies. The notation used there assumes that 

the generalized coordinates are grouped in a vector q  such that 

( )pqqqq ,....,, 21=  where p  is the number of generalized coordinates. 

However, since the notation used for the tensegrity structures differs from 

Section 2.1, there is only one external force per strut and the moments act only 
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along the axes of the universal joint it is more convenient to state the equilibrium 

equations using the current notation and taking in account the simplifications 

introduced here. 

From (2.3) 

cnc WWW δδδ +=              (3.1) 

where Wδ  is the total virtual work, ncWδ  is the virtual work performed for non-

conservative forces and moments and cWδ  is the virtual work performed by 

conservative forces. ncWδ  can be represented as 

MFnc WWW δδδ +=              (3.2) 

where FWδ  is the total virtual work performed by non-conservative forces and 

MWδ  is the total virtual work performed by non-conservative moments.  

In (2.6) was established that  the virtual work performed by the 

conservative force j , cjWδ  is   jcj VW δδ −=  where jVδ  is the potential energy 

associated with the conservative force j , therefore the total contribution of the 

conservatives forces cWδ  is  

VWc δδ −=               (3.3) 

where Vδ  is the summation over all the jVδ  present in the structure. 

Substituting (3.2) and (3.3) into (3.1) yields  

VWWW MF δδδδ −+=             (3.4) 
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In equilibrium the virtual work described by (3.4) must be zero, then the 

equilibrium conditions can be deduced from 

0=−+ VWW MF δδδ              (3.5) 

 
In what follows each term in the expression (3.5) will be determined. 

3.3 Coordinates of the Ends of the Struts 

The coordinates of the lower ends can be expressed directly in the global 

reference system A .  The linear displacements associated with the strut j  are  

ja  and jb , they correspond to the coordinates x , y  measured in the zyx
AAA

 

system. Therefore the coordinates of the lower end jE  expressed in the global 

reference system A , (see Figure 3.2), are simply 

�
�
�

�

�

�
�
�

�

�

=
0

j

j

j
A

b

a

E               (3.6) 

A 

E z

x

y

a

b

j

j
j

j

O A

A

A

A

 
Figure 3.2. Coordinates of the ends of a strut in the global reference 

    system Awith reference point AO . 

The coordinates of the upper end of the strut are evaluated with the aid of 

equation (2.36), 
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+−
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=
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�

�

�

=

1

coscos

cossin

sin

1

2 βε
βε

β

l

bl

al

z

y

x

P
A

         (2.36) 

 When the angles � and � for the j-th strut are replaced by jε and jβ  

respectively and l  is replaced by SL , (2.36) yields 

�
�
�

�

�

�
�
�

�

�

+−
+

=

jjs

jjjs

jjs

j
A

L

bL

aL

A

βε
βε

β

coscos

cossin

sin

            (3.7) 

Now it is possible to obtain expressions for the lengths of the top, bottom 

and lateral ties. 

The lengths of the top ties T  are given by 

( ) ( ) ( )( ) 2/12

12

2

12

2

121 zzyyxx AAAAAAT −+−+−=   

( ) ( ) ( )( ) 2/12

23

2

23

2

232 zzyyxx AAAAAAT −+−+−=  

�  

( ) ( ) ( )( ) 2/12

,,1

2

,,1

2

,,1 zjzjyjyjxjxjj AAAAAAT −+−+−= +++          (3.8) 

if nj =  then 11=+j  

The lengths of the bottom ties B  are given by 

( ) ( ) ( )( ) 2/12

12

2

12

2

121 zzyyxx EEEEEEB −+−+−=   

( ) ( ) ( )( ) 2/12

23

2

23

2

232 zzyyxx EEEEEEB −+−+−=  

�  

( ) ( ) ( )( ) 2/12

,,1

2

,,1

2

,,1 zjzjyjyjxjxjj EEEEEEB −+−+−= +++         (3.9) 
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if nj =  then 11=+j  

The lengths of the lateral ties L  are given by 

( ) ( ) ( )( ) 2/12

21

2

21

2

211 zzyyxx EAEAEAL −+−+−=  

( ) ( ) ( )( ) 2/12

32

2

32

2

322 zzyyxx EAEAEAL −+−+−=  

�  

( ) ( ) ( )( ) 2/12

,1,

2

,1,

2

,1, zjzjyjyjxjxjj EAEAEAL +++ −+−+−=        (3.10) 

if nj =  then 11=+j  

3.4 Initial Conditions 

In the example of Section 2.5 it was established that the numerical 

methods are highly sensitive to the selection of the initial values.  The problem of 

the  initial position of a tensegrity structure, this is the position of the structure in 

its unloaded position were addressed by Yin [1]. In this section his results are 

presented without proof and are adapted to the current nomenclature.  

The free lengths of the top and bottom ties and the current lengths of the 

top and bottom ties satisfy the relations illustrated in Figure 3.3, therefore 

2
sin2

0 γ
o

T

T
R =             (3.11) 

 

2
sin2

0 γ
o

B

B
R =              (3.12) 

2
sin2

γ
TRT =             (3.13) 

2
sin2

γ
BRB =             (3.14) 
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where 0T  and 0B  are the free lengths of the top and bottom ties respectively and 

T  and B  are the current lengths of the top and bottom ties for the unloaded 

position. The angle γ  depends on the number of struts and is given by 

n

πγ 2=              (3.15) 

where n  is the number of struts 

Bo

To

R

R

T

B

γ

γ
γ

γ

T

To

Bo

RTo

BoR

RTR

RB
RB

 
  (a)          (b) 

Figure 3.3. Relations for the top and bottom ties of a tensegrity structure. 
   a) Ties with their free lengths; b) Ties after elongation. 

In the unloaded position the quantities TR , BR  and the current length of 

the lateral ties L  satisfy the following equations 

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
ToTTB

o
L RRkR

L

L
k        (3.16) 

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
BoBBT

o
L RRkR

L

L
k        (3.17) 
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( )[ ] 0coscos22 =−++− αγαTBs RRLL         (3.18) 

where  

Tk : stiffness of the top ties.  

Bk : stiffness of the bottom ties.  

Lk : stiffness of the lateral ties.  

SL : length of the struts. 

0L : free length of the lateral ties. 

α  : angle related to the rotation of the polygon conformed by the top end with 

respect to the polygon conformed by the bottom ends of the struts and is given 

by 

n

ππα −=
2

            (3.19) 

The solution of (3.16), (3.17) and (3.18) can be carried out numerically. 

Once BR , TR  (and L ) have been evaluated the values of T  and B  are 

calculated from (3.13)  and (3.14). 

Summarizing, when the free lengths of the top, bottom and lateral ties of a 

tensegrity structure are given, together with their stiffness, strut lengths and 

number of struts, equations (3.16), (3.17) and (3.18) yield the current values of 

the top, bottom and lateral ties in its unloaded position. 

Although in the work of Yin [1], the following relations are not established 

explicitly, it can be shown that if the global reference system A  is oriented in 

such a way that its x  axis passes through the bottom of one of the struts when 

the structure is in its unloaded position, then the coordinates of the top and lower 
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ends of the strut for its initial position in a global reference system A , (see Figure 

3.4), are 

( )( )
( )( ) njjR

jR

b

a

E B

B

j

j

oj
A

,....,2,1,

0

1sin

1cos

0

0,

0,

1
=

�
�
�

�

�

�
�
�

�

�

−
−

=
�
�
�

�

�

�
�
�

�

�

= γ
γ

     (3.20) 

( )( )
( )( ) nj

H

jR

jR

A T

T

oj
A

,....,2,1,1sin

1cos

1
=

�
�
�

�

�

�
�
�

�

�

+−
+−

= αγ
αγ

      (3.21) 

where if 1=j  then nj =−1 . Further, 

 
2

sin2222 γ
TBTBs RRRRLH −−−=         (3.22) 

H  represents the height between the platform defined by the lower ends 

of  the struts and the platform defined by the upper ends of the struts. 

A

A

E

E

A

E

j,0

j,0

1,0

1,0

2,0

2,0
Ay

xA

zA

H

A

A

A

A

A
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Figure 3.4. Initial position of a tensegrity structure. 
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Once the coordinates of 0,j
A
E  and 0,j

A
A  are obtained, the initial angles 

0,jε  and 0,jα  corresponding to the rotation of each strut are given by (2.37), 

(2.38) or (2.39) and, 

z

yb−=εtan              (2.37) 

�
�

�
�
�

� −
−=

ε

β

sin

tan
yb

ax
             (2.38) 

or 

�
�

�
�
�

�

−=

ε

β

cos

tan
z

ax
            (2.39) 

where ba,  are replaced by 0,0, , jj ba  given by (3.20) and Tzyx ),,(  is replaced by 

0,j
A
A  given by (3.21), then 

H

jRb Tj

j

))1(sin(
tan

0,

0,

αγ
ε

+−−
=          (3.23) 

�
�

�

�

�
�

�

� +−−
−+−

=

0,

0,

0,

0,

sin

))1(sin(

))1(cos(
tan

j

Tj

jT

j
jRb

ajR

ε
αγ

αγ
β           (3.24) 

or 

�
�

�

�

�
�

�

�

−+−
=

0,

0,

0,

cos

))1(cos(
tan

j

jT

j

H

ajR

ε

αγ
β           (3.25) 
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3.5 The Virtual Work Due to the External Forces 

As it is assumed that there is only one external force acting on each strut, 

the virtual work FWδ  performed by all the external forces  is given by 

j

n

j

jF rFW δδ ⋅= �
=1

           (3.26) 

where jF  is the external force acting in the strut j , jr  is the vector to the point 

of application of the external force. In (3.26) both jF  and jr  must be expressed 

in the same coordinate system. If the system chosen is the global reference 

system zyx
AAA

 then the terms satisfying (3.26) have the form  

zj

A

zj

A

yj

A

yj

A

xj

A

xj

A

j

A
j

A
rFrFrFrF δδδδ ++=⋅    (3.27) 

If the distance between the point of application of the force and the lower 

end of the strut is fL , see Figure 3.5, then an expression for jr  in the global 

system can be obtained from (2.36) where the angles � and � and the distances 

a , b , l  and  are substituted by jε , jβ , ja , jb  and FjL  respectively. 
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=
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=
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coscos
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        (3.28) 
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Figure 3.5. Location of the external force acting on the strut j. 

The virtual displacements can be deduced from equation (3.28) where the 

generalized coordinates for the strut j  are  jε , jβ , ja and jb  

�
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+−

+
=
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�

�
�
�

�
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=

jjjFjjjjFj

jjjFjjjjFjj

jjFjj

zj

A

yj

A

xj

A

j
A

LL

LLb

La

r

r

r

r

δββεδεβε
δββεδεβεδ

δββδ

δ
δ
δ

δ
sincoscossin

sinsincoscos

cos

    (3.29) 

Substituting (3.29) into (3.27) regrouping terms, and substituting into 

(3.26), the general expression for the virtual work performed by external forces is 

given by 

[ ]

[ ]

jxj

A

jjjzj

A

jjyj

A

jxj

A

Fj

jjjzj

A

jjyj

A

Fj

n

j

F

aF

FFFL

FFLW

δ

δββεβεβ

δεβεβεδ

+

−++

−−= �
=

sincossinsincos

cossincoscos(
1

  

)jyj

A bF δ+            (3.30) 
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3.6 The Virtual Work Due to the External Moments 

Provided that in this model of the tensegrity structure the external 

moments can be exerted only along the axis of the universal joint, the virtual 

work performed by the external moments is given by 

jjjj

n

j

M MMW βδεδδ βε ⋅+⋅= �
=1

       (3.31) 

As before all the elements of equation (3.31) must be expressed in the 

same coordinate system. However as the scalar product is invariant under 

transformation of coordinates any convenient coordinate system may be 

selected. It was established at Section 2.5 that when (3.31) is expressed in a 

reference system C  obtained translating the general reference system to the 

base of strut j  and then rotating by jε  about the current x axis, (see Figure 3.6) 

the terms in (3.31) have the form 
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MM εε                     (3.32) 
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and 

�
�
�
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�

�
�
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�

=
0

1

0

j

C
MM ββ            (3.34) 
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Figure 3.6. External moments and coordinate systems at the base of strut j. 
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Substituting (3.32), (3.33), (3.34) and (3.35) into (3.31) yields 

jjjj

n

j

M MMW δβδεδ βε += �
=1

         (3.36) 

3.7 The Potential Energy 

Provided that the struts are considered massless the  term related to the 

potential energy in the principle of virtual work is the resultant of the elastic 

potential energy contributions given by the ties. The potential elastic energy for a 

general tie j   is given by [6] 

2

0 )(
2

1
jjj wwkV −=            (3.37) 

where 
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:jV  elastic potential energy for tie j  

:k   tie stiffness  

:jw  current length of the tie j  

:0jw  free length of the tie j  

Therefore the differential potential energy for tie j  is 

jjjj wwwkV δδ )( 0−=            (3.38) 

The differential of the potential energy for all the tensegrity structure, Vδ , 

is the resultant of  the contributions of the top ties, the bottom ties and the lateral 

ties and can be expressed as 

( ) ( ) ( )
jojL

n

j

jojB

n

j

jojT

n

j

LLLkBBBkTTTkV δδδδ −+−+−= ���
=== 111

    (3.39) 

where LBT kkk ,,  are the stiffness of the top, bottom and lateral ties respectively. 

The current lengths of the ties are functions of some sets of the 

generalized coordinates for the structure, shown in (3.40) 

( )nnnnjj bababaTT βεβεβε ,,,,.....,,,,,,,, 22221111=  

( )nnnnjj bababaBB βεβεβε ,,,,.....,,,,,,,, 22221111=    

( )nnnnjj bababaLL βεβεβε ,,,,.....,,,,,,,, 22221111=      (3.40) 

Therefore (3.39) can be expanded in the form 
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             (3.41) 

3.8 The General Equations 

Now that each one of the terms contributing to the virtual work has been 

evaluated, the equilibrium condition for the general tensegrity structure can be 

established. Substituting (3.30), (3.36) and (3.41) into (3.5) and re-grouping 

yields 
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0..... 4223113 =++ ++ nnnn fff δβδβδβ         (3.42) 

where 
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ni ,...,2,1=  

Equation (3.42) must be satisfied for all the values of the generalized 

coordinates which in general are different from zero, then 
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0

0
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1

=

=
=

nf

f

f

�

�              (3.47) 

where if  is given by equations (3.43) to (3.46). Equations (3.47) represent a 

strongly coupled system of n∗4  equations depending only on the n∗4  

generalized coordinates. The solution is obtained numerically. The initial 

conditions for jjj ba ε,,  and jβ  are given by (3.20), (3.23), (3.24) or (3.25). 

The equilibrium position for a general tensegrity structure is obtained by 

solving the set (3.47) for nnnn baba βεβε ,,,,........,,,, 1111 . Equations (3.6) 

and (3.7) are explicit expressions for the coordinates of the ends of the struts in 

the global coordinate system. 
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CHAPTER 4 
NUMERICAL RESULTS 

This chapter presents the methodology to find the equilibrium position for 

tensegrity structures. Three numerical examples are provided to illustrate the 

concepts discussed in the previous sections. Tensegrity structures with different 

number of struts and different external loads are analyzed. Each example is 

developed in detail until to obtain the numerical solutions. In addition to the 

numerical results, the graphics of the structures in their equilibrium positions are 

also provided. 

The static analysis is performed in two steps: initially the equilibrium 

position of the structure in its unloaded position is evaluated, then the external 

loads are considered and the new equilibrium position is found. 

The numerical results are obtained here by evaluating some of the 

equations what where derived in detail in Chapter 3. The author has repeated 

some of these equations in the present chapter for convenience in order to 

minimize repeated reference to the pages of Chapter 3. 

4.1 Analysis of Tensegrity Structures in their Unloaded Positions. 

When there are no external loads applied, the equilibrium position can be 

determined using Yin�s results. Numerical values are given in Section 4.3. In 

order to determine the unloaded equilibrium position the lengths of the struts are 

specified, SL , which are assumed to be all the same, together with the stiffness 
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of the top ties Tk  (assumed equal), bottom ties Bk  (assumed equal), connecting 

ties Lk  (assumed equal) and the free lengths of the top ties 0T  (assumed equal), 

bottom ties 0B  (assumed equal) and connecting ties 0L  (assumed equal). 

In order to find the equilibrium position of the structure in its unloaded 

position, the coordinates of the ends of all the struts measured in a global 

reference system are determined. This is accomplished first by computing the 

three unknowns BR , TR  and the length of the connecting ties L  in the following 

equations given in Chapter 3 (see also Figures 3.3 (a) and (b)). 

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
ToTTB

o
L RRkR

L

L
k                  (3.16) 

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
BoBBT

o
L RRkR

L

L
k        (3.17) 

( )[ ] 0coscos22 =−++− αγαTBs RRLL         (3.18) 

where 

2
sin2

0 γ
o

T

T
R =             (3.11) 

 

2
sin2

0 γ
o

B

B
R =              (3.12) 

And the angles γ  and α  are given by 

n

πγ 2=              (3.15) 

n

ππα −=
2

            (3.19) 

where n  is the number of struts. 
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The values of BR  and TR  are then substituted into the equations (3.20), 

(3.21) and (3.22) which yield the coordinates oj
A
E ,  and oj

A
A , , this is the 

coordinates of the lower and the upper ends of the struts in the global reference 

system A  respectively. Note that the sub-index 0  indicates the unloaded 

position. 

( )( )
( )( ) njjR

jR

b

a

E B

B

j

j

j
A

,....,2,1,

0

1sin

1cos

0
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0, =
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−
−

=
�
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�
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�
�
�

�

�

= γ
γ

     (3.20) 
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H

jR
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A T

T

j
A

,....,2,1,1sin

1cos

0, =
�
�
�

�

�

�
�
�

�

�

+−
+−

= αγ
αγ

     (3.21) 

where if 1=j  then nj =−1 , and 

2
sin2222 γ

TBTBs RRRRLH −−−=         (3.22) 

4.2 Analysis of Loaded Tensegrity Structures 

The external loads acting on a tensegrity structure may be external forces 

and external moments. According to the restrictions of this study, only one 

external force and two external moments may be applied per strut. In addition the 

directions of the external moments are along the axis of the universal joint used 

to model the strut. 

To be able to perform the static analysis the components ),,( zyx FFF  

and the point of application FL  measured along the strut for each force must be 
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known, together with the directions of the external moments εM  and βM , see 

Figures 4.1 and 3.5. 

 
 

Figure 4.1. External loads applied to one of the struts of a tensegrity structure. 
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Figure 3.5. Location of the external force acting on the strut j. 
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Any strut of a tensegrity structure  constrained to remain on the horizontal 

plane has four degrees of freedom, two associated with its longitudinal 

displacements a  and b , and two associated with its rotations ε  and β , see 

Figure 4.2. Therefore the whole structure posses n*4  degrees of freedom where 

n  is the number of struts. However if some of the freedoms of the system are 

constrained the degrees of freedom decrease. Hence in addition to the 

knowledge of the external loads it is necessary to know the number of freedoms 

of the structure.  

 
 
Figure 4.2. Degrees of freedom associated with one of the struts of a tensegrity 

    structure. 

The equilibrium position of the structure is determined for a system of p  

equations where p  is the number of freedoms of the system. These equations 

are obtained by expanding equations (3.43) through (3.46) for each one of the 

generalized coordinates of the system. 

a
b

β

ε
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ni ,...,2,1=  

As the resultant system must be solved numerically then the initial values 

of the generalized coordinates must be evaluated prior to the implementation of 

the numerical method. The generalized coordinates 0,ja , 0,jb , 0,jε  and 0,jβ  
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corresponding to the initial values for the strut j are obtained from equations 

(3.20), (3.23) and (3.24) 

( )( )
( )( ) njjR

jR

b

a

B

B

j

j

,....,2,1,

0

1sin

1cos

0

0,
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−
−

=
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�

γ
γ

       (3.20) 

H

jRb Tj

j

))1(sin(
tan

0,

0,

αγ
ε

+−−
=          (3.23) 

�
�

�

�

�
�

�

� +−−
−+−

=

0,

0,

0,

0,

sin

))1(sin(

))1(cos(
tan

j

Tj

jT

j
jRb

ajR

ε
αγ

αγ
β           (3.24) 

And all the terms in (3.20), (3.23) and (3.24) have been defined 

previously. 

Now the equations can be solved and numerical values for the 

generalized coordinates ja , jb , jε  and jβ  are obtained, therefore the 

equilibrium position for the tensegrity structure has been found. 

In order to enhance the performance of the numerical method it is 

advisable to increase the external loads gradually in a step by step procedure. In 

this way the generalized coordinates evaluated at each step are the initial values 

for the next step. 

Equations (3.6) and (3.7) determine the coordinates of the lower and 

upper ends of the struts, j
A
E  and j

A
A  respectively, in the global reference 

system A . 
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cossin
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            (3.7) 

4.3 Example 1: Analysis of a Tensegrity Structure with 3 Struts 

4.3.1 Analysis for the Unloaded Position. 

A tensegrity structure with 3 struts has the stiffness and free lengths 

shown in Table 4.1. Each of its struts has a length mmLs 100=  .  It is required to 

evaluate its unloaded equilibrium position. 

Table 4.1. Stiffness and free lengths for the structure of example 1. 

 Stiffness (N/mm) Free lengths (mm) 

Top ties =Tk 0.5 =0T 35 

Bottom ties =Bk 0.3 =0B 52 

Connecting ties =Lk 1 =0L 80 

The solution of the system  

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
ToTTB

o
L RRkR

L

L
k        (3.16) 

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
BoBBT

o
L RRkR

L

L
k        (3.17) 

( )[ ] 0coscos22 =−++− αγαTBs RRLL         (3.18) 

where 
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°=°== 120
3

3602

n

πγ           (3.15) 

°=°−°=−= 15
3

90

2

90

2 n

ππα         (3.19) 

mm
mmT

R o
T 207.20

60sin2

35

2
sin2

0 =
°

== γ         (3.11) 

mm
mmB

R o

B 02.32
60sin2

52

2
sin2

0 =
°

== γ         (3.12) 

yields 

mmR

mmR

T

B

8422.22

0568.33

=

=
 

The coordinates of the ends of the struts for the unloaded position are 

obtained from 

( )( )
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= αγ
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      (3.21) 

where if 1=j  then nj =−1 , and 

mmRRRRLH TBTBs 1287.84
2

sin2222 =−−−= γ
 

The results are summarized in Table 4.2. Figure 4.3 shows the structure in 

its unloaded position. 
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Table 4.2. Lower and upper coordinates for the unloaded position for the 
structure of example 1 (mm). 

 Strut 1 Strut 2 Strut 3 

xE  33.0568 -16.5284 -16.5284 

yE  0 28.6280 -28.6280 

zE  0 0 0 

    

xA  -19.7819 0 19.7819 

yA  11.4211 -22.8422 11.4211 

zA  84.1287 84.1287 84.1287 

 
 
 

 
 

Figure 4.3. Unloaded position for the structure of example 1. 

4.3.2 Analysis for the Loaded Position. 

If one external force is applied at the upper end of each strut which 

components and point of application are presented in Table 4.3 and there is no 

constraints acting on the struts of the structure, it is required to evaluate the final 

equilibrium position of the structure. 
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Table 4.3. External forces  acting on the structure of example 1.  

 Strut 1 Strut 2 Strut 3 

xF (N) 0 0 0 

yF (N) 0 0 0 

zF (N) -10 -10 -10 

FL (mm) 100 100 100 

Since the system has 3 struts and there is no constraints then there are 12 

degrees of freedom and therefore 12 equations are required, one per each 

generalized coordinate. The equations are generated following the procedure 

described in section 3.8: 

Equation (3.43) yields 21, ff  and 3f  

Equation (3.44) yields 54 , ff  and 6f  

Equation (3.45) yields 87 , ff  and 9f  

Equation (3.46) yields 1110 , ff  and 12f  

Each if  is equated to zero and then the system is solved numerically. As 

an example the first equation, (3.43), is shown in the appendix A. It is clear that 

the complete set is extremely large and coupled. Before attempting to obtain a 

solution it is necessary to evaluate the initial conditions, i.e. the values of the 

generalized coordinates in the unloaded position. This is accomplished using 

(3.20), (3.23) and (3.24) 

( )( )
( )( ) njjR
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b
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B
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))1(sin(

))1(cos(
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j
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j
jRb

ajR

ε
αγ

αγ
β          (3.24) 

And all the terms in (3.20), (3.23) and (3.24) have been defined 

previously. The results are summarized in Table 4.4. 

Table 4.4. Initial values of the generalized coordinates for the structure of 
example 1. 

 Strut 1 Strut 2 Strut 3 

a  (mm) 33.0568 -16.5284 -16.5284 
b  (mm) 0 28.6280 -28.6280 

ε  (rad) -0.1349 0.5491 -0.4443 
β  (rad) -0.5567 0.1660 0.3716 

It is now possible to implement the numerical method. The magnitude of 

the external force is increased in steps of 1 N and the equilibrium position is 

evaluated for each step. The final values for the generalized coordinates of the 

structure for an external force of 10 N are shown in Table 4.5. 

 
Table 4.5. Generalized coordinates for the final position for the structure of 
example 1. 

 Strut 1 Strut 2 Strut 3 

a  (mm) 40.8573 -20.4241    -20.4332   
b  (mm) -0.0053   35.3861   -35.3808 
ε  (rad) -0.0269    0.6808     -0.6643     
β  (rad) -0.7434     0.3271    0.3635    
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Using these values, equations (3.6) and (3.7) can now be used to obtain 

the coordinates of the ends of the struts for the final position.  
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E               (3.6) 
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βε
βε

β

coscos

cossin

sin

            (3.7) 

The results are summarized in Table 4.6 and Figure 4.4 shows the 

structure in its final equilibrium position. 

Table 4.6. Lower and upper coordinates for the final position of the structure of 
example 1 (mm). 

 Strut 1 Strut 2 Strut 3 

xE  40.8573 -20.4241 -20.4332 

yE  -0.0053 35.3861 -35.3808 

zE  0 0 0 

    

xA  -26.8241 11.7016 15.1224 

yA  1.9750 -24.2179 22.2429 

zA  73.5888 73.5888 73.5888 
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Figure 4.4. Final equilibrium position for the structure of example 1. 

Figure 4.5 illustrates the second strut modeled with an universal joint in its 

first and final position. It can be appreciated its longitudinal and angular 

displacements. 

Figure 4.6 shows a top view of the structure in its initial and final positions. 

It should be noted that the base 321 ,, EEE  increases in size but maintains its 

orientation whilst the top 321 ,, AAA  increases in size and also undergoes a 

rotation. 
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(a) 

 
 

(b) 

Figure 4.5. Second strut of the structure of example 1. 
 a)Unloaded position; b)Last position. 
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(a) 
 

 
(b) 

 
Figure 4.6. Plan view structure example 1. 

   a)Unloaded position; b)Last position. 
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Because of the symmetry of the external loads the height of the structure 

decreases uniformly, i.e. the z  coordinate for the points 21, EE  and 3E  remains 

the same for each position. These results are illustrated in Figure 4.7.  

 

 
Figure 4.7. Height of the 3 struts Vs magnitude of the external force for the 

         structure of example 1. 

Figure 4.8 illustrates the variation of the ties lengths for each increment in 

the externally applied load. It should be noted that for the last position the length 

of the connecting ties is 81 mm which is approaching the free length. This means 

that if a larger force is applied to the structure, it cannot longer remain as a 

tensegrity structure. Although  there could be other equilibrium positions the 

model developed in this research is not valid anymore. 
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Figure 4.8. String lengths  of the 3 struts structure Vs magnitude of the external 

      force. 

Because of the complexity of the equations that define equilibrium 

positions it is essential to verify the answers obtained independently. The 

software developed for this purpose performs this internally for each strut and for 

each position of the strut. To clarify this point, the verification of the answer is 

demonstrated here for the strut 2 in the last position. 

Figure 4.9 shows a free body diagram for the second strut and the location 

of all the end points of the structure for the last position. It also includes the 

reaction force R . Note that the direction for the force in the ties is  considered as 

positive when the force goes from a point with subindex j  to another point with 

Bottom ties

Top ties

Connecting ties 
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subindex 1+j . For example in Figure 4.9 the force 2TF  goes from 2A  to 3A  

therefore is positive while the force 1TF  goes from 2A  to 1A  hence is negative. 

If the system is in an equilibrium position, then the summation of moments 

with respect to 2E  must be zero and 

0212 =×+×−×+× LTT FrFrFrFr            (4.1) 

 

 
 
Figure 4.9. Free body diagram for the second strut of the structure of example 1 

      in the last position. 

The vector r  from 2E  to 2A  is given by 
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And from Table 4.3 the external force at the strut 2 is 

NF

�
�
�

�

�

�
�
�

�

�

−
=

10

0

0

2               (4.3) 

The force acting in the top tie 2T  is given by 

22 TT FF = 32AAs              (4.4) 

where  

( )oTT TTkF −= 22              (4.5) 

2T  is the current length of the top tie 2 

mmAAT 5865.46232 =−=  

Tk  and 0T  are given in Table 4.1 

mmT

mm

N
k

o

T

35

5.0

=

=

 

Substituting the values of 2T , 0T  and Tk  into (4.5) 

NFT 7932.52 =               (4.6) 

32AAs  are the unitized Plücker coordinates of the line passing through 

32 AA  and form equations (2.15), (2.16), (2.17) and (2.22)  

32AAs

�
�
�

�

�

�
�
�

�

�

=
0

9973.0

0734.0

             (4.7) 

Substituting (4.6) and (4.7) into (4.4) yields 
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NF T
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7776.5

4254.0

2              (4.8) 

Similarly, the force acting in the top tie 1T  is given by 

11 TT FF = 21AAs              (4.9) 

where 

( )oTT TTkF −= 11            (4.10) 

The current length of the top tie 1, 1T ,  is 

mmAAT 5865.46121 =−=  

Therefore 

NF T 7932.51 =             (4.11) 

The unitized Plücker coordinates of the line passing through 21AA  are 

21AAs

�
�
�

�

�

�
�
�

�

�

−=
0

5622.0

8270.0

           (4.12) 

Substituting (4.11) and (4.12) into (4.9) 

�
�
�

�

�

�
�
�

�

�

−=
0

2572.3

7908.4

1TF            (4.13) 

Finally the force acting on the lateral tie 2L  is given by 

22 LL FF = 32EAs            (4.14) 

where 

( )oLL LLkF −= 22            (4.15) 
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And 

mmAEL 0714.81232 =−=  

Lk  and 0L  are given in Table 4.1 

mmL

mm

N
k

o

L

80

1

=

=

 

Substituting the values of 2L , 0L  and Lk  into (4.15) 

NF L 0714.12 =             (4.16) 

The unitized Plücker coordinates of the line passing through 32EA  are 

32EAs

�
�
�

�

�

�
�
�

�

�

−
−
−

=
9077.0

1377.0

3964.0

           (4.17) 

Substituting (4.16) and (4.17) into (4.14) 

NF L

�
�
�

�

�

�
�
�

�

�

−
−
−

=
9725.0

1475.0

4247.0

2            (4.18) 

Now the summation of moments can be evaluated by substituting (4.2), 

(4.3), (4.6), (4.13) and (4.18) into (4.1) 

mmNmmN

mmNmmNmmN

⋅
�
�
�

�

�

�
�
�

�

�

=⋅
�
�
�

�

�

�
�
�

�

�

−
−+

⋅
�
�
�

�

�

�
�
�

�

�

−⋅
�
�
�

�

�

�
�
�

�

�−
+⋅

�
�
�

�

�

�
�
�

�

�

0

0

0

0510.30

0089.0

82.68

9136.180

5526.352

6931.239

9646.210

3041.31

1663.425

0

2574.321

0394.596
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Since the summation of moments with respect to 2E  is 0 , the numerical 

result confirms that the current position for the strut 2 of the structure 

corresponds to an equilibrium position. 

4.4 Example 2: Analysis of a Tensegrity Structure with 4 Struts 

4.4.1 Analysis for the Unloaded Position. 

It is required to evaluate the unloaded equilibrium position of a tensegrity 

structure with 4 struts with the stiffness and free lengths shown in Table 4.7. 

Each of its struts has a length mmLs 100=  .   

Table 4.7. Stiffness and free lengths for the structure of example 2. 

 Stiffness (N/mm) Free lengths (mm) 

Top ties =Tk 0.5 =0T 40 

Bottom ties =Bk 0.5 =0B 40 

Connecting ties =Lk 0.5 =0L 40 

The solution of the system  

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
ToTTB

o
L RRkR

L

L
k        (3.16) 

 

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
BoBBT

o
L RRkR

L

L
k        (3.17) 

( )[ ] 0coscos22 =−++− αγαTBs RRLL         (3.18) 

where 

°=°== 90
4

3602

n

πγ            (3.15) 
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°=°−°=−= 5.22
4

90

2

90

2 n

ππα         (3.19) 

mm
mmT

R o
T 2843.28

45sin2

40

2
sin2

0 =
°

== γ         (3.11) 

mm
mmB

R o
B 2843.28

45sin2

40

2
sin2

0 =
°

== γ         (3.12) 

yields 

mmR

mmR

T

B

2528.41

2528.41

=

=
 

The coordinates of the ends of the struts for the unloaded position are 

obtained from 

( )( )
( )( ) njjR

jR

b

a

E B

B

j

j

j
A

,....,2,1,

0

1sin

1cos

0

0,

0,

0, =
�
�
�

�

�

�
�
�

�

�

−
−

=
�
�
�

�

�

�
�
�

�

�

= γ
γ

     (3.20) 

 

( )( )
( )( ) nj

H

jR

jR

A T

T

j
A

,....,2,1,1sin

1cos

0, =
�
�
�

�

�

�
�
�

�

�

+−
+−

= αγ
αγ

      (3.21) 

where if 1=j  then nj =−1 , and 

mmRRRRLH TBTBs 7280.64
2

sin2222 =−−−= γ
 

The results are summarized in Table 4.8 and Figure 4.10 shows the 

structure in its unloaded position. 
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Table 4.8. Lower and upper coordinates for the unloaded position for the 
structure of example 2 (mm). 
 Strut 1 Strut 2 Strut 3 Strut 4 

xE  41.2528 0 -41.2528 0 

yE  0 41.2528 0 -41.2528 

zE  0 0 0 0 

     

xA  -29.1701 -29.1701 29.1701 29.1701 

yA  29.1701 -29.1701 -29.1701 29.1701 

zA  64.7280 64.7280 64.7280 64.7280 

 
 
 

 
 

Figure 4.10. Unloaded position for the structure of example 2. 

4.4.2 Analysis for the Loaded Position. 

It is required to evaluate the final equilibrium position of the structure when 

the external moments listed in Table 4.9 are applied along the axis of the 

universal joints that model the structure, see Figure 4.11, and the lower ends of 

the struts are constrained in such a way that they cannot move in the horizontal 

plane. 

z
A

y
A

x
A

3A

1A

2A

4A

3E

4E

2E

1E
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Table 4.9. External moments acting on the structure of example 2.  
 Strut 1 Strut 2 Strut 3 Strut 4 
     

εM (N.mm) 450 -900 450 -900 

βM (N.mm) 450 450 450 450 

 
 
 

 
 

Figure 4.11. Directions of the external moments for the structure of 
       example 2. 

Because there are 2 constraints per strut there are 8 degrees of freedom 

for this system, and they are associated with the rotations of the struts. The 

generalized coordinates are 332211 ,,,,, βεβεβε  and 44 , βε , where the 

subscript indicates the number of the strut. 

The equilibrium equations are obtained as follows 

Equation (3.45) yields 11109 ,, fff  and 12f  

2βM

3βM

4βM

1βM

1εM

4εM
3εM

2εM

1x
C

3x
C

2x
C

1
y

C

4x
C

4
y

C

3
y

C

2
y

C
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Equation (3.46) yields 151413 ,, fff  and 16f  

The initial conditions, this is the values of the generalized coordinates in 

the unloaded position, are obtained using (3.20), (3.23) and (3.24) 

( )( )
( )( ) njjR

jR

b

a

B

B

j

j

,....,2,1,

0

1sin

1cos

0

0,

0,

=
�
�
�

�

�

�
�
�

�

�

−
−

=
�
�
�

�

�

�
�
�

�

�

γ
γ

       (3.20) 

H

jRb Tj

j

))1(sin(
tan

0,

0,

αγ
ε

+−−
=           (3.23) 

�
�

�

�

�
�

�

� +−−
−+−

=

0,

0,

0,

0,

sin

))1(sin(

))1(cos(
tan

j

Tj

jT

j
jRb

ajR

ε
αγ

αγ
β          (3.24) 

And all the terms in (3.20), (3.23) and (3.24) have been defined 

previously. The results are presented in Table 4.10. 

Table 4.10. Initial values of the generalized coordinates for the structure 
of example 2. 

 Strut 1 Strut 2 Strut 3 Strut 4 

ε  (rad) -0.4234 0.8275 0.4234 -0.8275 
β  (rad) -0.7813 -0.2960 0.7813 0.2960 

In order to avoid evaluating positions that do not correspond to the real 

problem is essential to increase the load smoothly  in small increments rather 

than trying to obtain the final values of the moments in a single step. The number 

of steps was chosen arbitrarily as 10. Table 4.11 shows the values of the 

external moments for each step. The results for the final position are listed in 

Table 4.12 
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Table 4.11. External moments at each step for the structure of 
example 2 in N.mm. 

Step 1 2 3 4 5 6 7 8 9 10 

εM  45 90 135 180 225 270 315 360 405 450 
Strut 1 

βM  45 90 135 180 225 270 315 360 405 450 

εM  -90 -180 -270 -360 -450 -540 -630 -720 -810 -900
Strut 2 

βM  45 90 135 180 225 270 315 360 405 450 

εM  45 90 135 180 225 270 315 360 405 450 
Strut 3 

βM  45 90 135 180 225 270 315 360 405 450 

εM  -90 -180 -270 -360 -450 -540 -630 -720 -810 -900
Strut 4 

βM  45 90 135 180 225 270 315 360 405 450 

Table 4.12. Generalized coordinates for the final position for the structure 
of example 2. 

 Strut 1 Strut 2 Strut 3 Strut 4 

ε  (rad) -0.4689 0.6311 0.8140 -1.1716 
β  (rad) -0.2916 0.1598 1.2136 0.5948 

With values listed in Table 4.12, equations (3.6) and (3.7) permit to obtain 

the coordinates of the ends of the struts for the final position.  

�
�
�

�

�

�
�
�

�

�

=
0

j

j

j
A

b

a

E              (3.6) 

 

�
�
�

�

�

�
�
�

�

�

+−
+

=

jjs

jjjs

jjs

j
A

L

bL

aL

A

βε
βε

β

coscos

cossin

sin

            (3.7) 

 
The results are summarized in Table 4.13 and Figure 4.12 shows the 

structure in its final equilibrium position. 
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Table 4.13. Lower and upper coordinates for the final position of the structure 
of example 2 (mm).  

 Strut 1 Strut 2 Strut 3 Strut 4 

xE  41.2528       0 -41.2528       0 

yE  0 41.2528       0 -41.2528      

zE  0 0 0 0 

     

xA  12.5079    15.9151   52.4370   56.0322    

yA  43.2859    -16.9992       -25.4176    35.0631    

zA  85.4404 79.7083 24.0035 32.1911 

 

It is apparent from Figure 4.12 that the z coordinate for each strut does 

not change uniformly. The variations in z  for each strut are shown in Figure 4.13. 

 

 
 

Figure 4.12. Final equilibrium position for the structure of example 2. 
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Figure 4.13. Coordinate z for each strut for each increment in the external 
        moments applied to the structure of example 2. 

In order to verify the numerical results when external moments are 

present, the final position of strut 4 is analyzed. Figure 4.14 shows the free body 

diagram for this strut in its final position modeled with an universal joint. In 

addition to the forces in the ties and the external moments, there is a reaction 

force R  and a reaction moment RM , both of which are unknown. Table 4.14 lists 

the unitized Plücker coordinates for the forces in the ties attached to the ends of 

the strut 4 expressed in the global reference system A . 

From Newton�s Law it is known that the summation of moments about any 

point must be zero if the analyzed position is an equilibrium position. The forces 

and moments involved in the summations might be expressed in any system. If 

the C  system is chosen, this is the system defined by the axes of the universal 

Strut1

Strut2 

Strut3 

Strut4 
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joint, the components of the reaction moment along x
C

 and y
C

 must be zero 

because a universal joint cannot exert any reaction moment along its axes. 

Table 4.14. Unitized Plücker coordinates for the forces in the ties attached to the 
ends of strut 4 expressed in the A system. 

14$� AA

A  34$� AA

A  
14$� EA

A  14$� EE

A  34$� EE

A  34$� AE

A  

-0.6284 -0.0588 -0.297 0.7071 -0.7071 0.8768 

0.1187 -0.9892 -0.704 0.7071 0.7071 0.2648 

0.7688 -0.1339 -0.646 0 0 0.4014 

23.135 27.1493 0 0 0 -16.5576 

-63.305 5.6108 26.6442 0 0 0 

28.685 -53.3677 -29.0214 29.1701 -29.1701 36.1708 
 
 

 
Figure 4.14. Free body diagram for the fourth strut of structure of example 2 in 

         the last position. 
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In what follows all the forces and external moments are expressed in the 

C  system, then the summation of moments is analyzed. 

The same coordinates can be expressed in the C  system defined by the 

axes of the universal joint, see figure 4.14, using the equations (2.29) , (2.30), 

(2.28) and (2.67) adapted to the current notation 

$$ 1 AC
e−=             (1.29) 

where 

�
�
�

�

�

�
�
�

�

�

=−

TA

C

TTA

C

TA

C

RAR

OR

e

3

3
1            (1.30) 

�
�
�

�

�

�
�
�

�

�

−
−

−
=

0

0

0

3

xy

xz

yz

A            (1.28) 

�
�
�

�

�

�
�
�

�

�

−=
εε
εε

cossin0

sincos0

001

RAC          (1.67) 

where yx,  and z  are given by the values of xE , yE  and zE  for strut 4 in Table 

4.13.  Angles ε  and β  are given for the values for strut 4 in Table 4.12. 

Table 4.15 shows the unitized Plücker coordinates of the forces in the ties 

in the C  system obtained after substituting numerical values in the previous 

expressions. This table also includes the unitized Plücker coordinates for the 

external moments εM  , βM  expressed in the C  system. Table 4.16 lists the 

Plücker coordinates for the reaction force R  and the reaction moment RM  

expressed in the C  system. 
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Table 4.15. Unitized Plücker coordinates for forces in the ties and the external 
moments acting on strut 4 expressed in the C system. 

14$� AA

C  34$� AA

C  
14$� EA

C  14$� EE

C  34$� EE

C  34$� AE

C  εM
C $�  βM

C$�  

-0.628 -0.0588 -0.2965 0.7071 -0.7071 0.8768 0 0 

-0.662 -0.2611 0.3217 0.2748 0.2748 -0.2669 0 0 

0.408 -0.9635 -0.8992 0.6515 0.6515 0.4 0 0 

54.8493 21.6248 -26.644 0 0 0 -1 0 

-74.918 49.118 25.824 0 0 0 0 1 

-37.105 -14.629 18.025 0 0 0 0 0 
 

Table 4.16. Plücker coordinates for reaction force and reaction moment acting 
on strut 4 expressed in the C system. 

R

C
$  RM

C
$  

x

CR  0 

y

CR  0 

z

CR  0 

0 x

CRM  

0 y

CRM  

0 z

CRM  

The equilibrium equation for the strut in the C  system can be stated as 

follows 

ββεε M

C

M

C

AE

C

AEEE

C

EE

EE

C

EEEA

C

EAAA

C

AAAA

C

AA

MMFF

FFFF

$�$�$�$�

$�$�$�$�

34343434

1414141434341414

++++

+++

  

0$$ =++ RM

C

R

C
           (4.19)

  

where 

( )OTAA TAAkF −−= 1414  

( )OTAA TAAkF −−= 3434  
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( )OLEA LEAkF −−= 1414      

( )OBEE BEEkF −−= 1414     

( )OBEE BEEkF −−= 3434  

( )OLAE LAEkF −−= 3434            (4.20) 

After substituting the values given in Tables 4.7 and 4.13 into equation 

(4.20) yields 

NF AA 6319.1414 =  

NF AA 5692.1034 =  

NF EA 9205.414 =  

NF EE 1702.914 =       

NF EE 1702.934 =  

NF AE 9022.934 =             (4.21) 

Substituting (4.21) and the values listed in Tables (4.15) and (4.16) into 

(4.19) yields 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
−

−

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

−
−
−

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
−

−
−

0

0

0

6515.0

2748.0

7071.0

1702.9

025.18

824.25

6442.26

8992.0

3217.0

2965.0

9205.4

629.14

118.49

6248.21

9635.0

2611.0

0588.0

5692.10

1052.37

9186.74

8493.54

408.0

662.0

628.0

6319.14
 



 

 

91

0
0

0

0

0

0

0

0

1

0

0

0

0

450

0

0

1

0

0

0

900

0

0

0

4.0

2669.0

8768.0

9022.9

0

0

0

6515.0

2748.0

7071.0

1702.9 =

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

+

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�−

+

Z

C

y

C

x

C

Z

C

y

C

x

C

RM

RM

RM

R

R

R

 

                 (4.22) 
Rows four and five in (4.22) yield 

09001027.131556.228549.802 =+−−+ x

CRM       (4.23) 

 
and 

0450067.127138.519201.1096 =++++− y

C RM      (4.24) 

From (4.23) and (4.24) 

0=xRM  

0=yRM  

Since the universal joint cannot exert any reaction moment along its axes, 

the foregoing results confirm that the current position is an equilibrium position.    

4.5 Example 3: Analysis of a Tensegrity Structure with 6 Struts 

4.5.1 Analysis for the Unloaded Position. 

A tensegrity structure with 6 struts has the stiffness and free lengths 

shown in Table 4.17. Each of its struts has a length mmLs 80=  .  It is required to 

evaluate its equilibrium unloaded position. 
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Table 4.17. Stiffness and free lengths for the structure of example 3. 

 Stiffness (N/mm) Free lengths (mm) 

Top ties =Tk 0.5 =0T 15 

Bottom ties =Bk 0.3 =0B 25 

Connecting ties =Lk 0.3 =0L 30 

The solution of the system  

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
ToTTB

o
L RRkR

L

L
k        (3.16) 

 

( ) 0
2

sin21 =−−�
�

�
�
�

� − γ
BoBBT

o
L RRkR

L

L
k        (3.17) 

( )[ ] 0coscos22 =−++− αγαTBs RRLL         (3.18) 

where 

°=°== 60
6

3602

n

πγ            (3.15) 

°=°−°=−= 30
6

90

2

90

2 n

ππα          (3.19) 

mm
mmT

R o
T 15

30sin2

15

2
sin2

0 =
°

== γ          (3.11) 

mm
mmB

R o
B 25

30sin2

25

2
sin2

0 =
°

== γ           (3.12) 

yields 

mmR

mmR

T

B

8338.27

9154.39

=

=
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The coordinates of the ends of the struts for the unloaded position are 

obtained from 

( )( )
( )( ) njjR

jR

b

a

E B

B

j

j

oj
A

,....,2,1,

0

1sin

1cos

0

0,

0,

1
=

�
�
�

�

�

�
�
�

�

�

−
−

=
�
�
�

�

�

�
�
�

�

�

= γ
γ

     (3.20) 

( )( )
( )( ) nj

H

jR

jR

A T

T

oj
A

,....,2,1,1sin

1cos

1
=

�
�
�

�

�

�
�
�

�

�

+−
+−

= αγ
αγ

      (3.21) 

where if 1=j  then nj =−1 , and 

mmRRRRLH TBTBs 1287.84
2

sin2222 =−−−= γ
 

The results are summarized in Table 4.18. Figure 4.15 shows the 

structure in its unloaded position. 

Table 4.18. Lower and upper coordinates for the unloaded position for the 
structure of example 3 (mm). 

 Strut 1 Strut 2 Strut 3 Strut 4 Strut 5 Strut 6 

xE  39.9154   19.9577   -19.9577   -39.9154   -19.9577   19.9577  

yE  0 34.5677   34.5677   0 -34.5677   -34.5677   

zE  0 0 0 0 0 0 

       

xA  -13.9169        -27.83      -13.916  13.9169  27.8338   13.9169   

yA  24.1047   0 -24.1047   -24.1047   0 24.1047   

zA     54.0468     54.0468    54.0468    54.0468    54.0468     54.0468  
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Figure 4.15. Unloaded position for the structure of example 3. 

4.5.2 Analysis for the Loaded Position. 

It is required to evaluate the final equilibrium position of the structure when 

external forces each of one of magnitude N16  are applied at the upper ends of 

each strut and the lower ends of all the struts are constrained in the horizontal 

plane. Each force iF  has no vertical component and its direction forms at every 

moment and angle 
2

3πθγ += ii  with the x
A

 axis, see Figure 4.16, where iθ  is the 

angle between  x
A

 and the projection of iOE  on the horizontal plane.  

Since the system has 6 struts and the lower ends are constrained, there 

are two degrees of freedoms per strut and therefore 12 generalized coordinates 

which require 12 equations. The equations are obtained as follows 

Equation (3.45) yields 1716151413 ,,,, fffff  and 18f . 

Equation (3.46) yields 2322212019 ,,,, fffff  and 24f . 
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Figure 4.16. Direction  external force in the struts for the structure of example 3. 

The initial conditions to solve the last set of equations, i.e. the values for 

621 ,,, εεε �  and 621 ,,, βββ �  in the unloaded position are obtained using 

(3.20), (3.23) and (3.24). 
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And all the terms in (3.20), (3.23) and (3.24) have been defined 

previously. The results are summarized in Table 4.19. 

Table 4.19. Initial values of the generalized coordinates for the structure 
of example 3. 

 Strut 1 Strut 2 Strut 3 Strut 4 Strut 5 Strut 6 

ε  (rad) -0.4195    0.5690   0.8264    0.4195 -0.5690    -0.8264   
β  (rad) -0.7381    -0.6402    0.0756    0.7381   0.6402    -0.0756 

As before is advisable to divide the solution in several steps. To increase 

the forces gradually helps to guide the solution obtained by numerical methods, 

but here in contrast with the previous examples, not only the magnitude but also 

the direction of the forces is changing. This fact should be consider before trying 

to solve the equilibrium equations. 

The direction of the forces depend on angle iθ , see Figure 4.16, which 

can be evaluated as 
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Therefore the components of each one of the external forces are given by 
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where i
A
F  is the magnitude of the external force for the current step. If the 

number of steps for this analysis is chosen arbitrarily as 4, then the magnitude of 
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the force for the first step is NN 44/16 = , for each one of the external forces. The 

components of the forces for the first step are computed using (4.25) and (4.26) 

together with the coordinates for iE  listed in Table 4.18, the results are 

presented in Table 4.20. 

Table 4.20. Direction and components of the external forces for the initial 
position of example 3. 

 Strut 1 Strut 2 Strut 3 Strut 4 Strut 5 Strut 6 

iθ (rad) 2.0944    3.1416   -2.0944   -1.0472    0 1.0472 

xF  3.4641    0 -3.4641   -3.4641    0 3.4641 

yF  2 4 2 -2 -4 -2 

zF  0 0 0 0 0 0 

With the initial values for the generalized coordinates listed in Table 4.19 

and the components of the forces presented in Table 4.20, the set of 12 

equations is solved. The results obtained correspond to the generalized 

coordinates for the equilibrium position after the first increment in the external 

forces. To continue the process the magnitude of the forces is increased in N4  

and their new components are evaluated by using (4.25) and (4.26). The process 

ends when the magnitude of the external forces reaches its final value of 

N16 and Table 4.21 shows the results. 

Table 4.21. Generalized coordinates for the final position for the structure 
of example 3. 

 Strut 1 Strut 2 Strut 3 Strut 4 Strut 5 Strut 6 

ε  (rad) 0.5952        0.9542  0.6329    -0.5952 -0.9542    -0.6329   
β  (rad) -0.7978    -0.0189   0.7712      0.7978  0.0189    -0.7712 
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Using these values, equations (3.6) and (3.7) can now be used to obtain 

the coordinates of the ends of the struts for the final position.  
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Table 4.22 lists the coordinates of the ends of the struts for the final 

position and Figures 4.17 through 4.20 illustrate the positions assumed by the 

structure after each increment in the magnitude of the external forces. It is 

apparent that the struts of the structure changed their orientation upon the 

application of this particular load. 

Table 4.22. Lower and upper coordinates for the final position for the structure 
of example 3 (mm). 

 Strut 1 Strut 2 Strut 3 Strut 4 Strut 5 Strut 6 

xE  39.9154   19.9577   -19.9577   -39.9154   -19.9577   19.9577  

yE  0 34.5677   34.5677   0 -34.5677   -34.5677   

zE  0 0 0 0 0 0 

       

xA  -17.3515   18.4484  35.7999   17.3515   -18.4484   -35.7999   

yA  -31.3202     -30.6870  0.6333   31.3202   30.6870   -0.6333   

zA  46.2553 46.2553 46.2553 46.2553 46.2553 46.2553 
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Figure 4.17. Position of the structure of example 3 when the magnitudes of the  
         external forces are .4N  
 

 
Figure 4.18. Position of the structure of example 3 when the magnitudes of the 
         external forces are .8N  
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Figure 4.19. Position of the structure of example 3 when the magnitudes of the 
         external forces are .12N  
 

 

 
Figure 4.20. Position of the structure of example 3 when the magnitudes of the 
          external forces are .16N  
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CHAPTER 5 
CONCLUSIONS 

This research has addressed and solved the problem of finding the 

equilibrium position of a tensegrity structure subjected to external loads. No 

previous references addressing this problem have appeared as far as the author 

is aware. 

The model allows one to analyze a general anti-prism tensegrity structure 

subjected to a wide variety of external loads and the software developed is able 

to solve the system of equations generated for the model. The results are 

presented both numerically and in a three dimension graphical representation, 

which permits one to visualize the behavior of the structure.  

The model is developed using the virtual work approach and all the results 

are checked using the Newton�s Third Law. This verification assures one that the 

answers produced by the numerical method accurately correspond to equilibrium 

positions. 

Mathematical models for variations of the basic configuration of tensegrity 

structures such as the reinforced tensegrity prisms might be developed following 

the same procedure presented in this research.  

None tensegrity structure can be loaded indefinitely without collapsing. 

This fact cannot be predicted by the model developed here, but the position of 

the structure after that the collapse occurs can be identified by the results of the 
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simulations. In general there were detected three situations that lead to the crash 

of the software and they are associated with particular physical situations.  

The first occurs when the distance between two strut ends which are 

connected by a tie is less than the free length for that tie. The mathematical 

model always assumes that the ties are in tension, if this is not the case the 

model is no longer a valid representation of the structure and as result no 

convergence is found and the software crashes. The second occurs when two 

struts or a tie and a strut intersect. This fact is associated with the vanishing of 

the Jacobian for the structure [8], and corresponds to a singular configuration 

that the software cannot solve and in consequence it crashes. 

The occurrence of the third physical situation is the less evident than the 

previous two. In certain situations even though there are no singularities and all 

the ties are in tension, one small increase in the external load makes impossible 

for the software the convergence to a solution, i.e. it is not possible to find a new 

equilibrium position. The system suffers a sudden change and it jumps from one 

equilibrium position to another for a smooth transition force. This is known as a 

catastrophe [11] and [12]. Catastrophe Theory is a well developed classical 

method. It describes sudden changes caused by a gradually changing input. It 

offers a better understanding of the phenomena reported here which is beyond 

the scope of this work. 

The configuration of tensegrity structures is similar to the in-parallel 

devices which consist of a pair of rigid platforms connected by legs. The stability 

in rigid platforms is closed related to the coordinates of the leg lines [8]. In the 
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future the use the quality indexes defined for platforms could be implemented for 

tensegrity structures  to predict the stability of the elastic system subjected to 

external loads. 

When the first position is not its unloaded position it is possible to 

determine the generalized coordinates of this new first position by gradually 

applying the external load to its unloaded position using the model described 

here. 

Numerical methods are a good approach to solve complex systems of 

equations as those that arise in this research provided that a proper set of initial 

conditions is available. However, they do present disadvantages related to the 

speed of computations and the impossibility to make predictions about the 

behavior of the system. A challenging future work may address the problem of 

finding a closed solution for the analysis of a tensegrity structure. It will require 

the establishment of a better nomenclature that simplifies and reduces the size of 

the equations and at the same time permits one  to follow the physical behavior 

of the structure. 

Another interesting problem is the related to the inverse analysis, this is 

given a desired position for the structure to find the required external loads that 

may locate the structure in the desired position. 

Finally it may be possible to find alternative numerical approaches. Finite 

element techniques have been well proved in fields like fluids, thermal sciences, 

vibrations and strength of materials. Such techniques could provide interesting 

possibilities to solving the problem. 
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APPENDIX A 
FIRST EQUILIBRIUM EQUATION FOR THE STATICS OF A TENSEGRITY 

STRUCTURE WITH 3 STRUTS 
 

F1x-1/2*kT*(((Ls*sin(�1)+a1-Ls*sin(�2)-a2)^2+(-Ls*sin(�1)*cos(�1)+ 

b1+Ls*sin(�2)*cos(�2)-b2)^2+(Ls*cos(�1)*cos(�1)-

Ls*cos(�2)*cos(�2))^2)^(1/2)-T0)/((Ls*sin(�1)+a1-Ls*sin(�2)-a2)^2+(-

Ls*sin(�1)*cos(�1)+b1+ 

Ls*sin(�2)*cos(�2)-b2)^2+(Ls*cos(�1)*cos(�1)-Ls*cos(�2)*cos(�2))^2)^(1/2)* 

(2*Ls*sin(�1)+2*a1-2*Ls*sin(�2)-2*a2)-1/2*kB*((a1^2-2*a1*a2+a2^2+b1^2-

2*b1*b2+b2^2)^(1/2)-B0)/(a1^2-2*a1*a2+a2^2+b1^2-2*b1*b2+b2^2)^(1/2)*(2*a1-

2*a2)-1/2*kL*(((Ls*sin(�1)+a1-a2)^2+(-Ls*sin(�1)*cos(�1)+b1-b2)^2+Ls^2* 

cos(�1)^2*cos(�1)^2)^(1/2)-L0)/((Ls*sin(�1)+a1-a2)^2+(-

Ls*sin(�1)*cos(�1)+b1-

b2)^2+Ls^2*cos(�1)^2*cos(�1)^2)^(1/2)*(2*Ls*sin(�1)+2*a1-2*a2)-1/2*kT* 

(((Ls*sin(�3)+a3-Ls*sin(�1)-a1)^2+(-

Ls*sin(�3)*cos(�3)+b3+Ls*sin(�1)*cos(�1)-b1)^2+(Ls*cos(�3)*cos(�3)-

Ls*cos(�1)*cos(�1))^2)^(1/2)-T0)/((Ls*sin(�3)+a3-Ls*sin(�1)-a1)^2+(-

Ls*sin(�3)*cos(�3)+b3+Ls*sin(�1)*cos(�1)-b1)^2+(Ls*cos(�3) 

*cos(�3)-Ls*cos(�1)*cos(�1))^2)^(1/2)*(-2*Ls*sin(�3)-2*a3+2*Ls*sin(�1)+2*a1)-

1/2*kB*((a3^2-2*a3*a1+a1^2+b3^2-2*b3*b1+b1^2)^(1/2)-B0)/(a3^2-2*a3*a1+ 
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a1^2+b3^2-2*b3*b1+b1^2)^(1/2)*(-2*a3+2*a1)-1/2*kL*(((Ls*sin(�3)+a3-a1)^2+(-

Ls*sin(�3)*cos(�3)+b3-b1)^2+Ls^2*cos(�3)^2*cos(�3)^2)^(1/2)-

L0)/((Ls*sin(�3)+ 

a3-a1)^2+(-Ls*sin(�3)*cos(�3)+b3-b1)^2+Ls^2*cos(�3)^2*cos(�3)^2)^(1/2)*(-

2*Ls*sin(�3)-2*a3+2*a1) 
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APPENDIX B 
SOFTWARE FOR THE STATIC ANALYSIS OF A TENSEGRITY STRUCTURE 

A software able to generate and solve the equations necessary for the 

static analysis of a tensegrity structure is developed in Matlab. The software is 

open and structured which permits one to modify any of its parts easily.  

Initially the general equilibrium equations are obtained in symbolic form for 

several tensegrity structures. This procedure is performed only once and the 

results are stored in the hard drive.  

In order to be able to analyze a particular system is necessary to provide 

the following information: number of struts, length of the struts, stiffness and free 

length for each tie, external forces and their points of application, external 

moments,  the number of steps desired for the analysis and to  specify the 

generalized coordinates for each strut if some of the struts are subjected to 

additional constraints. 

The information related to the ties and struts is sufficient to evaluate the 

coordinates of the ends of the strut for its unloaded position and therefore the 

initial conditions . 

Originally the set of equations required to analyze a structure conformed 

by n  struts is n*4 , but if there are constraints not all the n*4  degrees of 

freedom are present. In this case the software automatically disregards any 

redundant equations. 
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The external loads are divided according to the number of steps required 

for the analysis. At this time all the information necessary to solve the equations 

is available. The program calls the function fsolve of Matlab which implements 

the Newton-Raphson method and yields the results for the current generalized 

coordinates. The process is repeated for each step and all the data is stored. 

For each position the program evaluates the coordinates for the ends of 

the struts, the length of the strings, the forces in the ties, the Plücker coordinates 

for the lines joining points connected by ties and the reaction forces and reaction 

moments if they exist. 

The program continues with the verification of the results applying the 

Newton�s Third Law. The maximum deviation from the value of zero is reported. 

Generally this value is less than 0.0001. 

The last step is to present an animation of the platform. All the results are 

stored and they are available in planar format to be used for other software if this 

is required. 
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