

GLU

VITROS Chemistry Products GLU Slides

Glucose

REF

170 7801

Intended Use

For in vitro diagnostic use only.

VITROS GLU Slides quantitatively measure glucose (GLU) concentration in serum, plasma, urine, and cerebrospinal fluid.

Summary and Explanation of the Test

Glucose is a primary cellular energy source. Fasting plasma glucose concentrations and tolerance to a dose of glucose are used to establish the diagnosis of diabetes mellitus and disorders of carbohydrate metabolism. Glucose measurements are used to monitor therapy in diabetics and in patients with dehydration, coma, hypoglycemia, insulinoma, acidosis, and ketoacidosis. ¹

Principles of the Procedure


The VITROS GLU Slide method is performed using the VITROS GLU Slides and the VITROS Chemistry Products Calibrator Kit 1 on VITROS Chemistry Systems.

The VITROS GLU Slide is a multilayered, analytical element coated on a polyester support.

A drop of patient sample is deposited on the slide and is evenly distributed by the spreading layer to the underlying layers. The oxidation of sample glucose is catalyzed by glucose oxidase to form hydrogen peroxide and gluconate. This reaction is followed by an oxidative coupling catalyzed by peroxidase in the presence of dye precursors to produce a dye. The intensity of the dye is measured by reflected light.

The dye system used is closely related to that first reported by Trinder. ² The chemistry of the glucose slides has been described by Curme, et al. ³

Reaction Sequence

Test Type and Conditions

Test Type and Conditions for GLU

Test Type	VITROS System	Approximate Incubation Time	Temperature	Wavelength	Sample Drop Volume
Colorimetric	5,1 FS, 950, 750, 550, 250	5 minutes	37°C (98.6°F)	540 nm	10 μL

Warnings and Precautions

For in vitro diagnostic use only.

Take care when handling materials and samples of human origin. Since no test method can offer complete assurance that infectious agents are absent, consider all clinical specimens, controls, and calibrators potentially infectious. Handle specimens, solid and liquid waste, and test components in accordance with local regulations and NCCLS Guideline M29 ⁴ or other published biohazard safety guidelines.

For specific warnings and precautions for calibrators, quality control materials, and other components, refer to the Instructions for Use for the appropriate VITROS product, or to other manufacturer's product literature.

INSTRUCTIONS FOR USE

Glucose Reagents

Reagents

Slide Ingredients

Reactive ingredients per cm²

Glucose oxidase (*Aspergillus Niger*, E.C.1.1.3.4) 0.77 U; peroxidase (horseradish root, E.C.1.11.1.7) 3.6 U; 1,7-dihydroxynaphthalene (dye precursor) 67 μ g and 4-aminoantipyrine hydrochloride (dye precursor) 0.11 mg.

Other ingredients

Pigment, binders, buffer, surfactants, stabilizers and cross-linking agent.

1 1. Upper slide mount 2. Spreading layer (TiO₂) 3. Reagent layer 9 glucose oxidase peroxidase peroxidase oberfer, pH 5.0 4. Support layer 5. Lower slide mount

Cartridge Handling

CAUTION: Do not use slide cartridges with damaged or incompletely sealed packaging.

- · Inspect the packaging for signs of damage.
- Be careful when opening the outer packaging with a sharp instrument so as to avoid damage to the individual product packaging.

Cartridge Preparation

IMPORTANT: The slide cartridge must reach room temperature, 18 °−28 °C (64 °−82 °F), before it is unwrapped and loaded into the slide supply.

- 1. Remove the slide cartridges from storage.
- 2. Warm the wrapped cartridge at room temperature for 30 minutes when taken from the refrigerator or 60 minutes from the freezer
- 3. Unwrap and load the cartridge into the slide supply.

NOTE: Load the cartridges within 24 hours after they reach room temperature, 18°–28°C (64°–82°F)

Slide Storage and Stability

VITROS GLU Slides are stable until the expiration date on the carton when they are stored and handled as specified.

Slide Storage and Stability for GLU

Slide Cartridges	Specimen Type Used	Storag	Storage Condition		
	All recommended specimens	Frozen	≤-18°C (≤0°F)	Until expiration date	
Unopened*	Plasma (Sodium fluoride/ potassium oxalate)	Refrigerated	2°-8°C (36°-46°F)	≤4 months	
	Serum, Plasma (EDTA, Heparin), Urine, CSF	Refrigerated	2°-8°C (36°-46°F)	Until expiration date	
Opened	All recommended specimens	On-analyzer	System turned on	≤1 week	
Opened	All recommended specimens	On-analyzer	System turned off	≤2 hours	

^{*} Do not store with or near hydrogen peroxide.

- · Verify performance with quality control materials:
 - If the system is turned off for more than 2 hours.
 - After reloading cartridges that have been removed from the slide supply and stored for later use.

GLU

Specimen Requirements Glucose

Specimen Requirements

WARNING: Handle specimens as biohazardous material.

Specimens Recommended

Serum

Plasma: EDTA

Heparin

Sodium fluoride/potassium oxalate (see the Slide Storage and Stability table for slide storage when using

this specimen type)

Urine

CSF

IMPORTANT: Certain collection devices have been reported to affect other analytes and tests. 5

Confirm that your collection devices are compatible with this test.

Specimens Not Recommended

• Urine: Preservatives

Serum and Plasma

Specimen Collection and Preparation

Collect specimens using standard laboratory procedures. 6,7

NOTE: For details on minimum fill volume requirements, refer to the operating instructions for your VITROS Chemistry System.

Patient PreparationNo special patient preparation is necessary.

Special Precautions

- For the effect of sample hemolysis on test results, refer to "Limitations of the Procedure."
- Grossly lipemic samples must be diluted twofold prior to analysis. Refer to "Sample Dilution" for dilution instructions.
- For the effect of elevated lipids on test results, refer to "Limitations of the Procedure."
- Particulate matter (for example, fibrin) in sufficient quantity may coat the spreading layer and limit diffusion of oxygen, causing a negative interference. To minimize particulate matter, do not centrifuge specimens until clotting is complete.
- Serum:
 - Centrifuge specimen at 1000X g for 10 minutes and remove serum from the clot within 30 minutes after collecting the specimen to avoid metabolism of glucose by the cells (approximately 7% per hour at room temperature).⁶
- · Heparin or EDTA plasma:
 - Follow manufacturer's recommendations for mixing anticoagulant with specimens.
 - Centrifuge specimen at 1000X g for 10 minutes and remove plasma from the cells within 30 minutes after collecting the specimen to avoid metabolism of glucose by the cells (approximately 7% per hour at room temperature).
- Sodium fluoride/potassium oxalate plasma:
 - Follow manufacturer's recommendations for mixing anticoagulant with specimens.
 - Centrifuge specimens and remove the plasma from the cells within 24 hours of collection.

IMPORTANT: See the Slide Storage and Stability table for slide storage when using sodium fluoride/potassium oxalate plasma.

Specimen Handling and Storage

WARNING: Handle specimens as biohazardous material.

- Handle and store specimens in stoppered containers to avoid contamination and evaporation.
- Mix samples by gentle inversion and bring to room temperature, 18°-28°C (64°-82°F), prior to analysis.

Specimen Storage and Stability for GLU: Serum and Plasma⁸

Storage	Temperature	Stability
Room temperature	18°-28°C (64°-82°F)	≤24 hours
Refrigerated	2°-8°C (36°-46°F)	≤7 days
Frozen	≤-18°C (≤0°F)	≤1 year

INSTRUCTIONS FOR USE

Glucose Testing Procedure

Urine

Specimen Collection and Preparation

Collect specimens using standard laboratory procedures.9

NOTE: For details on minimum fill volume requirements, refer to the operating instructions for your VITROS Chemistry System.

Keep refrigerated until analysis. 10

Patient Preparation

· No special patient preparation is necessary.

Specimen Handling and Storage

- Handle and store specimens in stoppered containers to avoid contamination and evaporation.
- Mix samples by gentle inversion and bring to room temperature, 18°-28°C (64°-82°F), prior to analysis.

Specimen Storage and Stability for GLU: Urine9

opoonnon otorago ana otas	inty for Older Crimo	
Storage	Temperature	Stability
Refrigerated	2°-8°C (36°-46°F)	Not determined

CSF

Specimen Collection and Preparation

Collect specimens using standard laboratory procedures. ¹¹

NOTE: For details on minimum fill volume requirements, refer to the operating instructions for your VITROS Chemistry System.

Patient Preparation

· No special patient preparation is necessary.

Special Precautions

Centrifuge specimen and remove the supernatant within 1 hour of collection.

Specimen Handling and Storage

- · Handle and store specimens in stoppered containers to avoid contamination and evaporation.
- Mix samples by gentle inversion and bring to room temperature, 18°-28°C (64°-82°F), prior to analysis.

Specimen Storage and Stability for GLU: CSF⁸

Storage	Temperature	Stability
Refrigerated	2°-8°C (36°-46°F)	≤7 days

Testing Procedure

Materials Provided

· VITROS Chemistry Products GLU Slides

Materials Required But Not Provided

- VITROS Chemistry Products Calibrator Kit 1
- Quality control materials, such as VITROS Chemistry Products Performance Verifier I and II for serum and plasma tests or VITROS Chemistry Products Liquid Performance Verifier I and II for CSF tests.
- VITROS Chemistry Products 7% BSA
- Isotonic saline or reagent-grade water
- VITROS Chemistry Products FS Diluent Pack 2 (BSA/Saline) (for on-analyzer dilution)
- VITROS Chemistry Products FS Diluent Pack 3 (Specialty Diluent/Water) (for on-analyzer dilution)

Operating Instructions

- Check reagent inventories at least daily to ensure that quantities are sufficient for the planned workload.
- For additional information, refer to the operating instructions for your VITROS Chemistry System.

IMPORTANT: Bring all fluids and samples to room temperature, 18°–28°C (64°–82°F), prior to analysis.

GLU

Calibration Glucose

Sample Dilution

Serum and Plasma

If glucose concentrations exceed the system's reportable (dynamic) range or if the sample is grossly lipemic:

Manual Sample Dilution

- 1. Dilute the sample with VITROS 7% BSA.
- 2. Reanalyze.
- 3. Multiply the results by the dilution factor to obtain an estimate of the original sample's glucose concentration.

On-Analyzer Sample Dilution (VITROS 5,1 FS and VITROS 250 only)

Refer to the VITROS Chemistry System operating instructions for more information on the On-Analyzer Dilution Procedure. For VITROS 5,1 FS, use VITROS Chemistry Products FS Diluent Pack 2 for the dilution.

Urine

If glucose concentrations exceed the system's reportable (dynamic) range:

Manual Sample Dilution

- 1. Dilute the sample with isotonic saline or reagent-grade water.
- 2. Reanalyze.
- 3. Multiply the results by the dilution factor to obtain an estimate of the original sample's glucose concentration.

On-Analyzer Sample Dilution (VITROS 5,1 FS and VITROS 250 only)

Refer to the VITROS Chemistry System operating instructions for more information on the On-Analyzer Dilution Procedure. For VITROS 5,1 FS, use VITROS Chemistry Products FS Diluent Pack 2 or VITROS Chemistry Products FS Diluent Pack 3 for the dilution.

Calibration

Required Calibrators

• VITROS Chemistry Products Calibrator Kit 1

NOTE: The same VITROS Calibrator Kit is used to calibrate serum, urine, and CSF glucose. However, specific supplementary assigned values (SAVs) are applied for each body fluid

Calibrator Preparation, Handling, and Storage

Refer to the Instructions for Use for VITROS Calibrator Kit 1.

Calibration Procedure

Refer to the operating instructions for your VITROS Chemistry System.

When to Calibrate

Calibrate:

- When the slide lot number changes.
- · When critical system parts are replaced due to service or maintenance.
- When government regulations require.
 - For example, in the USA, CLIA regulations require calibration or calibration verification at least once every six months.

The VITROS GLU test may also need to be calibrated:

- If quality control results are consistently outside acceptable range.
- · After certain service procedures have been performed.

For additional information, refer to the operating instructions for your VITROS Chemistry System.

Calculations

ı

Reflectance from the slide is measured at 540 nm after the fixed incubation time. Once a calibration has been performed for each slide lot, glucose concentration in unknown samples can be determined using the software-resident endpoint colorimetric math model and the response obtained from each unknown test slide.

Validity of a Calibration

Calibration parameters are automatically assessed by the VITROS Chemistry System against a set of quality parameters detailed in the Coefficients and Limits screen (for VITROS 5,1 FS, see the Review Assay Data screen). Failure to meet any of the pre-defined quality parameters results in a failed calibration. The calibration report should be used in conjunction with quality control results to determine the validity of a calibration.

INSTRUCTIONS FOR USE

Glucose Quality Control

Reportable (Dynamic) Range

Reportable (Dynamic) Range for GLU

	Conventional Units (mg/dL)	SI Units (mmol/L)	Alternate Units (g/L)
Serum	20.0-625.0	1.11–34.69	0.20-6.25
Urine	20.0-650.0	1.11–36.08	0.20-6.50
CSF	20.0-650.0	1.11–36.08	0.20-6.50

For out-of-range samples, refer to "Sample Dilution."

Traceability of the Calibration

Values assigned to the VITROS Chemistry Products Calibrator Kit 1 for glucose are traceable to the Certified NIST (National Institute of Standards and Technology) Reference Material, SRM® (Standard Reference Material) 917b. The Ortho-Clinical Diagnostics calibration laboratory uses SRM® 917b to calibrate the CDC Hexokinase method ¹² to support glucose value assignment for VITROS Calibrator Kit 1.

Quality Control

Procedure Recommendations

WARNING: Handle quality control materials as biohazardous material.

- Choose control levels that check the clinically relevant range.
- Analyze quality control materials in the same manner as patient samples, before or during patient sample processing.
- To verify system performance, analyze control materials:
 - After calibration.
 - According to local regulations or at least once each day that the test is being performed.
 - After specified service procedures are performed. Refer to the operating instructions for your VITROS Chemistry System.
- If control results fall outside your acceptable range, investigate the cause before deciding whether to report patient results.
- For general quality control recommendations, refer to Statistical Quality Control for Quantitative Measurements: Principles and Definitions; Approved Guideline-Second Edition ¹³ or other published guidelines.
- For additional information, refer to the operating instructions for your VITROS Chemistry System.

Quality Control Material Selection

IMPORTANT: VITROS Performance Verifiers are recommended for use with the VITROS Chemistry System. Evaluate the performance of other commercial control fluids for compatibility with this test before using for quality control.

- Control materials other than VITROS Performance Verifiers may show a difference when compared with other glucose methods if they:
 - Depart from a true human matrix.
 - Contain high concentrations of preservatives, stabilizers, or other nonphysiological additives.
- Do not use control materials stabilized with ethylene glycol.

Urine

• For urine specimens, use commercially available urine control materials.

Quality Control Material Preparation and Storage

Refer to the Instructions for Use for VITROS Chemistry Products Performance Verifier I and II or to other manufacturer's product literature.

Expected Values and Reporting Units

These reference intervals are based on external studies for serum ¹⁴, urine ¹⁵, and CSF. ¹⁵

Reference Interval

Reference Interval for GLU

	Conv. Units (mg/dL)	SI Units (mmol/L)	Alternate Units (g/L)
Serum			
Fasting adults	74–106	4.1–5.9	0.7–1.1

GLU

Limitations of the Procedure

Glucose

Reference Interval for GLU

	Conv. Units (mg/dL)	SI Units (mmol/L)	Alternate Units (g/L)
Urine			
Random	< 30	< 1.7	< 0.3
24-hour	<500 mg/day*	<2.8 mmol/day**	<0.5 g/day***
CSF	40–70	2.2-3.9	0.4-0.7

- * Glucose concentration (mg/dL) x 24-hour volume (dL) = mg/day.
- ** Glucose concentration (mmol/L) x 24-hour volume (L) = mmol/day.
- *** Glucose concentration (g/L) x 24-hour volume (L) = g/day.

Each laboratory should confirm the validity of these intervals for the population it serves.

Reporting Units and Unit Conversion

The VITROS Chemistry System may be programmed to report GLU results in conventional, SI, and alternate units.

Reporting Units and Unit Conversion for GLU

Conventional Units	SI Units	Alternate Units		
mg/dL	mmol/L (mg/dL x 0.05551)	g/L (mg/dL x 0.01)		

Limitations of the Procedure

Known Interferences

Serum and Plasma

• In fresh specimens, catalase released from the lysis of red blood cells causes a negative bias in glucose results. The degree of bias is proportional to the degree of hemolysis. In fresh samples, a negative bias of up to 10% may be observed with a level of hemolysis associated with a hemoglobin concentration of 250 mg/dL (2.5 g/L).

NOTE: Catalase activity decreases with sample storage. Aged samples that are hemolyzed may exhibit a positive bias of up to 10% due to the spectral interference of hemoglobin. Therefore, the magnitude and direction of bias observed with hemolyzed specimens will vary due to the level of catalase activity and concentration of hemoglobin present in the sample.

· Elevated lipids may limit diffusion of oxygen to the reactants. Dilute grossly lipemic samples twofold before analysis.

The VITROS GLU Slide method was screened for interfering substances following NCCLS Protocol EP7. ¹⁶ The substances listed in the table, when tested at the concentrations indicated, caused the bias shown.

For substances that were tested and did not interfere, refer to "Specificity."

Known Interfering Substances for GLU

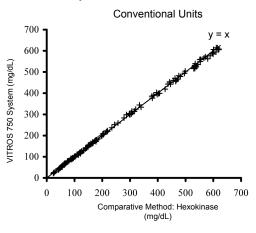
	Intor	ferent	Glucose Cor	ncentration	Averag	Average Bias	
Interferent*	Concentration		Conv. (mg/dL)	SI (mmol/L)	Conv. (mg/dL)	SI (mmol/L)	
Serum and Plasma							
Total protoin	5 g/dL	(50 g/L)	100	5.55	-5	-0.28	
Total protein	10 g/dL	(100 g/L)	100	5.55	+6	+0.33	
Urine							
Boric Acid with	10 g/dL	(1617 mmol/L)	36	2.00	+15%	1450/	
sodium formate	5 g/dL	(735 mmol/L)	30	2.00	+15%	+15%	
10% Thymol	5 mL/1.5 L	(5 mL/1.5 L)	40	2.22	-15%	-15%	
Sodium fluoride	10 mg/mL	(238 mmol/L)	30	1.66	+9%	+9%	
CSF		-			•		
Hemoglobin	150 mg/dL	(1.5 g/L)	65	3.61	+5%	+5%	

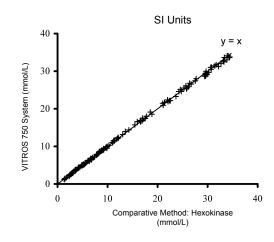
^{*} It is possible that other interfering substances may be encountered. These results are representative; however, your results may differ somewhat due to test-to-test variation. The degree of interference at concentrations other than those listed might not be predictable.

Other Limitations

Certain drugs and clinical conditions are known to alter glucose concentrations *in vivo*. For additional information, refer to one of the published summaries. ^{17, 18}

Glucose

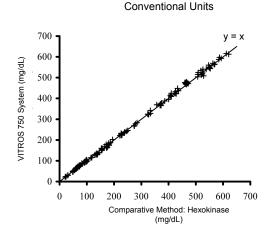

Performance Characteristics

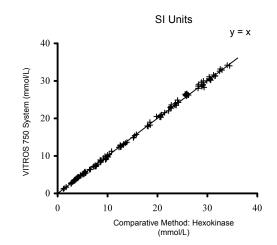

Method Comparison

The plots and tables show the results of a comparison of samples analyzed on the VITROS 750 System with those analyzed using the Hexokinase comparative method. ¹⁹ Testing followed NCCLS Protocol EP9. ²⁰

The tables also show the results of comparisons between the VITROS 750 System and a commercially available method, comparisons of the VITROS 250 and 950 Systems with the VITROS 750 System, and comparisons of the VITROS 5,1 FS System with the VITROS 950 System.

Method Comparison for GLU: Serum





Method Comparison for GLU: Serum

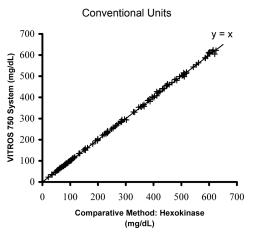
				Conventional Units (mg/dL)			SI Units (mmol/L)		
	n	Slope	Correlation Coefficient	Range of Sample Conc.	Intercept	Sy.x	Range of Sample Conc.	Intercept	Sy.x
750 System vs. comparative method	145	0.99	1.000	24–620	+1.64	5.12	1.3–34.4	0.09	0.28
250 System vs. 750 System	55	1.00	1.000	64–604	+0.06	3.44	3.6–33.5	0.00	0.19
950 System vs. 750 System	126	0.99	0.999	28–616	+0.02	1.72	1.6–34.2	0.00	0.10
5,1 FS System vs. 950 System	119	1.01	1.000	23–561	-0.01	1.75	1.3–31.1	0.00	0.10

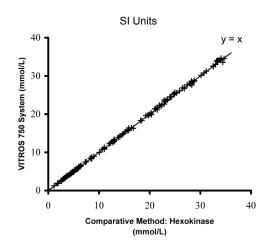
Method Comparison for GLU: Urine

GLU

Performance Characteristics

Glucose


Method Comparison for GLU: Urine


·				Conventional Units (mg/dL)			SI Units (mmol/L)		
	n	Slope	Correlation Coefficient	Range of Sample Conc.	Intercept	Sy.x	Range of Sample Conc.	Intercept	Sy.x
750 System vs. comparative method	145	1.00	1.000	21–621	-0.18	5.81	1.2–34.5	-0.01	0.32
250 System vs. 750 System	43	1.03	0.999	21–627	-3.33	6.98	1.1–34.8	-0.18	0.39
950 System vs. 750 System	100	1.00	0.999	25–561	+0.23	1.42	1.4–31.1	+0.01	0.08
5,1 FS System vs. 950 System	102	1.00	1.000	24–646	-2.33	2.16	1.3–35.9	-0.13	0.12
750 System vs. commercial method*	83	0.89	0.994	36–748	-3.66	21.91	2.0-41.5	-0.20	1.22

^{*} Boehringer Mannheim Glucose/HK (Hitachi 747)

CSF

Method Comparison for GLU: CSF

Method Comparison for GLU: CSF

				Conventiona	Conventional Units (mg/dL)			SI Units (mmol/L)		
	n	Slope	Correlation Coefficient	Range of Sample Conc.	Intercept	Sy.x	Range of Sample Conc.	Intercept	Sy.x	
750 System vs. comparative method	143	1.00	1.000	21–625	+0.32	4.27	1.2–34.7	+0.02	0.24	
250 System vs. 750 System	38	1.01	1.000	21–521	-1.14	5.09	1.2–28.9	-0.06	0.28	
950 System vs. 750 System	102	1.00	0.999	21–593	+0.06	1.48	1.232.9	0.00	0.08	
5,1 FS System vs. 950 System	105	1.00	1.000	20–550	-0.75	1.93	1.1–30.5	-0.04	0.11	
750 System vs. commercial method*	94	0.96	1.000	29–549	+1.77	4.85	1.6–30.5	+0.10	0.27	

^{*} Boehringer Mannheim Glucose/HK (Hitachi 747)

INSTRUCTIONS FOR USE

Performance Characteristics

Glucose

Precision

Precision was evaluated with quality control materials on VITROS 250, 750, 950, and 5,1 FS Systems following NCCLS Protocol EP5. ²¹

The data presented are a representation of test performance and are provided as a guideline. Variables such as sample handling and storage, reagent handling and storage, laboratory environment, and system maintenance can affect reproducibility of test results.

Precision for GLU: Serum

	Conventional Units (mg/dL)			SI	Units (mmo	ol/L)	Within		
System	Mean Conc.	Within Day SD*	Within Lab SD**	Mean Conc.	Within Day SD*	Within Lab SD**	Lab CV%**	No. Observ.	No. Days
VITROS 250	86	0.5	1.5	4.8	0.03	0.08	1.7	77	20
	286	1.4	4.1	15.9	0.08	0.23	1.4	78	20
VITROS 750	81	0.5	0.7	4.5	0.03	0.04	0.9	91	23
	99	0.5	0.9	5.5	0.03	0.05	0.9	92	23
	268	1.7	2.3	14.9	0.09	0.13	0.9	92	23
VITROS 950	83	0.5	1.1	4.6	0.03	0.06	1.4	91	23
	270	1.5	2.6	15.0	0.08	0.14	1.0	92	23
VITROS 5,1 FS	83	0.4	1.2	4.6	0.02	0.07	1.5	85	21
	292	1.1	3.5	16.2	0.06	0.20	1.2	88	22

^{*} Within Day precision was determined using two runs/day with two to three replications.

Precision for GLU: Urine

	Conventional Units (mg/dL)			SI Units (mmol/L)			Within		
System	Mean Conc.	Within Day SD*	Within Lab SD**	Mean Conc.	Within Day SD*	Within Lab SD**	Lab CV%**	No. Observ.	No. Days
	44	0.3	0.4	2.5	0.02	0.02	0.9	88	22
VITROS 250	77	1.1	1.5	4.3	0.06	0.08	1.9	84	21
VII KOS 250	232	2.9	4.7	12.9	0.16	0.26	2.0	88	22
	278	2.0	3.8	15.4	0.11	0.21	1.4	88	22
VITROS 750	50	0.3	0.4	2.8	0.02	0.02	0.8	92	23
	304	1.3	2.2	16.9	0.07	0.12	0.7	92	23
VITROS 950	50	0.3	0.3	2.8	0.02	0.02	0.7	93	23
	308	2.0	3.1	17.1	0.11	0.17	1.0	92	23
VITROS 5,1 FS	26	0.2	0.3	1.5	0.01	0.02	1.2	88	22
	291	2.1	3.9	16.1	0.11	0.22	1.3	90	22

^{*} Within Day precision was determined using two runs/day with two to three replications.

Precision for GLU: CSF

	Conventional Units (mg/dL)			SI Units (mmol/L)			Within		
System	Mean Conc.	Within Day SD*	Within Lab SD**	Mean Conc.	Within Day SD*	Within Lab SD**	Lab CV%**	No. Observ.	No. Days
VITROS 250	41	0.3	0.9	2.3	0.02	0.05	2.2	80	20
	85	0.7	1.8	4.7	0.04	0.10	2.1	80	20
VITROS 750	48	0.3	0.4	2.6	0.02	0.02	0.9	92	23
	90	0.6	0.7	5.0	0.03	0.04	0.8	92	23
VITROS 950	48	0.3	0.4	2.7	0.02	0.02	0.9	92	23
	92	0.5	1.0	5.1	0.03	0.05	1.1	92	23
VITROS 5,1 FS	38	0.2	0.4	2.1	0.01	0.02	1.0	89	22
	82	0.5	1.1	4.5	0.03	0.06	1.4	90	22

^{*} Within Day precision was determined using two runs/day with two to three replications.

^{**} Within Lab precision was determined using a single lot of slides and calibrating weekly.

^{**} Within Lab precision was determined using a single lot of slides and calibrating weekly.

^{**} Within Lab precision was determined using a single lot of slides and calibrating weekly.

GLU

References Glucose

Specificity

Urine preservatives that did not interfere with the test for urine glucose (<2% change):

- Toluene (1.3 mL/L)
- Boric acid (5.2 g/L)

The substances listed in the table were tested with VITROS GLU Slides following NCCLS Protocol EP7 ¹⁶ and found not to interfere, bias <4.4 mg/dL (<0.24 mmol/L) at the concentration shown.

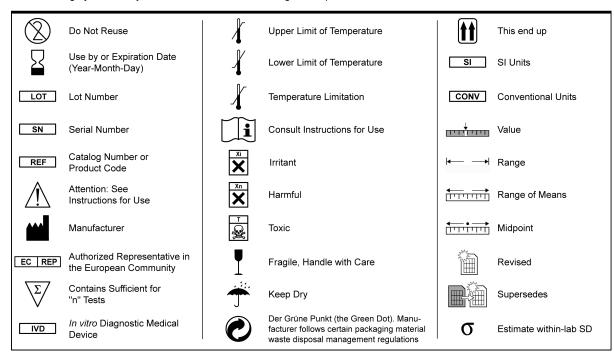
Substances That Do Not Interfere With GLU

Compound	Concer	ntration
Acetaminophen	5 mg/dL	331 μmol/L
Acetylsalicylic acid	30 mg/dL	1665 μmol/L
p-Aminosalicylic acid	23 mg/dL	1718 μmol/L
Ascorbic acid	3 mg/dL	170 μmol/L
Bilirubin	40 mg/dL	684 μmol/L
Chlorothiazide	3 mg/dL	101 μmol/L
Creatinine	15 mg/dL	1326 μmol/L
Dextran	1000 mg/dL	250 μmol/L
Ethanol	300 mg/dL	65 mmol/L
Fructose	30 mg/dL	1665 μmol/L
Galactose	60 mg/dL	3330 μmol/L

Compound	Concei	ntration
Gentisic acid	0.5 mg/dL	32 μmol/L
Hypaque	500 mg/dL	8.2 mmol/L
Intralipid	800 mg/dL	8 g/L
Iodide	2 mEq/L	2 mEq/L
Isoniazid	0.4 mg/dL	29 μmol/L
L-dopa	0.6 mg/dL	30 μmol/L
6-Mercaptopurine	1.5 mg/dL	99 μmol/L
Sulfathiazole	6 mg/dL	235 μmol/L
Tyrosine	24 mg/dL	1325 μmol/L
Urea nitrogen	100 mg/dL	36 mmol/L
Xylose	25 mg/dL	1666 μmol/L

References

- 1. Tietz NW (ed). Textbook of Clinical Chemistry. ed. 2. Philadelphia: WB Saunders; 928–960; 1994.
- Trinder P. Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Receptor. Ann. Clin. Biochem. 6:24; 1969.
- 3. Curme HG, et al. Multilayer Film Elements for Clinical Analysis. Clin. Chem. 24:1335–1342; 1978.
- NCCLS. Protection of Laboratory Workers from Instrument Biohazards and Infectious Diseases Transmitted by Blood, Body Fluids and Tissue; Approved Guideline. NCCLS Document M29 (ISBN 1-56238). NCCLS, Wayne, PA 19087; 1997.
- 5. Calam RR. Specimen Processing Separator Gels: An Update. J Clin Immunoassay. 11:86-90; 1988.
- NCCLS. Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture. NCCLS Document H3. Wayne, PA: NCCLS; 1991.
- NCCLS. Procedures for the Collection of Diagnostic Blood Specimens by Skin Puncture. NCCLS Document H4. Wayne, PA: NCCLS; 1991.
- Clinical Laboratory Handbook for Patient Preparation and Specimen Handling. Fascicle VI: Chemistry/Clinical Microscopy. Northfield, IL: College of American Pathologists; 1992.
- NCCLS. Urinalysis and Collection, Transportation, and Preservation of Urine Specimens; Approved Guideline. NCCLS Document GP16. Wayne. PA: NCCLS: 1995.
- 10. Tietz NW (ed). Fundamentals of Clinical Chemistry. ed. 3. Philadelphia: WB Saunders; 50; 1999.
- 11. Kjeldsberg CR, Knight JA. Body Fluids. ed 2. Chicago: ASCP Press; 31-33; 1986.
- Neese JW, Duncan P, Bayse DD, et al. Development and Evaluation of a Hexokinase/Glucose-6-phosphate Dehydrogenase
 Procedure for Use as a National Glucose Reference Method. HEW Publication No. (CDC) 77-8330. HEW. USPHS, Centers for
 Disease Control: 1976.
- NCCLS. Statistical Quality Control for Quantitative Measurements: Principles and Definitions; Approved Guideline-Second Edition. NCCLS Document C24. Wayne, PA: NCCLS; 1999.
- 14. Tietz NW (ed). Textbook of Clinical Chemistry. ed. 3. Philadelphia: WB Saunders; 1815; 1999.
- 15. Tietz NW (ed). Fundamentals of Clinical Chemistry. ed. 2. Philadelphia: WB Saunders; 1213-1214; 1976.
- 16. NCCLS. Interference Testing in Clinical Chemistry, NCCLS Document EP7. Wayne, PA: NCCLS; 1986.
- 17. Young DS. Effects of Drugs on Clinical Laboratory Tests. ed. 4. Washington D.C.: AACC Press; 1995.
- 18. Friedman RB, Young DS. Effects of Disease on Clinical Laboratory Tests. Washington, D.C.: AACC Press; 1990.
- 19. Hexokinase/G-6-PDH System Applied to a Somogyi Deproteinized Supernate. Fed. Reg. 39:24136; 1974.
- NCCLS. Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline. NCCLS Document EP9. Wayne, PA: NCCLS; 1995.
- 21. NCCLS. User Evaluation of Precision Performance with Clinical Chemistry Devices. NCCLS Document EP5. Wayne, PA: NCCLS; 1992.


Glucose

INSTRUCTIONS FOR USE

Glossary of Symbols

Glossary of Symbols

The following symbols may have been used in the labeling of this product.

GLU

Revision History Glucose

Revision History

Date of Revision	Version	Description of Technical Changes*
2004-09-13	4.0	Added VITROS 5,1 FS Chemistry System
		Known Interfering Substances – added CSF (Hemoglobin)
		Specificity – added intralipid; updated bilirubin
		Glossary of Symbols – updated data
2003-07-28	3.0	Slide Storage and Stability – added the Specimen Type Used column; updated storage values for both unopened and opened cartridges
		Reference Interval – Serum: corrected the SI value to 4.1 mmol/L
		Limitations of the Procedure – Serum and Plasma: updated data for hemolysis References – added 14
2002-12-16	2.0	New organization and sections consistent with IVD Directive
		Reference Interval – serum: replaced data with that for fasting adults
		Limitations of the Procedure – serum: updated hemoglobin interference; urine: updated interferents
		Method Comparison – serum: updated all comparisons; urine and CSF: updated all except for 950 vs. 750 Systems; updated all plots
		Precision – serum: updated 750 system; urine: updated 750 and 950 Systems; CSF: updated 250 and 750 Systems
		Specificity – added toluene and boric acid as preservatives that do not interfere
		References – added 4, 5, 10, 12, 14, 16, 21
2002APR19	1.0 – English	New format, technically equivalent to 11/96.
	only	

^{*} The change bars indicate the position of a technical amendment to the text with respect to the previous version of the document.

When this Instructions For Use is replaced, sign and date bell policies, as appropriate.	ow and retain as specified by local regulations or laboratory
Signature	Obsolete Date

Glucose

INSTRUCTIONS FOR USE

Ortho-Clinical Diagnostics Johnson & Johnson 50-100 Holmers Farm Way High Wycombe Buckinghamshire HP12 4DP United Kingdom

Ortho-Clinical Diagnostics, Inc. 100 Indigo Creek Drive Rochester, NY 14626-5101

Brasil:

Distribuidor:Johnson&Johnson Produtos Profissionais LTDA Rod. Presidente Dutra, Km 154, S.J. dos Campos – SP – CEP: 12240-908 - Brasil CNPJ:54.516.661/0002-84

Farm.Resp.: Nancy M.R.B Lopes C.R.F.-SP N° 10965

SAC: 0800787865

VITROS is a trademark of Ortho-Clinical Diagnostics, Inc. \odot Ortho-Clinical Diagnostics, Inc., 2003, 2004.